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Abstract The method of alternating projections (MAP) is a common method for
solving feasibility problems. While employed traditionally to subspaces or to convex
sets, little was known about the behavior of the MAP in the nonconvex case
until 2009, when Lewis, Luke, and Malick derived local linear convergence results
provided that a condition involving normal cones holds and at least one of the sets
is superregular (a property less restrictive than convexity). However, their results
failed to capture very simple classical convex instances such as two lines in a three-
dimensional space. In this paper, we extend and develop the Lewis-Luke-Malick
framework so that not only any two linear subspaces but also any two closed convex
sets whose relative interiors meet are covered. We also allow for sets that are more
structured such as unions of convex sets. The key tool required is the restricted
normal cone, which is a generalization of the classical Mordukhovich normal cone.
Numerous examples are provided to illustrate the theory.
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1 Introduction

Throughout this paper, we assume that

X is a Euclidean space (1)

(i.e., finite-dimensional real Hilbert space) with inner product 〈·, ·〉, induced norm
‖ · ‖, and induced metric d.

Let A and B be nonempty closed subsets of X. We assume first that A and B
are additionally convex and that A ∩ B �= ∅. In this case, the projection operators
PA and PB (a.k.a. projectors or nearest point mappings) corresponding to A and
B, respectively, are single-valued with full domain. In order to find a point in the
intersection A and B, it is very natural to simply alternate the operators PA and
PB resulting in the famous method of alternating projections (MAP). Thus, given a
starting point b−1 ∈ X, sequences (an)n∈� and (b n)n∈� are generated as follows:

(∀n ∈ �) an := PAb n−1, b n := PBan. (2)

In the present consistent convex setting, both sequences have a common limit
in A ∩ B. Not surprisingly, because of its elegance and usefulness, the MAP has
attracted many famous mathematicians, including von Neumann [28] and Wiener
[29] and it has been independently rediscovered repeatedly. It is out of scope of
this article to review the history of the MAP, its many extensions, and its rich and
convergence theory; the interested reader is referred to, e.g., [5, 9, 13], and the
references therein.

Since X is finite-dimensional and A and B are closed, the convexity of A and B is
actually not needed in order to guarantee existence of nearest points. This gives rise
to set-valued projection operators which for convenience we also denote by PA and
PB. Dropping the convexity assumption, the MAP now generates sequences via

(∀n ∈ �) an ∈ PAb n−1, b n ∈ PBan. (3)

This iteration is much less understood than its much older convex cousin. For
instance, global convergence to a point in A ∩ B cannot be guaranteed anymore
[11]. Nonetheless, the MAP is widely applied to applications in engineering and
the physical sciences for finding a point in A ∩ B (see, e.g., [27]). Lewis, Luke, and
Malick achieved a break-through result in 2009, when there are no normal vectors
that are opposite and at least one of the sets is superregular (a property less restrictive
than convexity). Their proof techniques were quite different from the well known
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convex approaches; in fact, the Mordukhovich normal cone was a central tool in
their analysis. However, their results were not strong enough to handle well known
convex and linear scenarios. For instance, the linear convergence of the MAP for two
lines in�3 cannot be obtained in their framework.

The goal of this paper is to extend the results by Lewis, Luke and Malick to
make them applicable in more general settings. Their theory is unif ied with classical
convex convergence results. We even allow for sets that are unions of superregular (or
even convex) sets. The known optimal convergence rate for the MAP for two linear
subspaces is also recovered.

Our principal tool is the new restricted normal cone, which we carefully investi-
gated in the companion paper [6]. In a parallel paper [7], we apply our results to the
important problem of sparsity optimization with affine constraints.

The remainder of the paper is organized as follows. The theoretical machinery
from variational analysis underlying our main results is reviewed in Section 2. We
are then in a position to provide in Section 3 our main results dealing with the local
linear convergence of the MAP.

1.1 Notation

The notation employed in this article is quite standard and follows largely [8, 24–
26]; these books also provide exhaustive information on variational analysis. The
real numbers are �, the integers are �, and � := {

z ∈ � ∣∣ z ≥ 0
}
. Further, �+ :={

x ∈ � ∣∣ x ≥ 0
}
, �++ := {

x ∈ � ∣∣ x > 0
}

and �− and �−− are defined analogously.
Let R and S be subsets of X. Then the closure of S is S, the interior of S is int(S),
the boundary of S is bdry(S), and the smallest affine and linear subspaces containing
S are aff S and span S, respectively. The linear subspace parallel to aff S is par S :=
(aff S) − S = (aff S) − s, for every s ∈ S. The relative interior of S, ri(S), is the interior
of S relative to aff(S). The negative polar cone of S is S
 = {

u ∈ X
∣∣ sup 〈u, S〉 ≤ 0

}
.

We also set S⊕ := −S
 and S⊥ := S⊕ ∩ S
. We also write R ⊕ S for R + S :={
r + s

∣∣ (r, s) ∈ R × S
}

provided that R ⊥ S, i.e., (∀(r, s) ∈ R × S) 〈r, s〉 = 0. We write
F : X ⇒ X, if F is a mapping from X to its power set, i.e., gr F, the graph of F, lies in
X × X. Abusing notation slightly, we will write F(x) = y if F(x) = {y}. A nonempty
subset K of X is a cone if (∀λ ∈ �+) λK := {

λk
∣∣ k ∈ K

} ⊆ K. The smallest cone
containing S is denoted cone(S); thus, cone(S) := �+ · S := {

ρs
∣∣ ρ ∈ �+, s ∈ S

}

if S �= ∅ and cone(∅) := {0}. The smallest convex and closed and convex subset
containing S are conv(S) and conv (S), respectively. If z ∈ X and ρ ∈ �++, then
ball(z; ρ) := {

x ∈ X
∣∣ d(z, x) ≤ ρ

}
is the closed ball centered at z with radius ρ while

sphere(z; ρ) := {
x ∈ X

∣∣ d(z, x) = ρ
}

is the (closed) sphere centered at z with radius
ρ. If u and v are in X, then [u, v] := {

(1 − λ)u + λv
∣∣ λ ∈ [0, 1]} is the line segment

connecting u and v.

2 Auxiliary Theoretical Results

In this section, we fix some basic notation used throughout this article. We also collect
several auxiliary results from [6] that will be useful in the proof of the main results
on the MAP.
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2.1 Projections

Definition 2.1 (distance and projection) Let A be a nonempty subset of X. Then

dA : X → � : x �→ inf
a∈A

d(x, a) (4)

is the distance function of the set A and

PA : X ⇒ X : x �→ {
a ∈ A

∣∣ dA(x) = d(x, a)
}

(5)

is the corresponding projection.

The following result is well known.

Proposition 2.2 (existence) (See, e.g., [6, Proposition 1.2].) Let A be a nonempty
closed subset of X. Then (∀x ∈ X) PA(x) �= ∅.

Example 2.3 (sphere) (See, e.g., [6, Example 1.4].) Let z ∈ X and ρ ∈ �++. Set S :=
sphere(z; ρ). Then

(∀x ∈ X) PS(x) =
{

z + ρ x−z
‖x−z‖ , if x �= z;

S, otherwise.
(6)

In view of Proposition 2.2, the next result is in particular applicable to the union
of finitely many nonempty closed subsets of X.

Lemma 2.4 (union) Let (Ai)i∈I be a collection of nonempty subsets of X, set A :=⋃
i∈I Ai, let x ∈ X, and suppose that a ∈ PA(x). Then there exists i ∈ I such that a ∈

PAi(x).

Proof Indeed, since a ∈ A, there exists i ∈ I such that a ∈ Ai. Then d(x, a) =
dA(x) ≤ dAi(x) ≤ d(x, a). Hence d(x, a) = dAi(x), as claimed. ��

The projection onto a nonempty closed convex set has very nice properties as we
point out next.

Fact 2.5 (projection onto closed convex set) Let C be a nonempty closed convex
subset of X, and let x, y and p be in X. Then the following hold:

(i) PC(x) is a singleton.
(ii) PC(x) = p if and only if p ∈ C and sup 〈C − p, x − p〉 ≤ 0.

(iii) ‖PC(x) − PC(y)‖2 + ‖(Id −PC)(x) − (Id −PC)(y)‖2 ≤ ‖x − y‖2.
(iv) ‖PC(x) − PC(y)‖ ≤ ‖x − y‖.

Proof (i) & (ii): [5, Theorem 3.14]. (iii): [5, Proposition 4.8]. (iv): Clear from (iii). ��

2.2 Restricted Normal Cones

Let us start by reviewing the definitions of various normal cones from variational
analysis (see, e.g., [8, 10, 24–26] for further information and applications).
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Definition 2.6 (normal cones) (See also [6, Definition 2.1].) Let A and B be non-
empty subsets of X, and let a and u be in X. If a ∈ A, then various normal cones of
A at a are defined as follows:

(i) The B-restricted proximal normal cone of A at a is

N̂B
A(a) := cone

((
B ∩ P−1

A a
) − a

)
= cone

((
B − a

) ∩ (
P−1

A a − a
))

. (7)

(ii) The (classical) proximal normal cone of A at a is

Nprox
A (a) := N̂X

A (a) = cone
(
P−1

A a − a
)
. (8)

(iii) The B-restricted normal cone NB
A(a) is implicitly defined by u ∈ NB

A(a) if and
only if there exist sequences (an)n∈� in A and (un)n∈� in N̂B

A(an) such that
an → a and un → u.

(iv) The Fréchet normal cone NFré
A (a) is implicitly defined by u ∈ NFré

A (a) if and only
if (∀ε > 0) (∃ δ > 0) (∀x ∈ A ∩ ball(a; δ)) 〈u, x − a〉 ≤ ε‖x − a‖.

(v) The normal convex from convex analysis Nconv
A (a) is implicitly defined by u ∈

Nconv
A (a) if and only if sup 〈u, A − a〉 ≤ 0.

(vi) The Mordukhovich normal cone NA(a) of A at a is implicitly defined by u ∈
NA(a) if and only if there exist sequences (an)n∈� in A and (un)n∈� in Nprox

A (an)

such that an → a and un → u.

If a /∈ A, then all normal cones are defined to be empty.

In the convex case, all unrestricted normal cones coincide:

Lemma 2.7 (convex case) (See, e.g., [6, Lemma 2.4(vii)].) Let A be nonempty closed
convex subset of X, and let a ∈ A. Then N̂X

A (a) = Nprox
A (a) = NFré

A (a) = Nconv
A (a) =

NA(a).

In the following two results, we revisit classical constraint qualifications and
provide characterizations in terms of normal cones.

Theorem 2.8 (two convex sets: restricted normal cones and relative interiors) (See
[6, Theorem 3.13].) Let A and B be nonempty convex subsets of X. Then the following
are equivalent:

(i) ri A ∩ ri B �= ∅.
(ii) 0 ∈ ri(B − A).

(iii) cone(B − A) = span(B − A).
(iv) NA(c) ∩ (−NB(c)) ∩ cone(B − A) = {0} for some c ∈ A ∩ B.
(v) NA(c) ∩ (−NB(c)) ∩ cone(B − A) = {0} for every c ∈ A ∩ B.

(vi) NA(c) ∩ (−NB(c)) ∩ span(B − A) = {0} for some c ∈ A ∩ B.
(vii) NA(c) ∩ (−NB(c)) ∩ span(B − A) = {0} for every c ∈ A ∩ B.

(viii) Naff(A∪B)

A (c) ∩ (−Naff(A∪B)

B (c)) = {0} for some c ∈ A ∩ B.
(ix) Naff(A∪B)

A (c) ∩ (−Naff(A∪B)

B (c)) = {0} for every c ∈ A ∩ B.
(x) Nspan(B−A)

A−B (0) = {0}.
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Corollary 2.9 (two convex sets: normal cones and interiors) (See [6, Corollary 3.14].)
Let A and B be nonempty convex subsets of X. Then the following are equivalent:

(i) 0 ∈ int(B − A).
(ii) cone(B − A) = X.

(iii) NA(c) ∩ (−NB(c)) = {0} for some c ∈ A ∩ B.
(iv) NA(c) ∩ (−NB(c)) = {0} for every c ∈ A ∩ B.
(v) NA−B(0) = {0}.

2.3 CQ and Joint-CQ Numbers

The notions of CQ and joint-CQ numbers can be viewed as quantifications of
constraint qualifications.

Definition 2.10 ((joint) CQ-number) (See [6, Definitions 6.1 and 6.2].) Let A, Ã,
B, B̃, be nonempty subsets of X, let c ∈ X, and let δ ∈ �++. The CQ-number at c
associated with (A, Ã, B, B̃) and δ is

θδ := θδ

(
A, Ã, B, B̃

) := sup

{
〈u, v〉

∣∣∣∣
u ∈ N̂B̃

A(a), v ∈ −N̂ Ã
B (b), ‖u‖ ≤ 1, ‖v‖ ≤ 1,

‖a − c‖ ≤ δ, ‖b − c‖ ≤ δ.

}
.

(9)
The limiting CQ-number at c associated with (A, Ã, B, B̃) is

θ := θ
(

A, Ã, B, B̃
) := lim

δ↓0
θδ

(
A, Ã, B, B̃

)
. (10)

For nontrivial collections1 A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (B j) j∈J , B̃ := (B̃ j) j∈J

of nonempty subsets of X, the joint-CQ-number at c ∈ X associated with
(A, Ã,B, B̃) and δ > 0 is

θδ = θδ

(
A, Ã,B, B̃

) := sup
(i, j)∈I×J

θδ

(
Ai, Ãi, B j, B̃ j

)
, (11)

and the limiting joint-CQ-number at c associated with (A, Ã,B, B̃) is

θ = θ
(
A, Ã,B, B̃

) := lim
δ↓0

θδ

(
A, Ã,B, B̃

)
. (12)

The CQ-number is obviously an instance of the joint-CQ-number when I and J
are singletons. When the arguments are clear from the context we will simply write
θδ and θ .

Clearly,

θδ

(
A, Ã, B, B̃

) = θδ

(
B, B̃, A, Ã

)
and θ

(
A, Ã, B, B̃

) = θ
(
B, B̃, A, Ã

)
. (13)

1The collection (Ai)i∈I is said to be nontrivial if I �= ∅.
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Note that, δ �→ θδ is increasing; this makes θ well defined. Furthermore, since 0
belongs to nonempty B-restricted proximal normal cones and because of the Cauchy-
Schwarz inequality, we have

c ∈ A ∩ B and 0 < δ1 < δ2 ⇒ 0 ≤ θ ≤ θδ1 ≤ θδ2 ≤ 1, (14)

while θδ , and hence θ , is equal to −∞ if c /∈ A ∩ B and δ is sufficiently small (using
the fact that sup ∅ = −∞).

Example 2.11 (joint-CQ-number < CQ-number of the unions) (See [6, Ex-
ample 6.4].) Suppose that X = �3, let I := J := {1, 2}, A1 := �(0, 1, 0), A2 :=
�(2, 0,−1), B1 := �(0, 1, 1), B2 := �(1, 0, 0), c := (0, 0, 0), and let δ > 0. Further-
more, set A := (Ai)i∈I , B := (B j) j∈J , A := A1 ∪ A2, and B := B1 ∪ B2. Then

θδ

(
A,A,B,B

) = 2√
5

< 1 = θδ

(
A, A, B, B

)
. (15)

2.4 CQ and Joint-CQ Conditions

The notions of CQ and joint-CQ conditions are complementary to those of CQ
and joint-CQ numbers—while the former build on restricted proximal normals in
a neighbourhood of a point of interest, the latter rest on the restricted normal cone
at a point.

Definition 2.12 (CQ and joint-CQ conditions) (See [6, Definition 6.6].) Let c ∈ X.

(i) Let A, Ã, B and B̃ be nonempty subsets of X. Then the (A, Ã, B, B̃)-CQ
condition holds at c if

NB̃
A(c) ∩ ( − N Ã

B (c)
) ⊆ {0}. (16)

(ii) Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (B j) j∈J and B̃ := (B̃ j) j∈J be nontrivial
collections of nonempty subsets of X. Then the (A, Ã,B, B̃)-joint-CQ condition
holds at c if for every (i, j) ∈ I × J, the (Ai, Ãi, B j, B̃ j)-CQ condition holds at
c, i.e.,

(∀(i, j) ∈ I × J
)

N
B̃ j

Ai
(c) ∩ ( − N Ãi

B j
(c)

) ⊆ {0}. (17)

Definition 2.13 (exact CQ-number and exact joint-CQ-number) (See [6,
Definition 6.7].) Let c ∈ X.

(i) Let A, Ã, B and B̃ be nonempty subsets of X. The exact CQ-number at c
associated with (A, Ã, B, B̃) is 2

α := α
(

A, Ã, B, B̃
) := sup

{
〈u, v〉

∣∣∣∣ u ∈ NB̃
A(c), v ∈ −N Ã

B (c), ‖u‖ ≤ 1, ‖v‖ ≤ 1

}
.

(18)

2Note that if c /∈ A ∩ B, then α = sup ∅ = −∞.
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(ii) Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (B j) j∈J and B̃ := (B̃ j) j∈J be nontrivial col-
lections of nonempty subsets of X. The exact joint-CQ-number at c associated
with (A,B, Ã, B̃) is

α := α(A, Ã,B, B̃) := sup
(i, j)∈I×J

α(Ai, Ãi, B j, B̃ j). (19)

The next result relates the various condition numbers defined above.

Theorem 2.14 (See [6, Theorem 6.8].) Let A := (Ai)i∈I , Ã := (Ãi)i∈I , B := (B j) j∈J

and B̃ := (B̃ j) j∈J be nontrivial collections of nonempty subsets of X. Set A := ⋃
i∈I Ai

and B := ⋃
j∈J B j, and suppose that c ∈ A ∩ B. Denote the exact joint-CQ-number at

c associated with (A, Ã,B, B̃) by α (see (19)), the joint-CQ-number at c associated
with (A, Ã,B, B̃) and δ > 0 by θδ (see (11)), and the limiting joint-CQ-number at c
associated with (A, Ã,B, B̃) by θ (see (12))). Then the following hold:

(i) If α < 1, then the (A, Ã,B, B̃)-CQ condition holds at c.
(ii) α ≤ θδ .

(iii) α ≤ θ .

Now assume in addition that I and J are f inite. Then the following hold:

(iv) α = θ .
(v) The (A, Ã,B, B̃)-joint-CQ condition holds at c if and only if α = θ < 1.

2.5 Examples

Example 2.15 (CQ-number quantifies CQ condition) (See [6, Example 7.2].) Let A
and B be subsets of X, and suppose that c ∈ A ∩ B. Let L be an affine subspace of
X containing A ∪ B. Then the following are equivalent:

(i) NL
A(c) ∩ (−NL

B(c)) = {0}, i.e., the (A, L, B, L)-CQ condition holds at c
(see (16)).

(ii) NA(c) ∩ (−NB(c)) ∩ (L − c) = {0}.
(iii) θ < 1, where θ is the limiting CQ-number at c associated with (A, L, B, L)

(see (10)).

Example 2.16 (CQ condition depends on restricting sets) (See [6, Example 7.3].)
Suppose that X = �2, and set A := epi(| · |), B := �× {0}, and c := (0, 0). Then
we readily verify that NA(c) = NX

A (c) = −A, NB
A(c) = − bdry A, NB(c) = NX

B (c) =
{0} ×�, and N A

B (c) = {0} ×�+. Consequently,

NX
A (c) ∩ ( − NX

B (c)
) = {0} ×�− while NB

A(c) ∩ ( − N A
B (c)

) = {(0, 0)}. (20)

Therefore, the (A, A, B, B)-CQ condition holds, yet the (A, X, B, X)-CQ condi-
tion fails.

The case of two spheres is very pleasant because the quantities can be computed
explicitly:

Proposition 2.17 (CQ-numbers of two spheres) (See [6, Example 7.4].) Let z1 and
z2 be in X, let ρ1 and ρ2 be in �++, set S1 := sphere(z1; ρ1) and S2 := sphere(z2; ρ2)
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and assume that c ∈ S1 ∩ S2. Denote the limiting CQ-number at c associated with
(S1, X, S2, X) by θ (see Def inition 2.10), and the exact CQ-number at c associated
with (S1, X, S2, X) by α (see Def inition 2.13). Then the following hold:

(i) θ = α = | 〈z1 − c, z2 − c〉 |
ρ1ρ2

.

(ii) α < 1 unless the spheres are identical or intersect only at c.

Now assume that α < 1, let ε ∈ �++, and set δ := (
√

(ρ1 + ρ2)2 + 4ρ1ρ2ε − (ρ1 +
ρ2))/2 > 0. Then

α ≤ θδ ≤ α + ε, (21)

where θδ is the CQ-number at c associated with (S1, X, S2, X) (see Def inition 2.10).

Let us revisit the classical constraint qualification for two convex sets.

Proposition 2.18 (See [6, Proposition 7.5].) Let A and B be nonempty convex subsets
of X such that A ∩ B �= ∅, and set L = aff(A ∪ B). Then the following are equivalent:

(i) ri A ∩ ri B �= ∅.
(ii) The (A, L, B, L)-CQ condition holds at some point in A ∩ B.

(iii) The (A, L, B, L)-CQ condition holds at every point in A ∩ B.

We now turn to two linear subspaces.

Definition 2.19 (angles between two subspaces) Let A and B be linear subspaces
of X.

(i) (Dixmier angle) [17] The Dixmier angle between A and B is the number in
[0, π

2 ] whose cosine is given by

c0(A, B) := sup
{| 〈a, b〉 | ∣∣ a ∈ A, b ∈ B, ‖a‖ ≤ 1, ‖b‖ ≤ 1

}
. (22)

(ii) (Friedrichs angle) [18] The Friedrichs angle (or simply the angle) between A
and B is the number in [0, π

2 ] whose cosine is given by

c(A, B) := c0(A ∩ (A ∩ B)⊥, B ∩ (A ∩ B)⊥) (23a)

= sup

{
| 〈a, b〉 |

∣∣∣∣
a ∈ A ∩ (A ∩ B)⊥, ‖a‖ ≤ 1,

b ∈ B ∩ (A ∩ B)⊥, ‖b‖ ≤ 1

}
. (23b)

Let us state a striking connection between the CQ-number and the Friedrichs
angle.

Theorem 2.20 (CQ-number of two linear subspaces and Friedrichs angle) (See [6,
Theorem 7.12].) Let A and B be linear subspaces of X, and let δ > 0. Then

θδ(A, A, B, B) = θδ(A, X, B, B) = θδ(A, A, B, X) = c(A, B) < 1, (24)

where the CQ-number at 0 is def ined as in (9).
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2.6 Regularities

Regularity is a notion of a set that generalizes convexity. We shall also use restricted
versions involving restricted normal cones.

Definition 2.21 (regularity and superregularity) (See [6, Definition 8.1].) Let A and
B be nonempty subsets of X, and let c ∈ X.

(i) We say that B is (A, ε, δ)-regular at c ∈ X if ε ≥ 0, δ > 0, and

(y, b) ∈ B × B,

‖y − c‖ ≤ δ, ‖b − c‖ ≤ δ,

u ∈ N̂ A
B (b)

⎫
⎬

⎭
⇒ 〈u, y − b〉 ≤ ε‖u‖ · ‖y − b‖. (25)

If B is (X, ε, δ)-regular at c, then we also simply speak of (ε, δ)-regularity.
(ii) The set B is called A-superregular at c ∈ X if for every ε > 0 there exists δ > 0

such that B is (A, ε, δ)-regular at c. Again, if B is X-superregular at c, then we
also say that B is superregular at c.

Remark 2.22 (See [6, Remark 8.2].) Several comments on Definition 2.21 are in
order.

(i) Superregularity with A = X was introduced by Lewis, Luke and Malick in
[20, Section 4]. Among other things, they point out that amenability and prox
regularity are sufficient conditions for superregularity, while Clarke regularity
is a necessary condition.

(ii) The reference point c does not have to belong to B. If c �∈ B, then for every
δ ∈ ]

0, dB(c)
[
, B is (0, δ)-regular at c; consequently, B is superregular at c.

(iii) If ε ∈ [1, +∞[, then Cauchy-Schwarz implies that B is (ε,+∞)-regular at
every point in X.

(iv) Note that B is (A1 ∪ A2, ε, δ)-regular at c if and only if B is both (A1, ε, δ)-
regular and (A2, ε, δ)-regular at c.

(v) If B is convex, then it follows with Lemma 2.7 that B is (A, 0,+∞)-regular at
c; consequently, B is superregular.

(vi) Similarly, if B is locally convex at c, i.e., there exists ρ ∈ �++ such that B ∩
ball(c; ρ) is convex, then B is superregular at c.

(vii) If B is (A, 0, δ)-regular at c, then B is A-superregular at c; the converse,
however, is not true in general (see Example 2.23 below).

Example 2.23 (sphere) (See [6, Example 8.3].) Let z ∈ X and ρ ∈ �++. Set S :=
sphere(z; ρ), suppose that s ∈ S, let ε ∈ �++, and let δ ∈ �++. Then S is (ε, ρε)-
regular at s; consequently, S is superregular at s (see Definition 2.21). However, S
is not (0, δ)-regular at s.

The notion of joint-regularity is critical in our analysis of the MAP below.
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Definition 2.24 (joint-regularity) (See [6, Definition 8.6].) Let A be a nonempty
subset of X, let B := (B j) j∈J be a nontrivial collection of nonempty subsets of X,
and let c ∈ X.

(i) We say that B is (A, ε, δ)-joint-regular at c if ε ≥ 0, δ > 0, and for every j ∈ J,
B j is (A, ε, δ)-regular at c.

(ii) The collection B is A-joint-superregular at c if for every j ∈ J, B j is A-
superregular at c.

As in Definition 2.21, we may omit the prefix A if A = X.

In the convex case, we note that all regularity notions hold.

Corollary 2.25 (convexity and regularity) (See [6, Corollary 8.8].) Let B := (B j) j∈J

be a nontrivial collection of nonempty convex subsets of X, let A ⊆ X, and let c ∈ X.
Then B is (0,+∞)-joint-regular, (A, 0,+∞)-joint-regular, joint-superregular, and A-
joint-superregular at c.

Let us explicitly point out that these notions are about collections of sets rather
than their unions.

Example 2.26 (two lines: joint-superregularity �⇒ superregularity of the union) (See
[6, Example 8.9].) Suppose that d1 and d2 are in sphere(0; 1). Set B1 := �d1,
B2 := �d2, and B := B1 ∪ B2, and assume that B1 ∩ B2 = {0}. By Corollary 2.25,
(B1, B2) is joint-superregular at 0. Let δ ∈ �++, and set b := δd1 and y := δd2. Then
‖y − 0‖ = δ, ‖b − 0‖ = δ, and 0 < ‖y − b‖ = δ‖d2 − d1‖. Furthermore, NB(b) =
{d1}⊥. Note that there exists v ∈ {d1}⊥ such that 〈v, d2〉 �= 0 (for otherwise {d1}⊥ ⊆
{d2}⊥ ⇒ B2 ⊆ B1, which is absurd). Hence there exists u ∈ {d1}⊥ = {b}⊥ = NB(b)

such that ‖u‖ = 1 and 〈u, d2〉 > 0. It follows that 〈u, y − b〉 = 〈u, y〉 = δ 〈u, d2〉 =
〈u, d2〉 ‖u‖‖y − b‖/‖d2 − d1‖. Therefore, B is not superregular at 0.

3 The Method of Alternating Projections (MAP)

We now apply the machinery of restricted normal cones and associated results to
derive linear convergence results.

3.1 On the Composition of Two Projection Operators

The method of alternating projections iterates projection operators. Thus, in the next
few results, we focus on the outcome of a single iteration of the composition.

Lemma 3.1 Let A and B be nonempty closed subsets of X. Then the following hold:3

(i) PA(B � A) ⊆ bdryaff A∪B A ⊆ bdry A.
(ii) PB(A � B) ⊆ bdryaff A∪B(B) ⊆ bdry B.

3We denote by bdryaff A∪B(S) the boundary of S ⊆ X with respect to aff(A ∪ B).
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(iii) If b ∈ B and a ∈ PAb, then:

a ∈ (bdry A) � B ⇔ a ∈ A � B ⇒ b ∈ B � A ⇒ a ∈ bdry A. (26)

(iv) If a ∈ A and b ∈ PBa, then:

b ∈ (bdry B) � A ⇔ b ∈ B � A ⇒ a ∈ A � B ⇒ b ∈ bdry B. (27)

Proof

(i): Take b ∈ B � A and a ∈ PAb . Assume to the contrary that there exists
δ ∈ �++ such that aff(A ∪ B) ∩ ball(a; δ) ⊆ A. Without loss of generality,
we assume that δ < ‖b − a‖. Then ã := a + δ(b − a)/‖b − a‖ ∈ A and thus
dA(b) ≤ d(̃a, b) < d(a, b) = dA(b), which is absurd.

(ii): Interchange the roles of A and B in (i).
(iii): If a ∈ (bdry A) � B, then clearly a ∈ A � B. Now assume that a ∈ A � B. If

b ∈ A, then a ∈ PAb = {b} ⊆ B, which is absurd. Hence b ∈ B � A and thus
(i) implies that a ∈ PA(B � A) ⊆ bdry A.

(iv): Interchange the roles of A and B in (iii). ��

Lemma 3.2 Let A and B be nonempty closed subsets of X, let c ∈ X, let y ∈ B, let
a ∈ PA y, let b ∈ PBa, and let δ ∈ �+. Assume that dA(y) ≤ δ and that d(y, c) ≤ δ.
Then the following hold:

(i) d(a, c) ≤ 2δ.
(ii) d(b , y) ≤ 2d(a, y) ≤ 2δ.

(iii) d(b , c) ≤ 3δ.

Proof Since y ∈ B, we have

d(a, b) = dB(a) ≤ d(a, y) = dA(y) ≤ δ. (28)

Thus,

d(a, c) ≤ d(a, y) + d(y, c) ≤ δ + δ = 2δ, (29)

which establishes (i). Using (28), we also conclude that d(b , y) ≤ d(b , a) + d(a, y) ≤
2d(a, y) ≤ 2δ; hence, (ii) holds. Finally, combining (28) and (29), we obtain (iii) via
d(b , c) ≤ d(b , a) + d(a, c) ≤ δ + 2δ = 3δ. ��

Corollary 3.3 Let A and B be nonempty closed subsets of X, let ρ ∈ �++, and
suppose that c ∈ A ∩ B. Then

PA PB PA ball(c; ρ) ⊆ ball(c; 6ρ). (30)

Proof Let b−1 ∈ ball(c; ρ), a0 ∈ PAb−1, b 0 ∈ PBa0, and a1 ∈ PAb 0. We have
d(a0, b−1)=dA(b−1)≤d(b−1, c)≤ρ, so dB(a0) ≤ d(a0, c) ≤ d(a0, b−1) + d(b−1, c) ≤
2ρ. Applying Lemma 3.2(iii) to the sets B and A, the points a0, b 0, a1, and δ = 2ρ,
we deduce that d(a1, c) ≤ 3(2ρ) = 6ρ. ��

The next two results are essential to guarantee a local contractive property of the
composition.
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Proposition 3.4 (regularity and contractivity) Let A and B be nonempty closed
subsets of X, let Ã and B̃ be nonempty subsets of X, let c ∈ X, let ε ≥ 0, and let δ > 0.
Assume that B is (Ã, ε, 3δ)-regular at c (see Def inition 2.21). Furthermore, assume that
y ∈ B ∩ B̃, that a ∈ PA(y) ∩ Ã, that b ∈ PB(a), that ‖y − c‖ ≤ δ, and that dA(y) ≤ δ.
Then

‖a − b‖ ≤ (θ3δ + 2ε)‖a − y‖, (31)

where θ3δ the CQ-number at c associated with (A, Ã, B, B̃) (see (9)).

Proof Lemma 3.2(i)&(iii) yields ‖a − c‖ ≤ 2δ and ‖b − c‖ ≤ 3δ. On the other hand,
y − a ∈ N̂B̃

A(a) and b − a ∈ −N̂ Ã
B (b) by (7). Therefore,

〈b − a, y − a〉 ≤ θ3δ‖b − a‖ · ‖y − a‖. (32)

Since a − b ∈ N̂ Ã
B (b), ‖y − c‖ ≤ δ, and ‖b − c‖ ≤ 3δ, we obtain, using the

(Ã, ε, 3δ)-regularity of B, that 〈a − b , y − b〉 ≤ ε‖a − b‖ · ‖y − b‖. Moreover,
Lemma 3.2(ii) states that ‖y − b‖ ≤ 2‖a − y‖. It follows that

〈a − b , y − b〉 ≤ 2ε‖a − b‖ · ‖a − y‖. (33)

Adding (32) and (33) yields ‖a − b‖2 ≤ (θ3δ + 2ε)‖a − b‖ · ‖a − y‖. The result
follows. ��

We now provide a result for collections of sets similar to—and relying upon—
Proposition 3.4.

Proposition 3.5 (joint-regularity and contractivity) Let A := (Ai)i∈I and B :=
(B j) j∈J be nontrivial collections of closed subsets of X, Assume that A := ⋃

i∈I Ai

and B := ⋃
j∈J B j are closed, and that c ∈ A ∩ B. Let Ã := (Ãi)i∈I and B̃ := (B̃ j) j∈J

be nontrivial collections of nonempty subsets of X such that (∀i ∈ I) PAi((bdry B) �

A) ⊆ Ãi and (∀ j ∈ J) PB j((bdry A) � B) ⊆ B̃ j. Set Ã := ⋃
i∈I Ãi and B̃ := ⋃

j∈J B̃ j,
let ε ≥ 0 and let δ > 0.

(i) If b ∈ (bdry B) � A and a ∈ PA(b), then (∃ i ∈ I) a ∈ PAi(b) ⊆ Ai ∩ Ãi.
(ii) If a ∈ (bdry A) � B and b ∈ PB(a), then (∃ j ∈ J) b ∈ PB j(a) ⊆ B j ∩ B̃ j.

(iii) If y ∈ B, a ∈ PA(y) and b ∈ PB(a), then:

b ∈ (
(bdry B) � A

) ∩
⋃

j∈J

(B j ∩ B̃ j) ⇔ b ∈ B � A ⇒ a ∈ A � B. (34)

(iv) If x ∈ A, b ∈ PB(x), and a ∈ PA(b), then:

a ∈ (
(bdry A) � B

) ∩
⋃

i∈I

(Ai ∩ Ãi) ⇔ a ∈ A � B ⇒ b ∈ B � A. (35)

(v) Suppose that B is (Ã, ε, 3δ)-joint-regular at c (see Def inition 2.24), that y ∈
((bdry B) � A) ∩ ⋃

j∈J(B j ∩ B̃ j), that a ∈ PA(y), that b ∈ PB(a), and that ‖y −
c‖ ≤ δ. Then

‖b − a‖ ≤ (θ3δ + 2ε)‖a − y‖, (36)

where θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃) (see (11)).
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(vi) Suppose that A is (B̃, ε, 3δ)-joint-regular at c (see Def inition 2.24), that
x ∈ ((bdry A) � B) ∩ ⋃

i∈I(Ai ∩ Ãi), that b ∈ PB(x), that a ∈ PA(b), and that
‖x − c‖ ≤ δ. Then

‖a − b‖ ≤ (θ3δ + 2ε)‖b − x‖, (37)

where θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃) (see (11)).

Proof

(i)&(ii): Clear from Lemma 2.4 and the assumptions.
(iii): Note that Lemma 3.1(iv)&(iii) and (ii) yield the implications

b ∈ B � A ⇔ b ∈ (bdry B) � A ⇒ a ∈ A � B ⇔ a ∈ (bdry A) � B

⇒ b ∈
⋃

j∈J

(B j ∩ B̃ j), (38)

which give the conclusion.
(iv): Interchange the roles of A and B in (iii).
(v): There exists j ∈ J such that y ∈ B j ∩ B̃ j ∩ ((bdry B) � A). Let b ′ ∈ PB ja.

Then

‖a − b‖ = dB(a) ≤ dB j(a) = ‖a − b ′‖. (39)

Since B is (Ã, ε, 3δ)-joint-regular at c, it is clear that B j is (Ã, ε, 3δ)-regular
at c. Since y ∈ (bdry B) � A and because of (i), there exists i ∈ I such that
a ∈ PAi y ⊆ Ãi. Since Ãi ⊆ Ã, it follows that (see also Remark 2.22(iv)) B j

is (Ãi, ε, 3δ)-regular at c. Since y ∈ B j ∩ B̃ j, a ∈ PAi y ∩ Ãi, b ′ ∈ PB ja, and
dAi(y) = dA(y) = ‖y − a‖ ≤ ‖y − c‖ ≤ δ, we obtain from Proposition 3.4
that

‖a − b ′‖ ≤ (
θ3δ(Ai, Ãi, B j, B̃ j) + 2ε

)‖a − y‖. (40)

Combining with (39), we deduce that ‖a−b‖≤‖a−b ′‖≤(θ3δ+2ε)‖a − y‖.
(vi): This follows from (v) and (13). ��

3.2 An Abstract Linear Convergence Result

Let us now focus on algorithmic results (which are actually true even in complete
metric spaces).

Definition 3.6 (linear convergence) Let (xn)n∈� be a sequence in X, let x̄ ∈ X, and
let γ ∈ [0, 1[. Then (xn)n∈� converges linearly to x̄ with rate γ if there exists μ ∈ �+
such that

(∀n ∈ �) d(xn, x̄) ≤ μγ n. (41)

Remark 3.7 (rate of convergence depends only on the tail of the sequence) Let
(xn)n∈� be a sequence in X, let x̄ ∈ X, and let γ ∈ ]0, 1[. Assume that there exists
n0 ∈ � and μ0 ∈ �+ such that

(∀n ∈ {n0, n0 + 1, . . .}) d(xn, x̄) ≤ μ0γ
n. (42)
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Set μ1 := max
{
d(xm, x̄)/γ m

∣∣ m ∈ {0, 1, . . . , n0 − 1}}. Then

(∀n ∈ �) d(xn, x̄) ≤ max{μ0, μ1}γ n, (43)

and therefore (xn)n∈� converges linearly to x̄ with rate γ .

Proposition 3.8 (abstract linear convergence) Let A and B be nonempty closed
subsets of X, let (an)n∈� be a sequence in A, and let (b n)n∈� be a sequence in B.
Assume that there exist constants α ∈ �+ and β ∈ �+ such that

γ := αβ < 1 (44a)

and

(∀n ∈ �) d(an+1, b n) ≤ αd(an, b n) and d(an+1, b n+1) ≤ βd(an+1, b n). (44b)

Then (∀n ∈ �) d(an+1, b n+1) ≤ γ d(an, b n) and there exists c ∈ A ∩ B such that

(∀n ∈ �) max
{
d(an, c), d(b n, c)

} ≤ 1 + α

1 − γ
d(a0, b 0) · γ n; (45)

consequently, (an)n∈� and (b n)n∈� converge linearly to c with rate γ .

Proof Set δ := d(a0, b 0). Then for every n ∈ �,

d(an, b n) ≤ βd(an, b n−1) ≤ αβd(an−1, b n−1) = γ d(an−1, b n−1) ≤ · · · ≤ γ nδ; (46)

hence,

d(b n, b n+1) ≤ d(b n, an+1) + d(an+1, b n+1) ≤ αd(b n, an) + γ d(an, b n) (47a)

= (α + γ )d(an, b n) ≤ (α + γ )δγ n. (47b)

Thus (b n)n∈� is a Cauchy sequence, so there exists c ∈ B such that b n → c. On the
other hand, by (46), d(an, b n) → 0 and (an)n∈� lies in A. Hence, an → c and c ∈ A.
Thus, c ∈ A ∩ B. Fix n ∈ � and let m ≥ n. Using (47),

d(b n, b m) ≤
m−1∑

k=n

d(b k, b k+1) ≤
∑

k≥n

d(b k, b k+1) ≤
∑

k≥n

(α + γ )δγ k = (α + γ )δγ n

1 − γ
.

(48)
Hence, using (46) and (48), we estimate that

d(an, b m) ≤ d(an, b n) + d(b n, b m) ≤ δγ n + (α + γ )δγ n

1 − γ
= (1 + α)δγ n

1 − γ
. (49)

Letting m → +∞ in (48) and (49), we obtain (45). ��

3.3 The Sequence Generated by the MAP

We start with the following definition, which is well defined by Proposition 2.2.

Definition 3.9 (MAP) Let A and B be nonempty closed subsets of X, let b−1 ∈ X,
and let

(∀n ∈ �) an ∈ PA(b n−1) and b n ∈ PB(an). (50)



490 H.H. Bauschke et al.

Then we say that the sequences (an)n∈� and (b n)n∈� are generated by the method
of alternating projections (with respect to the pair (A, B)) with starting point b−1.

Our aim is to provide sufficient conditions for linear convergence of the sequences
generated by the method of alternating projections. The following two results are
simple yet useful.

Proposition 3.10 Let A and B be nonempty closed subsets of X, and let (an) and (b n)

be sequences generated by the method of alternating projections. Then the following
hold:

(i) The sequences (an)n∈� and (b n)n∈� lie in A and B, respectively.
(ii) (∀n ∈ �) ‖an+1 − b n+1‖ ≤ ‖an+1 − b n‖ ≤ ‖an − b n‖.

(iii) If {an}n∈� ∩ B �= ∅, or {b n}n∈� ∩ A �= ∅, then there exists c ∈ A ∩ B such that
for all n suf f iciently large, an = b n = c.

Proof

(i): This is clear from the definition.
(ii): Indeed, for every n ∈ �, ‖an+1−b n+1‖=dB(an+1)≤‖an+1−b n‖ = dA(b n) ≤

‖b n − an‖ using (i).
(iii): Suppose, say that an ∈ B. Then b n = PBan = an =: c ∈ A ∩ B and all subse-

quent terms of the sequences are equal to c as well. ��
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3.4 New Convergence Results for the MAP

We are now in a position to state and derive new linear convergence results. In this
section, we shall often assume the following:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A := (Ai)i∈I and B := (B j) j∈J are nontrivial collections

of nonempty closed subsets of X;

A :=
⋃

i∈I

Ai and B :=
⋃

j∈J

B j are closed;

c ∈ A ∩ B;
Ã := (Ãi)i∈I and B̃ := (B̃ j) j∈J are collections

of nonempty subsets of X such that

(∀i ∈ I) PAi

(
(bdry B) � A

) ⊆ Ãi,

(∀ j ∈ J) PB j

(
(bdry A) � B

) ⊆ B̃ j;
Ã :=

⋃

i∈I

Ãi and B̃ :=
⋃

j∈J

B̃ j.

(51)

Lemma 3.10 (backtracking MAP) Assume that (51) holds. Let (an)n∈� and (b n)n∈�
be generated by the MAP with starting point b−1. Let n ∈ {1, 2, 3, . . .}. Then the
following hold:

(i) If b n /∈ A, then an ∈ ((bdry A) � B) ∩ ⋃
i∈I(Ai ∩ Ãi) and b n ∈ ((bdry B) �

A) ∩ ⋃
j∈J(B j ∩ B̃ j).

(ii) If an /∈ B, then an ∈ ((bdry A) � B) ∩ ⋃
i∈I(Ai ∩ Ãi).

(iii) If an /∈ B and n ≥ 2, then b n−1 ∈ ((bdry B) � A) ∩ ⋃
j∈J(B j ∩ B̃ j).

Proof

(i): Applying Proposition 3.5(iii) to b n−1 ∈ B, an ∈ PAb n−1, b n ∈ PBan, we
obtain

b n ∈ B � A ⇔ b n ∈ (
(bdry B) � A

) ∩
⋃

j∈J

(B j ∩ B̃ j) ⇒ an ∈ A � B.

(52)
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On the other hand, applying Proposition 3.5(iv) to an−1 ∈ A, b n−1 ∈
PBan−1, an ∈ PAb n−1, we see that

an ∈ A � B ⇔ an ∈ (
(bdry A) � B

) ∩
⋃

i∈I

(Ai ∩ Ãi). (53)

Altogether, (i) is established.
(ii)&(iii): The proofs are analogous to that of (i). ��

Let us now state and prove a key technical result.

Proposition 3.12 Assume that (51) holds. Suppose that there exist ε ≥ 0 and δ > 0
such that the following hold:

(i) A is (B̃, ε, 3δ)-joint-regular at c (see Def inition 2.24) and set

σ :=
{

1, if B is not known to be (Ã, ε, 3δ)-joint-regular at c;

2, if B is also (Ã, ε, 3δ)-joint-regular at c.
(54)

(ii) θ3δ < 1 − 2ε, where θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃)

(see Def inition 2.10).

Set θ := θ3δ + 2ε ∈ ]0, 1[. Let (an)n∈� and (b n)n∈� be sequences generated by the
MAP with starting point b−1 satisfying

‖b−1 − c‖ ≤ (1 − θσ )δ

6(2 + θ − θσ )
. (55)

Then (an)n∈� and (b n)n∈� converge linearly to some point c̄ ∈ A ∩ B with rate θσ ;
in fact,

‖c̄ − c‖ ≤ δ and (∀n ≥ 1) max
{‖an − c̄‖, ‖b n − c̄‖} ≤ δ(1 + θ)

2 + θ − θσ
θσ(n−1). (56)

Proof In view of a1 ∈ PA PB PAb−1 and (55), Corollary 3.3 yields

β := ‖a1 − c‖ ≤ (1 − θσ )δ

(2 + θ − θσ )
≤ δ

2
. (57)

Since c ∈ A ∩ B, we have θ3δ ≥ 0 by (14) and hence θ > 0. Using (57), we estimate

(∀n ≥ 1) βθσ(n−1) + β + β(1 + θ)

n−2∑

k=0

θσk ≤ β + β(1 + θ)

n−1∑

k=0

θσk (58a)

= β + β(1 + θ)
1 − θσn

1 − θσ
(58b)

≤ β + β
1 + θ

1 − θσ
(58c)

= β
(2 + θ − θσ

1 − θσ

)
(58d)

≤ δ. (58e)
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We now claim that if

n ≥ 1, ‖an − b n‖ ≤ βθσ(n−1) and ‖an − c‖ ≤ β + β(1 + θ)

n−2∑

k=0

θσk, (59)

then

‖an+1 − b n+1‖ ≤ θσ−1‖an+1 − b n‖ ≤ θσ ‖an − b n‖ ≤ βθσn, (60a)

‖an+1 − c‖ ≤ β + β(1 + θ)

n−1∑

k=0

θσk. (60b)

To prove this claim, assume that (59) holds. Using (59) and (58), we first observe
that

max
{‖an − c‖, ‖b n − c‖} ≤ ‖b n − an‖ + ‖an − c‖ (61a)

≤ βθσ(n−1) + β + β(1 + θ)

n−2∑

k=0

θσk ≤ δ. (61b)

We now consider two cases:

Case 1: b n ∈ A ∩ B. Then b n = an+1 = b n+1 and thus (60a) holds. Moreover,
‖an+1 − c‖ = ‖b n − c‖ and (60b) follows from (61a).

Case 2: b n �∈ A ∩ B. Then b n ∈ B � A. Lemma 3.11(i) implies an ∈ ((bdry A) �

B) ∩ ⋃
i∈I(Ai ∩ Ãi) and b n ∈ ((bdry B) � A) ∩ ⋃

j∈J(B j ∩ B̃ j). Note that
‖an − c‖ ≤ δ by (61a), and recall that A is (B̃, ε, 3δ)-joint-regular at c by
(i). It thus follows from Proposition 3.5(vi) (applied to an, b n, an+1) that

‖an+1 − b n‖ ≤ θ‖an − b n‖. (62)

On the one hand, if σ = 1, then Proposition 3.10(ii) yields ‖an+1 − b n+1‖ ≤
‖an+1 − b n‖ = θσ−1‖an+1 − b n‖. On the other hand, if σ = 2, then B is (Ã, ε, 3δ)-
joint-regular at c by (i); hence, Proposition 3.5(v) (applied to b n, an+1, b n+1) yields
‖an+1 − b n+1‖ ≤ θ‖an+1 − b n‖ = θσ−1‖an+1 − b n‖. Altogether, in either case,

‖an+1 − b n+1‖ ≤ θσ−1‖an+1 − b n‖. (63)

Combining (63) with (62) and (59) gives

‖an+1 − b n+1‖ ≤ θσ−1‖an+1 − b n‖ ≤ θσ ‖an − b n‖ ≤ βθσn, (64)

which is (60a). Furthermore, (62), (59) and (61a) yield

‖an+1 − c‖ ≤ ‖an+1 − b n‖ + ‖b n − c‖ (65a)

≤ θ‖an − b n‖ + ‖b n − c‖ (65b)

≤ θβθσ(n−1) + βθσ(n−1) + β + β(1 + θ)

n−2∑

k=0

θσk (65c)
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= β + β(1 + θ)

n−1∑

k=0

θσk, (65d)

which establishes (60b). Therefore, in all cases, (60) holds.
Since ‖a1 − b 1‖ = dB(a1) ≤ ‖a1 − c‖ = β, we see that (59) holds for n = 1. Thus,

the above claim and the principle of mathematical induction principle imply that (60)
holds for every n ≥ 1.

Next, (60a) implies

(∀n ≥ 1) ‖an+1 − b n‖ ≤ θ‖an − b n‖ and ‖an+1 − b n+1‖ ≤ θσ−1‖an+1 − b n‖.
(66)

In view of (66) and ‖a1 − b 1‖ ≤ β, Proposition 3.8 yields c̄ ∈ A ∩ B such that

(∀n ≥ 1) max
{‖an − c̄‖, ‖b n − c̄‖} ≤ 1 + θ

1 − θσ
‖a1 − b 1‖ · θσ(n−1) (67)

≤ 1 + θ

1 − θσ
β · θσ(n−1) (68)

≤ δ(1 + θ)

2 + θ − θσ
θσ(n−1). (69)

On the other hand, (60b) and (58) imply (∀n ≥ 1) ‖an+1 − c‖ ≤ δ; thus, letting n →
+∞, we obtain ‖c̄ − c‖ ≤ δ. This completes the proof of (56). ��

Remark 3.13 In view of Lemma 3.1(i)&(ii), an aggressive choice for use in (51) is
(∀i ∈ I) Ãi = bdry Ai and (∀ j ∈ J) B̃ j = bdry B j.

Our main convergence result on the linear convergence of the MAP is the
following:

Theorem 3.14 (linear convergence of the MAP and superregularity) Assume that
(51) holds and that A is B̃-joint-superregular at c (see Def inition 2.24). Denote
the limiting joint-CQ-number at c associated with (A, Ã,B, B̃) (see Def inition 2.10)
by θ , and the the exact joint-CQ-number at c associated with (A, Ã,B, B̃) (see
Def inition 2.13) by α. Assume further that one of the following holds:

(i) θ < 1.
(ii) I and J are f inite, and α < 1.

Let θ ∈ ]
θ, 1

[
and set ε := (θ − θ)/3 > 0. Then there exists δ > 0 such that the

following hold:

(iii) A is (B̃, ε, 3δ)-joint-regular at c (see Def inition 2.24).
(iv) θ3δ ≤ θ + ε < 1 − 2ε, where θ3δ is the joint-CQ-number at c associated with

(A, Ã,B, B̃) (see Def inition 2.10).

Consequently, suppose the starting point of the MAP b−1 satisf ies ‖b−1 − c‖ ≤ (1 −
θ)δ/12. Then (an)n∈� and (b n)n∈� converge linearly to some point in c̄ ∈ A ∩ B with
‖c̄ − c‖ ≤ δ and rate θ :

(∀n ≥ 1) max{‖an − c̄‖, ‖b n − c̄‖} ≤ δ(1 + θ)

2
θn−1. (70)
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Proof Observe that assumption (ii) is more restrictive than assumption (i) by
Theorem 2.14(iv). The definitions of B̃-joint-superregularity and of θ allow us to
find δ > 0 sufficiently small such that both (iii) and (iv) hold. The result thus follows
from Proposition 3.12 with σ = 1. ��

Corollary 3.15 Assume that (51) holds and that, for every i ∈ I, Ai is convex. Denote
the limiting joint-CQ-number at c associated with (A, Ã,B, B̃) (see Def inition 2.10)
by θ , and assume that θ < 1. Let θ ∈ ]

θ, 1
[
, and let b−1, the starting point of the MAP,

be suf f iciently close to c. Then (an)n∈� and (b n)n∈� converge linearly to some point
in A ∩ B with rate θ .

Proof Combine Theorem 3.14 with Corollary 2.25. ��

Example 3.16 (working with collections and joint notions is useful) Consider the
setting of Example 2.11, and suppose that Ã = A and B̃ = B. Note that Ai is convex,
for every i ∈ I. Then θδ(A, Ã,B, B̃) < 1 = θδ(A, A, B, B) = θ(A, X, B, X). Hence
Corollary 3.15 guarantees linear convergence of the MAP while it is not possible to
work directly with the unions A and B due to their condition number being equal to
1 and because neither A nor B is superregular by Example 2.26! This illustrates that
the main result of Lewis-Luke-Malick (see Corollary 3.25 below) is not applicable
because two of its hypotheses fail.

The following result features an improved rate of convergence θ2 due to the
additional presence of superregularity.

Theorem 3.17 (linear convergence of the MAP and double superregularity) Assume
that (51) holds, that A is B̃-joint-superregular at c and that B is Ã-joint-superregular
at c (see Def inition 2.24). Denote the limiting joint-CQ-number at c associated with
(A, Ã,B, B̃) (see Def inition 2.10) by θ , and the the exact joint-CQ-number at c
associated with (A, Ã,B, B̃) (see Def inition 2.13) by α. Assume further that (a) θ < 1,
or (more restrictively) that (b) I and J are f inite, and α < 1 (and hence θ = α < 1).
Let θ ∈ ]

θ, 1
[

and ε := θ−θ
3 . Then there exists δ > 0 such that

(i) A is (B̃, ε, 3δ)-joint-regular at c;
(ii) B is (Ã, ε, 3δ)-joint-regular at c; and

(iii) θ3δ < θ + ε = θ − 2ε < 1 − 2ε, where θ3δ is the joint-CQ-number at c associated
with (A, Ã,B, B̃) (see Def inition 2.10).

Consequently, suppose the starting point of MAP b−1 satisf ies ‖b−1 − c‖ ≤ (1−θ)δ

6(2−θ)
.

Then (an)n∈� and (b n)n∈� converge linearly to some point in c̄ ∈ A ∩ B with ‖c̄ − c‖ ≤
δ and rate θ2; in fact,

(∀n ≥ 1) max
{‖an − c̄‖, ‖b n − c̄‖} ≤ δ

2 − θ

(
θ2

)n−1
. (71)

Proof The existence of δ > 0 such that (i)–(iii) hold is clear. Then apply Proposi-
tion 3.12 with σ = 2. ��

In passing, let us point out a sharper rate of convergence under sufficient condi-
tions stronger than superregularity.
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Corollary 3.18 (refined convergence rate) Assume that (51) holds and that there exists
δ > 0 such that

(i) A is (B̃, 0, 3δ)-joint-regular at c;
(ii) B is (Ã, 0, 3δ)-joint-regular at c; and

(iii) θ < 1, where θ := θ3δ is the joint-CQ-number at c associated with (A, Ã,B, B̃)

(see Def inition 2.10).

Suppose also that the starting point of the MAP b−1 satisf ies ‖b−1 − c‖ ≤ (1−θ)δ

6(2−θ)
.

Then (an)n∈� and (b n)n∈� converge linearly to some point in c̄ ∈ A ∩ B with ‖c̄ − c‖ ≤
δ and rate θ2; in fact,

(∀n ≥ 1) max
{‖an − c̄‖, ‖b n − c̄‖} ≤ δ

2 − θ

(
θ2

)n−1
. (72)

Proof Apply Proposition 3.12 with σ = 2. ��

Let us illustrate a situation where it is possible to make δ in Theorem 3.17 precise.

Example 3.19 (the MAP for two spheres) Let z1 and z2 be in X, let ρ1 and ρ2 be
in�, set A := sphere(z1; ρ1) and B := sphere(z2; ρ2), and assume that {c} � A ∩ B �

A ∪ B. Then α := | 〈z1 − c, z2 − c〉 |/(ρ1ρ2) < 1. Let θ ∈ ]α, 1[. Then the conclusion
of Theorem 3.17 holds with4

δ := min

{√
(ρ1 + ρ2)2 + ρ1ρ2(θ − α) − (ρ1 + ρ2)

6
,
(θ − α)ρ1

12
,
(θ − α)ρ2

12

}
(73)

Proof Combine Example 2.23 (applied with ε = (θ − α)/4 there), Proposition 2.17,
and Theorem 3.17. ��

Here is a useful special case of Theorem 3.17:

Theorem 3.20 Assume that A and B are L-superregular, and that

NA(c) ∩ ( − NB(c)
) ∩ (

L − c
) = {0}, (74)

where L := aff(A ∪ B). Then the sequences generated by the MAP converge linearly
to a point in A ∩ B provided that the starting point is suf f iciently close to c.

Proof Combine Example 2.15 with Theorem 3.17 (applied with I and J being
singletons, and with Ã = B̃ = L). ��

We now obtain a well known global linear convergence result for the convex case5,
which does not require the starting point to be sufficiently close to A ∩ B:

4Note that when α approaches 1, then δ approaches 0 which is consistent with the lack of linear
convergence of the MAP for two spheres intersecting in exactly one point.
5This result is part of the folklore and it can be traced back to [19] although it is not stated there
explicitly in this form. It also follows by combining [1, Proposition 4.6.1] with [2, Theorem 3.12].
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Theorem 3.21 (two convex sets) Assume that A and B are convex, and A ∩ B �= ∅.
Then for every starting point b−1 ∈ X, the sequences (an)n∈� and (b n)n∈� generated
by the MAP converge to some point in A ∩ B. The convergence of these sequences is
linear provided that ri A ∩ ri B �= ∅.

Proof By Fact 2.5(iv), we have

(∀c ∈ A ∩ B) ‖a0 − c‖ ≥ ‖b 0 − c‖ ≥ ‖a1 − c‖ ≥ ‖b 1 − c‖ ≥ · · · (75)

After passing to subsequences if needed, we assume that akn → a ∈ A and b kn →
b ∈ B. We show that a = b by contradiction, so we assume that ε := ‖a − b‖/3 > 0.
We have eventually max{‖akn − a‖, ‖b kn − b‖} < ε; hence ‖akn − b kn‖ ≥ ε eventu-
ally. By Fact 2.5(iii), we have

‖akn − c‖2 ≥ ‖akn − b kn‖2 + ‖b kn − c‖2 ≥ ε2 + ‖akn+1 − c‖2 ≥ ε2 + ‖akn+1 − c‖2

(76)
eventually. But this would imply that for all n sufficiently large, and for every m ∈ �,
we have ‖akn − c‖2 ≥ mε2 + ‖akn+m − c‖2 ≥ mε2, which is absurd. Hence c̄ := a = b ∈
A ∩ B and now (75) (with c = c̄) implies that an → c̄ and b n → c̄.

Next, assume that ri A ∩ ri B �= ∅, and set L := aff(A ∪ B). By Proposition 2.18,
the (A, L, B, L)-CQ conditions holds at c̄. Thus, by Example 2.15, NA(c̄) ∩
(−NB(c̄)) ∩ (L − c̄) = {0}. Furthermore, Corollary 2.25 and Remark 2.22(v)&(vii)
imply that A and B are L-superregular at c̄. The conclusion now follows from
Theorem 3.20, applied to suitably chosen tails of the sequences (an)n∈� and (b n)n∈�.

��

Example 3.22 (the MAP for two linear subspaces) Assume that A and B are
linear subspaces of X. Since 0 ∈ A ∩ B = ri A ∩ ri B, Theorem 3.21 guarantees the
linear convergence of the MAP to some point in A ∩ B, where b−1 ∈ X is the
arbitrary starting point. On the other hand, A and B are (0,+∞)-regular (see
Remark 2.22(v)). Since (∀δ ∈ �++) θδ(A, A, B, B) = c(A, B) < 1, where c(A, B) is
the cosine of the Friedrichs angle between A and B (see Theorem 2.20), we obtain
from Corollary 3.18 that the rate of convergence is c2(A, B). In fact, it is well known
that this is the optimal rate, and also that limn an = limn b n = PA∩B(b−1); see [12,
Section 3] and [13, Chapter 9].

Remark 3.23 (subspaces vs manifolds) It is tempting to explore the following state-
ment, which is a variant of Example 3.22.

Let A and B be C2 submanifolds of X, and let c ∈ A ∩ B such that
the Friedrichs angle between the tangent spaces at c is strictly positive. If
the starting point of the MAP is suf f iciently close to c, then the sequences
generated by the MAP converge linearly to a point in A ∩ B.

Interestingly, this statement is false. First, we note that the Friedrichs angle is
always strictly positive by Theorem 2.20. Secondly, consider either (i) two spheres
intersecting in precisely one point; or (ii) A = �× {0} and epi(ρ �→ ρ2) in X = �2.
In either case, A ∩ B = {c} is a singleton, and the MAP does not converge linearly to
c unless the starting point is c itself.

We conjecture that the statement above is correct if the Friedrichs angle is re-
placed by the Dixmier angle. Unfortunately, this modified statement is of somewhat
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limited interest because the classical case of two linear subspaces is still not covered
(consider two linear subspaces A and B such that A ∩ B � {0}; e.g., two planes
in�3).

Remark 3.24 For further linear convergence results for the MAP in the convex
setting we refer the reader to [2–4, 14–16], and the references therein. See also
[22, 23] for recent related work for the nonconvex case.

3.5 Comparison to Lewis-Luke-Malick Results and Further Examples

The main result of Lewis, Luke, and Malick arises as a special case of Theorem 3.14:

Corollary 3.25 (Lewis-Luke-Malick) (See [20, Theorem 5.16].) Suppose that NA(c) ∩
(−NB(c)) = {0} and that A is superregular at c ∈ A ∩ B. If the starting point of MAP
is suf f iciently close to c, then the sequences generated by the MAP converge linearly
to a point in A ∩ B.

Proof Since NA(c) ∩ (−NB(c)) = {0}, we have θ < 1. Now apply Theorem 3.14(i)
with Ã := B̃ := (X), A := (A) and B := (B). ��

However, even in simple situations, Corollary 3.25 is not powerful enough to
recover known convergence results.

Example 3.26 (Lewis-Luke-Malick CQ may fail even for two subspaces) Suppose
that A and B are two linear subspaces of X, and set L := aff(A ∪ B) = A + B. For
c ∈ A ∩ B, we have

NA(c) ∩ (−NB(c)) = A⊥ ∩ B⊥ = (A + B)⊥ = L⊥. (77)

Therefore, the Lewis-Luke-Malick CQ (see [20, Theorem 5.16] and also Corol-
lary 3.25) holds for (A, B) at c if and only if

NA(c) ∩ (−NB(c)) = {0} ⇔ A + B = X. (78)

On the other hand, the CQ provided in Theorem 3.20 (see also Example 3.22)
always holds and we obtain linear convergence of the MAP. However, even for two
lines in�3, the Lewis-Luke-Malick CQ (see Corollary 3.25) is unable to achieve this.
(It was this example that originally motivated us to pursue the present work.)

Example 3.27 (Lewis-Luke-Malick CQ is too strong even for convex sets) As-
sume that A and B are convex (and hence superregular). Then the Lewis-Luke-
Malick CQ condition is 0 ∈ int(B − A) (see Corollary 2.9(i)) while the (A, aff(A ∪
B), B, aff(A ∪ B))-CQ is equivalent to the much less restrictive condition ri A ∩
ri B �= ∅ (see Theorem 2.8).

3.6 The Flexibility of Choosing (Ã, B̃)

Often, L = aff(A ∪ B) is a convenient choice which yields linear convergence of the
MAP as in Theorem 3.20. However, there are situations when this choice for Ã and
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B̃ is not helpful but when a different, more aggressive, choice does guarantee linear
convergence:

Example 3.28 ((Ã, B̃) = (A, B)) Let A, B, and c be as in Example 2.16, and let L :=
aff(A ∪ B). Since A and B are convex and hence superregular, the (A, L, B, L)-CQ
condition is equivalent to ri A ∩ ri B �= ∅ (see Proposition 2.18), which fails in this
case. However, the (A, A, B, B)-CQ condition does hold; hence, the corresponding
limiting CQ-number is less than 1 by Theorem 2.14(v). Thus linear convergence of
the MAP is guaranteed by Theorem 3.17.

The next example illustrates a situation where the choice (Ã, B̃) = (A, B) fails
while the even tighter choice (Ã, B̃) = (bdry A, bdry B) results in success:

Example 3.29 ((Ã, B̃) = (bdry A, bdry B)) Suppose that X = �2, that A = epi(| ·
|/2), that B = − epi(| · |/3), and that c = (0, 0). Note that aff(A ∪ B) = X and ri A ∩
ri B = ∅. Then

NB
A(c) = NX

A (c) = NA(c) = {
(u1, u2) ∈ �2

∣∣ u2 + 2|u1| ≤ 0
}
, (79a)

N A
B (c) = NX

B (c) = NB(c) = {
(u1, u2) ∈ �2

∣∣ −u2 + 3|u1| ≤ 0
}
, (79b)

and so the (A, A, B, B)-CQ condition fails because

NB
A(c) ∩ (−N A

B (c)) = {
(u1, u2) ∈ �2

∣∣ u2 + 3|u1| ≤ 0
} �= {0}. (80)

Consequently, for either (Ã, B̃) = (A, B) or (Ã, B̃) = (X, X), Theorem 3.17 is
not applicable because α = θ = 1: indeed, u = (0,−1) ∈ NA(c) and v = (0,−1) ∈
−NB(c), so 1 = 〈u, v〉 ≤ ᾱ ≤ 1.

On the other hand, let us now choose (Ã, B̃) = (bdry A, bdry B), which is justified
by Remark 3.13. Then

NB̃
A(c) = {

(u1, u2) ∈ �2
∣∣ u2 + 2|u1| = 0

}
, (81a)

N Ã
B (c) = {

(u1, u2) ∈ �2
∣∣ −u2 + 3|u1| = 0

}
, (81b)

NB̃
A(c) ∩ (−N Ã

B (c)) = {0} and the (A, Ã, B, B̃)-CQ condition holds. Hence, using
also Theorems 2.14(v), 3.21 and 3.17, we deduce linear convergence of the MAP.

However, even the choice (Ã, B̃) = (bdry A, bdry B) may not be applicable to
yield the desired linear convergence as the following shows. In this example,
we employ the tightest possibility allowed by our framework, namely (Ã, B̃) =
(PA((bdry B) � A), PB((bdry A) � B)).

Example 3.30 ((Ã, B̃) = (PA((bdry B) � A), PB((bdry A) � B))) Suppose that X =
�2, that A = epi(| · |), that B = −A, and that c = (0, 0). Then Nbdry B

A (c) = bdry B =
− bdry A and Nbdry A

B (c) = bdry A; hence, the (A, bdry A, B, bdry B)-CQ condi-
tion fails because Nbdry B

A (c) ∩ (−Nbdry A
B (c)) = bdry B �= {0}. On the other hand,

if (Ã, B̃) = (PA((bdry B) � A), PB((bdry A) � B)), then NB̃
A = {0} = N Ã

B = {0} be-
cause Ã = {c} = B̃. Thus, the (A, Ã, B, B̃)-CQ conditions holds. (Note that the
MAP converges in finitely many steps.)
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4 Conclusion

We use the technology of restricted normal cones developed in [6] to develop the
least restrictive sufficient conditions to date for linear convergence of the sequences
generated by the method of alternating projections applied to two sets A and
B. A key ingredient were suitable restricting sets (Ã and B̃). The unrestricted—
and hence least aggressive—choice (Ã, B̃) = (X, X) recovers the framework by
Lewis, Luke, and Malick. The choice (Ã, B̃) = (aff(A ∪ B), aff(A ∪ B)) allows us to
include basic settings from convex analysis into our framework. Thus, the framework
provided here unifies the recent nonconvex results by Lewis, Luke, and Malick with
classical convex-analytical settings. When the choice (Ã, B̃) = (aff(A ∪ B), aff(A ∪
B)) fails, one may also try more aggressive choices such as (Ã, B̃) = (A, B) or
(Ã, B̃) = (bdry A, bdry B) to guarantee linear convergence. In a follow-up work [7]
we demonstrate the power of these tools with the important problem of sparsity
optimization with affine constraints. Without any assumptions on the regularity of
the sets or the intersection we achieve local convergence results, with explicit rates
and radii of convergence, where all other sufficient conditions, particularly those of
[20, 21], fail.
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