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Abstract In this paper, we establish sufficient conditions for guaranteeing finite
termination of an arbitrary algorithm for solving a variational inequality problem
in a Banach space. Applying these conditions, it shows that sequences generated by
the proximal point algorithm terminate at solutions in a finite number of iterations.
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1 Introduction

Let E be a real Banach space and E∗ be its dual space. This paper deals with the
variational inequality problem: find a point x̄ ∈ C such that

〈x − x̄, F(x̄)〉 ≥ 0 for all x ∈ C, (1)

where C is a closed convex subset of E, F is a mapping from C into E∗ and 〈x, x∗〉
denotes the value of the continuous linear functional x∗ ∈ E∗ at x ∈ E. Let S be the
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set of solutions to (1), which we assume to be nonempty. The variational inequality
problem in the form of (1) has very interesting interpretations in various fields. For
instance, if C is a closed convex cone of E, then any solution x̄ of (1) is actually
a solution of the complementarity problem in mathematical programming, game
theory and economic theory. For details of the variational inequality problem, we
refer to [2, 3, 7, 14, 15, 22, 34, 35]. In this paper, we are interested in conditions for
guaranteeing finite termination of algorithms for solving (1).

The notion of weak sharp minima plays an important role in the sensitive analysis
of convex programs and variational inequality problems (see, e.g., [8, 9, 16, 18, 25,
26, 30, 36, 37, 39]). In a finite-dimensional setting, Burke and Ferris [9] have shown
that solution sets of certain convex quadratic programs and linear complementar-
ity problems are weak sharp minima that many optimization algorithms exhibit
finite termination at weak sharp minima. Patriksson [30] extended this notion to
variational inequality problems and Marcotte and Zhu [26] applied it to establish
sufficient conditions for the finite termination of descent algorithms. For solving
infinite-dimensional problems, this notion was investigated by Wu and Wu [36] and
Hu and Song [18]. One of the principle advantages of this notion can be used to
obtain the results of finite termination of the proximal point algorithm. The proximal
point algorithm proposed by Martinet [27] and further developed by Rockafellar
[33] converges weakly to a solution under the very mild assumption. Therefore,
this algorithm has been investigated by a number of authors (see, e.g. [5–7, 10, 15–
17, 19, 21, 23–25, 37]).

This paper focuses on analyzing the finite termination of the proximal point
algorithm. Recently, Hu and Song [18] investigated the notion of weak sharp minima
in the Banach space setting and applied it to prove finite termination of the proximal
point algorithm. Their results based on two assumptions: (i) the solution set of
(1) is weakly subsharp [18, Definition 3.2], which is a modified version of the
weak sharp minima, and (ii) the sequence which is generated by the algorithm
converges strongly. Under assumptions (i) and (ii), they proved that the proximal
point algorithm terminates at solutions in a finite number of iterations. However, it
remains an open question whether the notion of weak sharp minima is a sufficient
condition that guarantees the finite termination of the proximal point algorithm in
Banach spaces. Moreover, it shows in [4, 17] that the proximal point algorithm may
fail to converge strongly in the infinite-dimensional case.

The main objective of this paper is to prove that the notion of weak sharp minima
is a sufficient condition for guaranteeing finite termination of the proximal point
algorithm in Banach spaces. In order to obtain the results, we first prove lemmas
which are important for the proof of the main results. Then we establish three
sufficient conditions for guaranteeing finite termination of an arbitrary algorithm
under the weak sharpness assumption. It should be noted that the first and the
second conditions do not require the sequences that converge strongly and the third
condition unifies and extends existing results in [9, 26, 39]. As applications, we use our
results to establish finite termination of the proximal point algorithm. These results
are new even in the case when E is a Hilbert space and include the corresponding
results in [25, 37] as special cases.

The paper is organized as follows. Section 2 introduces the main definitions.
In Section 3, we first prove a lemma which is a generalization of the result by
Calamai and Moré [11]. Moreover, we characterize the solution set of (1) under the
paramonotonicity assumption. In Section 4, we establish three sufficient conditions
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for guaranteeing finite termination of algorithms for solving (1). The results from
Section 4 are then applied to the proximal point algorithm in Section 5. We will
prove that the proximal point algorithm has the finite termination property under
the assumption of weak sharpness of S.

2 Basic Definitions and Preliminaries

Let N and R denote the sets of positive integers and real numbers, respectively. Let
E be a real Banach space with norm ‖ · ‖ and let E∗ be the dual space of E. By 〈x, x∗〉
we denote the value of the continuous linear functional x∗ ∈ E∗ at x ∈ E. B(0, ε) :=
{y ∈ E : ‖y‖ ≤ ε} and B∗(0, ε) := {y∗ ∈ E∗ : ‖y∗‖ ≤ ε} are the closed balls of E and
E∗ with radius ε > 0, respectively. The duality mapping J from E into E∗ is defined by

J(x) := {x∗ ∈ E∗ : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} for all x ∈ E. (2)

A Banach space E is said to be

(i) strictly convex if ‖ x+y
2 ‖ < 1 whenever x, y ∈ S(E) := {z ∈ E : ‖z‖ ≤ 1} with

x 	= y;
(ii) uniformly convex if for each ε ∈ (0, 2], there exists δ > 0 such that ‖ x+y

2 ‖ ≤ 1 −
δ whenever x, y ∈ S(E) with ‖x − y‖ ≥ ε.

The norm of E is said to be

(i) Gâteaux differentiable if the limit

lim
t→0

‖x + ty‖ − ‖x‖
t

(3)

exists for all (x, y) ∈ S(E) × S(E). In this case, E is said to be smooth;
(ii) Fréchet differentiable if for each x ∈ S(E), the limit (3) exists uniformly for

y ∈ S(E);
(iii) uniformly Fréchet differentiable if the limit (3) exists uniformly in (x, y) ∈

S(E) × S(E). In this case, E is said to be uniformly smooth.

We list the following useful properties of the duality mapping.

1. If E is strictly convex, then J is one to one, i.e.,

x, y ∈ E with x 	= y ⇒ J(x) ∩ J(y) = ∅;
2. if E is reflexive, then J is a mapping of E onto E∗;
3. if E is smooth, then J is single valued;
4. if E is smooth, strictly convex and reflexive, then J−1 = J∗, where J−1 is the

inverse of J and J∗ is the duality mapping on E∗ defined by

J∗(x∗) := {x ∈ E : 〈x, x∗〉 = ‖x‖2 = ‖x∗‖2} for all x∗ ∈ E∗;
5. if E∗ has Fréchet differentiable norm, then E is strictly convex and reflexive.

The proofs of these results can be found in [3, 13, 34, 35].
Given a nonempty subset C of E, by intC and clC we denote its interior and

closure, respectively. The polar C◦ of C is defined by

C◦ := {x∗ ∈ E∗ : 〈x, x∗〉 ≤ 0 for all x ∈ C}. (4)
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The tangent cone to the set C at x ∈ C is defined by

TC(x) := cl
(

∪λ>0
C − x

λ

)
. (5)

The normal cone to C at x is defined by NC(x) := TC(x)◦, that is,

NC(x) = {x∗ ∈ E∗ : 〈y − x, x∗〉 ≤ 0 for all y ∈ C}. (6)

Let F : C → E∗ be a mapping. F is said to be

(i) monotone if

〈x − y, F(x) − F(y)〉 ≥ 0 for all x, y ∈ C;
(ii) paramonotone [12] if it is monotone and

〈x − y, F(x) − F(y)〉 = 0 with x, y ∈ C ⇒ F(x) = F(y).

Example 1 Let f : E → R ∪ {∞} be a proper, convex and lower semicontinuous
function and let x̄ ∈ (dom f )i, where Ci is the algebraic interior of a set C. When
f is Gâteaux differentiable at x̄, ∂ f (x̄) = {∇ f (x̄)}, where ∂ f is the subdifferential of
f and ∇ f is the Gâteaux derivative of f (see, for instance [38, Theorem 2.4.4]). It
has been shown in [12] that the subdifferential of a convex function is paramonotone.
Therefore, ∇ f is a single valued paramonotone mapping.

When F is monotone and continuous, the solution set S of (1) is closed and convex
(see, for instance [14, Proposition 1] and [34, Lemma 7.1.7]).

Let C be a nonempty, closed and convex subset of a smooth, strictly convex and
reflexive Banach space E. The metric projection of a point x ∈ E onto C, denoted by
PC(x), is defined as the unique solution of the problem

minimize ‖x − y‖ subject to y ∈ C.

For each x ∈ E, PC(x) satisfies

〈y − PC(x), J(x − PC(x))〉 ≤ 0 for all y ∈ C (7)

(see [1, page 27] or [38, Theorem 3.8.4]). When E∗ has a Fréchet differentiable norm,
the metric projection PC is continuous (see [38, Proposition 3.8.6]). Let φ : E × E →
R be a function defined by

φ(x, y) := ‖x‖2 − 2〈x, J(y)〉 + ‖y‖2 for all x, y ∈ E.

The generalized projection of a point x ∈ E onto C, denoted by �C(x), is defined as
the unique solution of the problem

minimize φ(y, x) subject to y ∈ C. (8)

For each x ∈ E, �C(x) satisfies

〈y − �C(x), J(x) − J(�C(x))〉 ≤ 0 for all y ∈ C (9)

(see [1, page 35] or [20, Proposition 4]). It should be noted that if E is a Hilbert space,
then φ(x, y) = ‖x − y‖2 for all x, y ∈ E, and consequently PC = �C. The proofs of
these results can be found in [1, 20].
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3 Lemmas

In this section, we present some lemmas which are important to prove our main
results. Throughout this paper, we assume that E is a smooth, strictly convex and
reflexive Banach space, C is a closed convex subset of E, and the solution set S of (1)
is nonempty.

By (5), for any x ∈ C, TC(x) is a nonempty, closed and convex set. From the
definition of the generalized projection (8), we know that

�TC(x)(−J∗ F(x)) = argmin
v∈TC(x)

φ(v, −J∗ F(x)). (10)

We first prove the following lemma which generalizes the result by Calamai and
Moré [11, Lemma 3.1] from the Euclidean space to a smooth, strictly convex and
reflexive Banach space.

Lemma 1 Let F : C → E∗ be a mapping and let x ∈ C. Then the following properties
hold:

(a)
〈
�TC(x)(−J∗ F(x)), F(x)

〉 = −‖�TC(x)(−J∗ F(x))‖2;
(b) min{〈v, F(x)〉 : v ∈ TC(x), ‖v‖ ≤ 1} = −‖�TC(x)(−J∗ F(x))‖.

Proof We first show (a). Let x̄ = �TC(x)(−J∗ F(x)). From (9) and (10), we have

〈y − x̄, −F(x) − J(x̄)〉 ≤ 0 for all y ∈ TC(x). (11)

Since TC(x) is a cone, we have x̄ ∈ TC(x), and if λ ≥ 0, then

(λ − 1)〈x̄,−F(x) − J(x̄)〉 ≤ 0.

Setting λ = 0 and λ = 2 in this inequality we have (a).
We next show (b). When x̄ = 0, we have that 0 ≤ 〈v, F(x)〉 for all v ∈ TC(x)

with ‖v‖ ≤ 1 because (11) holds. It follows from inf{〈v, F(x)〉 : v ∈ TC(x), ‖v‖ ≤ 1} ≤
〈x̄, F(x)〉 that (b) holds. Suppose that x̄ 	= 0. From (10), if v ∈ TC(x) and ‖v‖ ≤ ‖x̄‖,
then

φ(x̄,−J∗ F(x)) ≤ φ(v,−J∗ F(x))

≤ ‖x̄‖2 − 2〈v,−F(x)〉 + ‖F(x)‖2,

and hence

〈x̄, F(x)〉 ≤ 〈v, F(x)〉. (12)

Combining (a) with (12), we have

−‖x̄‖2 ≤ 〈v, F(x)〉. (13)

If v ∈ TC(x) and ‖v‖ ≤ 1, then (13) implies that −‖x̄‖2 ≤ 〈‖x̄‖v, F(x)〉, and thus

−‖x̄‖ ≤ 〈v, F(x)〉. (14)
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It follows from (a) that
〈

x̄
‖x̄‖ , F(x)

〉
= −‖x̄‖, and thus (14) implies that (b) holds. ��

We next characterize the solution set of (1) under the paramonotonicity assumption.

Lemma 2 Let F : C → E∗ be a paramotone mapping and let x̄ ∈ S. Then

S = {z ∈ C : F(z) = F(x̄) and 〈z − x̄, F(x̄)〉 = 0}. (15)

Proof Let z ∈ S. Then 〈x̄ − z, F(z)〉 ≥ 0 holds. It is easy to verify from x̄ ∈ S that

〈z − x̄, F(z) − F(x̄)〉 ≤ 0.

Using the monotonicity of F, one has 〈z − x̄, F(z) − F(x̄)〉 ≥ 0, that is,

〈z − x̄, F(z) − F(x̄)〉 = 0.

Since F is paramonotone, we have F(x̄) = F(z). This implies that

0 ≤ 〈z − x̄, F(x̄)〉 = 〈z − x̄, F(z)〉 ≤ 0,

that is,

〈z − x̄, F(x̄)〉 = 0.

Conversely, let z ∈ C such that F(x̄) = F(z) and 〈z − x̄, F(x̄)〉 = 0. It follows that
for any y ∈ C,

0 ≤ 〈y − x̄, F(x̄)〉
= 〈y − z, F(x̄)〉 + 〈z − x̄, F(x̄)〉
= 〈y − z, F(z)〉,

and so z ∈ S. ��

4 Main Results

In this section, we establish sufficient conditions for guaranteeing finite termination
of algorithms for solving (1).

In [18], Hu and Song introduced the notion of weak sharpness for the solution set
of (1) as follows: The solution set S is said to be weak sharp if

−F(x) ∈ int
⋂
z∈S

(
TC(z) ∩ J∗ NS(z)

)◦ for all x ∈ S. (16)

This condition is regarded as a natural extension of notions by Burke and Ferris [9]
and Patriksson [30]. Some characterizations of the weak sharpness were given in the
literature [8, 9, 18, 26, 30, 36, 37]. However, it remains an open question whether or
not the notion (16) can be applied to prove finite termination of the proximal point
algorithm in the Banach space case.

Now, we first apply (16) to establish sufficient conditions for guaranteeing finite
termination of an arbitrary algorithm for solving (1).
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Theorem 1 Let F : C → E∗ be a continuous mapping and let {xn} be a sequence in C
such as (16) and

lim
n→∞ �TC(xn)

(−J∗ F(xn)
) = 0 (17)

hold. Then xn ∈ S for all suf f iciently large n, if one of the following conditions holds:

(i) F is paramonotone;
(ii) F is monotone and {PS(xn)} converges strongly to some x̄ ∈ S;

(iii) {xn} converges strongly to some ȳ ∈ S and S is convex.

Proof Assume that the conclusion does not hold. Then there exists {xni} ⊂ {xn} such
that xni /∈ S for each i ∈ N. Let xi = xni and zi = PS(xi) for each i ∈ N. From (5) and
(6), we have

xi − zi ∈ TC(zi) ∩ J∗ NS(zi) and zi − xi ∈ TC(xi). (18)

Let z̄ ∈ S. By (16), there exists α > 0 such that

−F(z̄) + B∗(0, α) ⊂ (
TC(z) ∩ J∗ NS(z)

)◦ for all z ∈ S. (19)

From (18) and (19), we have that

〈
xi − zi,−F(z̄) + α J(xi−zi)

‖xi−zi‖
〉
≤ 0 for all i ∈ N. (20)

It is easy to verify from (20) that for each i ∈ N,

α ≤
〈

zi−xi
‖xi−zi‖ ,−F(z̄)

〉
. (21)

The proof is divided into three cases.
Suppose that (i) holds. It follows from (21), the monotonicity of F, and Lemmas 1

and 2 that

α ≤
〈

zi−xi
‖xi−zi‖ ,−F(z̄)

〉

=
〈

zi−xi
‖xi−zi‖ ,−F(zi)

〉

=
〈

zi−xi
‖xi−zi‖ , F(xi) − F(zi)

〉
+

〈
zi−xi

‖xi−zi‖ , −F(xi)
〉

≤
〈

zi−xi
‖xi−zi‖ ,−F(xi)

〉

≤ max{〈v,−F(xi)〉 : v ∈ TC(xi), ‖v‖ ≤ 1}
= ‖�TC(xi)

(−J∗ F(xi)
) ‖.

It follows from (17) that α ≤ 0 and this is a contradiction.
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Suppose that (ii) holds. We may assume without the loss of generality that z̄ = x̄.
Using monotonicity of F and Lemma 1, we have

α ≤
〈

zi−xi
‖xi−zi‖ ,−F(x̄)

〉

=
〈

zi−xi
‖xi−zi‖ ,−F(xi)

〉
+

〈
zi−xi

‖xi−zi‖ , F(xi) − F(x̄)
〉

=
〈

zi−xi
‖xi−zi‖ ,−F(xi)

〉
+

〈
zi−xi

‖xi−zi‖ , F(xi) − F(zi) + F(zi) − F(x̄)
〉

≤
〈

zi−xi
‖xi−zi‖ ,−F(xi)

〉
+

〈
zi−xi

‖xi−zi‖ , F(zi) − F(x̄)
〉

≤ max{〈v, −F(xi)〉 : v ∈ TC(xi), ‖v‖ ≤ 1} + ‖F(zi) − F(x̄)‖
= ‖�TC(xi)

(−J∗ F(xi)
) ‖ + ‖F(zi) − F(x̄)‖.

Since F is continuous and {zi} converges strongly to x̄, we have ‖F(zi) − F(x̄)‖ → 0.
Combining this with (17), letting i → ∞, we obtain α ≤ 0. This is a contradiction.

Suppose that (iii) holds. We may assume without the loss of generality that z̄ = ȳ.
It follows from (21) that

α ≤
〈

zi−xi
‖xi−zi‖ ,−F(ȳ)

〉

=
〈

zi−xi
‖xi−zi‖ ,−F(xi)

〉
+

〈
zi−xi

‖xi−zi‖ , F(xi) − F(ȳ)
〉

≤ ‖�TC(xi)

(−J∗ F(xi)
) ‖ + ‖F(xi) − F(ȳ)‖.

Since F is continuous and {xi} converges strongly to x̄, we have ‖F(xi) − F(ȳ)‖ → 0.
Combining this with (17), letting i → ∞, we obtain α ≤ 0. This is a contradiction.

Therefore, we obtain that xn ∈ S for all sufficiently large n. ��

Remark 1 (i) and (ii) of Theorem 1 do not require {xn} converges strongly. (iii) of
Theorem 1 includes the results of Burke and Ferris [9, Theorem 4.7], Marcotte and
Zhu [26, Theorem 5.2] and Zhou and Wang [39, Theorem 2] as special cases.

5 Applications

In this section, we apply Theorem 1 to obtain results of finite termination of the
proximal point algorithm for solving the variational inequality problem. Here, we
obtain two finite convergence results.

Throughout this section, we assume that F : C → E∗ is a single valued monotone
continuous mapping. A monotone mapping T is maximal if its graph is not contained
in the graph of any other monotone mapping. Here, we consider the mapping T :
E → 2E∗

defined by

T(x) :=
{

F(x) + NC(x) if x ∈ C;
∅ otherwise.

(22)

By Rockafellar’s result [32, Theorem 3], T is maximal monotone and T−1(0) = S. It
has been known in [3, 32, 34] that a monotone mapping T is maximal if and only
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if the range of J + rT is the whole space E∗ for all r > 0. Then for each r > 0 and
x ∈ E, there corresponds a unique element xr ∈ E satisfying

J(x) ∈ J(xr) + rT(xr) (23)

(see [19, 20, 23]). From (23), we define the resolvent of T by Jr(x) := xr. In other
words, Jr = (J + rT)−1 J for all r > 0. We can also define the Yosida approximation
of T by Ar := r−1(J − J Jr). It shows that Ar(x) ∈ T(Jr(x)) for all r > 0 and x ∈ E.
For the theory of monotone mappings, we refer to [2, 3, 32, 34].

The proximal point algorithm which was first proposed by Martinet [27] is known
for its theoretically nice convergence properties. Several authors [5–7, 10, 16, 17,
19, 21, 24, 25, 28, 29, 33, 37] studied this algorithm under appropriate assumptions.
The proximal point algorithm generates, for any initial point x1 ∈ E, a sequence {xn}
converging to an element of T−1(0) by the iterative scheme:

xn+1 = Jrn(xn) (n = 1, 2, . . . ), (24)

where {rn} is a positive sequence. The sequence {xn} generated by (24) has the
following property.

Lemma 3 (Kamimura-Kohsaka-Takahashi [19]) Let E be a uniformly smooth and
uniformly convex Banach space and let T : E → 2E∗

be a maximal monotone map-
ping with T−1(0) 	= ∅. Let {xn} be a sequence def ined by (24) such that lim infn→∞ rn >

0. Then

Arn(xn) → 0 as n → ∞.

It can been seen from (23), (24) and T = F + NC that

Arn(xn) − F(Jrn(xn)) ∈ NC(Jr(xn)),

and hence 〈
y − Jrn(xn), Arn(xn) − F(Jrn(xn))

〉 ≤ 0 for all y ∈ C. (25)

From the definition of Ar, we have〈
y − Jrn(xn),

1
rn

(J − J Jrn)(xn) − F(Jrn(xn))
〉
≤ 0,

and hence〈
y − Jrn(xn), J J∗(Jxn − rn F(Jrn(xn))) − J Jrn(xn)

〉 ≤ 0 for all y ∈ C.

It follows from (9) that

Jrn(xn) = �C(J∗(J(xn) − rn F(Jrn(xn)))).

Therefore, (24) is equivalent to

xn+1 = �C(J∗(J(xn) − rn F(xn+1))) (n = 1, 2, . . . ). (26)

Our first main result in this section is stated as follows.

Theorem 2 Let E be a uniformly smooth and uniformly convex Banach space, let
C be a closed convex subset of E and let F : C → E∗ be a monotone continuous
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mapping. Let {xn} be the sequence generated by (26) such that lim infn→∞ rn > 0. Then
xn ∈ S for all suf f iciently large n if condition (16) and one of the following conditions
hold:

(i) F is paramonotone;
(ii) {xn} converges strongly to some x̄ ∈ S.

Proof We first show that (17) holds. Let ε > 0. From (b) of Lemma 1, there exists
vn ∈ TC(xn) with ‖vn‖ ≤ 1 such that

‖�TC(xn)

(−J∗ F(xn)
) ‖ ≤ 〈vn,−F(xn)〉 + ε. (27)

From (25), we have

〈x − xn, −F(xn)〉 ≤ 〈
xn − x, Arn−1(xn−1)

〉
≤ ‖xn − x‖‖Arn−1(xn−1)‖ (28)

for all x ∈ C. From (5) and vn ∈ TC(xn), there exist {wm} ∈ C and {λm} ⊂ (0,∞) such
that 1

λm
(wm − xn) → vn as m → ∞. Let zm = 1

λm
(wm − xn). From wm = xn + λmzm ∈

C and (28), we have

〈zm,−F(xn)〉 ≤ ‖zm‖‖Arn−1(xn−1)‖.
Letting m → ∞, we obtain

〈vn, −F(xn)〉 ≤ ‖vn‖‖Arn−1(xn−1)‖
≤ ‖Arn−1(xn−1)‖. (29)

It can be seen from (27) and (29) that

‖�TC(xn)

(−J∗ F(xn)
) ‖ ≤ ‖Arn−1(xn−1)‖ + ε.

It follows from (b) of Lemma 3 that

lim sup
n→∞

‖�TC(xn)

(−J∗ F(xn)
) ‖ ≤ ε.

Since ε is arbitrary, (17) holds.
Suppose that (i) holds. By Theorem 1, xn ∈ S for all sufficiently large n. On the

other hand, suppose that (ii) holds. By applying (ii) or (iii) of Theorem 1, xn ∈ S for
all sufficiently large n. ��

Remark 2 (i) It should be noted that (i) of Theorem 2 does not require {xn} con-
verges strongly. (ii) of Theorem 2 includes the results of Mangasarian [25, Theorem
2.13] and Xiu and Zhang [37, Theorems 4.2] as special cases.
(ii) Some conditions for guaranteeing strong convergence of the proximal point
algorithm are discussed in [10, 21, 33].

We next apply Theorem 1 to prove that the proximal point algorithm has one
step termination property, i.e., there exists r > 0 such that Jr(x) ∈ S, where x is an
arbitrary initial point. For any initial point x ∈ E, we consider the following iterative
scheme:

xn = Jrn(x) (n = 1, 2, . . . ), (30)
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where {rn} ⊂ (0,∞). The sequence {xn} generated by (30) was analyzed by Reich
[31].

Theorem 3 (Reich [31, page 342]) Let E be a smooth Banach space with E∗ which has
a Fréchet dif ferentiable norm and let T : E → 2E∗

be a maximal monotone operator
with T−1(0) 	= ∅. Let {xn} be a sequence generated by (30) such that limn→∞ rn = ∞.
Then {xn} converges strongly to some x̄ ∈ T−1(0).

It should be noted that Reich’s result does not guarantee the finite termination of
the algorithm. Here, we investigate the finite termination of the sequence generated
by (30) for solving (1).

It can be seen from (23), (30) and T = F + NC that

〈
y − xn,

1
rn

(J(x) − J(xn)) − F(xn))
〉
≤ 0 for all y ∈ C. (31)

From (9), (30) is equivalent to

xn = �C(J∗(J(x) − rn F(xn))) (n = 1, 2, · · · ). (32)

The second theorem of this section states for any given x ∈ E, and the sequence
{xn} generated by (32) terminates after a finite number of iterations if rn is chosen to
be sufficiently large with weak sharp S.

Theorem 4 Let E be a smooth Banach space with E∗ which has a Fréchet
dif ferentiable norm and let C be a closed convex subset of E and let F : C → E∗ be
a monotone continuous mapping. Let {xn} be a sequence generated by (32) such that
limn→∞ rn = ∞. If condition (16) holds, then xn ∈ S for all suf f iciently large n.

Proof By Theorem 3, {xn} converges strongly to some x̄ ∈ S. Thus, it is sufficient to
show that (17) holds.

Let ε > 0. From (b) of Lemma 1, there exists vn ∈ TC(xn) with ‖vn‖ ≤ 1 such that

‖�TC(xn)

(−J∗ F(xn)
) ‖ ≤ 〈vn,−F(xn)〉 + ε. (33)

From (31), we have

〈y − xn, −F(xn)〉 ≤
〈
y − xn,

1
rn

(J(xn) − J(x))
〉

≤ 1

rn
‖y − xn‖‖J(xn) − J(x)‖ (34)

for all y ∈ C. From (5) and vn ∈ TC(xn), there exist {wm} ∈ C and {λm} ⊂ (0,∞) such
that 1

λm
(wm − xn) → vn as m → ∞. Let zm = 1

λm
(wm − xn). From wm = xn + λmzm ∈

C and (34), we have

〈zm,−F(xn)〉 ≤ 1

rn
‖zm‖‖J(xn) − J(x)‖.
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Letting m → ∞, we obtain

〈vn, −F(xn)〉 ≤ 1

rn
‖vn‖‖J(xn) − J(x)‖

≤ 1

rn
‖J(xn) − J(x)‖. (35)

It can be seen from (33) and (35) that

‖�TC(xn)

(−J∗ F(xn)
) ‖ ≤ 1

rn
‖J(xn) − J(x)‖ + ε.

Since {J(xn)} is bounded and rn → ∞ as n → ∞, we obtain

lim sup
n→∞

‖�TC(xn)

(−J∗ F(xn)
) ‖ ≤ ε.

Since ε is arbitrary, (17) holds. Applying (ii) or (iii) of Theorem 1, we conclude that
xn ∈ S for all sufficiently large n. ��

Remark 3 Theorems 4 includes the results of Mangasarian [25, Theorem 2.13] and
Xiu and Zhang [37, Theorem 4.3] as special cases.
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