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Abstract In this paper, based on basic constraint qualification (BCQ) and strong BCQ
for convex generalized equation, we are inspired to further discuss constraint qualifica-
tions of BCQ and strong BCQ for nonconvex generalized equation and then establish their
various characterizations. As applications, we use these constraint qualifications to study
metric subregularity of nonconvex generalized equation and provide necessary and/or suffi-
cient conditions in terms of constraint qualifications considered herein to ensure nonconvex
generalized equation having metric subregularity.
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1 Introduction

Let X and Y be Banach spaces and F : X ⇒ Y be a closed multifunction, and let A be a
closed subset of X and b be a given point in Y . Consider the following generalized equation
with constraint (GEC)

b ∈ F(x) subject to x ∈ A. (GEC)
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This paper is devoted to several concepts of constraint qualifications for (GEC) and
applications to metric subregularity of (GEC).

It is well known that basic constraint qualification (BCQ) for continuous convex inequal-
ities is a fundamental concept in mathematical programming, and has been extensively
studied by many authors. Readers could consult references [1–10] for the details on BCQ
as well as its close relationship with other important concepts in optimization. In 2004,
Zheng and Ng [8] made use of singular subdifferential to introduce the concept of strong
BCQ which is strictly stronger than BCQ for the convex inequality defined by one lower
semicontinuous convex function, and used this notion to characterize metric regularity of
the convex inequality. Afterwards, Hu [11] further studied strong BCQ and introduced one
measurement of end set to provide equivalent conditions for strong BCQ. In 2007, Zheng
and Ng [12] generalized the concepts of BCQ and strong BCQ to the case of convex gen-
eralized equation and used these constraint qualifications to obtain necessary and sufficient
conditions for convex generalized equation to have metric subregularity. Naturally, it is
interesting and important to further consider constraint qualifications as well as applications
for nonconvex generalization equation. Motivated by this and as one aim of this paper, we
are inspired by [8] and [11] to discuss BCQ and strong BCQ for (GEC) as well as their char-
acterizations and apply these constraint qualifications to the study on metric subregularity
of (GEC).

Metric subregularity is a well-known and useful concept in mathematical programming
and optimization, and has been extensively studied by many authors under various names
(cf. [9, 13–20] and references therein). Note that Zheng and Ng [12] discussed metric sub-
regularity for convex generalized equation and provided dual characterizations for metric
subregularity in terms of coderivative and normal cone. Recently the authors [21] consid-
ered metric subregularity for subsmooth generalized constraint equation. Based on [12, 21]
and as the other aim of this paper, we further investigate metric subregularity of (GEC) and
mainly establish several necessary and/or sufficient conditions for (GEC) to have metric
subregularity. These conditions are given in terms of constraint qualifications studied in this
paper.

Given a Banach space X with the dual space X∗ and a multifunction � : X ⇒ X∗, the
symbol

Limsup
y→x

�(x) :=
{
x∗ ∈ X∗ : ∃ sequences xn → x and x∗

n

w∗−→ x∗ with

x∗
n ∈ �(xn) for all n ∈ N

}

signifies the sequential Painlevé-Kuratowski outer/upper limit of �(x) as y → x.

2 Preliminaries

Let X,Y be Banach spaces with the closed unit balls denoted by BX and BY , and let X∗, Y ∗
denote the dual space of X and Y respectively. For a closed subset A of X, let A denote the
closure of A. For a ∈ A, let Tc(A, a) and T (A, a) denote the Clarke tangent cone and the
contingent (Bouligand) cone of A at a respectively, which are defined by

Tc(A, a) := lim inf
x

A→a,t→0+

A − x

t
and T (A, a) := lim sup

t→0+

A − a

t
,
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where x
A→ a means that x → a with x ∈ A. Thus, v ∈ Tc(A, a) if and only if for any

an
A→ a and any tn → 0+, there exists vn → v such that an + tnvn ∈ A for all n, and

v ∈ T (A, a) if and only if there exist vn → v and tn → 0+ such that a + tnvn ∈ A for all n.
We denote by Nc(A, a) the Clarke normal cone of A at a, that is,

Nc(A, a) := {x∗ ∈ X∗ : 〈x∗, h〉 ≤ 0 ∀h ∈ Tc(A, a)}.
Let N̂(A, a) denote the Fréchet normal cone of A at a which is defined by

N̂(A, a) :=
⎧⎨
⎩x∗ ∈ X∗ : lim sup

y
A→a

〈x∗, y − a〉
‖y − a‖ ≤ 0

⎫⎬
⎭ ,

and let N(A, a) denote the Mordukhovich (limiting/basic) normal cone of A at a which is
defined by

N(A, a) := Limsup
x

A→a,ε↓0

N̂ε(A, x),

where N̂ε(A, x) is the set of ε-normal to A at x and defined as

N̂ε(A, x) :=
⎧⎨
⎩x∗ ∈ X∗ : lim sup

y
A→x

〈x∗, y − x〉
‖y − x‖ ≤ ε

⎫⎬
⎭ .

It is known from [22] and [23] that

N̂(A, a) ⊂ N(A, a) ⊂ Nc(A, a).

If A is convex, all normal cones coincide and reduce to the normal cone in the sense of
convex analysis; that is

Nc(A, a) = N(A, a) = N̂(A, a) = {x∗ ∈ X∗ : 〈x∗, x − a〉 ≤ 0 ∀x ∈ A}.
For the case when X is an Asplund space (cf. [24] for definitions and their equivalences),

Mordukhovich and Shao [23] have proved that

Nc(A, a) = cow∗
(N(A, a)) and N(A, a) = Limsup

x
A→a

N̂(A, x) (2.1)

where cow∗
denotes the weak∗ closed convex hull. This means x∗ ∈ N(A, a) if and only if

there exist xn
A→ a and x∗

n

w∗→ x∗ such that x∗
n ∈ N̂(A, xn) for all n.

Let F : X ⇒ Y be a multifunction. Recall that F is said to be closed if gph(F ) is a
closed subset of X × Y , where gph(F ) := {(x, y) ∈ X × Y : y ∈ F(x)} is the graph of F .
Let (x, y) ∈ gph(F ). Recall that the Clarke tangent derivative DcF(x, y) of F at (x, y) is
defined by

gph(DcF (x, y)) := Tc(gph(F ), (x, y)).

Let D̂∗F(x, y),D∗F(x, y),D∗
c F (x, y) : Y ∗ ⇒ X∗ denote Fréchet, Mordukhovich and

Clarke coderivatives of F at (x, y) respectively, and they are defined as

D̂∗F(x, y)(y∗) := {x∗ ∈ X∗ : (x∗, −y∗) ∈ N̂(gph(F ), (x, y))},
D∗F(x, y)(y∗) := {x∗ ∈ X∗ : (x∗, −y∗) ∈ N(gph(F ), (x, y))},
D∗

c F (x, y)(y∗) := {x∗ ∈ X∗ : (x∗, −y∗) ∈ Nc(gph(F ), (x, y))}.
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Let φ : X → R∪ {+∞} be a proper lower semicontinuous function and x ∈ dom(φ) :=
{y ∈ X : φ(y) < +∞}. We denote Fréchet, Mordukhovich and Clarke subdifferentials of
φ at x by ∂̂φ(x), ∂φ(x) and ∂cφ(x), respectively, which are defined as

∂̂φ(x) := {x∗ ∈ X∗ : (x∗, −1) ∈ N̂(epi(φ), (x, φ(x)))},
∂φ(x) := {x∗ ∈ X∗ : (x∗, −1) ∈ N(epi(φ), (x, φ(x)))},

∂cφ(x) := {x∗ ∈ X∗ : (x∗, −1) ∈ Nc(epi(φ), (x, φ(x)))},
where epi(φ) := {(x, α) ∈ X × R : φ(x) ≤ α} denotes the epigraph of φ. It is known that

∂̂φ(x) ⊂ ∂φ(x) ⊂ ∂cφ(x).

Further, one can verify that

∂̂φ(x) =
{
x∗ ∈ X∗ : lim inf

z→x

φ(z) − φ(x) − 〈x∗, z − x〉
‖z − x‖ ≥ 0

}

and
∂cφ(x) = {x∗ ∈ X∗ : 〈x∗, h〉 ≤ φ◦(x;h) ∀h ∈ X},

here φ◦(x;h) denotes the generalized Rockafellar directional derivative of φ at x along the
direction h and is defined by

φ◦(x;h) := lim
ε↓0

lim sup
z

φ→x, t↓0

inf
w∈h+εBX

φ(z + tw) − φ(z)

t
,

where z
φ→ x means that z → x and φ(z) → φ(x). When φ is locally Lipschitzian around

x, φ◦(x;h) reduces to Clarke directional derivative; that is

φ◦(x;h) = lim sup
z→x, t↓0

φ(z + th) − φ(z)

t
. (2.2)

For the case that X is an Asplund space, Mordukhovich and Shao [23] have proved that

∂φ(x) = Limsup
y

φ→x

∂̂φ(y);

that is, x∗ ∈ ∂φ(x) if and only if there exist xn
φ→ x and x∗

n

w∗→ x∗ such that x∗
n ∈ ∂̂φ(xn)

for all n.
The following lemmas will be used in our analysis. Readers are invited to consult

references [25] and [26] respectively for more details.

Lemma 2.1 Let X be a Banach (resp. an Asplund) space and A be a nonempty closed
subset of X. Let γ ∈ (0, 1). Then for any x �∈ A there exist a ∈ A and a∗ ∈ Nc(A, a) (resp.
a∗ ∈ N̂(A, a)) with ‖a∗‖ = 1 such that

γ ‖x − a‖ < min{d(x,A), 〈a∗, x − a〉}.

Lemma 2.2 Let X be an Asplund space and A be a nonempty closed subset of X. Let
x ∈ X\A and x∗ ∈ ∂̂d(·,A)(x). Then, for any ε > 0 there exist a ∈ A and a∗ ∈ N̂(A, a)

such that
‖x − a‖ < d(x,A) + ε and ‖x∗ − a∗‖ < ε.

As one suitable substitute of convexity in this paper, we consider the concept of
subsmooth which is introduced by Aussel, Daniilidis and Thibault [27]. Recall that A
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is said to be subsmooth at a ∈ A, if for any ε > 0 there exists δ > 0 such
that

〈x∗ − u∗, x − u〉 ≥ −ε‖x − u‖
whenever x, u ∈ B(a, δ) ∩ A, x∗ ∈ Nc(A, x) ∩ BX∗ and u∗ ∈ Nc(A, u) ∩
BX∗ .

When A is subsmooth at a ∈ A, one has

Nc(A, a) = N(A, a) = N̂(A, a).

Further, Zheng and Ng [25] provided one characterization for this notion; that is, A is
subsmooth at a ∈ A if and only if for any ε > 0 there exists δ > 0 such that

〈u∗, x − u〉 ≤ d(x,A) + ε‖x − u‖ ∀x ∈ B(a, δ) (2.3)

whenever u ∈ B(a, δ) ∩ A and u∗ ∈ Nc(A, u) ∩ BX∗ . Readers are invited to consult
[25, Proposition 2.1] and [10, Proposition 3.1] for more details.

For a closed multifunction, Zheng and Ng [9] introduced the concept of L-subsmooth and
studied calmness for this kind of multifunctions. Recall from [9] that a closed multifunction
F : X ⇒ Y is said to be

(i) L-subsmooth at (a, b) ∈ gph(F ) if for any ε > 0 there exists δ > 0 such that

〈u∗, x − a〉 + 〈v∗, y − b〉 ≤ ε(‖x − a‖ + ‖y − b‖) (2.4)

whenever v ∈ F(a) ∩ B(b, δ), (u∗, v∗) ∈ Nc(gph(F ), (a, v)) ∩ (BX∗ × BY ∗), and (x, y) ∈
gph(F ) with ‖x − a‖ + ‖y − b‖ < δ;

(ii) L-subsmooth at (a, b) ∈ gph(F ) if F−1 is L-subsmooth at (b, a).
Readers are invited to consult reference [9] for more properties and examples with

respect to the concept of L-subsmooth.

3 BCQ and Strong BCQ for Nonconvex (GEC)

This section is devoted to constraint qualifications of BCQ and strong BCQ for nonconvex
(GEC) as well as their equivalences. We first recall the concepts of BCQ and strong BCQ
for convex (GEC).

Suppose that F : X ⇒ Y is a convex closed multifunction and A is a convex closed
subset of X. Recall from [12] that convex (GEC) is said to have the BCQ at a ∈ S, if

N(S, a) = D∗F(a, b)(Y ∗) + N(A, a) (3.1)

and convex (GEC) is said to have the strong BCQ at a ∈ S, if there exists τ ∈ (0,+∞)

such that

N(S, a) ∩ BX∗ ⊂ τ(D∗F(a, b)(BY ∗) + N(A, a) ∩ BX∗), (3.2)

where S := {x ∈ A : b ∈ F(x)} is the solution set of (GEC).
Taking applications of BCQ and strong BCQ into account, we are inspired by (3.1) and

(3.2) to consider the following forms of BCQ and strong BCQs for nonconvex (GEC).
Let a ∈ S. We say that
(i) (GEC) has the BCQ at a in the sense of Clarke, if

Nc(S, a) ⊂ D∗
c F (a, b)(Y ∗) + Nc(A, a); (3.3)
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(ii) (GEC) has the strong BCQ at a in the sense of Clarke, if there exists τ ∈ (0,+∞)

such that

Nc(S, a) ∩ BX∗ ⊂ τ(D∗
c F (a, b)(BY ∗) + Nc(A, a) ∩ BX∗); (3.4)

(iii) (GEC) has the strong BCQ at a in the sense of Fréchet, if there exists τ ∈ (0,+∞)

such that

N̂(S, a) ∩ BX∗ ⊂ τ(D∗
c F (a, b)(BY ∗) + Nc(A, a) ∩ BX∗); (3.5)

(iv) (GEC) has the strong BCQ at a in the sense of Mordukhovich, if there exists τ ∈
(0,+∞) such that

N(S, a) ∩ BX∗ ⊂ τ(D∗
c F (a, b)(BY ∗) + Nc(A, a) ∩ BX∗). (3.6)

Remark 3.1. It is clear that (3.4)⇒ (3.6) ⇒(3.5). Furthermore, for the case that F is a
convex closed multifunction and A is a convex closed subset, the solution set S is convex,
and coderivatives and normal cones are in the sense of convex analysis. Thus, strong BCQs
of (3.4), (3.5) and (3.6) reduce to (3.2), and BCQ of (3.3) is equivalent to (3.1) as the inverse
inclusion of (3.1) holds trivially in this case.

Recall that for the convex inequality defined by a proper lower semicontinuous con-
vex function, Hu [11] introduced one concept of end set to study BCQ and strong BCQ,
and used this concept to characterize strong BCQ. Motivated by this, we are interesting in
characterizing strong BCQ of (3.4) for (GEC) in this way. We recall the concept of end set.

Let C be a subset of X. Recall from [11] that the end set of C is defined by

E[C] := {z ∈ [0, 1]C : tz /∈ [0, 1]C ∀t > 1}. (3.7)

It is shown in [11] that if C is closed and convex then

E[C] = {z ∈ C : tz /∈ C ∀t > 1}.
The following theorem provides an equivalent condition of strong BCQ of (3.4) for

(GEC) by using BCQ and end set.

Theorem 3.1 Let z ∈ S and τ ∈ (0,+∞). Then (GEC) has the strong BCQ of (3.4) at z

with constant τ > 0 if and only if (GEC) has the BCQ of (3.3) at z and

d(0,E[D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗ ]) ≥ 1

τ
. (3.8)

Proof The necessity part. Since BCQ follows from strong BCQ trivially, it suffices to
prove (3.8). Let x∗ ∈ E[D∗

c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗ ]. Then x∗ �= 0. Noting that
D∗

c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗ is weak∗-closed and convex, it follows that

x∗ ∈ D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗ ⊂ Nc(S, z).

Using the strong BCQ of (3.4), one has

x∗

τ‖x∗‖ ∈ D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗ .

This implies that 1
τ‖x∗‖ ≤ 1 by (3.7); that is ‖x∗‖ ≥ 1

τ
. Thus (3.8) holds.
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The sufficiency part. Let x∗ ∈ Nc(S, z) ∩ BX∗ . We set

λ := sup{t > 0 : tx∗ ∈ D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗ }.

Then, λ > 0 as (GEC) has the BCQ at z. If λ = +∞, then there exists t > 1
τ

such that

tx∗ ∈ D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗ .

This and 0 ∈ D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗ imply that

x∗ ∈ τ(D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗).

If λ < +∞, then one has

λx∗ ∈ E[D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗ ].

Thus

λ ≥ λ‖x∗‖ ≥ d(0,E[D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗]) ≥ 1

τ
,

and consequently
x∗ ∈ τ(D∗

c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗).

The proof is complete.

Next, we use polar and techniques in dual theory to study BCQ and strong BCQ for
(GEC). Let M and N be subsets of X and X∗, respectively. Recall from [28] that the polar
of M and N are defined by

M◦ := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 1 ∀x ∈ M} and N◦ := {x ∈ X : 〈x∗, x〉 ≤ 1 ∀x∗ ∈ N}.
It is known that when M is a cone of X, the polar of M reduces to M� which is called the
negative polar of M , where M� := {x∗ ∈ X∗ : 〈x∗, x〉 ≤ 0 ∀x ∈ M}. Hence, Clarke
tangent cone and Clarke normal cone are dual; that is

Tc(M, x)◦ = Nc(M, x) and Nc(M, x)◦ = Tc(M, x) ∀ x ∈ M. (3.9)

Using this known relationships (3.9) and the polar, we establish several results on suffi-
cient/necessary conditions for (GEC) to have BCQ and strong BCQs. These conditions are
given by Clarke tangent cone and Clarke tangent derivative.

Theorem 3.2 Let z ∈ S and τ ∈ (0,+∞).

(i) Suppose that

DcF−1(b, z)(
1

τ
BY ) ∩ Tc(A, z) + 1

τ
BX ⊂ Tc(S, z) + BX. (3.10)

Then (GEC) has the strong BCQ of (3.4) at z with constant τ > 0.
(ii) Suppose that

DcF−1(b, z)(
1

τ
BY ) ∩ Tc(A, z) + 1

τ
BX ⊂ T (S, z) + BX. (3.11)

Then (GEC) has the strong BCQ of (3.5) at z with constant τ > 0.
(iii) Suppose that (GEC) has the strong BCQ of (3.4) at z with constant τ > 0. Then

DcF−1(b, z)(η1BY ) ∩ Tc(A, z) + η2BX ⊂ Tc(S, z) + BX (3.12)

holds for any η1, η2 ∈ [0,+∞) with η1 + η2 ≤ 1
τ

.
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(iv) Suppose that X is of finite dimension and (GEC) has the strong BCQ of (3.5) at z

with constant τ > 0. Then

DcF−1(b, z)(η1BY ) ∩ Tc(A, z) + η2BX ⊂ co(T (S, z)) + BX (3.13)

holds for any η1, η2 ∈ [0,+∞) with η1 + η2 ≤ 1
τ

.

Proof (i) We first prove that

1

τ

(
(D∗

c F (z, b)(BY ∗))◦ ∩ (Nc(A, z) ∩ BX∗)◦
) ⊂ Tc(S, z) + BX. (3.14)

Let v ∈ 1
τ

(
(D∗

c F (z, b)(BY ∗))◦ ∩ (Nc(A, z) ∩ BX∗)◦
)
. By virtue of [28, Chapter IV,

Theorem 1.5], one has

τv ∈ (Nc(A, z) ∩ BX∗)◦ = co
(
Tc(A, z) ∪ BX

) = Tc(A, z) + BX. (3.15)

We claim that
(0, τv) ∈ (

Nc(gph(F−1), (b, z)) ∩ (BY ∗ × X∗)
)◦

. (3.16)

Indeed, for any (y∗, x∗) in Nc(gph(F−1), (b, z)) ∩ (BY ∗ × X∗), one has

x∗ ∈ D∗
c F (z, b)(−y∗) ⊂ D∗

c F (z, b)(BY ∗).

Noting that τv ∈ (D∗
c F (z, b)(BY ∗))◦, it follows that

〈(y∗, x∗), (0, τv)〉 = 〈x∗, τv〉 ≤ 1.

This implies that (3.16) holds.
Since
(
Nc(gph(F−1), (z, b)) ∩ (BY ∗ × X∗)

)◦ = co
(
Tc(gph(F−1), (b, z)) ∪ (BY × {0}))

= Tc(gph(F−1), (b, z)) + BY × {0},
by using (3.16), one can prove that τv ∈ DcF−1(b, z)(BY ) and so v ∈ Tc(S, z) + BX by
(3.15) and (3.10). Thus (3.14) holds.

Noting that

(D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗)◦ ⊂ D∗

c F (z, b)(BY ∗)◦ ∩ (Nc(A, z) ∩ BX∗)◦ (3.17)

(thanks to 0 ∈ D∗
c F (z, b)(BY ∗) ∩ Nc(A, z) ∩ BX∗ ), it follows from (3.14), (3.16) and [28,

Chapter IV, Theorem 1.5] that

Nc(S, z) ∩ BX∗ ⊂ τ(D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗).

This shows that (GEC) has the strong BCQ of (3.4) with constant τ > 0.
(ii) Using the proof of (i), one has

1

τ

(
(D∗

cF (z, b)(BY ∗))◦ ∩ (Nc(A, z) ∩ BX∗)◦
) ⊂ T (S, z) + BX. (3.18)

Since N̂(S, z) ∩ BX∗ ⊂ (T (S, z) + BX)◦, it follows from (3.17) and (3.18) that

N̂(S, z) ∩ BX∗ ⊂ τ(D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗).

This means that (GEC) has the strong BCQ of (3.5) with constant τ > 0.
(iii) Let η1, η2 ∈ [0, +∞) be such that η1 + η2 ≤ 1

τ
. Suppose to the contrary that there

exists one vector v ∈ X such that

v ∈ DcF−1(b, z)(η1BY ) ∩ Tc(A, z) + η2BX but v �∈ Tc(S, z) + BX.
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By the seperation theorem, there exists v∗ ∈ X∗ with ‖v∗‖ = 1 such that

〈v∗, v〉 > sup{〈v∗, u〉 : u ∈ Tc(S, z) + BX} = 1. (3.19)

This means that v∗ ∈ Nc(S, z) ∩ BX∗ . By virtue of the strong BCQ, there exist y∗ ∈ BY ∗ ,
z∗ ∈ D∗

c F (z, b)(y∗) and x∗ ∈ Nc(A, z) ∩ BX∗ such that

v∗ = τ(z∗ + x∗). (3.20)

Note that v ∈ Tc(A, z) + η2BX and one can verify that

〈x∗, v〉 ≤ η2 (3.21)

(thanks to x∗ ∈ Nc(A, z) ∩ BX∗ ). Since v ∈ DcF−1(b, z)(η1BY ), there exist yn ∈ BY and
vn ∈ DcF

−1(b, z)(η1yn) such that vn → v. Then

〈(z∗,−y∗), (vn, η1yn)〉 ≤ 0.

This implies that 〈z∗, vn〉 ≤ 〈y∗, η1yn〉 ≤ η1 as (y∗, yn) ∈ BY ∗ × BY , and consequently
〈z∗, v〉 ≤ η1. Using (3.20) and (3.21), one has 〈v∗, v〉 ≤ 1, which contradicts (3.19).

(iv) Since X is of finite dimension, it follows that N̂(S, z) = (T (S, z))◦. Using the proof
of (iii), one can verify that (3.13) holds for any η1, η2 ∈ [0,+∞) with η1 + η2 ≤ 1

τ
. The

proof is complete.

Proposition 3.1 Let z ∈ S. Then the following inclusions are equivalent:

(i) Nc(S, z) ⊂ D∗
c F (z, b)(Y ∗) + Nc(A, z)

w∗
;

(ii) Tc(S, z) ⊃ DcF
−1(b, z)(0) ∩ Tc(A, z).

Proof We first prove that

DcF
−1(b, z)(0) = (

D∗
c F (z, b)(Y ∗)

)◦
. (3.22)

Indeed, the inclusion of (3.22) holds trivially. Next, we prove the inverse inclusion
of (3.22). Suppose to the contrary that there exists h ∈ (

D∗
c F (z, b)(Y ∗)

)◦ such that
h �∈ DcF

−1(b, z)(0); that is, (h, 0) �∈ Tc(gph(F ), (z, b)). Applying the seperation theorem,
there exists (h∗, y∗) ∈ X∗ × Y ∗ with ‖(h∗, y∗)‖ = 1 such that

〈h∗, h〉 > sup{〈(h∗, y∗), (u, v)〉 : (u, v) ∈ Tc(gph(F ), (z, b))} = 0 (3.23)

This means that (h∗, y∗) ∈ Nc(gph(F ), (z, b)) and consequently h∗ ∈ D∗
c F (z, b)(Y ∗).

Hence 〈h∗, h〉 ≤ 0 as D∗
c F (z, b)(Y ∗) is a cone, which contradicts (3.23).

Using (3.22), [28, Chapter IV, Theorem 1.5] and [29, Lemma 4.1], one can verify that
(
DcF

−1(b, z)(0) ∩ Tc(A, z)
)◦ = DcF−1(b, z)(0)◦ + Tc(A, z)◦

w∗

= D∗
c F (z, b)(Y ∗)w

∗ + Nc(A, z)
w∗

= D∗
c F (z, b)(Y ∗) + Nc(A, z)

w∗

and (
D∗

c F (z, b)(Y ∗) + Nc(A, z)
w∗)◦ = (

D∗
c F (z, b)(Y ∗) + Nc(A, z)

)◦

= DcF
−1(b, z)(0) ∩ Tc(A, z).

This means that the equivalence of (i) and (ii) follows. The proof is complete.

We close this section with the following corollary which is one necessary condition of
BCQ for (GEC) and immediate from Proposition 3.1.
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Corollary 3.1 Let z ∈ S. If (GEC) has the BCQ at z, then

DcF
−1(b, z)(0) ∩ Tc(A, z) ⊂ Tc(S, z).

4 Applications to Metric Subregularity of (GEC)

In this section, we mainly apply BCQ and strong BCQs studied in section 3 to metric subreg-
ularity of nonconvex (GEC) and aim to establish necessary and/or sufficient conditions for
metric subregularity in terms of these constraint qualifications. We begin with the concept
of metric subregularity.

Recall from [9, 12] that (GEC) is said to be metrically subregular at a ∈ S if there exists
τ ∈ (0 + ∞) such that

d(x,S) ≤ τ(d(b,F (x)) + d(x,A)) for all x close to a. (4.1)

First we establish the following proposition on metric subregularity of (GEC). This result
was also obtained by the authors [21]. For the sake of completeness, we give its another
different proof which is inspired by [12, Theorem 3.1].

Proposition 4.1 Let a ∈ S. Suppose that (GEC) is metrically subregular at a. Then there
exist τ, δ ∈ (0,+∞) such that (GEC) has the strong BCQ of (3.5) at all points in S∩B(a, δ)

with the same constant τ > 0.

Proof Since (GEC) is metrically subregular at a, there exist τ, r ∈ (0,+∞) such that

d(x,S) ≤ τ(d(b,F (x)) + d(x,A)) ∀x ∈ B(a, r). (4.2)

For any (x, y) ∈ X × Y , let ‖(x, y)‖τ := τ+1
τ

‖x‖ + ‖y‖. Clearly ‖ · ‖τ is a norm on X × Y

inducing the product topology, and furthermore the unit ball of dual space of (X ×Y, ‖ · ‖τ )

is ( τ
τ+1BX∗) × BY ∗ . Let δ := r

2 . We claim that

d(x, S) ≤ τ(d‖·‖τ ((x, y), gph(F )) + ‖y − b‖ + d(x,A)) ∀(x, y) ∈ B(a, δ) × Y. (4.3)

Indeed, suppose to the contrary that there exists (x0, y0) ∈ B(a, δ) × Y such that

d(x0, S) > τ(d‖·‖τ ((x0, y0), gph(F )) + ‖y0 − b‖ + d(x0, A)).

This implies that there exists u ∈ X such that

d(x0, S) > τ(
τ + 1

τ
‖u − x0‖ + d(y0, F (u)) + ‖y0 − b‖ + d(x0, A)).

Thus,
d(x0, S) > ‖u − x0‖ + τ(d(b,F (u)) + d(u,A)).

Since

‖u − a‖ ≤ ‖u − x0‖ + ‖x0 − a‖ < d(x0, S) + ‖x0 − a‖ ≤ 2‖x0 − a‖ < r,

using (4.2), one has

d(x0, S) > ‖u − x0‖ + d(u, S) ≥ d(x0, S),

which is a contradiction. Hence (4.3) holds.
Let z ∈ B(a, δ) ∩ S and x∗ ∈ N̂(S, z) ∩ BX∗ . Then x∗ ∈ ∂̂d(·, S)(z) by [22, Corollary

1.96] and thus for any ε > 0 there exits δ1 ∈ (0, δ) such that

〈x∗, x − z〉 ≤ d(x, S) + τε‖x − z‖ ∀x ∈ B(z, δ1).
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Noting that B(z, δ1) ⊂ B(a, r), it follows from (4.3) that for any x ∈ B(z, δ1),

〈x∗, x − z〉 ≤ τ(d‖·‖τ ((x, y), gph(F )) + ‖y − b‖ + d(x,A)) + τε‖x − z‖.
This means

(
x∗

τ
, 0) ∈ ∂̂φ(z, b) ⊂ ∂cφ(z, b),

where φ(x, y) := d‖·‖τ ((x, y), gph(F )) + ‖y − b‖ + d(x,A). On the other hand, applying
[30, Proposition 2.4.2 and Theorem 2.9.8], one has

∂cφ(z, b) ⊂ ∂cd‖·‖τ ((·, ·), gph(F ))(z, b) + {0} × BY ∗ + Nc(A, z) ∩ BX∗ × {0}
⊂ Nc(gph(F ), (z, b)) + {0} × BY ∗ + Nc(A, z) ∩ BX∗ × {0}.

This means that x∗ ∈ τ(D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗). The proof is complete.

The following theorems show that the necessary condition for metric subregularity in
Proposition 4.1 can be strengthened in finite-dimensional space and Asplund space setting.

Theorem 4.1 Let X be of finite dimension and a ∈ S. Suppose that (GEC) is metrically
subregular at a. Then there exist τ, δ ∈ (0,+∞) such that (GEC) has the strong BCQ of
(3.6) at all points in S ∩ B(a, δ) with the same constant τ > 0.

Proof Choose τ, r ∈ (0,+∞) such that (4.2) holds. As the proof in Proposition 4.1, by
defining ‖(x, y)‖τ := τ+1

τ
‖x‖+ ‖y‖ for any (x, y) ∈ X × Y , we have that (4.3) holds with

τ > 0 and δ := r
2 > 0. Take any z ∈ B(a, δ) ∩ S and z∗ ∈ N(S, z) ∩ BX∗ . Since X is of

finite dimension, there exist zn
S→ z and ẑ∗

n → z∗ such that ẑ∗
n ∈ N̂(S, zn). Set z∗

n := ẑ∗
n

‖ẑ∗
n‖ .

Then z∗
n ∈ N̂(S, zn) ∩ BX∗ and z∗

n → z∗
‖z∗‖ . Let φ(x, y) := d‖·‖τ ((x, y), gph(F )) + ‖y −

b‖ + d(x,A). Then, for any n ∈ N sufficiently large, there exists rn ∈ (0, δ − ‖zn − a‖)
such that

〈z∗
n, x − zn〉 ≤ d(x, S) + τε‖x − zn‖ (4.4)

holds for any x ∈ B(zn, rn). Using (4.3) and (4.4), one has

〈z∗
n, x−zn〉 ≤ τ(φ(x, y)−φ(zn, b))+τε‖(x−zn, y−b)‖τ ∀(x, y) ∈ B(zn, rn)×B(b, rn),

and consequently

(
z∗
n

τ
, 0) ∈ ∂̂φ(zn, b) ⊂ ∂cφ(zn, b)

This and [30, Theorem 2.9.8] imply that there exist a∗
n ∈ ∂cd(·,A)(zn), b∗

n ∈ BY ∗ and
(x∗

n, y∗
n) ∈ ∂cd‖·‖τ ((·, ·), gph(F ))(zn, b) such that

(
z∗
n

τ
, 0) = (x∗

n, y∗
n) + (a∗

n, 0) + (0, b∗
n). (4.5)

Since {(x∗
n, y∗

n)} and {a∗
n} are bounded, without loss of generalization (considering subnet if

necessary), we can assume that

(x∗
n, y∗

n)
w∗→ (x∗, y∗), a∗

n → a∗ and b∗
n

w∗→ b∗ ∈ BY ∗ .

By virtue of [30, Proposition 2.1.5 and Theorem 2.9.8], one has

(x∗, y∗) ∈ ∂cd‖·‖τ ((·, ·), gph(F ))(z, b) ⊂ Nc(gph(F ), (z, b)) and a∗ ∈ ∂cd(·, A)(z).

Taking limits in (4.5) with respect to the weak∗-topology, one has

(
z∗

τ‖z∗‖ , 0) = (x∗, y∗) + (a∗, 0) + (0, b∗).
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This implies that z∗ ∈ τ(D∗
c F (z, b)(BY ∗) + Nc(A, z) ∩ BX∗) as ‖z∗‖ ≤ 1. The proof is

complete.

Theorem 4.2 Let X be of finite dimension, Y be an Asplund space, and let a ∈ S. Suppose
that (GEC) is metrically subregular at a. Then there exist τ, δ ∈ (0,+∞) such that

N(S, z) ∩ BX∗ ⊂ τ(D∗F(z, b)(BY ∗) + N(A, z) ∩ BX∗) ∀z ∈ B(a, δ) ∩ S. (4.6)

Proof Choose τ, r ∈ (0,+∞) such that (4.2) holds. Set δ := r
2 , and let z ∈ B(a, δ) ∩ S

and z∗ ∈ N(S, z) ∩ BX∗ . Since X is of finite dimension, there exist zn
S→ z and ẑ∗

n → z∗

such that ẑ∗
n ∈ N̂(S, zn). Set z∗

n := ẑ∗
n

‖ẑ∗
n‖ . Then z∗

n ∈ N̂(S, zn) ∩ BX∗ and z∗
n → z∗

‖z∗‖ .

Let f (x, y) := ‖y − b‖ + d(x,A) and φ(x, y) := d‖·‖τ ((x, y), gph(F )). As the proof in

Theorem 4.1, one has (
z∗
n

τ
, 0) ∈ ∂̂(φ + f )(zn, b). Noting that X is of finite dimension and

Y is Asplund space, it follows from [22, Theorem 2.33] that there exist (xn, yn), (un, vn) ∈
B(zn,

1
n
) × B(b, 1

n
) with |φ(xn, yn) − φ(zn, b)| < 1

n
and |f (un, vn) − f (zn, b)| < 1

n
such

that

(
z∗
n

τ
, 0) ∈ ∂̂φ(xn, yn) + ∂̂f (un, vn) + 1

n
(BX∗ × BY ∗). (4.7)

Applying [22, Theorem 2.33] again to ∂̂f (un, vn), there exist (an, bn) ∈ B(un,
1
n
) ×

B(vn,
1
n
) such that

∂̂f (un, vn) ⊂ ∂̂d(·,A)(an) × {0} + {0} × ∂‖ · −b‖(bn) + 1

n
(BX∗ × BY ∗). (4.8)

By (4.7) and (4.8), there exist (x∗
n, y∗

n) ∈ ∂̂φ(xn, yn), a∗
n ∈ ∂̂d(·, A)(an) and b∗

n ∈ BY ∗ such
that

(
z∗
n

τ
, 0) ∈ (x∗

n, y∗
n) + (a∗

n, 0) + (0, b∗
n) + 2

n
(BX∗ × BY ∗). (4.9)

Let (x̄∗
n, ȳ∗

n) := τ
τ+1 (x∗

n, y∗
n). As (x∗

n, y∗
n) ∈ ∂̂φ(xn, yn), Lemma 2.2 implies that there

exist (̃xn, ỹn) ∈ gph(F ) and (x̂∗
n, ŷ∗

n) ∈ N̂‖·‖τ (gph(F ), (̃xn, ỹn)) such that

‖(̃xn, ỹn) − (xn, yn)‖ < φ(xn, yn) + 1

n
and ‖(x̂∗

n, ŷ∗
n) − (x∗

n, y∗
n)‖ <

1

n
. (4.10)

Note that
(̃x∗

n, ỹ∗
n) := τ

τ + 1
(x̂∗

n, ŷ∗
n) ∈ N̂(gph(F ), (̃xn, ỹn)) (4.11)

thanks to (x̂∗
n, ŷ∗

n) ∈ N̂‖·‖τ (gph(F ), (̃xn, ỹn)) and consequently

‖(̃x∗
n, ỹ∗

n) − (x̄∗
n, ȳ∗

n)‖ <
τ

n(τ + 1)
. (4.12)

Applying Lemma 2.2 to a∗
n ∈ ∂̂d(·,A)(an), there exist ãn ∈ A and ã∗

n ∈ N̂(A, ãn) such
that

‖̃an − an‖ < d(an,A) + 1

n
and ‖̃a∗

n − a∗
n‖ <

1

n
. (4.13)

Since (x̄∗
n, ȳ∗

n) ∈ τ
τ+1 ∂̂d‖·‖τ ((·, ·), gph(F ))(xn, yn) ⊂ BX∗ × BY ∗ , a∗

n ∈ ∂̂d(·, A)(an) ⊂
BX∗ , b∗

n ∈ BY ∗ and BX∗ × BY ∗ is sequentially weak∗-compact (as X is of finite dimen-
sion and Y is an Asplund space), without loss of generalization (consider subsequence if
necessary), we can assume that

(x̄∗
n, ȳ∗

n)
w∗→ (x∗, y∗), a∗

n

w∗→ a∗ ∈ BX∗ and b∗
n

w∗→ b∗ ∈ BY ∗ .
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Using (4.10)-(4.13), one has

(̃x∗
n, ỹ∗

n)
w∗→ (x∗, y∗), ã∗

n

w∗→ a∗, (̃xn, ỹn)
gph(F )−→ (z, b) and ãn

A→ z.

This implies that (x∗, y∗) ∈ N(gph(F ), (z, b)) and a∗ ∈ N(A, z) ∩ BX∗ . Taking limits as
n → ∞ with respect to the weak∗-topology in (4.9), one has

(
z∗

τ‖z∗‖ , 0) = τ + 1

τ
(x∗, y∗) + (a∗, 0) + (0, b∗). (4.14)

Since b∗ = BY ∗ and τ+1
τ

(x∗, y∗) = N(gph(F ), (z, b)), it follows from (4.14) that

z∗ = τ(DF(z, b)(BY ∗) + N(A, z) ∩ BX∗)

as ‖z∗‖ ≤ 1. The proof is complete.

Using the proof of Theorem 4.2, we have the following corollary.

Corollary 4.1 Let X,Y be Asplund spaces and a ∈ S. Suppose that (GEC) is metrically
subregular at a. Then there exist τ, δ ∈ (0,+∞) such that

N̂(S, z) ∩ BX∗ ⊂ τ(D∗F(z, b)(BY ∗) + N(A, z) ∩ BX∗) ∀z ∈ B(a, δ) ∩ S. (4.15)

Remark 4.1. Theorem 4.3 and Corollary 4.1 are results on necessary conditions for metric
subregularity of (GEC) in the Asplund and finite-dimensional spaces setting, and these nec-
essary condition forms in (4.6) and (4.15) are similar to the strong BCQ of (3.4), (3.5) and
(3.6) for (GEC). It is an idea to consider and study these types of constraint qualifications
for (GEC) as well as equivalent conditions for them.

Next, we focus on sufficient conditions for metric subregularity given by constraint
qualifications. It is known from the counterexample of [9, Example 4.5] that the general
nonconvex (GEC) may not have metric subregularity even with the assumption of strong
BCQ of (3.4) in the finite-dimensional space. Thus, we consider the (GEC) defined by
an L-subsmooth multifunction and a submsooth subset. The following theorem is inspired
by [9, Theorem 4.4] and similar to [21, Theorem 4.3]. We give its proof for the sake of
completeness.

Theorem 4.3 Let a ∈ S. Suppose that F is L-subsmooth at (a, b), A is subsmooth at a and
that there exist τ, δ ∈ (0,+∞) such that (GEC) has the strong BCQ of (3.4) at all points in
S ∩ B(a, δ) with the same constant τ > 0. Then (GEC) is metrically subregular at a.

Proof Let ε ∈ (0, 1
2τ+1 ). Since F is L-subsmooth at (a, b) and A is subsmooth at a, there

exists r ∈ (0, δ) such that

〈(v∗, u∗), (y − b, x − u)〉 ≤ ε(‖y − b‖ + ‖x − u‖) (4.16)

and
〈x̄∗, z − x̄〉 ≤ d(z,A) + ε‖z − x̄‖ ∀z ∈ B(a, r) (4.17)

hold for any u ∈ F−1(b) ∩ B(a, r), (v∗, u∗) ∈ Nc(gph(F−1), (b, u)) ∩ (BY ∗ × BX∗),
x̄ ∈ A∩B(a, r), x̄∗ ∈ Nc(A, x̄)∩BX∗ and (y, x) ∈ gph(F−1) with ‖y −b‖+‖x −a‖ < r .

We prove that there exist τ1, δ1 > 0 such that

d(x, S) ≤ τ1(d(b,F (x)) + d(x,A)) ∀x ∈ B(a, δ1). (4.18)

Granting this, it follows that (GEC) is metrically subregular at a.
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Let τ1 := (τ+1)ε+τ
1−(2τ+1)ε

and choose δ1 ∈ (0, r
2 ) such that δ1 < τ1r . Let x ∈ B(a, δ1)\S.

Then d(x, S) ≤ ‖x − a‖ < δ1. Take any γ ∈ (max{(2τ + 1)ε,
d(x,S)

δ1
}, 1). By Lemma 2.1,

there exist u ∈ S and u∗ ∈ Nc(S, u) ∩ BX∗ with ‖u∗‖ = 1 such that

γ ‖x − u‖ < min{d(x, S), 〈u∗, x − u〉}. (4.19)

Noting that ‖u − a‖ ≤ ‖u − x‖ + ‖x − a‖ <
d(x,S)

γ
+ δ1 < r , it follows from the strong

BCQ of (3.4) that there exist y∗ ∈ BY ∗ and (x∗
1 , x∗

2 ) ∈ D∗
c F (u, b)(y∗) × (Nc(A, u) ∩ BX∗)

such that

u∗ = τ(x∗
1 + x∗

2 ). (4.20)

Noting that (x∗
1 , −y∗) ∈ Nc(gph(F ), (u, b)), it follows from (4.16) and (4.17) that

〈x∗
1 , x̃ − u〉 − 〈y∗, ỹ − b〉 ≤ 1 + τ

τ
ε(‖ỹ − b‖ + ‖x̃ − u‖) (4.21)

and

〈x∗
2 , x − u〉 ≤ d(x,A) + ε‖x − u‖ (4.22)

hold for any (ỹ, x̃) ∈ gph(F−1) ∩ B(b, r) × B(a, δ1).
If F(x) ∩ B(b, r) = ∅, then d(b,F (x)) > r and thus

d(x,S) ≤ ‖x − a‖ ≤ δ1 < τ1(d(b,F (x)) + d(x,A)). (4.23)

Next, we assume that F(x) ∩ B(b, r) �= ∅. Using (4.21), one has

〈x∗
1 , x − u〉 ≤ ‖y − b‖ + 1 + τ

τ
ε(‖y − b‖ + ‖x − u‖)

holds for any y ∈ F(x) ∩ B(b, r). This and d(b,F (x)) = d(b,F (x) ∩ B(b, r)) imply that

〈x∗
1 , x − u〉 ≤ (

1 + τ

τ
ε + 1)d(b,F (x)) + 1 + τ

τ
ε‖x − u‖. (4.24)

By (4.19), (4.20), (4.22) and (4.24), one has

γ ‖x − u‖ ≤ ((τ + 1)ε + τ)(d(b,F (x)) + d(x,A)) + (2τ + 1)ε‖x − u‖.
This means that

d(x, S) ≤ (τ + 1)ε + τ

γ − (2τ + 1)ε
(d(b,F (x)) + d(x,A)).

Taking limits as γ → 1− and using (4.23), one has

d(x, S) ≤ τ1(d(b,F (x)) + d(x,A)).

Hence (4.18) holds. The proof is complete.

The following theorem provides one characterization for metric subregularity of (GEC)
defined by the L-subsmooth multifunction and the submsooth subset in the Asplund space.
The proof can be obtained by using Proposition 4.1, Theorem 4.3 and Lemma 2.1 of the
Asplund space version.

Theorem 4.4 Let X be an Asplund space and a ∈ S. Suppose that F is L-subsmooth at
(a, b) and A is subsmooth at a. Then (GEC) is metrically subregular at a if and only if
there exist τ, δ ∈ (0,+∞) such that (GEC) has the strong BCQ of (3.5) at all points in
S ∩ B(a, δ) with the same constant τ > 0.
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Remark 4.2 Let a ∈ S. We define τ(F, a, b;A) := inf{τ > 0 : (4.1) holds}. For any z ∈ S,
we define

γ (F, z, b;A) := inf{τ > 0 : (GEC) has the strong BCQ of (3.5) at z with τ},
γc(F, z, b;A) := inf{τ > 0 : (GEC) has the strong BCQ of (3.4) at z with τ}.

By the proof of Proposition 4,1, one can verify that

τ(F, a, b;A) ≥ lim sup
z

S−→a

γ (F, z, b;A) ≥ γ (F, a, b;A).

If F is L-subsmooth at (a, b) and A is subsmooth at a, using the proof of Theorem 4.3, one
has

lim sup
z

S−→a

γc(F, z, b;A) ≥ τ(F, a, b;A).

In addition, if X is an Asplund space, by Theorem 4.4, one has

τ(F, a, b;A) = lim sup
z

S−→a

γ (F, z, b;A).

Acknowledgments This research was supported by the National Natural Science Foundations of P. R.
China (Grant No. 11261067 and No. 11371312) and by the IRTSTYN.

References

1. Bauschke, H., Borwein, J., Li, W.: Strong conical hull intersection property, bounded linear regularity,
Jameson’s property (G), and error bounds in convex optimization. Math. Program. (Series A) 86(1), 135–
160 (1999)

2. Li, W.: Abadie’s constraint qualification, metric regularity, and error bounds for differentiable convex
inequalities. SIAM J. Optim. 7, 966–978 (1997)

3. Hiriart-Urruty, J.-B., Lemarechal, C.: Convex Analysis and Minimization Algorithms I. Springer-Verlag,
New York (1993)

4. Li, C., Ng, K.F.: Constraint qualification, the strong CHIP and best approximation with convex constraint
in Banach spaces. SIAM J. Optim. 14, 584–607 (2002)

5. Li, W., Nahak, C., Singer, I.: Constraint qualifications for semi-infinite systems of convex inequalities.
SIAM J. Optim. 11, 31–52 (2000)

6. Wei, Z.: Linear regularity for an infinite system formed by p-uniformly subsmooth sets in Banach spaces.
Taiwan J. Math. 16, 335–352 (2012)

7. Wei, Z., Yao, J.-C., Zheng, X.Y.: Strong abadie CQ, ACQ, calmness and linear regularity. Math. Program.
145, 97–131 (2014)

8. Zheng, X.Y., Ng, K.F.: Metric regularity and constraint qualifications for convex inequalities on Banach
spaces. SIAM J. Optim. 14, 757–772 (2004)

9. Zheng, X.Y., Ng, K.F.: Calmness for L-subsmooth multifunctions in Banach spaces. SIAM J. Optim. 19,
1648–1673 (2009)

10. Zheng, X.Y., Wei, Z., Yao, J.-C.: Uniform subsmoothness and linear regularity for a collection of
infinitely many closed sets. Nonlinear Anal. 73, 413–430 (2010)

11. Hu, H.: Characterizations of the strong basic constraint qualifications. Math. Oper. Res. 30, 956–965
(2005)

12. Zheng, X.Y., Ng, K.F.: Metric subregularity and constraint qualifications for convex generalized
equations in Banach spaces. SIAM J. Optim. 18, 437–460 (2007)

13. Dontchev, A.L., Rockafellar, R.T.: Regularity and conditioning of solution mappings in variational
analysis. Set-Valued Anal. 12, 79–109 (2004)

14. Bonnans, J.F., Shapiro, A.: Perturbation Analysis of Optimization Problems. Springer, New York (2000)
15. Henrion, R., Outrata, J.: Calmness of constraint systems with applications. Math. Program. 104, 437–

464 (2005)



762 Liyun Huang et al.

16. Klatte, D., Kummer, B.: Nonsmooth Equations in Optimization. Regularity, Calculus, Methods and
Applications Nonconvex Optimization and its Application, 60. Kluwer Academic Publishers, Dordrecht
(2002)

17. Lewis, A.S., Pang, J.S.: Error bounds for convex inequality systems. In: Crouzeix, J.P. (ed.) Generalized
Convexity, Proceedings of the Fifth Sysposium on Generalized Convexity, Luminy Marseille, pp. 75-10
(1997)

18. Mordukhovich, B.S.: Complete characterization of openness, metric regularity, and lipschitzian proper-
ties of multifunctions. Trans. Amer. Math. Soc. 340, 1–35 (1993)

19. Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Springer, Heidelberg (1998)
20. Zalinescu, C.: Weak sharp minima, well-behaving functions and global error bounds for convex inequal-

ities in Banach spaces. Proc. 12th Baikal Internat. Conf. on Optimization Methods and Their Appl.
Irkutsk, Russia, pp. 272–284 (2001)

21. He, Q., Yang, J., Zhang, B.: Metric subregularity for subsmooth generalized constraint equation in
Banach spaces. J. Appl. Math. Article ID 185249, p 16 (2012)

22. Mordukhovich, B.S.: Variational Analysis and Generalized Differentiation I/II. Springer-verlag, Berlin
Heidelberg (2006)

23. Mordukhovich, B.S., Shao, Y.: Nonsmooth sequential analysis in Asplund spaces. Trans. Amer. Math.
Soc. 348, 1235–1280 (1996)

24. Phelps, R.R.: Convex, Functions, Monotone Operators, and Differentiability, Lecture Notes in Math,
p. 1364. Springer, New York (1989)

25. Zheng, X.Y., Ng, K.F.: Linear regularity for a collection of subsmooth sets in Banach spaces. SIAM J.
Optim. 19, 62–76 (2008)

26. Borwein, J.M., Fitzpatrick, S.: Existence of nearest points in Banach spaces. Can. J. Math. XLI(4), 702–
720 (1989)

27. Aussel, D., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related
concepts. Trans. Amer. Math. Soc. 357, 1275–1301 (2005)

28. Schaefer, H.H.: Topological Vector Spaces. The Macmillan Company, New York (1967)
29. Bakan, A., Deutsch, F., Li, W.: Strong CHIP, normality and linear regularity of convex sets. Trans. Amer.

Math. Soc. 357(10), 3831–3863 (2005)
30. Clarke, F.H.: Optimization and Nonsmooth Analysis. Wiley, New York (1983)


	BCQ and Strong BCQ for Nonconvex Generalized Equations with Applications
	Abstract
	Introduction
	Preliminaries
	BCQ and Strong BCQ for Nonconvex (GEC)
	Applications to Metric Subregularity of (GEC)
	Acknowledgments
	References


