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Abstract We consider a set-valued (generalized) variational inequality problem in a finite-
dimensional setting, where only approximation sequences are known instead of exact values
of the cost mapping and feasible set. We suggest to apply a sequence of inexact solutions of
auxiliary problems involving general penalty functions. Its convergence is attained without
concordance of penalty, accuracy, and approximation parameters under certain coercivity
type conditions.
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1 Introduction

Let D be a nonempty set in the real n-dimensional space Rn, and let G : D → �(Rn) be
a set-valued mapping. Here and below �(A) denotes the family of all nonempty subsets of
a set A. Then one can define the set-valued or generalized variational inequality problem
(GVI, for short), which is to find an element x∗ ∈ D such that

∃g∗ ∈ G(x∗), 〈g∗, y − x∗〉 ≥ 0 ∀y ∈ D. (1)

If the cost mapping G is single-valued, GVI (1) reduces to the following usual variational
inequality problem (VI): Find an element x∗ ∈ D such that

〈G(x∗), y − x∗〉 ≥ 0 ∀y ∈ D,

where G : D → R
n is a given mapping.

I. V. Konnov (�)
Department of System Analysis and Information Technologies, Kazan Federal University, ul.
Kremlevskaya, 18, Kazan 420008, Russia
e-mail: konn-igor@ya.ru

mailto:konn-igor@ya.ru


240 I. V. Konnov

GVIs give a suitable common format for various problems arising in Economics, Math-
ematical Physics, and Operations Research and are closely related with other general
problems in Nonlinear Analysis, such as fixed point, optimization, complementarity, and
equilibrium problems. Now (G)VI can be treated as a differential form of equilibrium
conditions in complex systems; see, e.g., [1–4] and the references therein.

Usually, most solution methods for (G)VIs relay upon exact calculation of the cost map-
ping G and feasible set D, but it seems better to deal with some their approximations for
many real problems. On the one hand, the exact values may be unknown due to usual cal-
culation errors and incompleteness of information about the problem under solution. On the
other hand, it might be useful to replace the initial problem by a sequence of auxiliary ones
with better properties, as in regularization and penalty methods. In other words, we intend to
solve non-stationary GVIs. We note that most existing solution methods for non-stationary
optimization and VI problems require (strengthened) monotonicity assumptions and spe-
cific concordance rules for approximation and iteration parameters; see, e.g., [5–8] and the
references therein. These requirements seem however very restrictive for applications.

A penalty based method for non-stationary VIs without concordance of parameters was
proposed in [9], its convergence requires only mild coercivity conditions. In this paper,
we extend those results in several directions. Namely, we suggest a penalty based method
for non-stationary GVIs, which admits inexact solutions of auxiliary problems. That is,
the method becomes implementable and we do not impose any rules on concordance of
parameters. Next, we introduce modified coercivity conditions, which provide existence of
solutions of auxiliary problems and convergence of the iteration sequence.

2 Preliminary Properties

We now recall some auxiliary properties. Let X be a nonempty subset of a finite-
dimensional space E. Recall that a function f : X → R is said to be

(a) convex on a set K ⊆ X, if for each pair of points x, y ∈ K and for all α ∈ [0, 1], it
holds that

f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y);
(b) strongly convex with constant κ > 0 on K ⊆ X, if for each pair of points x, y ∈ K

and for all α ∈ [0, 1], it holds that
f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y) − 0.5κα(1 − α)‖x − y‖2;

(c) upper (lower) semicontinuous on K ⊆ X, if for each sequence {xk} → x̄, xk ∈ K we
have lim supk→∞ f (xk) ≤ f (x̄) (lim infk→∞ f (xk) ≥ f (x̄));

(d) coercive if

f (x) → +∞ as ‖x‖ → ∞;
(e) weakly coercive with respect to a set V ⊆ X (see [10]) if there exists a number ρ such

that the set

V (f, ρ) = {x ∈ V | f (x) ≤ ρ}
is nonempty and bounded.

Clearly, we have (b) =⇒ (a) and (b) =⇒ (d) =⇒ (e), but the reverse implications are not
true in general.
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We say that a sequence of sets {Xk} isMosco convergent to a set X (see [11]) if and only
if

(i) for each sequence {xk} → x̄, xk ∈ Xk we have x̄ ∈ X;
(ii) for each point x̄ ∈ X there exists a sequence {xk} → x̄ with xk ∈ Xk .

Let us consider a general equilibrium problem (EP, for short) that is to find a point u∗ ∈ V

such that

�(u∗, v) ≥ 0 ∀v ∈ V, (2)

where V is a set in R
n, � : V × V → R is an equilibrium bi-function, i.e. �(u, u) = 0 for

every u ∈ V . We give the existence result for EP (2) on compact sets as a simple adjustment
of the classical Ky Fan inequality assertion from [12].

Proposition 1 If V is a nonempty, convex and compact subset of a finite-dimensional space
E, � : V ×V → R is an equilibrium bi-function, �(·, v) is upper semicontinuous for each
v ∈ V , and �(u, ·) is convex for each u ∈ V , then problem (2) has a solution.

Recall also that a set-valued mapping G : X → �(Rn) is said to be

(a) upper semicontinuous on X, if for each point z ∈ X and for each open set U such that
G(z) ⊂ U , there is a neighborhood W of z such that G(x) ⊆ U whenever x ∈ X∩W ;

(b) a K (Kakutani)-mapping on X if it is upper semicontinuous on X and has nonempty,
convex, and compact values.

3 Existence of Solutions

Let V be a nonempty set in the real n-dimensional space R
n, f : V → R a function,

and let G : V → �(Rn) be a set-valued mapping. Then we define the generalized mixed
variational inequality problem (GMVI, for short), which is to find an element x∗ ∈ V such
that

∃g∗ ∈ G(x∗), 〈g∗, y − x∗〉 + f (y) − f (x∗) ≥ 0 ∀y ∈ V. (3)

We consider the above problem under the following basic assumptions.

(H) V is a nonempty, convex and closed set, f : V → R is a lower semicontinuous and
convex function, G : V → �(Rn) is a K-mapping.

In this section, we intend to obtain some existence results for GMVI (3), which will be
used for substantiation of the penalty method for non-stationary GVIs of form (1). First we
give an existence result for the bounded case.

Proposition 2 If (H) holds and V is bounded, then GMVI (3) has a solution.

Proof Set

�(x, y) = sup
g∈G(x)

〈g, y − x〉 + f (y) − f (x). (4)

Under the assumptions in (H),

�1(x, y) = sup
g∈G(x)

〈g, y − x〉
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is an equilibrium bi-function and �(x, ·) is convex for each x ∈ V . Besides, �1(·, y) is
upper semicontinuous for each y ∈ V , see, e.g., [13, Section 9.2]. Then so is �, all the con-
ditions of Proposition 1 hold, and EP (2) has a solution. Applying now the known minimax
theorem (see, e.g., [14]), we conclude that GMVI (3) has a solution.

Let us now consider the unbounded case. We follow the approach from [10] with proper
modifications. Set

�(g, x, y) = 〈g, y − x〉 + f (y) − f (x).

Next, given a function μ : E → R, we set

Ṽ (μ, ρ) = {x ∈ V | μ(x) < ρ}
and obtain an auxiliary existence result on reduced sets.

Proposition 3 Suppose (H) holds, a function μ : Rn → R is convex, and, for some ρ, there
exist

xρ ∈ V (μ, ρ) and ḡ ∈ G(xρ) such that �(ḡ, xρ, y) ≥ 0 ∀y ∈ V (μ, ρ), (5)

and z ∈ Ṽ (μ, ρ) such that �(ḡ, xρ, z) ≤ 0. Then xρ is a solution of GMVI (3).

Proof Set
ϕ(x) = �(ḡ, xρ, x),

then 0 ≤ ϕ(z) ≤ 0. Therefore, z is a minimizer for the function ϕ over V (μ, ρ). Suppose
that there exists a point x′ ∈ V \ V (μ, ρ) such that ϕ(x′) < ϕ(z), and set x(α) = αx′ +
(1 − α)z. Clearly, x(α) ∈ V for each α ∈ (0, 1). By convexity of μ, we have

μ[x(α)] ≤ αμ(x′) + (1 − α)μ(z)

= μ(z) + α[μ(x′) − μ(z)] ≤ ρ

for α > 0 small enough. Then x(α) ∈ V (μ, ρ) for α > 0 small enough, but

ϕ[x(α)] ≤ αϕ(x′) + (1 − α)ϕ(z) < αϕ(z) + (1 − α)ϕ(z) = ϕ(z),

which is a contradiction. Therefore

0 = ϕ(z) ≤ ϕ(y) ∀y ∈ V,

or equivalently,
�(ḡ, xρ, y) ≥ 0 ∀y ∈ V,

i.e. xρ solves GMVI (3).

We take the following coercivity condition.

(C) There exist a convex function μ : Rn → R, which is weakly coercive with respect to
the set V , and a number r such that for any point x̄ ∈ V \ V (μ, r) and any ḡ ∈ G(x̄)

with
inf

x∈V (μ,r)
�(ḡ, ū, x) ≥ 0 (6)

there is a point z ∈ V such that

min{�(ḡ, ū, z), μ(z) − μ(x̄)} < 0
and

max{�(ḡ, ū, z), μ(z) − μ(x̄)} ≤ 0.
(7)
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Remark 1 The above coercivity condition is weaker than the streamlined specialization
from [10], which was applied for EPs. That is, we take � instead of the bi-function � as
in (4). This allows us to verify the conditions in (7) only for one fixed element ḡ ∈ G(x̄),
rather than for all g ∈ G(x̄).

We observe that, by convexity and weak coercivity of μ, the set V (μ, ρ) is bounded
if nonempty for each ρ. Moreover, the set V (μ, r) is always nonempty in (C), i.e., the
condition is well defined.

Proposition 4 If (H) and (C) hold, then V (μ, r) is nonempty.

Proof First we note that, by convexity and weak coercivity of μ, there exists z̄ ∈ V such
that

μ(z̄) = r(m) � inf
x∈V

μ(x).

Hence the set V (μ, r(m)) is nonempty, convex, and compact. Applying Proposition 2 with
V = V (μ, r(m)), we see that there exist x̄ ∈ V (μ, r(m)) and ḡ ∈ G(x̄) such that

�(ḡ, x̄, y) ≥ 0 ∀y ∈ V (μ, r(m)).

If V (μ, r) = ∅, then r < r(m) and x̄ /∈ V (μ, r). Using now (7) and noticing that μ(x̄) ≤
μ(z) by definition, we obtain μ(x̄) = μ(z) and �(ḡ, x̄, z) < 0, which is a contradiction.

We now give the main existence result for GMVI (3).

Theorem 1 If (H) and (C) are fulfilled, then GMVI (3) has a solution.

Proof Since (C) holds, choose any ρ > r , then the set V (μ, ρ) is nonempty, convex, and
compact due to the properties of μ. From Proposition 2 with V = V (μ, ρ), we see that
there exist x̄ ∈ V (μ, ρ) and ḡ ∈ G(x̄) such that

�(ḡ, x̄, y) ≥ 0 ∀y ∈ V (μ, ρ),

hence the relations (5) with xρ = x̄ and (6) hold. If x̄ ∈ Ṽ (μ, ρ), we set z = x̄ in Proposi-
tion 3. Otherwise, we have μ(x̄) = ρ and x̄ /∈ V (μ, r). From (C) it now follows that there
exists a point z ∈ V such that μ(z) < μ(x̄) = ρ and �(ḡ, x̄, z) = 0 due to (7). The result
follows from Proposition 3.

4 Penalty Method

We now intend to describe a general penalty method for GVI (1) where D is a set of the
form

D = V
⋂

W, (8)

V and W are convex and closed sets in the space R
n, and G : V → �(Rn) is a set-

valued mapping. The above partition of the feasible set means that V represents “simple”
constraints whereas W corresponds to complex or “functional” ones and a suitable penalty
function will be used for this set.
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First we introduce the following approximation assumptions.

(A1) There exists a sequence of nonempty convex closed sets {Vk} which is Mosco
convergent to the set V ;

(A2) There exists a sequence of K-mappings Gk : Vk → �(Rn), k = 1, 2, . . . , such
that the relations {yk} → ȳ, yk ∈ Vk , and gk ∈ Gk(y

k) imply {gk} is bounded and
{gk} → ḡ yields ḡ ∈ G(ȳ).

Unlike V , the set W will be approximated via general perturbed penalty functions. Let
P : Rn → R be a general penalty function for W , i.e.

P(w)

{ = 0, if w ∈ W,

> 0, if w /∈ W.

We utilize only its approximation sequence.

(B1) There exists a sequence of lower semicontinuous, convex, and non-negative func-
tions Pk : Vk → R;

(B2) if vk ∈ Vk , {vk} → w̄, and lim inf
k→∞ Pk(v

k) = 0, then P(w̄) = 0;

(B3) for each point w̄ ∈ D there exists a sequence {vk} → w̄ with vk ∈ Vk and Pk(v
k) =

0.

Clearly, conditions (B2) and (B3) give a kind of the Mosco convergence of the functions
{Pk} to P .

For each k = 1, 2, . . . , we consider the problem of finding a point x̃k ∈ Vk such that

∃g̃k ∈ Gk(x̃
k), 〈gk, v − x̃k〉 + τk[Pk(v) − Pk(x̃

k)] ≥ 0 ∀v ∈ Vk, (9)

where τk > 0 is a penalty parameter; cf. (3). For brevity, set

�k(g, x, y) = 〈g, y − x〉 + τk[Pk(y) − Pk(x)].
However, x̃k is an exact solution of the penalized GMVI (9). In order to make the method
implementable, we consider the approximate problem: find a point xk ∈ Vk such that

∃gk ∈ Gk(x
k), ∃dk ∈ B(0, δk),

〈gk + dk, v − xk〉 + τk[Pk(v) − Pk(x
k)] + εk ≥ 0 ∀v ∈ Vk,

(10)

where δk ≥ 0 and εk ≥ 0 are approximation parameters, B(0, δk) denotes the closed ball
with center 0 and radius δk . Our approximation condition is rather general; see, e.g., [8].
We intend to prove that the sequence {xk} approximates a solution of GVI (1), (8) under a
suitable choice of the parameters τk , δk , and εk . The key feature is that we insist here on the
full independence of their control rules and, also, of ways of approximations of exact values
of G, V , and P .

Since the feasible set need not be bounded, we introduce certain coercivity conditions.

(C1) For each k = 1, 2, . . . there exist a convex function μk : Rn → R, which is weakly
coercive with respect to the set Vk , and a number σk such that for any point u ∈
Vk \ Vk(μk, σk) and any g ∈ Gk(u) with

inf
x∈Vk(μk,σk)

�k(g, u, x) ≥ 0,

there is a point z ∈ Vk such that

min{�k(ḡ, u, z), μk(z) − μk(u)} < 0
and

max{�k(ḡ, u, z), μk(z) − μk(u)} ≤ 0.
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(C2) There exist a number α > 0 and a point v̄ ∈ D such that for any sequences {uk},
{vk}, {gk}, and {dk}, satisfying the conditions:

uk ∈ Vk, v
k ∈ Vk, g

k ∈ Gk(u
k), {vk} → v̄, {‖uk‖} → +∞, {dk} → 0;

it holds that
lim inf
k→∞ 〈gk + dk, vk − uk〉 ≤ −α. (11)

Clearly, (C1) is a specialization of (C) for the auxiliary problems of form (9). Observe also
that (C2) does not require for α = ∞ to be fulfilled in (11), unlike the usual coerciv-
ity conditions, which are applied for providing convergence of penalty methods applied to
stationary VI’s; see e.g. [15, 16].

We now establish the main convergence result.

Theorem 2 Suppose that assumptions (A1)–(A2), (B1)–(B3), and (C1)–(C2) are fulfilled,
the sequences {τk}, {δk}, and {εk} satisfy

{τk} ↗ +∞, {δk} ↘ 0, {εk} ↘ 0. (12)

Then:

(i) problem (10) has a solution for any τk > 0, δk ≥ 0, and εk ≥ 0;
(ii) each sequence {xk} of solutions of (10) has limit points and all these limit points are

solutions of GVI (1), where D is defined by (8).

Proof We first observe that (C1) implies that each auxiliary GMVI (9) has a solution due
to Theorem 1. It follows that problem (10) is also solvable (at least with δk = 0 and εk = 0).
Hence, assertion (i) is true.

By (i), the sequence {xk} is well-defined. We have to show that it is bounded. Conversely,
suppose that {‖xk‖} → +∞. By definition, xk ∈ Vk , besides, by (B3) and (C2) there exists
a sequence {vk} → v̄ such that vk ∈ Vk and Pk(v

k) = 0. Applying (10), we have for some
gk ∈ Gk(x

k) and dk ∈ B(0, δk):

0 ≤ 〈gk + dk, vk − xk〉 + τk[Pk(v
k) − Pk(x

k)] + εk

= 〈gk + dk, vk − xk〉 − τkPk(x
k) + εk

≤ 〈gk + dk, vk − xk〉 + εk.

Take a subsequence {ks} such that
lim

ks→∞〈gks + dks , vks − uks 〉 = lim inf
k→∞ 〈gk + dk, vk − uk〉,

then, by (C2), we have

0 ≤ lim
ks→∞〈gks + dks , vks − uks 〉 ≤ −α < 0,

for ks large enough, a contradiction. Therefore, the sequence {xk} is bounded and has limit
points. Let x̄ be an arbitrary limit point for {xk}, i.e.

x̄ = lim
s→∞ xks .

Since xk ∈ Vk , we have x̄ ∈ V due to (A1). From (10) it follows that

0 ≤ Pks (x
ks ) ≤ τ−1

ks
〈gks + dks , v − xks 〉 + Pks (v) + τ−1

ks
εks ∀v ∈ Vks ,

where gks ∈ Gks (x
ks ) and dks ∈ B(0, δks ), besides, the sequence {gks } is bounded due to

(A2).
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For any w ∈ D there exists a sequence {vk} → w with vk ∈ Vk and Pk(v
k) = 0 due to

(B3). Taking v = vks above, we obtain

0 ≤ lim inf
s→∞ Pks (x

ks ) ≤ lim sup
s→∞

[
τ−1
ks

〈gks + dks , vks − xks 〉
]

= 0

on account of (A2) and (12), i.e.

lim
s→∞ Pks (x

ks ) = 0.

Due to (B2), this gives x̄ ∈ W , i.e., x̄ ∈ D.
Now, by (B3), there exists a sequence {vk} → x̄ with vk ∈ Vk and Pk(v

k) = 0. Again
from (10), for some gks ∈ Gks (x

ks ) and dks ∈ B(0, δks ), we have

0 ≤ τks Pks (x
ks ) ≤ 〈gks + dks , vks − xks 〉 + εks → 0

as s → ∞, hence

lim
s→∞

[
τks Pks (x

ks )
]

= 0.

Take an arbitrary point w ∈ D, then, again by (B3), there exists a sequence {vk} → w with
vk ∈ Vk and Pk(v

k) = 0. Using again (10), for some gks ∈ Gks (x
ks ) and dks ∈ B(0, δks ),

we have

〈gks + dks , vks − xks 〉 − τks Pks (x
ks ) + εks

= 〈gks + dks , vks − xks 〉 + τks [Pks (v
ks ) − Pks (x

ks )] + εks ≥ 0.

By (A2), we can suppose that {gks } → ḡ without loss of generality, then ḡ ∈ G(x̄). It now
follows that

〈ḡ, w − x̄〉 = lim
s→∞〈gks , vks − xks 〉 = lim

s→∞〈gks + dks , vks − xks 〉
≥ lim

s→∞
[
τks Pks (x

ks )
]

= 0,

therefore x̄ solves GVI (1), (8) and assertion (ii) holds true.

We observe that the above proof implies that the feasible set D is nonempty and that GVI
(1), (8) has a solution.

5 Accuracy Estimates for Auxiliary Problems

In the previous section, we described a penalty method for GVI (1), (8), which consists in
sequential approximate solution of the auxiliary penalized GMVI (9), that is, we have to
find a point satisfying (10) within the given tolerances δk ≥ 0 and εk ≥ 0. Clearly, we can
apply a great number of solution methods for GMVI (9); see, e.g., [2, 4] and the references
therein. Now we suggest a way of estimation of a desired accuracy indicated in (10) by
using the gap function approach.

Let us consider GMVI (3), since GMVI (9) falls into its format. Our problem is then
consists in finding a point x̃ ∈ V such that

∃g̃ ∈ G(x̃), ∃d̃ ∈ B(0, δ),
〈g̃ + d̃, v − x̃〉 + f (v) − f (x̃) + ε ≥ 0 ∀v ∈ V,

(13)
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where δ ≥ 0 and ε ≥ 0; cf. (10). We also observe that GMVI (3) reduces to EP (2), (4).
Therefore, following the approach from [17], we can consider the so-called regularized gap
function for the latter problem. Fix a number λ > 0 and consider the function

ϕλ(x) = max
y∈V

{−�(x, y) − 0.5λ ‖x − y‖2}. (14)

If the assumptions in (H) hold, the inner problem in (14) has the unique solution y(x), i.e.

ϕλ(x) = −�(x, y(x)) − 0.5λ ‖x − y(x)‖2 .

In [17, Propositions 3.1 and 3.3], the following basic properties of ϕλ were established.

Proposition 5 Let the assumptions in (H) hold. Then:

(i) ϕλ(x) ≥ 0 for every x ∈ V ;
(ii) x∗ ∈ V and ϕλ(x

∗) = 0 ⇐⇒ x∗ solves EP (2), (4) ⇐⇒ x∗ = y(x∗);
(iii) it holds that

ϕλ(x) ≥ 0.5λ ‖x − y(x)‖2 ∀x ∈ V. (15)

It follows that a point x is close to a solution of the EP, if ϕλ(x) is small enough. Next,
from (14) we have

�(x, y(x)) + 0.5λ‖x − y(x)‖2 ≤ �(x, y) + 0.5λ‖x − y‖2 ∀y ∈ V.

Using the optimality condition from [18, Proposition 2.2.2], we can rewrite equivalently
this relation as follows:

�(x, y) − �(x, y(x)) + λ〈y(x) − x, y − y(x)〉 ≥ 0 ∀y ∈ V.

For any y ∈ V , we then have

�(x, y) + ϕλ(x) + λ〈y(x) − x, y − x〉 − 0.5λ‖x − y(x)‖2
= �(x, y) − �(x, y(x)) − 0.5λ‖x − y(x)‖2
+λ〈y(x) − x, y − x〉 − 0.5λ‖x − y(x)‖2
= �(x, y) − �(x, y(x)) − λ‖x − y(x)‖2 + λ〈y(x) − x, y − x〉 ≥ 0,

hence x satisfies (13) if λ‖x − y(x)‖ ≤ δ and

ϕλ(x) − 0.5λ‖x − y(x)‖2 ≤ ϕλ(x) ≤ ε.

In view of (15), both these inequalities hold if ϕλ(x) is small enough. Then the point x

attains the desired accuracy.
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