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Abstract We deal with monotone inclusion problems of the form 0 ∈ Ax + Dx + NC(x)

in real Hilbert spaces, where A is a maximally monotone operator, D a cocoercive operator
and C the nonempty set of zeros of another cocoercive operator. We propose a forward-
backward penalty algorithm for solving this problem which extends the one proposed by
Attouch et al. (SIAM J. Optim. 21(4): 1251–1274, 2011). The condition which guarantees
the weak ergodic convergence of the sequence of iterates generated by the proposed scheme
is formulated by means of the Fitzpatrick function associated to the maximally monotone
operator that describes the set C. In the second part we introduce a forward-backward-
forward algorithm for monotone inclusion problems having the same structure, but this
time by replacing the cocoercivity hypotheses with Lipschitz continuity conditions. The
latter penalty type algorithm opens the gate to handle monotone inclusion problems with
more complicated structures, for instance, involving compositions of maximally monotone
operators with linear continuous ones.
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1 Introduction and Preliminaries

1.1 Motivation and Problem Formulation

In the last years one can observe in the literature an increasing interest in solving variational
inequalities expressed as monotone inclusion problems of the form

0 ∈ Ax + NC(x), (1)

where H is a real Hilbert space, A : H ⇒ H is a maximally monotone operator,
C = argmin� is the set of global minima of the proper, convex and lower semicontinu-
ous function � : H → R := R ∪ {±∞} fulfilling min� = 0 and NC : H ⇒ H is the
normal cone of the set C ⊆ H (see [1–3, 18, 19]). Specifically, one can find in the liter-
ature forward-backward algorithms for solving (1) (see [2, 3, 18, 19]), which perform in
each iteration a proximal step with respect to A and a subgradient step with respect to the
penalization function � .

In case � : H → R is differentiable with Lipschitz continuous gradient, for the
algorithm, that reads as

Choose x1 ∈ H. For n ∈ N set xn+1 = (Id+λnA)
−1(xn − λnβn∇�(xn)),

with (λn)n∈N and (βn)n∈N sequences of positive real numbers, ergodic convergence results
are usually obtained in the following hypotheses

(H)

⎧
⎪⎨

⎪⎩

(i) A+NC is maximally monotone and {x ∈ H : 0 ∈ Ax + NC(x)} �= ∅;
(ii) For every p ∈ ranNC,

∑
n∈N λnβn

[
�∗
(

p
βn

)
− σC

(
p
βn

)]
< +∞;

(iii) (λn)n∈N ∈ �2 \ �1.

Here, �∗ : H → R denotes the Fenchel conjugate function of � and ranNC the range of
the normal cone operator NC : H ⇒ H. Let us mention that hypothesis (ii), which is the
discretized counterpart of a condition introduced in [1] in the context of continuous-time
nonautonomous differential inclusions, is satisfied, if

∑
n∈N

λn
βn

< +∞ and � is bounded
below by a multiple of the square of the distance to C (see [2]). This is for instance the case
when C = zerL = {x ∈ H : Lx = 0}, L : H → H is a linear continuous operator with
closed range and � : H → R, �(x) = ‖Lx‖2 (see [2, 3]). For further situations for which
condition (ii) is fulfilled we refer to [3, Section 4.1].

It is worth mentioning that when A is the convex subdifferential of a proper, convex
and lower semicontinuous function � : H → R the above algorithm provides an iterative
scheme for solving convex optimization problems which can be formulated as

min
x∈H{�(x) : x ∈ argmin �}. (2)

Motivated by these considerations, we deal in this paper with monotone inclusion
problems of the form

0 ∈ Ax +Dx + NC(x), (3)
where A : H ⇒ H is a maximally monotone operator, D : H → H is a (single-valued)
cocoercive operator and C ⊆ H is the (nonempty) set of zeros of another cocoercive oper-
ator B : H → H. Following [3] we propose a forward-backward penalty algorithm for
solving (3) and prove weak ergodic convergence for the generated sequence of iterates
under hypotheses which generalize the ones in (H). To this end we specially generalize (ii)
to a condition which involves the Fitzpatrick function associated to the maximally mono-
tone operator B . Added to that, we prove strong convergence for the sequence of iterates
whenever A is strongly monotone.
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The investigations made in this manuscript are completed in Section 3 with the treat-
ment of the monotone inclusion problem (3), this time by relaxing the cocoercivity of D
and B to monotonicity and Lipschitz continuity. We formulate in this more general setting
a forward-backward-forward penalty type algorithm for solving (3) and study its conver-
gence properties. The interest in having a suitable algorithmic scheme in this context is
given by the fact that it allows via some primal-dual techniques to deal with monotone inclu-
sion problems having more complicated structures, for instance, involving compositions of
maximally monotone operators with linear continuous ones.

1.2 Notations and Preliminary Results

For the reader’s convenience we present first some notations which are used throughout the
paper (see [4, 7, 8, 16, 22, 25]). By N = {1, 2, ...} we denote the set of positive integer
numbers and let H be a real Hilbert space with inner product 〈·, ·〉 and associated norm
‖ · ‖ = √〈·, ·〉. The symbols ⇀ and → denote weak and strong convergence, respectively.
When G is another Hilbert space and K : H → G a linear continuous operator, then the
norm of K is defined as ‖K‖ = sup{‖Kx‖ : x ∈ H, ‖x‖ ≤ 1}, while K∗ : G → H, defined
by 〈K∗y, x〉 = 〈y,Kx〉 for all (x, y) ∈ H × G, denotes the adjoint operator of K.

For a function f : H → R we denote by domf = {x ∈ H : f (x) < +∞} its
effective domain and say that f is proper, if domf �= ∅ and f (x) �= −∞ for all x ∈
H. Concerning calculus rules where ±∞ are involved we make the following conventions
(cf. [25]): (+∞) + (−∞) = +∞, 0(+∞) = +∞ and 0(−∞) = 0. Let f ∗ : H →
R, f ∗(u) = supx∈H{〈x, u〉 − f (x)} for all u ∈ H, be the conjugate function of f . The
subdifferential of f at x ∈ H, with f (x) ∈ R, is the set ∂f (x) := {v ∈ H : f (y) ≥ f (x)+
〈y − x, v〉 ∀y ∈ H}. We take by convention ∂f (x) := ∅, if f (x) ∈ {±∞}. We also denote
by minf := infx∈H f (x) and by argminf := {x ∈ H : f (x) = minf }.

Let S ⊆ H be a nonempty set. The indicator function of S, δS : H → R, is the function
which takes the value 0 on S and +∞ otherwise. The subdifferential of the indicator func-
tion is the normal cone of S, that is NS(x) = {u ∈ H : 〈y − x, u〉 ≤ 0 ∀y ∈ S}, if x ∈ S

and NS(x) = ∅ for x /∈ S. Notice that for x ∈ S, u ∈ NS(x) if and only if σS(u) = 〈x, u〉,
where σS is the support function of S, defined by σS(u) = supy∈S〈y, u〉.

For an arbitrary set-valued operator M : H ⇒ H we denote by GrM = {(x, u) ∈
H × H : u ∈ Mx} its graph, by domM = {x ∈ H : Mx �= ∅} its domain, by ranM =
{u ∈ H : ∃x ∈ H s.t. u ∈ Mx} its range and by M−1 : H ⇒ H its inverse operator,
defined by (u, x) ∈ GrM−1 if and only if (x, u) ∈ GrM . We use also the notation zerM =
{x ∈ H : 0 ∈ Mx} for the set of zeros of the operator M . We say that M is monotone if
〈x − y, u − v〉 ≥ 0 for all (x, u), (y, v) ∈ GrM . A monotone operator M is said to be
maximally monotone, if there exists no proper monotone extension of the graph of M on
H×H. Let us mention that in case M is maximally monotone, zerM is a convex and closed
set [4, Proposition 23.39]. We refer to [4, Section 23.4] for conditions ensuring that zerM
is nonempty. If M is maximally monotone, then one has the following characterization for
the set of its zeros

z ∈ zerM if and only if 〈u− z, w〉 ≥ 0 for all (u,w) ∈ GrM. (4)

The operator M is said to be γ -strongly monotone with γ > 0, if 〈x − y, u − v〉 ≥
γ ‖x − y‖2 for all (x, u), (y, v) ∈ GrM . Notice that if M is maximally monotone and
strongly monotone, then zerM is a singleton, thus nonempty (see [4, Corollary 23.37]).

The resolvent of M , JM : H ⇒ H, is defined by JM = (Id+M)−1, where Id :
H → H, Id(x) = x for all x ∈ H, is the identity operator on H. Moreover, if M
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is maximally monotone, then JM : H → H is single-valued and maximally monotone
(cf. [4, Proposition 23.7 and Corollary 23.10]). For an arbitrary γ > 0 we have (see
[4, Proposition 23.18])

JγM + γ Jγ−1M−1 ◦ γ−1 Id = Id . (5)

The Fitzpatrick function associated to a monotone operator M , defined as

ϕM : H ×H → R, ϕM(x, u) = sup
(y,v)∈GrM

{〈x, v〉 + 〈y, u〉 − 〈y, v〉},

is a convex and lower semicontinuous function and it will play an important role throughout
the paper. Introduced by Fitzpatrick in [17], this notion opened the gate towards the employ-
ment of convex analysis specific tools when investigating the maximality of monotone
operators (see [4–9, 13, 22] and the references therein). In case M is maximally monotone,
ϕM is proper and it fulfills

ϕM(x, u) ≥ 〈x, u〉 ∀(x, u) ∈ H×H,

with equality if and only if (x, u) ∈ GrM . Notice that if f : H → R, is a proper, convex
and lower semi-continuous function, then ∂f is a maximally monotone operator (cf. [20])
and it holds (∂f )−1 = ∂f ∗. Furthermore, the following inequality is true (see [5])

ϕ∂f (x, u) ≤ f (x)+ f ∗(u) ∀(x, u) ∈ H ×H. (6)

We refer the reader to [5], for formulae of the corresponding Fitzpatrick functions computed
for particular classes of monotone operators.

Let γ > 0 be arbitrary. A single-valued operator M : H → H is said to be γ -cocoercive,
if 〈x−y,Mx−My〉 ≥ γ ‖Mx−My‖2 for all (x, y) ∈ H×H, and γ -Lipschitz continuous,
if ‖Mx − My‖ ≤ γ ‖x − y‖ for all (x, y) ∈ H × H. A single-valued linear operator
M : H → H is said to be skew, if 〈x,Mx〉 = 0 for all x ∈ H.

We close the section by presenting some convergence results that will be used several
times in the paper. Let (xn)n∈N be a sequence in H and (λk)k∈N a sequence of positive
numbers such that

∑
k∈N λk = +∞. Let (zn)n∈N be the sequence of weighted averages

defined as (see [3])

zn = 1

τn

n∑

k=1

λkxk, where τn =
n∑

k=1

λk ∀n ∈ N. (7)

Lemma 1 (Opial-Passty) Let F be a nonempty subset of H and assume that the limes
limn→∞ ‖xn−x‖ exists for every x ∈ F . If every weak cluster point of (xn)n∈N (respectively
(zn)n∈N) lies in F , then (xn)n∈N (respectively (zn)n∈N) converges weakly to an element in
F as n → +∞.

The following result is taken from [3].

Lemma 2 Let (an)n∈N, (bn)n∈N and (εn)n∈N be real sequences. Assume that (an)n∈N is
bounded from below, (bn)n∈N is nonnegative, (εn)n∈N ∈ �1 and an+1 − an + bn ≤ εn for
any n ∈ N. Then (an)n∈N is convergent and (bn)n∈N ∈ �1.
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2 Forward-Backward Penalty Schemes

The problem we deal with at the beginning of this section has the following formulation.

Problem 3 Let H be a real Hilbert space, A,B : H ⇒ H maximally monotone operators,
D : H → H an η-cocoercive operator with η > 0 and suppose that C = zerB �= ∅. The
monotone inclusion problem to solve is

0 ∈ Ax +Dx +NC(x).

The following iterative scheme for solving Problem 3 is inspired by [3].

Algorithm 1

Initialization: Choose x1 ∈ H
For n ∈ N: Choose wn ∈ Bxn

Set xn+1 = JλnA(xn − λnDxn − λnβnwn),

where (λn)n∈N and (βn)n∈N are sequences of positive real numbers. Notice that Algorithm 4
is well-defined, if domB = H, which will be the case in Subsection 2.2, when B is assumed
to be cocoercive. For the convergence statement the following hypotheses are needed

(Hf itz)

⎧
⎪⎪⎨

⎪⎪⎩

(i) A+NC is maximally monotone and zer (A+D +NC) �= ∅;
(ii) For every p ∈ ranNC,

∑
n∈N λnβn

[

sup
u∈C

ϕB

(
u,

p
βn

)
− σC

(
p
βn

)]

< +∞;
(iii) (λn)n∈N ∈ �2 \ �1.

Since A is maximally monotone and C is a nonempty convex and closed set, A + NC is
maximally monotone if a so-called regularity condition is fulfilled. We refer the reader to
[4, 6–9, 22, 25] for conditions guaranteeing the maximal monotonicity of the sum of two
maximally monotone operators.

Further, as D is maximally monotone (see [4, Example 20.28]) and domD = H, the
hypothesis (i) above guarantees that A + D + NC is maximally monotone, too (see [4,
Corollary 24.4]). Moreover, for each p ∈ ranNC we have

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)

≥ 0 ∀n ∈ N.

Indeed, if p ∈ ranNC , then there exists u ∈ C such that p ∈ NC(u). This implies that

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)

≥
〈

u,
p

βn

〉

− σC

(
p

βn

)

= 0 ∀n ∈ N.

Remark 4 Let us mention that, if Dx = 0 for all x ∈ H and B = ∂� , where � : H → R

is a proper, convex and lower semicontinuous function with min� = 0, then the monotone
inclusion problem in Problem 3 becomes (1), since in this case C = argmin� . Moreover,
as �(x) = 0 for all x ∈ C, by (6) it follows that condition (ii) in (H) implies condition (ii)
in (Hf itz), hence the hypothesis formulated by means of the Fitzpatrick function extends
the one given [3] to the more general setting considered in Problem 3. It remains an open
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question to find examples of proper, convex and lower semicontinuous functions � : H →
R with min� = 0 for which (ii) in (H) is not fulfilled, while for B = ∂� condition (ii) in
(Hf itz) holds.

The results provided throughout this section and the techniques and ideas used for prov-
ing them have been inspired by [3], however, they are here adapted and extended to the
general context of the monotone inclusion problem stated in Problem 3.

2.1 The General Case

In this subsection we will prove an abstract convergence result for Algorithm (4), which
will be subsequently refined in the case when B is a cocoercive operator.

Lemma 5 Let (xn)n∈N and (wn)n∈N be the sequences generated by Algorithm 1 and take
(u,w) ∈ Gr(A + D + NC) such that w = v + p + Du, where v ∈ Au and p ∈ NC(u).
Then the following inequality holds for any n ∈ N

‖xn+1 − u‖2 − ‖xn − u‖2 + λn(2η − 3λn)‖Dxn −Du‖2 ≤
2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

+ 3λ2
nβ

2
n‖wn‖2 + 3λ2

n‖Du+ v‖2 + 2λn〈u− xn,w〉.
(8)

Proof From the definition of the resolvent of A we have xn−xn+1
λn

− βnwn −Dxn ∈ Axn+1

and since v ∈ Au, the monotonicity of A guarantees

〈xn+1 − u, xn − xn+1 − λn(βnwn +Dxn + v)〉 ≥ 0 ∀n ∈ N, (9)

thus

〈u− xn+1, xn − xn+1〉 ≤ λn〈u− xn+1, βnwn +Dxn + v〉 ∀n ∈ N.

Further, since

〈u− xn+1, xn − xn+1〉 = 1

2
‖xn+1 − u‖2 − 1

2
‖xn − u‖2 + 1

2
‖xn+1 − xn‖2,

we get for any n ∈ N

‖xn+1 − u‖2 − ‖xn − u‖2 ≤ 2λn〈u− xn+1, βnwn +Dxn + v〉 − ‖xn+1 − xn‖2

= 2λn〈u− xn, βnwn +Dxn + v〉 + 2λn〈xn − xn+1, βnwn +Dxn + v〉 − ‖xn+1 − xn‖2

≤ 2λn〈u− xn, βnwn +Dxn + v〉 + λ2
n‖βnwn +Dxn + v‖2

≤ 2λn〈u− xn, βnwn +Dxn + v〉 + 3λ2
nβ

2
n‖wn‖2 + 3λ2

n‖Du + v‖2 + 3λ2
n‖Dxn −Du‖2.
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Next we evaluate the first term on the right hand-side of the last of the above inequalities.
By using the cocoercivity of D and the definition of the Fitzpatrick function and that wn ∈
Bxn and σC

(
p
βn

)
= 〈u, p

βn
〉 for every n ∈ N, we obtain

2λn〈u− xn, βnwn +Dxn + v〉
= 2λn〈u− xn, βnwn +Dxn +w − p −Du〉
= 2λn〈u− xn,Dxn −Du〉 + 2λn〈u− xn, βnwn − p〉 + 2λn〈u− xn, w〉
= 2λn〈u− xn,Dxn −Du〉 + 2λnβn

(

〈u,wn〉 +
〈

xn,
p

βn

〉

− 〈xn, wn〉 −
〈

u,
p

βn

〉)

+ 2λn〈u− xn, w〉
≤ − 2ηλn‖Dxn −Du‖2 + 2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

+ 2λn〈u− xn,w〉.

This provides the desired conclusion.

Theorem 6 Let (xn)n∈N and (wn)n∈N be the sequences generated by Algorithm 1 and
(zn)n∈N the sequence defined in (7). If (Hf itz) is fulfilled and (λnβn‖wn‖)n∈N ∈ �2, then
(zn)n∈N converges weakly to an element in zer(A+D + NC) as n → +∞.

Proof As limn→+∞ λn = 0, there exists n0 ∈ N such that 2η − 3λn ≥ 0 for all n ≥ n0.
Thus, for (u,w) ∈ Gr(A + D + NC), such that w = v + p + Du, where v ∈ Au and
p ∈ NC(u), by (8) it holds for any n ≥ n0

‖xn+1 − u‖2 − ‖xn − u‖2 ≤
2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

+ 3λ2
nβ

2
n‖wn‖2 + 3λ2

n‖Du+ v‖2 + 2λn〈u− xn,w〉.
(10)

By Lemma 1, it is sufficient to prove that the following two statements hold:

(a) for every u ∈ zer(A+D + NC) the sequence (‖xn − u‖)n∈N is convergent;
(b) every weak cluster point of (zn)n∈N lies in zer(A+D + NC).

(a) For every u ∈ zer(A + D + NC) one can take w = 0 in (10) and the conclusion
follows from Lemma 2.

(b) Let z be a weak cluster point of (zn)n∈N. As we already noticed that A + D + NC

is maximally monotone, in order to show that z ∈ zer(A + D + NC) we will use the
characterization given in (4). Take (u,w) ∈ Gr(A+D + NC) such that w = v + p +Du,
where v ∈ Au and p ∈ NC(u). Let be N ∈ N with N ≥ n0 + 2. Summing up for
n = n0 + 1, ..., N the inequalities in (10), we get

‖xN+1 − u‖2 − ‖xn0+1 − u‖2 ≤ L+ 2

〈
N∑

n=1

λnu−
N∑

n=1

λnxn −
n0∑

n=1

λnu+
n0∑

n=1

λnxn,w

〉

,
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where

L = 2
∑

n≥n0+1

λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

+ 3
∑

n≥n0+1

λ2
nβ

2
n‖wn‖2 + 3

∑

n≥n0+1

λ2
n‖Du+ v‖2 ∈ R.

Discarding the nonnegative term ‖xN+1 − u‖2 and dividing by 2τN = 2
∑N

k=1 λk we
obtain

−‖xn0+1 − u‖2

2τN
≤ L̃

2τN
+ 〈u− zN ,w〉,

where L̃ := L+2〈−∑n0
n=1 λnu+

∑n0
n=1 λnxn,w〉 ∈ R. By passing to the limit as N → +∞

and using that limN→+∞ τN = +∞, we get

lim inf
N→+∞〈u− zN ,w〉 ≥ 0.

Since z is a weak cluster point of (zn)n∈N, we obtain that 〈u − z, w〉 ≥ 0. Finally, as this
inequality holds for arbitrary (u,w) ∈ Gr(A+D+NC), the desired conclusion follows.

In the following we show that strong monotonicity of the operator A ensures strong
convergence of the sequence (xn)n∈N.

Theorem 7 Let (xn)n∈N and (wn)n∈N be the sequences generated by Algorithm 1. If (Hf itz)

is fulfilled, (λnβn‖wn‖)n∈N ∈ �2 and the operator A is γ -strongly monotone with γ > 0,
then (xn)n∈N converges strongly to the unique element in zer(A+D +NC) as n → +∞.

Proof Let be u ∈ zer(A + D + NC) and w = 0 = v + p + Du, where v ∈ Au and
p ∈ NC(u). Since A is γ -strongly monotone, inequality (9) becomes

〈xn+1 − u, xn − xn+1 − λn(βnwn +Dxn + v)〉 ≥ λnγ ‖xn+1 − u‖2 ∀n ∈ N. (11)

Following the lines of the proof of Lemma 5 for w = 0 we obtain for any n ∈ N

2γ λn‖xn+1 − u‖2 + ‖xn+1 − u‖2 − ‖xn − u‖2 + λn(2η − 3λn)‖Dxn −Du‖2 ≤
2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

+ 3λ2
nβ

2
n‖wn‖2 + 3λ2

n‖Du+ v‖2.

Thus, as limn→+∞ λn = 0, there exists n0 ∈ N such that for all n ≥ n0

2γ λn‖xn+1 − u‖2 + ‖xn+1 − u‖2 − ‖xn − u‖2

≤ 2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

+ 3λ2
nβ

2
n‖wn‖2 + 3λ2

n‖Du+ v‖2

and, so,

2γ
∑

n≥n0

λn‖xn+1 − u‖2 ≤ ‖xn0 − u‖2 + 2
∑

n≥n0

λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

+3
∑

n≥n0

λ2
nβ

2
n‖wn‖2 + 3‖Du+ v‖2

∑

n≥n0

λ2
n < +∞.

Since
∑

n∈N λn = +∞ and (‖xn − u‖)n∈N is convergent (see the proof of Theorem 6 (a)),
it follows limn→+∞ ‖xn − u‖ = 0.
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2.2 The Case B is Cocoercive

In this subsection we deal with the situation when B is a (single-valued) cocoercive operator.
Our aim is to show that in this setting the assumption (λnβn‖wn‖)n∈N ∈ �2 in Theorem 22
and Theorem 7 can be replaced by a milder condition involving only the sequences (λn)n∈N
and (βn)n∈N. The problem under consideration has the following formulation.

Problem 8 Let H be a real Hilbert space, A : H ⇒ H a maximally monotone operator,
D : H → H an η-cocoercive operator with η > 0, B : H → H a μ-cocoercive operator
with μ > 0 and suppose that C = zerB �= ∅. The monotone inclusion problem to solve is

0 ∈ Ax +Dx +NC(x).

Algorithm 1 has in this particular setting the following formulation.

Algorithm 2

Initialization: Choose x1 ∈ H
For n ∈ N set: xn+1 = JλnA(xn − λnDxn − λnβnBxn).

Remark 9

(a) If Dx = 0 for every x ∈ H and B = ∂� , where � : H → R is a convex and differ-
entiable function with μ−1-Lipschitz gradient for μ > 0 fulfilling min� = 0, then
we rediscover the setting considered in [3, Section 3], while Algorithm 2 becomes
the iterative method investigated in that paper.

(b) In case Bx = 0 for all x ∈ H Algorithm 2 turns out to be classical forward-backward
scheme (see [4, 14, 24]), since in this case C = H, hence NC(x) = {0} for all x ∈ H.

Before stating the convergence result for Algorithm 2 some technical results are in order.

Lemma 10 Let be u ∈ C ∩ domA and v ∈ Au. Then for every ε ≥ 0 and any n ∈ N we
have

‖xn+1 − u‖2 − ‖xn − u‖2 + ε

1 + ε
‖xn+1 − xn‖2 + 2ε

1 + ε
λnβn〈xn − u,Bxn〉 ≤

λnβn

(

(1 + ε)λnβn − 2μ

1 + ε

)

‖Bxn‖2 + 2λn〈u− xn+1,Dxn + v〉. (12)

Proof As in the proof of Lemma 5 we obtain for any n ∈ N that

‖xn+1 − u‖2 − ‖xn − u‖2 + ‖xn+1 − xn‖2 ≤ 2λn〈u− xn+1, βnBxn +Dxn + v〉 =
2λnβn〈u− xn, Bxn〉 + 2λnβn〈xn − xn+1, Bxn〉 + 2λn〈u− xn+1, Dxn + v〉.

Since B is μ-cocoercive and Bu = 0 we have that

〈u− xn, Bxn〉 ≤ −μ‖Bxn‖2 ∀n ∈ N,
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hence

2λnβn〈u− xn, Bxn〉 ≤ − 2μ

1 + ε
λnβn‖Bxn‖2 + 2ε

1 + ε
λnβn〈u− xn, Bxn〉 ∀n ∈ N ∀ε ≥ 0.

Inequality (12) follows by taking into consideration also that

2λnβn〈xn − xn+1, Bxn〉 ≤ 1

1 + ε
‖xn+1 − xn‖2 + (1 + ε)λ2

nβ
2
n‖Bxn‖2 ∀n ∈ N ∀ε ≥ 0.

Lemma 11 Assume that lim supn→+∞ λnβn < 2μ and let be u ∈ C ∩ domA and v ∈ Au.
Then there exist a, b > 0 and n0 ∈ N such that for any n ≥ n0 it holds

‖xn+1 − u‖2 − ‖xn − u‖2 + a
(
‖xn+1 − xn‖2 + λnβn〈xn − u, Bxn〉 + λnβn‖Bxn‖2

)
≤

(
bλ2

n − 2ηλn
)
‖Dxn −Du‖2 + 2λn〈u− xn, v +Du〉 + bλ2

n‖Du+ v‖2. (13)

Proof We start by noticing that, by making use of the cocoercivity of D, for every ε > 0
and any n ∈ N it holds

2λn〈u− xn+1,Dxn + v〉
= 2λn〈xn − xn+1,Dxn + v〉 + 2λn〈u− xn,Dxn + v〉
≤ ε

2(1 + ε)
‖xn+1 − xn‖2 + 2(1 + ε)

ε
λ2
n‖Dxn + v‖2 + 2λn〈u− xn,Dxn + v〉

≤ ε

2(1 + ε)
‖xn+1 − xn‖2 + 4(1 + ε)

ε
λ2
n‖Dxn −Du‖2 + 4(1 + ε)

ε
λ2
n‖Du + v‖2+

2λn〈u− xn,Dxn −Du〉 + 2λn〈u− xn, v +Du〉
≤ ε

2(1 + ε)
‖xn+1 − xn‖2 + 4(1 + ε)

ε
λ2
n‖Dxn −Du‖2 + 4(1 + ε)

ε
λ2
n‖Du + v‖2−

2λnη‖Dxn −Du‖2 + 2λn〈u− xn, v +Du〉.
In combination with (12) it yields for every ε > 0 and any n ∈ N

‖xn+1 − u‖2 − ‖xn − u‖2 + ε

2(1 + ε)
‖xn+1 − xn‖2 + 2ε

1 + ε
λnβn〈xn − u,Bxn〉

+ ε

1 + ε
λnβn‖Bxn‖2

≤ λnβn

(

(1 + ε)λnβn − 2μ

1 + ε
+ ε

1 + ε

)

‖Bxn‖2 +
(

4(1 + ε)

ε
λ2
n − 2ηλn

)

‖Dxn −Du‖2

+ 2λn〈u− xn, v +Du〉 + 4(1 + ε)

ε
λ2
n‖Du+ v‖2.

Since lim supn→+∞ λnβn < 2μ, there exists α > 0 and n0 ∈ N such that λnβn < α < 2μ
for any n ≥ n0. Hence, for any n ≥ n0 and every ε > 0 it holds

λnβn

(

(1 + ε)λnβn − 2μ

1 + ε
+ ε

1 + ε

)

< α

(

(1 + ε)α − 2μ

1 + ε
+ ε

1 + ε

)

and one can take ε0 > 0 small enough such that (1 + ε0)α − 2μ
1+ε0

+ ε0
1+ε0

< 0. Taking

a = ε0
2(1+ε0)

and b = 4(1+ε0)
ε0

the desired conclusion follows.
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Lemma 12 Assume that lim supn→+∞ λnβn < 2μ and limn→+∞ λn = 0 and let be (u,w)

∈ Gr(A+D+NC) such that w = v+ p+Du, where v ∈ Au and p ∈ NC(u). Then there
exist a, b > 0 and n1 ∈ N such that for all n ≥ n1 it holds

‖xn+1 − u‖2 − ‖xn − u‖2 + a

(

‖xn+1 − xn‖2 + λnβn

2
〈xn − u,Bxn〉 + λnβn‖Bxn‖2

)

≤ aλnβn

2

[

sup
u∈C

ϕB

(

u,
4p

aβn

)

− σC

(
4p

aβn

)]

+ 2λn〈u− xn, w〉 + bλ2
n‖Du+ v‖2. (14)

Proof According to Lemma 11, there exist a, b > 0 and n0 ∈ N such that for any n ≥ n0

inequality (13) holds. Since limn→∞ λn = 0, there exists n1 ∈ N, n1 ≥ n0 such that
bλ2

n − 2ηλn ≤ 0 for all n ≥ n1, hence,

‖xn+1 − u‖2 − ‖xn − u‖2 + a
(
‖xn+1 − xn‖2 + λnβn〈xn − u,Bxn〉 + λnβn‖Bxn‖2

)

≤ 2λn〈u− xn, v +Du〉 + bλ2
n‖Du+ v‖2 ∀n ≥ n1.

The conclusion follows by combining this inequality with the subsequent estimation that
holds for any n ∈ N:

2λn〈u− xn, v +Du〉 + aλnβn

2
〈u− xn, Bxn〉

= 2λn〈u− xn,−p〉 + aλnβn

2
〈u− xn, Bxn〉 + 2λn〈u− xn, w〉

= aλnβn

2

(

〈u,Bxn〉 +
〈

xn,
4p

aβn

〉

− 〈xn, Bxn〉 −
〈

u,
4p

aβn

〉)

+ 2λn〈u− xn,w〉

≤ aλnβn

2

[

sup
u∈C

ϕB

(

u,
4p

aβn

)

− σC

(
4p

aβn

)]

+ 2λn〈u− xn, w〉.

Theorem 13 Let (xn)n∈N and (wn)n∈N be the sequences generated by Algorithm 2 and
(zn)n∈N the sequence defined in (7). If (Hf itz) is fulfilled and lim supn→+∞ λnβn < 2μ,
then the following statements are true:

(i) for every u ∈ zer(A + D + NC) the sequence (‖xn − u‖)n∈N is convergent and
the series

∑
n∈N ‖xn+1 − xn‖2,

∑
n∈N λnβn〈Bxn, xn − u〉 and

∑
n∈N λnβn‖Bxn‖2

are convergent as well. In particular limn→+∞ ‖xn+1 − xn‖ = 0. If, moreover,
lim infn→+∞ λnβn > 0, then limn→+∞〈Bxn, xn − u〉 = limn→+∞ ‖Bxn‖ = 0 and
every weak cluster point of (xn)n∈N lies in C.

(ii) (zn)n∈N converges weakly to an element in zer(A+D +NC) as n → +∞.
(iii) if, additionally, A is strongly monotone, then (xn)n∈N converges strongly to the

unique element in zer(A+D +NC) as n → +∞.

Proof For every u ∈ zer(A+D + NC), according to Lemma 12, there exist a, b > 0 and
n1 ∈ N such that for all n ≥ n1 inequality (14) is true for w = 0. This gives rise via Lemma
2 to the statements in (i). As the sequence (λnβn)n∈N is bounded above, it automatically
follows that (λnβn‖Bxn‖)n∈N ∈ �2. Hence, (ii) and (iii) follow as consequences of Theorem
6 and Theorem 7, respectively.
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Remark 14 Let us emphasize the fact that the results obtained in this subsection by assum-
ing that B is a cocoercive operator enables us to treat the more general case where C is the
set of zeros of an arbitrary maximally monotone operator.

Indeed, we consider in Problem 3 that C = zerM �= ∅, where M : H ⇒ H is a (possibly
set-valued) maximally monotone operator. The idea is to apply the results in Subsection 2.2
to the operator B := JM−1 : H → H, which according to [4, Proposition 20.22, Corollary
23.10 and Proposition 4.2] is μ-cocoercive with μ = 1. By noticing that zer JM−1 = zerM ,
we can address the monotone inclusion problem to be solved as a problem formulated in
the framework of Problem 8. Obviously, in the iterative scheme given in Algorithm 2 the
operator M will be evaluated by a backward step.

Further we will show that one can provide sufficient conditions for (ii) in (Hf itz) written
in terms of the Fitzpatrick function of the operator M . To this end we use the following
estimation for the Fitzpatrick function of JM−1 , obtained by applying [5, Proposition 4.2],
a result that gives an upper bound for the Fitzpatrick function of the sum of two maximally
monotone operators in terms of the Fitzpatrick functions of the operators involved. Take an
arbitrary p ∈ ranNC and u ∈ C. We have for every n ∈ N

ϕJ
M−1

(

u,
p

βn

)

= ϕId+M−1

(
p

βn
, u

)

≤ ϕId

(
p

βn
, 0

)

+ ϕM−1

(
p

βn
, u

)

=

1

4

∥
∥
∥
∥
p

βn

∥
∥
∥
∥

2

+ ϕM

(

u,
p

βn

)

,

where we used the fact that ϕId(x, v) = 1
4 ‖x + v‖2 for all (x, v) ∈ H×H.

This means that the condition (ii) in (Hf itz) applied to the reformulation of Problem 3
described above is fulfilled, if we assume that

∑
n∈N

λn
βn

< +∞ and that for every p ∈
ranNC ,

∑
n∈N λnβn

[

sup
u∈C

ϕM

(
u,

p
βn

)
− σC

(
p
βn

)]

< +∞.

3 Tseng’s Type Penalty Schemes

In this section we deal first with the monotone inclusion problem stated in Problem 8 by
relaxing the cocoercivity of B and D to monotonicity and Lipschitz continuity. The iterative
method we propose in this setting is a forward-backward-forward penalty scheme and relies
on a method introduced by Tseng in [23] (see [4, 12, 15] for further details and motivations).
By making use of primal-dual techniques we will be able then to employ the proposed
approach when solving monotone inclusion problems involving compositions of maximally
monotone operators with linear continuous ones.

3.1 Relaxing cocoercivity to monotonicity and Lipschitz continuity

We deal first with the following problem.

Problem 15 Let H be a real Hilbert space, A : H ⇒ H a maximally monotone operator,
D : H → H a monotone and η−1-Lipschitz continuous operator with η > 0, B : H → H
a monotone and μ−1-Lipschitz continuous operator with μ > 0 and suppose that C =
zerB �= ∅. The monotone inclusion problem to solve is

0 ∈ Ax +Dx + NC(x).



Forward-Backward and Tseng’s Type Penalty Schemes 325

One can notice that we have relaxed the assumptions imposed on B and D in Problem
8, however, they are both maximally monotone, see [4, Corollary 20.25]. It is obvious that
an η-cocoercive operator with η > 0 is monotone and η−1-Lipschitz continuous, while
the opposite is not the case. It is well-known that, due to the celebrated Baillon-Haddad
Theorem (see, for instance, [4, Corollary 8.16]), the gradient of a convex and differen-
tiable function does not provide a counterexample in this sense, however, nonzero linear,
skew and Lipschitz continuous operators are monotone, but not cocoercive. For example,
when H and G are real Hilbert spaces and L : H → G is nonzero linear continuous, then
(x, v) �→ (L∗v,−Lx) is an example in this sense. This operator appears in a natural way
when employing primal-dual approaches in the context of monotone inclusion problems as
done in [12] (see also [10, 11, 15, 24]).

Algorithm 3

Initialization: Choose x1 ∈ H

For n ∈ N set: pn = JλnA(xn − λnDxn − λnβnBxn)

xn+1 = λnβn(Bxn − Bpn)+ λn(Dxn −Dpn)+ pn,

where (λn)n∈N and (βn)n∈N are sequences of positive real numbers.

Remark 16 If Bx = 0 for every x ∈ H (which corresponds to the situation NC(x) = {0}
for all x ∈ H), then Algorithm 3 turns out to be the error-free forward-backward-forward
scheme from [12, Theorem 2.5] (see also [23]).

We start with the following technical statement.

Lemma 17 Let (xn)n∈N and (pn)n∈N be the sequences generated by Algorithm 3 and let be
(u,w) ∈ Gr(A + D + NC) such that w = v + p + Du, where v ∈ Au and p ∈ NC(u).
Then the following inequality holds for all n ∈ N:

‖xn+1 − u‖2 − ‖xn − u‖2 +
(

1 −
(
λnβn

μ
+ λn

η

)2
)

‖xn − pn‖2

≤ 2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

+ 2λn〈u− pn, w〉. (15)

Proof From the definition of the resolvent we have xn−pn
λn

−βnBxn−Dxn ∈ Apn for every
n ∈ N and since v ∈ Au, the monotonicity of A guarantees

〈pn − u, xn − pn − λn(βnBxn +Dxn + v)〉 ≥ 0 ∀n ∈ N,

thus

〈u− pn, xn − pn〉 ≤ 〈u− pn, λnβnBxn + λnDxn + λnv〉 ∀n ∈ N.



326 R. I. Boţ, E. R. Csetnek

By using the definition of xn+1 given in the algorithm we obtain

〈u− pn, xn − pn〉
≤ 〈u− pn, xn+1 − pn + λnβnBpn + λnDpn + λnv〉
= 〈u− pn, xn+1 − pn〉 + λnβn〈u− pn,Bpn〉 + λn〈u− pn,Dpn〉 + λn〈u− pn, v〉 ∀n ∈ N.

From here it follows

1

2
‖u− pn‖2 − 1

2
‖xn − u‖2 + 1

2
‖xn − pn‖2

≤ 1

2
‖u− pn‖2 − 1

2
‖xn+1 − u‖2 + 1

2
‖xn+1 − pn‖2

+ λnβn〈u− pn,Bpn〉 + λn〈u− pn,Dpn〉 + λn〈u− pn, v〉 ∀n ∈ N.

Since v = w − p −Du and due to the fact that D is monotone, we obtain for every n ∈ N

‖xn+1 − u‖2 − ‖xn − u‖2

≤ ‖xn+1 − pn‖2 − ‖xn − pn‖2 + 2λnβn

(

〈u,Bpn〉 +
〈

pn,
p

βn

〉

− 〈pn,Bpn〉 −
〈

u,
p

βn

〉)

+ 2λn〈u− pn,Dpn −Du〉 + 2λn〈u− pn, w〉
≤ ‖xn+1 − pn‖2 − ‖xn − pn‖2 + 2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

+ 2λn〈u− pn,w〉.

The conclusion follows, by noticing that the Lipschitz continuity of B and D yields

‖xn+1 − pn‖ ≤ λnβn

μ
‖xn − pn‖ + λn

η
‖xn − pn‖ =

(
λnβn

μ
+ λn

η

)

‖xn − pn‖ ∀n ∈ N.

The convergence of Algorithm 3 is stated below.

Theorem 18 Let (xn)n∈N and (pn)n∈N be the sequences generated by Algorithm 3 and

(zn)n∈N the sequence defined in (7). If (Hf itz) is fulfilled and lim supn→+∞
(
λnβn
μ

+ λn
η

)

< 1, then (zn)n∈N converges weakly to an element in zer(A+D + NC) as n → +∞.

Proof The proof of the theorem relies on the following three statements:

(a) for every u ∈ zer(A+D + NC) the sequence (‖xn − u‖)n∈N is convergent;
(b) every weak cluster point of (z′n)n∈N, where

z′n = 1

τn

n∑

k=1

λkpk and τn =
n∑

k=1

λk ∀n ∈ N,

lies in zer(A+D + NC);
(c) every weak cluster point of (zn)n∈N lies in zer(A+D + NC).

In order to show (a) and (b) one has only to slightly adapt the proof of Theorem 6 and
this is why we omit to give further details. For (c) it is enough to prove that limn→+∞ ‖zn−
z′n‖ = 0 and the statement of the theorem will be a consequence of Lemma 1.
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Taking u ∈ zer(A+D+NC) and w = 0 = v+p+Du, where v ∈ Au and p ∈ NC(u),
from (15) we have

‖xn+1 − u‖2 − ‖xn − u‖2 +
(

1 −
(
λnβn

μ
+ λn

η

)2
)

‖xn − pn‖2

≤ 2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

.

As lim supn→+∞
(
λnβn
μ

+ λn
η

)
< 1, we obtain by Lemma 2 that

∑
n∈N ‖xn−pn‖2 < +∞.

Moreover, for any n ∈ N it holds

‖zn − z′n‖2 = 1

τ2
n

∥
∥
∥
∥
∥

n∑

k=1

λk(xk − pk)

∥
∥
∥
∥
∥

2

≤ 1

τ2
n

(
n∑

k=1

λk‖xk − pk‖
)2

≤ 1

τ2
n

(
n∑

k=1

λ2
k

)(
n∑

k=1

‖xk − pk‖2

)

.

Since (λn)n∈N ∈ �2 \ �1, taking into consideration that τn =∑n
k=1 λk → +∞ (n → +∞),

we obtain ‖zn − z′n‖ → 0 (n → +∞).

As it happens for the forward-backward penalty scheme, strong monotonicity of the
operator A ensures strong convergence of the sequence (xn)n∈N.

Theorem 19 Let (xn)n∈N and (pn)n∈N be the sequences generated by Algorithm 3. If

(Hf itz) is fulfilled, lim supn→+∞
(
λnβn
μ

+ λn
η

)
< 1 and the operator A is γ -strongly mono-

tone with γ > 0, then (xn)n∈N converges strongly to the unique element in zer(A+D+NC)

as n → +∞.

Proof Let be u ∈ zer(A + D + NC) and w = 0 = v + p + Du, where v ∈ Au and
p ∈ NC(u). Following the lines of the proof of Lemma 17 one can easily show that

2γ λn‖pn − u‖2 + ‖xn+1 − u‖2 − ‖xn − u‖2 +
(

1 −
(
λnβn

μ
+ λn

η

)2
)

‖xn − pn‖2

≤ 2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

∀n ∈ N.

The hypotheses imply the existence of n0 ∈ N such that for every n ≥ n0

2γ λn‖pn − u‖2 + ‖xn+1 − u‖2 − ‖xn − u‖2 ≤ 2λnβn

[

sup
u∈C

ϕB

(

u,
p

βn

)

− σC

(
p

βn

)]

.

As in the proof of Theorem 7, from here it follows that
∑

n∈N
λn‖pn − u‖2 < ∞.

Since (λn)n∈N is bounded above and
∑

n∈N ‖xn−pn‖2 < +∞ (see the proof of Theorem
18), it yields

∞∑

n=1

λn‖xn − u‖2 ≤ 2
∞∑

n=1

λn‖xn − pn‖2 + 2
∞∑

n=1

λn‖pn − u‖2 < +∞.
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As
∑

n∈N λn = +∞ and (‖xn − u‖)n∈N is convergent, it follows limn→+∞ ‖xn − u‖
= 0.

3.2 Monotone inclusion problems involving compositions with linear continuous operators

In this subsection we will show that the Tseng’s type penalty scheme investigated in the
previous section allows the solving of monotone inclusion problems with a more intricate
formulation. The problem under consideration is the following.

Problem 20 Let H and G be real Hilbert spaces, A1 : H ⇒ H and A2 : G ⇒ G maximally
monotone operators, K : H → G linear continuous operator, D : H → H a monotone and
η−1-Lipschitz continuous operator with η > 0, B : H → H a monotone and μ−1-Lipschitz
continuous operator with μ > 0 and suppose that C = zerB �= ∅. The monotone inclusion
problem to solve is

0 ∈ A1x +K∗A2Kx +Dx + NC(x).

We use the product space approach (see [4, 10–12, 15]) in order to show that the above
problem can be reformulated as the monotone inclusion problem treated in Subsection 3.1
in an appropriate product space. To this end we consider the real Hilbert space H × G
endowed with the inner product

〈(x, v), (x ′, v′)〉H×G = 〈x, x ′〉H + 〈v, v′〉G ∀(x, v), (x ′, v′) ∈ H× G

and corresponding norm. We define the following operators on H×G. For (x, v) ∈ H× G
we set

Ã(x, v) = A1x × A−1
2 v, D̃(x, v) = (Dx +K∗v,−Kx), B̃(x, v) = (Bx,0)

and, for C̃ = C × G = zer B̃ ,

NC̃(x, v) = NC(x)× {0}.

One can easily show that if (x, v) ∈ zer(Ã+D̃+NC̃), then x ∈ zer(A1+K∗A2K+D+NC).
Conversely, when x ∈ zer(A1 + K∗A2K + D + NC), then exists v ∈ A2Kx such that
(x, v) ∈ zer(Ã+ D̃ + NC̃). Thus, determining the zeros of the operator Ã+ D̃ + NC̃ will
provide a solution for the monotone inclusion problem in Problem 20.

One has that Ã is maximally monotone (see [4, Proposition 20.23]), D̃ is monotone

and η̃-Lipschitz continuous, where η̃ =
√

2
(

1
η2 + ‖K‖2

)
and B̃ is monotone and μ−1-

Lipschitz continuous. All these considerations show that we are in the context of Problem
15, thus, in order to determine the zeros of Ã + D̃ + NC̃ , we can use Algorithm 3, the
iterations of which read for any n ∈ N as follows:

{
(pn, qn) = JλnÃ

[
(xn, vn)− λnD̃(xn, vn)− λnβnB̃(xn, vn)

]

(xn+1, vn+1) = λnβn
[
B̃(xn, vn)− B̃(pn, qn)

]+ λn
[
D̃(xn, vn)− D̃(pn, qn)

]+ (pn, qn).

Since JλÃ(x, v) = (JλA1(x), JλA−1
2
(v)) for every (x, v) ∈ H × G and every λ > 0 (see

[4, Proposition 23.16]), this gives rise to the following iterative scheme.
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Algorithm 4

Initialization: Choose (x1, v1) ∈ H× G
For n ∈ N set: pn = JλnA1

(
xn − λn(Dxn +K∗vn)− λnβnBxn

)

qn = J
λnA

−1
2
(vn + λnKxn)

xn+1=λnβn(Bxn−Bpn)+λn(Dxn−Dpn)+λnK
∗(vn−qn)+pn

vn+1 = λnK(pn − xn)+ qn,

where (λn)n∈N and (βn)n∈N are sequences of positive real numbers. For the convergence
of this iterative scheme the following hypotheses are needed:

(
H

comp
f itz

)

⎧
⎪⎪⎨

⎪⎪⎩

(i) A1 + NC is maximally monotone and zer(A1 +K∗A2K +D +NC) �= ∅;
(ii) For each p ∈ ran(NC),

∑
n∈N λnβn

[

sup
u∈C

ϕB

(
u,

p
βn

)
− σC

(
p
βn

)]

< +∞;
(iii) (λn)n∈N ∈ �2 \ �1.

One will see that
(
H

comp
f itz

)
implies the hypotheses (Hf itz) formulated in the context of

the monotone inclusion problem of finding the zeros of Ã + D̃ + NC̃ . Indeed, hypothesis

(i) in
(
H

comp
f itz

)
guarantees that Ã + NC̃ is maximally monotone and, as already seen, that

zer(Ã+ D̃ +NC̃) �= ∅. Further, we have for all (x, v), (x ′, v′) ∈ H × G that

ϕB̃

(
(x, v), (x ′, v′)

) =
{
ϕB(x, x

′), if v′ = 0,
+∞, otherwise

and

σC̃(x, v) =
{
σC(x), if v = 0,
+∞, otherwise.

Moreover, ranNC̃ = ranNC × {0}. Hence, condition (ii) in
(
H

comp
f itz

)
is nothing else than

for each (p, p′) ∈ ran(NC̃),
∑

n∈N
λnβn

[

sup
(u,u′)∈C̃

ϕB̃

(

(u, u′),
(p, p′)
βn

)

− σC̃

(
(p, p′)
βn

)]

< +∞.

The following convergence statement is a direct consequence of Theorem 18 and Theorem
19.

Theorem 22 Let (xn)n∈N, (vn)n∈N, (pn)n∈N and (qn)n∈N be the sequences generated by

Algorithm 4 and (zn)n∈N the sequence defined in (7). If
(
H

comp
f itz

)
is fulfilled and

lim sup
n→+∞

(
λnβn

μ
+ λn

√

2

(
1

η2
+ ‖K‖2

))

< 1,

then (zn)n∈N converges weakly to an element in zer(A1+K∗A2K+D+NC) as n → +∞.
If, additionally, A1 and A−1

2 are strongly monotone, then (xn)n∈N converges strongly to the
unique element in zer(A1 +K∗A2K +D + NC) as n → +∞.

Remark 23 We applied the forward-backward-forward penalty scheme in the product space
in order to solve monotone inclusion problems where also compositions with linear contin-
uous operators are involved. Let us underline the fact that, even in the situation when B is
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cocoercive and, hence, B̃ is cocoercive, the forward-backward penalty scheme in Algorithm
2 cannot be applied in this context, because the operator D̃ is definitely not cocoercive.
This is due to the presence of the skew operator (x, v) �→ (K∗v,−Kx) in its definition.
This fact provides a good motivation for formulating, along the forward-backward penalty
scheme, a forward-backward-forward penalty scheme for the monotone inclusion problem
investigated in this paper.

Remark 24 In the particular case Dx = 0 for every x ∈ H and Bx = 0 for every x ∈ H
(which corresponds to the situation when NC(x) = {0} for every x ∈ H) Algorithm 4
turns out to be the error-free case of the forward-backward-forward scheme proposed and
investigated from the point of view of its convergence in [12, Theorem 3.1].
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8. Boţ, R.I.: Conjugate Duality in Convex Optimization: Lecture Notes in Economics and Mathematical

Systems, vol. 637. Springer, Berlin Heidelberg (2010)
9. Boţ, R.I., Csetnek, E.R.: An application of the bivariate inf-convolution formula to enlargements of

monotone operators. Set-Valued Anal. 16(7–8), 983–997 (2008)
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24. Vũ, B.C.: A splitting algorithm for dual monotone inclusions involving cocoercive operators. Adv.

Comput. Math. 38(3), 667–681 (2013)
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