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Abstract This paper mainly deals with the study of directional versions of metric
regularity and metric subregularity for general set-valued mappings between infinite-
dimensional spaces. Using advanced techniques of variational analysis and gener-
alized differentiation, we derive necessary and sufficient conditions, which extend
even the known results for the conventional metric regularity. Finally, these results
are applied to non-smooth optimization problems. We show that that at a locally
optimal solution M-stationarity conditions are fulfilled if the constraint mapping is
subregular with respect to one critical direction and that for every critical direction a
M-stationarity condition, possibly with different multipliers, is fulfilled.
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1 Introduction

We study in this paper non-smooth optimization problems of the form

minimize f (x) subject to 0 ∈ G(x) (1)

where the objective function f : X → R̄ maps a Banach space X into the extended
real numbers and G : X ⇒ Z is a set-valued mapping between Banach spaces.

Problem (1) is a very general problem and many types of constraints can be
formulated in the form 0 ∈ G(x). As an example let us mention the case, where
among the constraints so-called equilibrium constraints occur, where typically the
equilibrium constraint are solution maps to parametric variational inequalities and
complementarity problems of different types.
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In the development of optimality conditions the existence of nondegenerate mul-
tipliers is related to the validity of some constraint qualification condition. Such con-
straint qualification conditions are, for instance, the properties of metric regularity
and subregularity.

Recall that a multifunction M : X ⇒ Y between Banach spaces is called metrically
regular with modulus κ > 0 near the point (x̄, ȳ) ∈ gph M := {(x, y) ∈ X × Y | y ∈
M(x)} from its graph, provided there exist neighborhoods U of x̄ and V of ȳ such
that

d(x, M−1(y)) ≤ κd(y, M(x)) ∀(x, y) ∈ U × V. (2)

Here d(x, �) denotes the usual distance between a point x and a set �. When fixing
y = ȳ in (2) we obtain the weaker property of metric subregularity of M at (x̄, ȳ), i.e.
we require the estimate

d(x, M−1(ȳ)) ≤ κd(ȳ, M(x)) ∀x ∈ U (3)

with some neighborhood Uof x̄ and a positive real κ > 0.
It is well known that a multifunction M : X ⇒ Y is metrically regular near (x̄, ȳ) ∈

gph M if the inverse multifunction F = M−1 has the Aubin property (local Lipschitz-
like property, pseudo-Lipschitzian property) near (ȳ, x̄), i.e.

F(y′) ∩ U ⊂ F(y) + L
∥
∥y − y′∥∥BX ∀y′, y ∈ V,

with L ≥ 0 und neighborhoods U of x̄ and V of ȳ. Further, the property of metric
subregularity is equivalent to calmness of the inverse multifunction, see [5]. For a
survey on the theory of metric regularity and the Aubin property we refer the reader
to [16] and to the monographs [18, 24, 29] and the references therein. Various results
on metric subregularity and calmness and their applications can be found, e.g., in
[4, 6, 9–13, 15, 17, 19, 20, 27, 28, 30–32, 34],

Under the constraint qualification of metric (sub)regularity, so-called
Mordukhovich or M-stationarity conditions are fulfilled at a locally optimal
solution of (1). These optimality conditions are associated with the generalized
differential calculus of Mordukhovich [24].

Let us mention that metric (sub)regularity is not the weakest possible constraint
qualification under which M-stationarity can be shown, see e.g. [7]. However, metric
regularity is a constraint qualification which can be actually verified by means
of the generalized differential calculus. There exist equivalent characterizations of
metric regularity by means of the coderivative and a partial sequential compactness
property of the multifunction. We refer to [22], where this characterization was stated
for the Aubin property in Asplund spaces. Characterizations of metric subregularity
by generalized differentiation can be found for instance in [9–13, 17]. An important
subclass of multifunctions which are known to be metrically subregular at every point
of their graph, is given by polyhedral multifunctions, i.e. multifunctions whose graph
is the union of finitely many polyhedral sets. This result is due to Robinson [28]. An
important special case of polyhedral multifunctions is given by linear systems, where
subregularity is a consequence of Hoffman’s error bound [14]. Some extensions to
the infinite dimensional case are given in [3, Section 2.5.7].

This paper is motivated by the observation, that for the validity of the M-
stationarity conditions one only needs a regular behavior of the constraints with
respect to one single critical direction and not the metric (sub)regularity property of
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the constraint mapping on the whole space. Moreover, we strengthen the concept of
M-stationarity conditions by showing, that for every critical direction a M-stationarity
condition, with possibly different multipliers, must be fulfilled. To demonstrate this
let us consider the following examples:

Example 1 Given ϕ : R → R continuously differentiable, consider the problem

min
x1,x2

ϕ(x1) s.t. (0, 0) ∈ G(x1, x2) := {min{x1, x2}} × (x2
1 − x2 − R−),

i.e. the nonsmooth formulation of the mathematical problem with complementarity
constraints

min
x1,x2

ϕ(x1) subject to x1 ≥ 0, x2 ≥ 0, x1x2 = 0, x2
1 − x2 ≤ 0.

The feasible region is {0} × R+ and hence (0, 0) is a locally optimal solution. The
M-stationarity conditions read as

∃η, λ, μ ∈ R : ϕ′(0) − η = 0,−λ + μ = 0, μ ≥ 0, (η > 0, λ > 0 or ηλ = 0),

see e.g. [26, 33], and are fulfilled with η = ϕ′(0), λ = μ = 0, although the constraint
mapping G is not metrically subregular at ((0, 0), (0, 0)), since

t = d((t, 0), G−1(0, 0)) = 1

t
d((0, 0), G(t, 0)) ∀t > 0.

However, the constraints fulfill the subregularity condition (3) with respect to the
direction (0, t), t > 0. More precisely, we have

d((δt, t), G−1(0, 0)) = |δ|t = d((0, 0), G(δt, t)) ∀0 ≤ t ≤ 1,∀ − 1 < δ < 1

and we will prove in the sequel that this condition guarantees the M-stationarity of
the local solution.

Example 2 Now consider the problem

min
x1,x2

ϕ(x1) s.t. 0 ∈ G(x1, x2) := {min{x1, x2}},

with ϕ : R → R continuously differentiable. Then it is easy to verify that the con-
straint mapping G is metrically regular near (0, 0) and the M-stationarity conditions
at (0, 0) read as

∃η, λ ∈ R : ϕ′(0) − η = 0,−λ = 0, (η > 0, λ > 0 or ηλ = 0).

Taking η = ϕ′(0), λ = 0 we see that (0, 0) is M-stationary, regardless what ϕ is.
The simple reason is, that every point of the form (0, t), t > 0 is a local minimizer.
However, in order to reject (0, 0) as a local minimizer when ϕ′(0) < 0, we have to
analyze the behavior of the problem also in direction (t, 0) for t > 0.

These observations lead us to the concepts of directional metric regularity and
directional metric subregularity, respectively, where the estimates (2) and (3) are not
required to hold for all points belonging to some neighborhood of (x̄, ȳ) but only
for points belonging to some subset of a neighborhood of a certain direction (u, v) ∈
X × Y. We think that these concepts are not only important for the development of
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optimality conditions but, like the conventional metric (sub)regularity, will also play
an important role in many other aspects of nonlinear analysis and its applications
such as error bounds and stability analysis.

The notion of directional metric regularity was already used in a different context
in the papers [1, 2], where (2) is required to hold for points belonging to some set
related to a direction v ∈ Y. The concept of directional metric regularity used in
[1, 2] is related to the notion of directional regularity (see also [3, Chapter 4.2], where
regularity properties for parameter dependent problems are considered when the
parameter varies in a given direction. Note that directional metric regularity in [1, 2]
was defined with respect to directions v ∈ Y. Contrarily, our following Definition 1
of directional metric regularity uses directions (u, v) ∈ X × Y.

Another type of nontraditional metric regularity has been introduced and studied
in [25] under the name of restrictive metric regularity.

The rest of the paper is organized as follows. Section 2 contains some preliminaries
from generalized differentiation used as well for characterizing metric regularity and
subregularity as formulating optimality conditions. In Section 3 we introduce the con-
cepts of directional metric regularity and subregularity and present characterizations
of these properties by using directional versions of the limiting differential objects
considered in Section 2. As a byproduct we show that the characterization [22] of the
Aubin property is not only valid in Asplund spaces, but also in case that the domain
space is Fréchet smooth whereas the image space can be an arbitrary Banach space.
In Section 4 we consider the notion of mixed directional regularity/subregularity,
where one part of the multifunction behaves metrically regular, whereas the other
part behaves only subregular. Just by observing that at a locally optimal solution to
problem (1) a certain multifunction associated with the problem cannot be mixed
regular/subregular, this concept yields the optimality conditions as presented in
Section 5.

Our notation is fairly standard. Throughout this paper let X, Y and Z be Banach
spaces equipped with norm ‖·‖. By X∗ we denote the topological dual of X with
the canonical pairing 〈·, ·〉 between X and X∗. BX := {x ∈ X | ‖x‖ ≤ 1} denotes
the closed unit ball and SX := {x ∈ X | ‖x‖ = 1} denotes the unit sphere. Unless
otherwise stated, we assume that the product space X × Y of two spaces X and Y is
equipped with a norm satisfying max{‖x‖ , ‖y‖} ≤ ‖(x, y)‖ ≤ ‖x‖ + ‖y‖.

Recall that a Banach space X is Asplund if each of its separable subspaces has a
separable dual. There are many equivalent descriptions of these spaces, which can
be found, e.g., in [24] and its bibliography. We use in this paper sometimes the fact,
that any bounded sequence in the dual of an Asplund space has a weak∗ convergent
subsequence. X is called Fréchet smooth, if it admits an equivalent norm Fréchet
differentiable at any nonzero point. This class of Banach spaces is sufficiently large
including, in particular, every reflexive space while the class of Asplund spaces is
broader.

2 Preliminaries from Generalized Differentiation

In this section we recall some generalized differential constructions from varia-
tional analysis and their relations to metric regularity, subregularity and optimality
conditions.
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Let � be a nonempty subset of a Banach space X and let x ∈ �. The contingent
cone to � at x, denoted by T(x; �), is given by

T(x;�) :=
{

d ∈ X | ∃(xk) ∈ �, (tk) ↓ 0 : xk − x
tk

→ d
}

.

Given ε ≥ 0 we denote by

N̂ε(x;�) =
{

x∗ ∈ X∗ | lim sup
x′ �→ x

〈x∗, x′ − x〉
‖x′ − x‖ ≤ ε

}

(4)

the set of ε-normals to �. When ε = 0, elements of (4) are called Fréchet normals
or normals in a regular sense and their collection is denoted by N̂(x; �). Finally, the
limiting normal cone to � at x is defined by

N(x;�) := {

x∗ | ∃(εk) ↓ 0, (xk)
�→ x, (x∗

k)
w∗→ x∗ : x∗

k ∈ N̂εk(xk; �)∀k
}

.

If x �∈ � we put T(x;�) = ∅, N(x;�) = ∅ and N̂ε(x;�) = ∅ for all ε ≥ 0.
The limiting normal cone sometimes is also called basic normal cone or

Mordukhovich normal cone. It is generally nonconvex whereas the Fréchet normal
cone is always convex. In the case of a convex set �, both the Fréchet normal cone
and the limiting normal cone coincide with the standard normal cone from convex
analysis and moreover, the contingent cone is equal to the tangent cone in the sense
of convex analysis.

Given a multifunction M : X ⇒ Y and a point (x̄, ȳ) ∈ gph M, the contingent
derivative of M at (x̄, ȳ) is defined as the set-valued mapping CM(x̄, ȳ) : X ⇒ Y with
the values CM(x̄, ȳ)(u) := {v ∈ Y | (u, v) ∈ T((x̄, ȳ); gph M)}, i.e. CM(x̄, ȳ)(u) is the
collection of all v ∈ Y such that there are sequences (tk) ↓ 0, (uk, vk) → (u, v) with
(x̄ + tkuk, ȳ + tkvk) ∈ gph M.

The normal coderivative of M at (x̄, ȳ) is a multifunction D∗
N M(x̄, ȳ) : Y∗ ⇒

X∗, where D∗
N M(x̄, ȳ)(y∗) is the collection of all x∗ ∈ X∗ for which there

are sequences (εk) ↓ 0, (xk, yk) → (x̄, ȳ) and (x∗
k, y∗

k)
w∗→(x∗, y∗) with (x∗

k,−y∗
k) ∈

N̂εk((xk, yk); gph M).
The reversed mixed coderivative of M at (x̄, ȳ) is a multifunction D̃∗

M M(x̄, ȳ) :
Y∗ ⇒ X∗, where D∗

M̃
M(x̄, ȳ)(y∗) is the collection of all linear functionals x∗ ∈ X∗

for which there are sequences (εk) ↓ 0, (xk, yk, x∗
k) → (x̄, ȳ, x∗) and (y∗

k)
w∗→(y∗) with

(x∗
k,−y∗

k) ∈ N̂εk((xk, yk); gph M).
The mixed coderivative of M at (x̄, ȳ) can be defined as the multifunction

D∗
M M(x̄, ȳ) : Y∗ ⇒ X∗, where

D∗
M(x̄, ȳ)(y∗) := {x∗ ∈ X∗ | y∗ ∈ −D̃∗

M M−1(ȳ, x̄)(−x∗)},
i.e. the version of the reversed mixed coderivative with strong convergence in Y∗ and
weak∗ convergence in Y∗.

Note that

D∗
N M(x̄, ȳ)(y∗) = {x∗ ∈ X∗ | (x∗, −y∗) ∈ N((x̄, ȳ); gph M)}

and

D∗
N M−1(ȳ, x̄)(x∗) = {y∗ ∈ Y∗ | − x∗ ∈ D∗

N M(x̄, ȳ)(−y∗)}.
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The mapping M is called partially sequentially normally compact (PSNC) at
(x̄, ȳ) ∈ gph M with respect to Y if for all sequences (εk) ↓ 0, (xk, yk) → (x̄, ȳ),

(y∗
k)

w∗→ 0 and (x∗
k) → 0 with (x∗

k, −y∗
k) ∈ N̂εk((xk, yk), gph M) one has

∥
∥y∗

k

∥
∥ → 0 as

k → ∞.
For a detailed discussion and references concerning these generalized differential

constructions we refer the reader to the monograph [24].
Mordukhovich [22] gave a complete characterization of the Aubin property of a

multifunction between Asplund spaces in terms of the mixed coderivative together
with the PSNC property. We state here the following result, cf. [24, Theorems 4.10,
4.18].

Theorem 1 Let M : X ⇒ Y be a closed-graph multifunction between Asplund spaces
and let (x̄, ȳ) ∈ gph M. Then the following statements are equivalent:

(a) M is metrically regular near (x̄, ȳ).
(b) M−1 has the Aubin property near (ȳ, x̄).
(c) M is PSNC at (x̄, ȳ) with respect to Y and ker D̃∗

M M(x̄, ȳ) = {0}.
(d) M is PSNC at (x̄, ȳ) with respect to Y and D∗

M M−1(ȳ, x̄)(0) = {0}.

In the recent paper [9] the property of metric subregularity was characterized by
means of so-called limit sets critical for metric subregularity. Given a set-valued
mapping M : X ⇒ Y, a subspace Ỹ ⊂ Y and a point (x̄, ȳ) ∈ gph M, the limit set
critical for metric subregularity of M at (x̄, ȳ) with respect to Ỹ is the set CrỸ M(x̄, ȳ)

of all elements (v, x∗) ∈ Y × X∗ such that there are sequences (tk) ↓ 0, (εk) ↓ 0,
(vk, x∗

k) → (v, x∗), (uk, y∗
k) ∈ SX × SY∗ and a positive constant β with (−x∗

k, y∗
k) ∈

N̂εk((x̄ + tkuk, ȳ + tkvk), gph M) and
∥
∥
∥y∗

k|Ỹ

∥
∥
∥ := sup{〈y∗

k, ỹ〉 | ỹ ∈ BY ∩ Ỹ} ≥ β. In case

that Ỹ = Y we simply write Cr M(x̄, ȳ).

Theorem 2 [9] Let M : X ⇒ Y be a multifunction and let (x̄, ȳ) ∈ gph M.

1. Assume that M has closed graph, that either Y is Fréchet smooth or both X and
Y are Asplund spaces and assume that (0, 0) �∈ Cr M(x̄, ȳ). Then M is metrically
subregular at (x̄, ȳ).

2. If (0, 0) ∈ CrM(x̄, ȳ), then there exists a continuously differentiable mapping h :
X ⇒ Y with h(x̄) = 0, ∇h(x̄) = 0 such that M + h is not metrically subregular at
(x̄, ȳ).

For any continuously differentiable mapping h : X → Y with h(x̄) = 0, ∇h(x̄) = 0
we have Cr (M + h)(x̄, ȳ) = Cr M(x̄, ȳ). Hence the condition (0, 0) �∈ Cr M(x̄, ȳ) is an
equivalent characterization of metric subregularity in case that the property of metric
subregularity is stable under smooth perturbations h with h(x̄) = 0, ∇h(x̄) = 0. Let us
mention that the condition (0, 0) �∈ Cr M(x̄, ȳ) is not the weakest sufficient condition
for subregularity known from the literature. Let us define the outer limit set critical
for metric subregularity of M, denoted by Cr >M(x̄, ȳ), as those elements (v, x∗) ∈
Cr M(x̄, ȳ) such that the corresponding sequences fulfill the additional condition
x̄ + tkuk �∈ M−1(ȳ). Then, as already mentioned in [9, p. 1450], the condition (0, 0) �∈
Cr >M(x̄, ȳ) is also sufficient for metric subregularity of M, which is clearly not
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stronger than the condition (0, 0) �∈ Cr M(x̄, ȳ). Other conditions for (Hölder) metric
subregularity, based on so-called outer coderivatives, can be found e.g. in [17, 21, 35].

However, the definition of the outer limit set or outer coderivatives requires
information about the set M−1(ȳ), which is usually unknown. Further the outer limit
set is in general not invariant under smooth perturbations having zero function value
and derivative at the reference point and hence it is likely that only some very limited
calculus is available for computing this set. For that reason we do not consider in the
rest of the paper such sufficient conditions based on outer limit sets. On the other
hand, if we have some partial information about the aforementioned set, e.g. by iden-
tifying some linear structures of M, these ”outer” constructions can be very useful.

In [9] also the so-called combined contingent coderivative of a multifunction
M : X ⇒ Y was introduced. At a point (x̄, ȳ) ∈ gph M it is defined as the multi-
function ĈD∗M(x̄, ȳ) : X × Y∗ ⇒ Y × X∗, where for each (u, y∗) ∈ X × Y∗ the set
ĈD∗M(x̄, ȳ)(u, y∗) is given by the collection of all (v, x∗) ∈ Y × X∗ for which there

are sequences (tk) ↓ 0, (εk) ↓ 0, (uk, vk, x∗
k) → (u, v, x∗), (y∗

k)
w∗→ y∗ with (−x∗

k, y∗
k) ∈

N̂εk((x̄ + tkuk, ȳ + tkvk), gph M).
By the definition the elements (v, x∗) ∈ ĈD∗M(x̄, ȳ)(u, y∗) satisfy

v ∈ CM(x̄, ȳ)(u) and y∗ ∈ D∗
M M−1(ȳ, x̄)(x∗), or equivalently −x∗ ∈ D̃∗

M M(−y∗).
In fact, the combined contingent coderivative of M is defined by elements of the
contingent derivative of M and the mixed coderivative of M−1 which share in their
definition a common sequence of points (x̄ + tkuk, ȳ + tkvk).

In case that X and Y are Asplund spaces, it can be shown, e.g. by using [24, For-
mula (2.51)], that in the definitions above of the limiting objects N(x,�), D∗

N M(x̄, ȳ),

D̃∗
M M(x̄, ȳ), D∗

M M(x̄, ȳ), Cr |Ỹ M(x̄, ȳ), ĈD∗M(x̄, ȳ) and the PSNC property we can
take equivalently εk = 0.

We now recall some optimality conditions for the problem (1).
Given a function ϕ : X → R̄ and a point x ∈ X with |ϕ(x)| < ∞, we define for

ε ≥ 0 the ε-subdif ferential of ϕ at x by

∂̂εϕ(x) :=
{

x∗ ∈ X∗
∣
∣
∣
∣
lim inf

x′→x

ϕ(x′) − ϕ(x) − 〈x∗, x′ − x〉
‖x′ − x‖ ≥ −ε

}

.

When ε = 0 the ε-subdifferential reduces to the Fréchet (lower) subdifferential
∂̂ϕ(x) := ∂̂0ϕ(x), elements of ∂̂ϕ(x) are also called regular subgradients. Further the
Fréchet upper subdifferential is described by

∂̂+ϕ(x) :=
{

x∗ ∈ X∗
∣
∣
∣
∣
lim sup

x′→x

ϕ(x′) − ϕ(x) − 〈x∗, x′ − x〉
‖x′ − x‖ ≤ 0

}

and the limiting subdifferential of ϕ at x is defined as the set

∂ϕ(x) := {x∗ ∈ X∗ | ∃(εk) ↓ 0, (xk) → x, (x∗
k)

w∗→ x∗ : x∗
k ∈ ∂̂εkϕ(xk)∀k}.

The following theorem is a consequence of [24, Theorems 5.7(iii), 5.48] and states
the M-stationarity conditions for the problem (1).

Theorem 3 Let x̄ be a local optimal solution of the problem (1) where X and Z are
Asplund spaces and gph G is closed.
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1. If D∗
MG−1(ȳ, x̄)(0) = 0 and G is PSNC at (x̄, ȳ) with respect to Y, i.e. if G is

metrically regular near (x̄, 0), then

−∂̂+ f (x̄) ⊂
⋃

z∗∈Z ∗
D∗

NG(x̄, 0)(z∗) (5)

2. If G is metrically subregular at (x̄, 0) and f is Lipschitzian near x̄, then there is
some z∗ ∈ Z ∗ such that

0 ∈ ∂ f (x̄) + D∗
NG(x̄, 0)(z∗) (6)

If f is Fréchet differentiable at x̄ then ∂̂+ f (x̄) = {∇ f (x̄)} and the M-stationarity
condition (5) reduces to

∃z∗ ∈ Z ∗ : 0 ∈ ∇ f (x̄) + D∗
NG(x̄, 0)(z∗).

The use of the upper subdifferential in optimality conditions was initiated in [23].
Observe that, despite the broader applicability of (6), the upper subdifferential
condition (5) is stronger for concave continuous functions f because of ∂ f (x̄) ⊂
∂̂+ f (x̄) �= ∅.

3 Directional Metric Regularity and Subregularity

To study the directional behavior of multifunctions, it is convenient to introduce the
following neighborhoods of directions: Given a Banach space W, a direction d ∈ W
and positive numbers ε, δ > 0, the set Vε,δ(d), is given by

Vε,δ(d) := {w ∈ εBW | ∥∥‖d‖w − ‖w‖d
∥
∥ ≤ δ‖w‖ ‖d‖}. (7)

This can be written also in the form

Vε,δ(d) =

⎧

⎪⎨

⎪⎩

{0} ∪
{

w ∈ εBW \ {0}
∣
∣
∣
∣

∣
∣
∣
∣

w

‖w‖ − d
‖d‖

∣
∣
∣
∣

≤ δ

}

if d �= 0,

εBW if d = 0.

Note that Vε,δ(d) = Vε,δ(αd), ∀α > 0 and that, given w̄ ∈ W and a sequence
(wk) → w̄, there exist sequences (tk) ↓ 0, (dk) → d with wk = w̄ + tkdk if and only if
for every ε > 0, δ > 0 there is some index kε,δ such that wk ∈ w̄ + Vε,δ(d), ∀k ≥ kε,δ .

Definition 1 Let M : X ⇒ Y be a multifunction and let (x̄, ȳ) ∈ gph M.

1. Given w := (u, v) ∈ X × Y, M is called metrically regular in direction (u, v) at
(x̄, ȳ), provided there exist positive reals ρ > 0, δ > 0 and κ > 0 such that

d(x, M−1(y)) ≤ κd(y, M(x)) (8)

holds for all (x, y) ∈ (x̄, ȳ) + Vρ,δ(w) with ‖w‖ d((x, y), gph M) ≤ δ ‖w‖ ‖(x, y)−
(x̄, ȳ)‖.

2. For given u ∈ X, M is said to be metrically subregular in direction u at (x̄, ȳ), if
there are positive reals ρ > 0, δ > 0 and κ ′ > 0 such that

d(x, M−1(ȳ)) ≤ κ ′d(ȳ, M(x)) (9)

holds for all x ∈ x̄ + Vρ,δ(u).
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By the definition, M is metrically regular in direction (0, 0) if and only if M is
metrically regular. Similarly, metric subregularity in direction 0 is equivalent to the
property of metric subregularity.

Note that we always have d((x, y), gph M) ≤ d(y, M(x)). Hence, if M is metrically
regular in direction (u, v) �= (0, 0), the condition (8) is fulfilled for all (x, y) ∈ (x̄, ȳ) +
Vρ,δ(u, v) with d(y, M(x)) ≤ δ ‖(x, y) − (x̄, ȳ)‖.

If v �∈ CM(x̄, ȳ)(u) then by the definition of the contingent derivative there
are some ρ > 0, δ > 0 such that {(x, y) ∈ (x̄, ȳ) + Vρ,δ(u, v) | d((x, y), gph M) ≤
δ ‖(x, y) − (x̄, ȳ)‖} = ∅. Hence M is metrically regular in direction (u, v) if v �∈
CM(x̄, ȳ)(u).

Lemma 1 Let the multifunction M : X ⇒ Y be metrically regular in direction (u, 0)

at (x̄, ȳ) ∈ gph M. Then M is also metrically subregular in direction u.

Proof If u = 0 the assertion follows immediately and hence let u �= 0. Let ρ, δ and
κ be given according to the definition of directional metric regularity and con-
sider an arbitrary point x ∈ x̄ + Vρ,δ(u). Then (x, ȳ) ∈ (x̄, ȳ) + Vρ,δ(u, 0) and taking
into account the inequalities d((x, ȳ), gph M) ≤ d(ȳ, M(x)) and ‖(x, ȳ) − (x̄, ȳ)‖ =
‖x − x̄‖ ≥ d(x, M−1(ȳ)) we obtain

d(x, M−1(ȳ)) ≤

⎧

⎪⎨

⎪⎩

κd(ȳ, M(x)) if d(ȳ, M(x)) ≤ δ ‖(x, ȳ) − (x̄, ȳ)‖
1

δ
d(ȳ, M(x)) if d(ȳ, M(x)) > δ ‖(x, ȳ) − (x̄, ȳ)‖.

Therefore (9) follows with κ ′ = max
{

κ, 1
δ

}

. ��

We now introduce directional versions of the limiting constructions presented in
the preceding section by restricting the limiting process with respect to the direction
under consideration.

Definition 2

1. Let � ⊂ X, x ∈ � and u ∈ X be given. The limiting normal cone to � in direction
u at x is defined by

N(x;�; u) := {

x∗ | ∃(εk) ↓ 0, (tk) ↓ 0, (uk)

→ u, (x∗
k)

w∗→ x∗ : x∗
k ∈ N̂εk(x + tkuk; �)∀k

}

.

2. Let M : X ⇒ Y and let (x̄, ȳ) ∈ gph M, (u, v) ∈ X × Y.
The normal coderivative of M in direction (u, v) at (x̄, ȳ) is defined as the set-
valued mapping D∗

N M((x̄, ȳ); (u, v)) : Y∗ ⇒ X∗, where D∗
N M((x̄, ȳ); (u, v))(y∗)

is the collection of all x∗ ∈ X∗ for which there exist sequences (εk) ↓ 0, (tk) ↓
0, (uk, vk) → (u, v) and (x∗

k, y∗
k)

w∗→(x∗, y∗) with (x∗
k,−y∗

k) ∈ N̂εk((x̄ + tkuk, ȳ +
tkvk); gph M).
The reversed mixed coderivative of M in direction (u, v) at (x̄, ȳ) is defined as the
multifunction D̃∗

M M((x̄, ȳ); (u, v)) : Y∗ ⇒ X∗, where D̃∗
M M((x̄, ȳ); (u, v))(y∗) is

the collection of all x∗ ∈ X∗ for which there are sequences (εk) ↓ 0, (tk) ↓
0, (uk, vk, x∗

k) → (u, v, x∗) and (y∗
k)

w∗→(y∗) with (x∗
k,−y∗

k) ∈ N̂εk((x̄ + tkuk, ȳ +
tkvk); gph M).
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The mixed coderivative of M in direction (u, v) at (x̄, ȳ) is defined by

D∗
M((x̄, ȳ); (u, v))(y∗) := {x∗ ∈ X∗ | y∗ ∈ −D̃∗

M M−1((ȳ, x̄); (v, u))(−x∗)}, (10)

The mapping M is called partially sequentially normally compact (PSNC) in
direction (u, v) at (x̄, ȳ) with respect to Y, if for all sequences (εk) ↓ 0, (tk) ↓
0, (uk, vk) → (u, v), (y∗

k)
w∗→ 0 and (x∗

k) → 0 with (x∗
k,−y∗

k) ∈ N̂εk((x̄ + tkuk, ȳ +
tkvk); gph M) one has y∗

k → 0 as k → ∞.
3. Let M : X ⇒ Y, let (x̄, ȳ) ∈ gph M, let Ỹ ⊂ Y be a subspace and let u ∈ X.

The limit set critical for directional metric regularity of M with respect to u and
Ỹ at (x̄, ȳ) is the set CrỸ M((x̄, ȳ); u) of all elements (v, x∗) ∈ Y × X∗ such
that there are sequences (tk) ↓ 0, (εk) ↓ 0, (uk, vk, x∗

k) → (u, v, x∗), (y∗
k) ⊂ SY∗

and a positive constant β with (−x∗
k, y∗

k) ∈ N̂εk((x̄ + tkuk, ȳ + tkvk), gph M) and
∥
∥
∥y∗

k|Ỹ

∥
∥
∥ ≥ β. In case that Ỹ = Y we simply write Cr M((x̄, ȳ); u).

For u �= 0 our definition of the limiting normal cone in direction u coincides with
the definition of the basic normal cone in direction u as presented in [8].

Note that N(x;�; 0) = N(x,�), D∗
N M((x̄, ȳ); (0, 0)) = D∗

N M(x̄, ȳ), D∗
M M((x̄, ȳ);

(0, 0)) = D∗
M M(x̄, ȳ), D̃∗

M M((x̄, ȳ); (0, 0)) = D̃∗
M M(x̄, ȳ) and that the properties

PSNC in direction (0, 0) and PSNC are the same, but that Cr Ỹ M(x̄, ȳ) �=
Cr Ỹ M((x̄, ȳ); 0) in general. Further we have the relations

D∗
N M((x̄, ȳ); (u, v))(y∗) = {x∗ ∈ X∗ | (x∗,−y∗) ∈ N((x̄, ȳ); gph M; (u, v))}

and

D∗
M M−1((ȳ, x̄); (v, u))(y∗) = {

x∗ ∈ X∗ | (v, x∗) ∈ ĈD∗M(x̄, ȳ)(u, y∗)
}

. (11)

Again, if X and Y are Asplund spaces, we can equivalently take εk = 0 in the
definitions above.

Theorem 4 Let M : X ⇒ Y be a multifunction and let (u, v) ∈ X × Y.

1. Assume that M has closed graph, that (v, 0) �∈ Cr M((x̄, ȳ); u) and that either Y
admits a Fréchet smooth renorm or both X and Y are Asplund spaces. Then M is
metrically regular in direction (u, v) at (x̄, ȳ).

2. If (v, 0) ∈ Cr M((x̄, ȳ); u) then M is not metrically regular in direction (u, v) at
(x̄, ȳ).

3. If u �= 0 and (0, 0) ∈ Cr M((x̄, ȳ); u) then there exists a continuously dif ferentiable
function h : X → Y with h(x̄) = 0, ∇h(x̄) = 0 such that M + h is not metrically
subregular in direction u at (x̄, ȳ).

Proof We proof the first part by contradiction. Let us assume on the contrary that
M is not metrically regular at z̄ := (x̄, ȳ) in direction w := (u, v). Then we can find
for each k some element zk := (xk, yk) ∈ z̄ + V 1

k , 1
k
(w) satisfying ‖w‖d(zk, gph M) ≤

‖w‖
k ‖zk − z̄‖ such that d(xk, M−1(yk)) > 4kd(yk, M(xk)). Thus zk �∈ gph M and con-

sequently zk �= z̄. Consider ẑk := (x̂k, ŷk) ∈ gph M with ‖ẑk − zk‖ ≤ 2d(zk, gph M)

and set ε := ‖ŷk − yk‖. Then we have ‖ŷk − yk‖ ≤ inf(x,y)∈gph M ‖y − yk‖ + ε and we
can invoke Ekeland’s variational principle to find some z̃k := (x̃k, ỹk) ∈ gph M such
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that ‖ỹk − yk‖ ≤ ‖ŷk − yk‖, ‖z̃k − ẑk‖ ≤ √
k‖ŷk − yk‖ and ‖ỹk − yk‖ ≤ ‖y − yk‖ +

1√
k
‖(x, y) − (x̃k, ỹk)‖ for all (x, y) ∈ gph M. Hence we obtain

‖z̃k − zk‖ ≤ ‖z̃k − ẑk‖ + ‖ẑk − zk‖ ≤ √
k‖ŷk − yk‖ + ‖ẑk − zk‖ ≤ (

√
k + 1)‖ẑk − zk‖

(12)
and consequently ỹk �= yk, since otherwise we would obtain

‖z̃k − zk‖ = ‖x̃k − xk‖ ≥ d(xk, M−1(yk)) > 4kd(yk, M(xk))

≥ 4kd(zk, gph M) ≥ 2k‖ẑk − zk‖
contradicting (12).

If w �= 0 we obtain from (12)

‖z̃k − zk‖ ≤ 2
(√

k + 1
)

k
‖zk − z̄‖ ≤ 4√

k
‖zk − z̄‖ ,

which implies

0 <
1

2
‖zk − z̄‖ ≤

(

1 − 4√
k

)

‖zk − z̄‖ ≤ ‖z̃k − z̄‖

≤
(

1 + 4√
k

)

‖zk − z̄‖ ≤ 3

2
‖zk − z̄‖ ≤ 3

2k
,∀k ≥ 64 (13)

and
∥
∥ ‖w‖ (z̃k − z̄) − ‖z̃k − z̄‖ w

∥
∥ ≤ ∥

∥ ‖w‖ (zk − z̄) − ‖zk − z̄‖ w
∥
∥ + 2 ‖z̃k − zk‖ ‖w‖

≤
(

1

k
+ 8√

k

)

‖zk − z̄‖ ‖w‖

≤ 18√
k

‖z̃k − z̄‖ ‖w‖ , ∀k ≥ 64 (14)

showing z̃k − z̄ ∈ V 3
2k , 18√

k
(w).

On the other hand, if w = 0, by using the estimate ‖ẑk − zk‖ ≤ 2d(zk, gph M) ≤
2‖zk − z̄‖ ≤ 2

k , we obtain from (12) the bounds ‖z̃k − zk‖ ≤ 2(
√

k+1)

k ≤ 4√
k

and

‖z̃k − z̄‖ ≤ 1
k + 4√

k
≤ 5√

k
showing z̃k − z̄ ∈ V 5√

k
, 1

k
(w).

Defining the sequences

tk :=

⎧

⎪⎨

⎪⎩

max

{
1

2
‖zk − z̄‖ , ‖z̃k − z̄‖

}/

‖w‖ if w �= 0,

k− 1
4 if w = 0,

(ũk, ṽk) := (z̃k − z̄)/tk and taking into account (13) we conclude (ũk, ṽk) → w as
k → ∞.

In case that Y admits a Fréchet smooth renorm we can assume without loss of
generality that the original norm ‖·‖ on Y is Fréchet smooth since the properties
directional metric regularity and (v, 0) ∈ Cr M((x̄, ȳ); u) are invariant with respect
to equivalent norms. Let ỹ∗

k ∈ Y∗ denote the Fréchet derivative of ‖·‖ at ỹk − yk,
then ỹ∗

k belongs to the subdifferential of convex analysis and therefore ỹ∗
k ∈ SY∗ and

〈ỹ∗
k, ỹk − yk〉 = ‖ỹk − yk‖. Due to the defintion of Fréchet differentiability we can
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find some positive δk such that ‖y − yk‖ ≤ ‖ỹk − yk‖ + 〈ỹ∗
k, y − ỹk〉 + 1√

k
‖y − ỹk‖ for

all y ∈ ỹk + δkBY . Hence for all (x, y) ∈ gph M ∩ ((x̃k, ỹk) + δkBX×Y) we have

∥
∥ỹk − yk

∥
∥ ≤ ‖y − yk‖ + 1√

k

∥
∥(x, y) − (x̃k, ỹk)

∥
∥

≤ ∥
∥ỹk − ȳ

∥
∥ + 〈ỹ∗

k, y − ỹk〉 + 2√
k

∥
∥(x, y) − (x̃k, ỹk)

∥
∥

showing (0,−ỹ∗
k)∈ N̂ 2√

k
((x̃k, ỹk), gph M). Thus, by setting εk = 2√

k
, (uk, vk)=(ũk, ṽk),

x∗
k = 0 and y∗

k = −ỹ∗
k we can conclude (v, 0) ∈ Cr M((x̄, ȳ); u), a contradiction.

In case that both X and Y are Asplund so also is X × Y. Since (x̃k, ỹk) min-
imizes the function (x, y) → χgph M(x, y) + ψk(x, y), where ψk(x, y) := ‖y − yk‖ +

1√
k
‖(x, y) − (x̃k, ỹk))‖ and χgph M denotes the characteristic function of gph M, by

the fuzzy (semi-Lipschitzian) sum rule (see for example [24, Theorem 2.33])) for
arbitrary δk > 0 we can find points z′

k = (x′
k, y′

k), z′′
k = (x′′

k, y′′
k) in z̃k + δkBX×Y

with χgph M(z′
k) ≤ χgph M(z̃k) + δk = δk, ψk(z′′

k) ≤ ψk(z̃k) + δk and linear functionals
(x̃∗

k, ỹ∗
k) ∈ ∂̂χgph M(x′

k, y′
k) and (x̂∗

k, ŷ∗
k) ∈ ∂̂ψk(x′′

k, y′′
k) such that ‖(x̃∗

k, ỹ∗
k) + (x̂∗

k, ŷ∗
k)‖ ≤

δk. Taking δk := min
{ tk

k , 1
2‖ỹk − yk‖

}

we can deduce that ‖y′′
k − yk‖ ≥ ‖ỹk − yk‖/2 >

0 and therefore, as a consequence of the sum rule of convex analysis, | ‖ŷ∗
k‖ − 1| ≤ 1√

k

and ‖x̂∗
k‖ ≤ 1√

k
follows. Therefore | ‖ỹ∗

k‖ − 1| ≤ ‖ỹ∗
k + ŷ∗

k‖ + | ‖ŷ∗
k‖ − 1| ≤ δk + 1√

k
→

0 and ‖x̃∗
k‖ ≤ ‖x̂∗

k‖ + δk → 0 follows. Then we can set εk = 0, (uk, vk) := (z′
k − z̄)/tk,

x∗
k = −x̃∗

k/‖ỹ∗
k‖, y∗

k = ỹ∗
k/‖ỹ∗

k‖ to obtain the contradiction (v, 0) ∈ Cr M((x̄, ȳ); u).
Indeed, finiteness of χgph M(x′

k, y′
k) implies ∂̂χgph M(x′

k, y′
k) = N̂((x′

k, y′
k), gph M) and

consequently (−x∗
k, y∗

k) ∈ N̂((x′
k, y′

k), gph M). Since ‖ỹ∗
k‖ → 1, ‖x̃∗

k‖ → 0 we have
x∗

k → 0. Finally, ‖(uk, vk) − (ũk, ṽk)‖ ≤ ‖z′
k − z̃k‖/tk ≤ 1

k showing (uk, vk) → w and
the first part of the theorem is proved.

To show the second part of the theorem, let (v, 0) ∈ Cr M((x̄, ȳ); u). Then
we can find sequences (tk) ↓ 0, (εk) ↓ 0, (uk, vk, x∗

k) → (u, v, 0), (y∗
k) ⊂ SY∗ with

(−x∗
k, y∗

k) ∈ N̂εk((x̄ + tkuk, ȳ + tkvk), gph M). By passing to a subsequence we can
assume that εk + ∥

∥x∗
k

∥
∥ ≤ 1

4k ∀k. For each k we can find some positive radius
ρk < tk such that 〈−x∗

k, x − xk〉 + 〈y∗
k, y − y′

k〉 ≤ ( 1
4k + εk)‖(x, y) − (xk, y′

k)‖ for every
(x, y) ∈ ((xk, y′

k) + ρkBX×Y) ∩ gph M, where we set (xk, y′
k) := (x̄, ȳ) + tk(uk, vk).

Next we choose elements zk ∈ SY such that 〈y∗
k, zk〉 ≥ 1

2 and set yk = y′
k + ρk

k zk.
Then we have yk �∈ M(x) for all x ∈ xk + (1 − 1

k )ρkBX . Indeed, assuming on the
contrary that yk ∈ M(x) for some x ∈ xk + (1 − 1

k )ρkBX , then (x, yk) ∈ ((xk, y′
k) +

ρkBX×Y) ∩ gph M and

ρk

2k
≤ 〈y∗

k, yk − y′
k〉 ≤ 〈−x∗

k, x − xk〉 + 〈y∗
k, yk − y′

k〉 + ∥
∥x∗

k

∥
∥ (x − xk)

≤
(

εk + 1

4k
+ ∥

∥x∗
k

∥
∥

)

ρk <
ρk

2k
,

a contradiction. Hence yk �∈ M(x) for all x ∈ xk + (1 − 1
k )ρkBX and consequently

d(xk, M−1(yk)) ≥
(

1 − 1

k

)

ρk =
(

1 − 1

k

)

k
∥
∥yk − y′

k

∥
∥ ≥ (k − 1)d(yk, M(xk)).



Metric Regularity, Subregularity and Optimality Conditions 163

Further we have ((xk, yk) − (x̄, ȳ))/tk = (uk, vk + ρk
ktk

zk) → (u, v) and, if (u, v) �=
(0, 0),

d((xk, yk), gph M) ≤ ρk

k
≤ 2

k ‖(u, v)‖ ‖(xk, yk) − (x̄, ȳ)‖

for all k sufficiently large such that ‖(xk, yk) − (x̄, ȳ)‖ /tk ≥ ‖(u, v)‖ /2. This shows
that M is not metrically regular at (x̄, ȳ) in direction (u, v).

To show the third part, let us assume that (0, 0) ∈ Cr M((x̄, ȳ); u) for some
u �= 0 and let us choose according to the definition the sequences (t̃k) ↓ 0,
(εk) ↓ 0, (ũk, ṽk, x∗

k) → (u, 0, 0) and (y∗
k) ⊂ SY∗ with (−x∗

k, y∗
k) ∈ N̂εk((x̄ + t̃kũk, ȳ +

t̃kṽk), gph M). We may assume that ũk �= 0, ∀k and therefore the sequences tk =
t̃k

∥
∥ũk

∥
∥ ↓ 0, uk = ũk/

∥
∥ũk

∥
∥ → u/ ‖u‖, vk = ṽk/

∥
∥ũk

∥
∥ → 0 are well defined. Exactly as

in the proof of the second part of [9, Theorem 3.2] we can find a continuously
differentiable mapping h : X → Y satisfying h(x̄) = 0, ∇h(x̄) = 0 and

d(xk, (M + h)−1(ȳ)) ≥
√

k
2

d(ȳ, (M + h)(xk)) > 0 ∀k ≥ 17,

where xk := x̄ + tkuk = x̄ + t̃kũk and we have eventually passed to a subsequence.
Since (xk − x̄)/ ‖xk − x̄‖ → u/ ‖u‖ we conclude that M + h is not metrically subreg-
ular at (x̄, ȳ) in direction u. ��

Theorem 5 Let M : X ⇒ Y be a closed-graph multifunction, (x̄, ȳ) ∈ gph M, (u, v) ∈
X × Y and assume that either Y is Fréchet smooth or both X and Y are Asplund
spaces. Then the following statements are equivalent:

(a) M is metrically regular in direction (u, v) at (x̄, ȳ).
(b) (v, 0) �∈ Cr M((x̄, ȳ); u).
(c) M is PSNC in direction (u, v) at (x̄, ȳ) with respect to Y and (v, 0) �∈

ĈD∗M(x̄, ȳ)(u, y∗), ∀y∗ �= 0.
(d) M is PSNC in direction (u, v) at (x̄, ȳ) with respect to Y and

ker D̃∗
M M((x̄, ȳ); (u, v)) = {0}.

(e) M is PSNC in direction (u, v) at (x̄, ȳ) with respect to Y and
D∗

M M−1((ȳ, x̄); (v, u))(0) = {0}.

Proof The equivalence (a) ⇐⇒ (b) follows immediately from Theorem 4. Next we
prove (b) ⇒ (c) by contradiction. If M is not PSNC in direction (u, v) at (x̄, ȳ) with
respect to Y or (v, 0) �∈ ĈD∗M(x̄, ȳ)(u, y∗) for some y∗ �= 0 then there are sequences
(εk, tk, vk, uk, xk, ỹ∗

k, x̃∗
k) with εk → 0, tk ↓ 0, (uk, vk) → (v, u), (−x̃∗

k, ỹ∗
k) ∈ N̂εk((x̄ +

tkuk, ȳ + tkvk), gph M), ‖x̃∗
k‖ → 0 and lim infk→∞ ‖ỹ∗

k‖ > 0. Hence, by taking y∗
k :=

ỹ∗
k/‖ỹ∗

k‖ and x∗
k := x̃∗

k/‖ỹ∗
k‖ we have (−x∗

k, y∗
k) ∈ N̂εk((x̄ + tkuk, ȳ + tkvk), gph M) and

x∗
k → 0 verifying (v, 0) ∈ Cr M(x̄, ȳ)(u), a contradiction. The reverse implication

(c) ⇒ (b) is also shown by contradiction. Let us assume (v, 0) ∈ Cr M(x̄, ȳ)(u) and
consider the sequences (εk, tk, vk, uk, xk, y∗

k, x∗
k) according to the definition. Since

Fréchet smooth spaces are also Asplund spaces, Y is an Asplund space and hence the
sequence (y∗

k) has a weak∗ convergent subsequence and without loss of generality we
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may assume that the sequence (y∗
k) itself weakly∗ converges to some y∗. We conclude

(v, 0) ∈ ĈD∗M(x̄, ȳ)(u, y∗) and , if M−1 is PSNC(v, u), we obtain the contradiction
y∗ �= 0. Hence (c) ⇒ (b) also holds. Finally, the equivalences (c) ⇔ (d) ⇔ (e) are
consequences of (11) and (10). ��

It is easy to see that for any smooth perturbation h : X → Y with h(x̄) = 0,
∇h(x̄) = 0 we have Cr (M + h)((x̄, ȳ); u) = Cr M((x̄, ȳ); u). Hence the property of di-
rectional metric regularity is invariant under such smooth perturbations. Further, by
combining Lemma 1 and Theorem 4 we see that the condition (0, 0) �∈ Cr M((x̄, ȳ); u)

is both necessary and sufficient for metric subregularity in direction u �= 0, when
the property of directional subregularity is stable under smooth perturbations with
zero function value and derivative at the reference point. Note that in general the
property of directional metric subregularity, like metric subregularity, is not stable
under such smooth perturbations. We conjecture that in this case some second-order
characterizations of directional metric subregularity can be formulated, similar to the
second-order conditions [9] for smooth constraint systems.

To illustrate Theorems 4 and 5 we consider the following example.

Example 3 Consider the system

x1 ≥ 0

x2 ≥ 0

min{x1 − x2, x1 + x2} = 0

which can be equivalently written in the form

0 ∈ M(x1, x2) := F(x1, x2) − P,

where P := R
2+ × {0}, F(x1, x2) := (x1, x2, min{x1 − x2, x1 + x2} and let x̄ = (0, 0),

ȳ := (0, 0, 0). Obviously M−1(ȳ) = {(t, t) | t ≥ 0} and therefore x̄ is a non-isolated
solution of the inclusion ȳ ∈ M(x). Given x = (x1, x2) ∈ R

2, p = (p1, p2, p3) ∈ P,
straightforward calculations yield

N̂((x, F(x) − p); gph M) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x∗
1, x∗

2, y∗
1, y∗

2, y∗
3)

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

y∗
1 ≥ 0, y∗

1 p1 = 0,

y∗
2 ≥ 0, y∗

2 p2 = 0,

x∗
1 + y∗

1 + y∗
3 = 0,

x∗
2 + y∗

2 − y∗
3 = 0 if x2 > 0,

|x∗
2 + y∗

2| − y∗
3 ≤ 0 if x2 = 0,

x∗
2 + y∗

2 + y∗
3 = 0 if x2 < 0.

⎫

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
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It follows that for given u = (u1, u2) the limit set Cr M((x̄, ȳ); u) critical for metric
regularity with respect to u is the collection of all (v1, v2, v3, x∗

1, x∗
2) such that there

exists some y∗ = (y∗
1, y∗

2, y∗
3), ‖y∗‖ = 1 fulfilling the conditions

v1 ≤ u1, y∗
1 ≥ 0, y∗

1(u1 − v1) = 0,

v2 ≤ u2, y∗
2 ≥ 0, y∗

2(u2 − v2) = 0,

v3 = min{u1 − u2, u1 + u2},
x∗

1 = y∗
1 + y∗

3,

x∗
2 = y∗

2 − y∗
3 if u2 > 0,

x∗
2 = y∗

2 + y∗
3 if u2 < 0,

x∗
2 ∈ {y∗

2 ± y∗
3} ∪ [y∗

2 − y∗
3, y∗

2 + y∗
3] if u2 = 0.

Hence the set {(u, v) | (v, 0) ∈ Cr M((x̄, ȳ); u)}, i.e. the set of all directions (u, v) such
that M is not directionally metrically regular, is given by

{(u, v) | (v, 0) ∈ Cr M((x̄, ȳ); u)}
= {((u1, u2), (v1, v2, v3)) | v1 = u1, v2 = u2 ≤ 0, v3 = u1 + u2} .

Indeed, let u = (u1, u2) with u2 ≤ 0 be given, put v := (u1, u2, u1 + u2) and for each
t ∈ (0, 1

2 ) consider the points xt = (tu1, tu2 − t2), yt = (tu1, tu2 − t2 + t3, t(u1 + u2) −
t2). Then

M(xt) = {

(y1, y2, y3) | y1 ≤ tu1, y2 ≤ tu2 − t2, y3 = t(u1 + u2) − t2
}

showing d(yt, M(xt)) = t3. On the other hand,

M−1(yt)

= {

(x1, x2) | tu1 ≤ x1, tu2 − t2 + t3 ≤ x2, t(u1 + u2) − t2 = min{x1 − x2, x1 + x2}
}

= {

(x1, x2) | x1 ≥ tu1, x2 ≥ 0, x1 − x2 = t(u1 + u2) − t2
}

implying d(xt, M−1(yt)) ≥ t2 − tu2 = 1
t d(yt, M(xt)) for t ∈ (0, 1

2 ). Since (xt − x̄)/t →
u, (yt − ȳ)/t → v we conclude that M is not metrically regular in direction (u, v).

From these considerations it also follows that M is not metrically regular near
(x̄, ȳ). However, since the underlying space X = R

2 is finite dimensional, we have

Cr M(x̄, ȳ) =
⋃

u∈S
R2

Cr M((x̄, ȳ); u)

and therefore for every (v, x∗) ∈ Cr M(x̄, ȳ) we have v = (u1, u2, min{u1 − u2, u1 +
u2}) for some u = (u1, u2) ∈ SR2 and consequently v �= 0. Hence (0, 0) �∈ Cr M(x̄, ȳ)

and from Theorem 2 we conclude that M is metrically subregular at (x̄, ȳ).
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Applying Theorem 5 with (u, v) = (0, 0) and taking into account the well-known
equivalence between the property of metric regularity of a multifunction and the
Aubin property of the inverse, we obtain the following corollary:

Corollary 1 Let M : X ⇒ Y be a closed-graph multifunction, (x̄, ȳ) ∈ gph M and
assume that either Y is Fréchet smooth or both X and Y are Asplund spaces. Then
the following statements are equivalent:

(a) M is metrically regular near (x̄, ȳ).
(b) M−1 has the Aubin property near (ȳ, x̄).
(c) M is PSNC at (x̄, ȳ) with respect to Y and ker D̃∗

M M(x̄, ȳ) = {0}.
(d) M is PSNC at (x̄, ȳ) with respect to Y and D∗

M M−1(ȳ, x̄)(0) = {0}.

This corollary extends the characterizations of metric regularity and the Aubin
property by means of the PSNC condition and the mixed coderivative in Asplund
spaces, as presented in Theorem 1, to the case when the space Y is Fréchet smooth,
whereas the other space X can be an arbitrary Banach space.

4 Mixed Regularity and Subregularity of Multifunctions

The results of the preceding section show that the criterion (0, 0) �∈ Cr M((x̄, ȳ); u) is
optimal for directional subregularity under the viewpoint of invariance under smooth
perturbations. But many problems have a specific structure which is not invariant
under smooth perturbations, e.g. as a consequence of Hoffman’s error bound [14],
multifunctions associated with linear systems are always metrically subregular , but
the property of linearity is obviously not invariant under smooth perturbations. Now
we try to develop a theory which takes into account such a specific structure. In fact,
we consider now an extension of the sufficient condition of Theorem 4 under the
additional information that some part of M is known to be metrically subregular in
advance, e.g. when this part is a polyhedric multifunction.

In this section we consider the case that our multifunction M is composed by two
multifunctions Mi : X ⇒ Yi, i = 1, 2, i.e. M has the form

M = (M1, M2) : X ⇒ Y := Y1 × Y2. (15)

In what follows we denote the components of y ∈ Y = Y1 × Y2 by yi, i.e. y = (y1, y2)

and we set Ỹ1 := Y1 × {0Y2}.

Definition 3 Let M be given by (15), (x̄, ȳ) ∈ gph M and let (u, v1) ∈ X × Y1. We say
that M is mixed regular/subregular in direction (u, v1) at (x̄, ȳ) if there are numbers
ρ > 0, δ > 0 and κ > 0 such that

d(x, M−1(y1, ȳ2)) ≤ κd((y1, ȳ2), M(x))

holds for all (x, y1) ∈ (x̄, ȳ1) + Vρ,δ(u, v1) satisfying

‖(u, v1)‖ d((x, (y1, ȳ2)), gph M) ≤ δ ‖(u, v1)‖ ‖(x, y1) − (x̄, ȳ1)‖ .

We call M mixed regular/subregular at (x̄, ȳ) if it is mixed regular/subregular in
direction (0, 0) at (x̄, ȳ).
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Using the same arguments as in the proof of Lemma 1 one can show the following
lemma.

Lemma 2 Let the multifunction M : X ⇒ Y be given by (15) and let M be mixed
regular/subregular in direction (u, 0) at (x̄, ȳ) ∈ gph M. Then M is also metrically
subregular in direction u.

Definition 4 Let M be given by (15), (x̄, ȳ) ∈ gph M and let (u, v1) ∈ X × Y1. We
say that M2 is proper subregular in direction u relative to M1 and v1 at (x̄, ȳ),
if there are positive constants κ ′, ρ ′, δ′, L > 0 such that for all (x, y1) ∈ ((x̄, ȳ1) +
Vρ ′,δ′(u, v1)) ∩ gph M1 there is some x̌ ∈ M−1

2 (ȳ2) satisfying ‖x − x̌‖ ≤ κ ′d(ȳ2, M2(x))

and d(y1, M1(x̌)) ≤ L‖x − x̌‖.

We present the following simple sufficient condition for M2 being proper subreg-
ular relative to M1.

Lemma 3 Let M be given by (15), (x̄, ȳ) ∈ gph M and let u ∈ X. Assume that M2 is
metrically subregular in direction u at (x̄, ȳ2) and that M1 has the Aubin property near
(x̄, ȳ1). Then, M2 is proper subregular in direction u relative to M1 and every v1 ∈ Y1

at (x̄, ȳ).

Proof Let ρ ′ > 0, δ > 0, κ ′ > 0, L > 0 be chosen such that d(x, M−1
2 (ȳ2)) ≤

κ ′
2 d(ȳ2, M2(x)) and M1(x′) ∩ (ȳ1 + ρ ′BY) ⊂ M1(x′′) + L

∥
∥x′′ − x′∥∥BY1 holds for all

x ∈ x̄ + Vρ ′,δ(u) and all x′, x′′ ∈ x̄ + 2ρ ′ BX . For arbitrarily fixed v1 ∈ Y1 let δ′ :=
δ ‖u‖ /(2 ‖(u, v1)‖) if u �= 0 and δ′ = 1 if u = 0 and consider (x, y1) ∈ ((x̄, ȳ1) +
Vρ ′,δ′(u, v1)) ∩ gph M1. If x = x̄ or u = 0 then x ∈ x̄ + Vρ ′,δ(u) obviously holds. On
the other hand, if x �= x̄ and u �= 0, we have

∥
∥
∥
∥

x − x̄
‖(x − x̄, y1 − ȳ1)‖ − u

‖(u, v1)‖
∥
∥
∥
∥

≤
∥
∥
∥
∥

(x − x̄, y1 − ȳ1)

‖(x − x̄, y1 − ȳ1)‖ − (u, v1)

‖(u, v1)‖
∥
∥
∥
∥

≤ δ′

and therefore ‖λx − u/ ‖u‖‖ ≤ δ′ ‖(u, v1)‖ / ‖u‖ = δ/2, where λ := ‖(u,v1)‖
‖u‖‖(x−x̄,y1−ȳ1)‖ ,

showing |λ ‖x‖ − 1| ≤ δ/2,
∥
∥
∥
∥

x
‖x‖ − u

‖u‖
∥
∥
∥
∥

≤
∥
∥
∥
∥
λx − u

‖u‖
∥
∥
∥
∥

+
∥
∥
∥
∥

x
‖x‖ − λx

∥
∥
∥
∥

≤ δ/2 + |1 − λ ‖x‖ | ≤ δ.

and consequently x ∈ x̄ + Vρ ′,δ(u). Hence there is some x̌ ∈ M−1
2 (ȳ2) such that

∥
∥x̌ − x

∥
∥ ≤ κ ′d(ȳ2, M2(x)) and, because of x̄ ∈ M−1

2 (ȳ2),
∥
∥x̌ − x

∥
∥ ≤ ‖x − x̄‖. Thus,

x̌ ∈ x̄ + 2ρ ′BX and therefore y1 ∈ M1(x) ∩ (ȳ1 + ρ ′BY) ⊂ M1(x̌) + L
∥
∥x − x̂

∥
∥BY1

yielding the assertion. ��

Theorem 6 Let M be given by (15), (x̄, ȳ) ∈ gph M and let (u, v1) ∈ X × Y1. Assume
that M has closed graph, that M2 is proper subregular in direction u relative to
M1 and v1 at (x̄, ȳ), that ((v1, 0), 0) �∈ Cr Ỹ1

((x̄, ȳ); u) and assume that either Y1 and
Y2 are Fréchet smooth or X, Y1 and Y2 are Asplund spaces. Then M is mixed
regular/subregular in direction (u, v1) at (x̄, ȳ).
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Proof Let the constants κ ′, ρ ′, δ′, L be given in accordance with Definition 4 and
assume that Y is equipped with the norm

|‖(y1, y2)‖| :=
√

‖y1‖2 + (Lκ ′ + 2)2 ‖y2‖2.

Assuming that M is not mixed regular/subregular in direction (u, v1) we can
find a sequence zk := (xk, yk) ∈ z̄ + V 1

k , 1
k
(w), yk2 = ȳ2 satisfying ‖w‖ d(zk, gph M) ≤

‖w‖
k ‖zk − z̄‖ such that d(xk, M−1(yk)) > 4kd(yk, M(xk)), where w := (u, (v1, 0)).

Then we can proceed as in the proof of the first part of Theorem 4 with ‖y‖ replaced
by |‖y‖| to find the sequences (z̃k) → z̄, (tk) ↓ 0, (ũk) → u, ṽk → (v1, 0). Hence,
by eventually passing to a subsequence we can assume that (x̃k, ỹk1) ∈ ((x̄, ȳ1) +
Vρ ′,δ′(u, v1)) ∩ gph M1, ∀k.

Next, let k̄ be chosen such that
(

1 + 1√
k

)(

Lκ ′ + 1

k
+ 1

)

+ κ ′
√

k
≤

(

1 − 1√
k

)

(Lκ ′ + 2), ∀k > k̄. (16)

and we will show that
∥
∥ỹk2 − ȳ2

∥
∥ ≤ ∥

∥ỹk1 − yk1

∥
∥, ∀k > k̄ by contradiction. Assume

that
∥
∥ỹk2 − ȳ2

∥
∥ >

∥
∥ỹk1 − yk1

∥
∥ for some k > k̄. Then we can find some x̌k ∈ M−1

2 (ȳ2)

and some y̌k1 ∈ M1(x̌k) satisfying
∥
∥x̌k − x̃k

∥
∥ ≤ κ ′ ∥∥ỹk2 − ȳ2

∥
∥ and

∥
∥y̌k1 − ỹk1

∥
∥ ≤

(Lκ ′ + 1
k )

∥
∥ỹk2 − ȳ2

∥
∥. Since y̌k := (y̌k1, ȳ2) ∈ M(x̌k) we obtain by the minimizing

property of z̃k

|‖ỹk − yk‖| ≤ |‖y̌k − yk‖| + 1√
k

∥
∥(x̌k, y̌k) − (x̃k, ỹk)

∥
∥

≤
(

1 + 1√
k

)

|‖y̌k − yk‖| + 1√
k

∥
∥x̌k − x̃k

∥
∥ + 1√

k
|‖ỹk − yk‖|

≤
(

1 + 1√
k

)

(
∥
∥y̌k1 − ỹk1

∥
∥ + ∥

∥ỹk1 − yk1

∥
∥)

+ 1√
k

∥
∥x̌k − x̃k

∥
∥ + 1√

k
|‖ỹk − yk‖|

<

(

1 + 1√
k

)(

Lκ ′ + 1

k
+ 1

)
∥
∥ỹk2 − ȳ2

∥
∥

+ κ ′
√

k

∥
∥ỹk2 − ȳ2

∥
∥ + 1√

k
|‖ỹk − yk‖|

and, after rearranging,

((

1 + 1√
k

)(

Lκ ′ + 1

k
+ 1

)

+ κ ′
√

k

)
∥
∥ỹk2 − ȳ2

∥
∥ >

(

1 − 1√
k

)

|‖ỹk − yk‖|

≥
(

1 − 1√
k

)

(Lκ ′ + 2)
∥
∥ỹk2 − ȳ2

∥
∥

follows, a contradiction to (16). Hence,
∥
∥ỹk2 − ȳ2

∥
∥ ≤ ∥

∥ỹk1 − yk1

∥
∥, ∀k > k̄ and we can

conclude
∥
∥ỹk1 − yk1

∥
∥ �= 0, since ỹk �= yk. If the norms on Y1 and Y2 are Fréchet
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smooth then the norm |‖ · ‖| on Y is also and the functional ỹ∗
k representing the

Fréchet derivative at ỹk − yk has the form

〈ỹ∗
k, h〉 =

∥
∥ỹk1 − yk1

∥
∥ 〈∇ ∥

∥ỹk1 − yk1

∥
∥ , h1〉 + (Lκ ′ + 2)2

∥
∥ỹk2 − ȳ2

∥
∥ 〈ξ ∗

k , h2〉
|‖ỹk − yk‖| ,

∀h = (h1, h2) ∈ Y

where ξ ∗
k ∈ BY∗

2
. Hence

〈ỹ∗
k, (ỹk1 − yk1, 0)〉 =

∥
∥ỹk1 − yk1

∥
∥ 〈∇ ∥

∥ỹk1 − yk1

∥
∥ , ỹk1 − yk1〉

|‖ỹk − yk‖| =
∥
∥ỹk1 − yk1

∥
∥

2

|‖ỹk − yk‖|

≥
∥
∥ỹk1 − yk1

∥
∥

√

1 + (Lκ ′ + 2)2

showing |‖ỹ∗
k|Ỹ1

‖| ≥ (1 + (Lκ ′ + 2)2)−1/2. Using the same arguments as in the first
part of the proof of Theorem 4, the contradiction ((v1, 0), 0) ∈ Cr Ỹ1

((x̄, ȳ); u) follows.
In case that X, Y1 and Y2 are Asplund, consider as in the proof of The-

orem 4 the linear functionals (x̃∗
k, ỹ∗

k) ∈ ∂̂χgph M(x′
k, y′

k) and (x̂∗
k, ŷ∗

k) ∈ ∂̂ψk(x′′
k, y′′

k)

such that ‖(x̃∗
k, ỹ∗

k) + (x̂∗
k, ŷ∗

k)‖ ≤ δk, where we now choose 0 < δk ≤ min{ tk
k , |‖ỹk −

ȳ‖|} so small, such that max
{‖y′′

k1 − ỹk1‖, ‖y′′
k2 − ỹk2‖

} ≤ 1
4‖ỹk1 − ȳ1‖ holds. Then

‖y′′
k1 − ȳ1‖ ≥ 3

4‖ỹk1 − ȳ1‖ ≥ 3
5‖y′′

k2 − ȳ2‖ and by convex analysis there is a linear
functional y̌∗

k ∈ ∂̂|‖ · −ȳ‖|(y′′
k) satisfying |‖y̌∗

k − ŷ∗
k‖| ≤ 1√

k
. Using similar arguments

as before in the case of a Frechét smooth renorm we obtain the bound

〈y̌∗
k, y′′

k1 − ȳ1)〉 = ‖y′′
k1 − ȳ1)‖2

|‖y′′
k − ȳ‖| ≥ ‖y′′

k1 − ȳ1)‖
√

1 + 25
9 (Lκ + 2)2

showing |‖y̌∗
k|Ỹ1

‖| ≥ (1 + 25
9 (Lκ + 2)2)−1/2 and now we can proceed as in the proof of

the first part of Theorem 4 to obtain the contradiction ((v1, 0), 0) ∈ Cr Ỹ1
((x̄, ȳ); u).

��

5 Necessary Optimality Conditions in Mathematical Programming

We associate with the mathematical program (1) the multifunction

MP : X ⇒ R × Z , MP(x) := ( f (x) − R−) × G(x). (17)

Given a linear functional x∗ ∈ X∗, we also consider the multifunction

Mx∗ : X ⇒ R × Z , Mx∗(x) := (〈x∗, x〉 − R−) × G(x). (18)

The multifunctions MP and Mx∗ , respectively, are of the form (15) with Y1 = R,
M1(x) = f (x) − R− respectively M1(x) = 〈x∗, x〉 − R− and Y2 = Z , M2 = G.

Definition 5 Let x̄ be feasible for the problem (1). We call u ∈ X a critical direction
for the problem (1) at x̄ if (0, 0) ∈ CMP(x̄, ( f (x̄), 0))(u).
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Obviously u = 0 is always a critical direction. By the definition, u is a critical
direction if and only if there exist sequences (tk) ↓ 0, (uk) → u satisfying

lim sup
k→∞

f (x̄ + tkuk) − f (x̄)

tk
≤ 0, lim

k→∞
d(0, G(x̄ + tkuk))

tk
= 0. (19)

Now we introduce the following directional subdifferentials:

Definition 6 Let ϕ : X → R̄, x ∈ X with |ϕ(x)| < ∞ and u ∈ X. The limiting sub-
dif ferential of ϕ in direction u at x is defined as the set

∂ϕ(x; u)

:= {

x∗ ∈ X∗ | ∃(εk) ↓ 0, (tk) ↓ 0, (uk) → u, (x∗
k)

w∗→ x∗ : x∗
k ∈ ∂̂εkϕ(x + tkuk)∀k

}

and the Fréchet upper subdif ferential in direction u is defined as

∂̂+ϕ(x; u) :=
⎧

⎨

⎩
x∗ ∈ X∗

∣
∣
∣
∣
∣
∣

lim sup
δ↓0

1

δ
lim sup

u′ V1,δ (u)→ 0

ϕ(x + u′) − ϕ(x) − 〈x∗, u′〉
‖u′‖ ≤ 0

⎫

⎬

⎭
.

One can easily show that in case u �= 0 our limiting directional subdifferential is
the same as the basic directional subdif ferential used in [8].

Obviously we have ∂ϕ(x; 0) = ∂ϕ(x) and ∂̂+ϕ(x; 0) = ∂̂+ϕ(x). If ϕ is Fréchet
differentiable at x then ∂̂+ϕ(x; u) = {∇ϕ(x)}, ∀u.

Proposition 1 Let x̄ be a local optimal solution to problem (1). Then, for every critical
direction u for (1) at x̄ the multifunction MP is not mixed regular/subregular in di-
rection (u, 0) at (x̄, ( f (x̄), 0)). Further, for every direction u ∈ X with 0 ∈ CG(x̄, 0)(u)

and every x∗ ∈ ∂̂+ f (x̄; u) with 〈x∗, u〉 ≤ 0 the multifunction Mx∗ is not mixed regu-
lar/subregular in direction (u, 0) at (x̄, (〈x∗, x̄〉, 0)).

Proof To show the first part, assume on the contrary that there is some critical direc-
tion u such that MP is mixed regular/subregular in direction (u, 0) at (x̄, ( f (x̄), 0)).
Let the positive constants ρ, δ, κ be chosen according to Definition 3 and consider
sequences (tk) ↓ 0 and (uk) → u fulfilling (19). Next choose τ ∈ (0, δ

4 ] and set xk :=
x̄ + tkuk and

fk :=
{

f (x̄) − τ tk ‖uk‖ if u �= 0,
f (x̄) − τ tk if u = 0.

If u �= 0, by passing to subsequences if necessary, we can assume that f (xk) ≤ f (x̄) +
τ tk‖uk‖, d(0, G(xk)) ≤ τ tk‖uk‖ and ‖ũk − ũ‖ ≤ τ , where ũk := uk/‖uk‖, ũ := u/‖u‖.
Then we obtain, since 1 = ‖ũk‖ ≤ ‖(ũk, −τ)‖ ≤ 1 + τ

∥
∥
∥
∥

(xk − x̄, fk − f (x̄))

‖(xk − x̄, fk − f (x̄))‖ − (u, 0)

‖(u, 0)‖
∥
∥
∥
∥

=
∥
∥
∥
∥

(ũk,−τ)

‖(ũk,−τ)‖ − (ũ, 0)

∥
∥
∥
∥

≤
∥
∥
∥
∥

ũk

‖(ũk,−τ)‖ − ũk

∥
∥
∥
∥

+ ‖ũk − ũ‖ + τ

‖(ũk,−τ)‖
≤ 3τ < δ
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showing (xk, fk) ∈ (x̄, f (x̄)) + Vρ,δ(u, 0), and

d((xk, ( fk, 0)), gph MP) ≤ d(( fk, 0), MP(xk))

≤ (max{ f (xk) − fk, 0} + d(0, G(xk)))

≤ 2τ tk ‖uk‖ ≤ δ ‖(xk, fk) − (x̄, f (x̄))‖ .

If u = 0 we can assume that f (xk) ≤ f (x̄) + τ tk, d(0, G(xk)) ≤ τ tk and (xk, fk) ∈
(x̄, f (x̄)) + Vρ,δ(u, 0). Hence in both cases there exists x̃k ∈ M−1

P ( fk, 0) with

∥
∥x̃k − xk

∥
∥ ≤ κd(( fk, 0), MP(xk)) ≤

{

2κτ tk ‖uk‖ if u �= 0,
2κτ tk if u = 0,

showing lim x̃k = x̄, 0 ∈ G(x̃k) and f (x̃k) ≤ fk < f (x̄), a contradiction to the optimal-
ity of x̄ and therefore the first assertion is proved.

To show the second part, consider some fixed u ∈ X with 0 ∈ CG(x̄, 0)(u) and
some x∗ ∈ ∂̂+ f (x̄; u) with 〈x∗, u〉 ≤ 0 and assume on the contrary that Mx∗ is mixed
regular/subregular in direction (u, 0) at (x̄, (〈x∗, x̄〉, 0)) with constants ρ, δ, κ . Then
we choose η̄ > 0 such that

lim sup

u′ V1,η (u)→ 0

f (x̄ + u′) − f (x̄) − 〈x∗, u′〉
‖u′‖ ≤ η

4(1 + 8κ)
, ∀0 < η ≤ η̄

and set τ := min
{

δ
4 , 1

4κ
,

η̄

1+8κ

}

. Since 0 ∈ CG(x̄, 0)(u) there are sequences (tk) ↓ 0,
(uk) → u satisfying limk→∞ d(0, G(x̄ + tkuk))/tk = 0 and

lim sup
k→∞

〈x∗, x̄ + tkuk〉 − 〈x∗, x̄〉
tk

= lim sup
k→∞

〈x∗, uk〉 = 〈x∗, u〉 ≤ 0

and we can proceed as before, with f (x) replaced by 〈x∗, x〉, to find the sequence
(x̃k) ⊂ G−1(0) satisfying

〈x∗, x̃k − x̄〉 ≤
{

−τ tk ‖uk‖ if u �= 0,
−τ tk if u = 0.

If u �= 0, by setting ξk := (x̃k − xk)/(2τκtk ‖uk‖) we obtain, since ‖ξk‖ ≤ 1,
∥
∥
∥
∥

x̃k − x̄
‖x̃k − x̄‖ − ũ

∥
∥
∥
∥

=
∥
∥
∥
∥

ũk + 2τκξk

‖ũk + 2τκξk‖ − ũ

∥
∥
∥
∥

≤ ‖ũk − ũ‖ +
∣
∣‖ũk + 2τκξk‖ − 1

∣
∣ + 2τκ

‖ũk + 2τκξk‖

≤ τ + 4τκ

1 − 2τκ
≤ τ(1 + 8κ) := η ≤ η̄,

implying

lim sup
k→∞

f (x̃k) − f (x̄) − 〈x∗, x̃k − x̄〉
‖x̃k − x̄‖ ≤ η

4(1 + 8κ)
= τ

4
.

Since ‖x̃k − x̄‖ ≤ 2κτ tk ‖uk‖ + tk ‖uk‖ ≤ 3
2 tk ‖uk‖ we obtain for all k sufficiently large

f (x̃k) − f (x̄) < 〈x∗, x̃k − x̄〉 + 4

3

τ

4
‖x̃k − x̄‖ ≤ −τ

2
tk ‖uk‖ < 0,

contradicting the optimality of x̄.
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If u = 0, then x∗ ∈ ∂̂+ f (x̄) and therefore

lim sup
k→∞

f (x̃k) − f (x̄) − 〈x∗, x̃k − x̄〉
‖x̃k − x̄‖ ≤ 0.

Together with ‖uk‖ → 0 we obtain for all k sufficiently large

f (x̃k) − f (x̄) < 〈x∗, x̃k − x̄〉 + τ‖x̃k − x̄‖ ≤ −τ tk + τ(2κτ tk + tk ‖uk‖) < −1

4
τ tk < 0,

again contradicting the optimality of x̄. This completes the proof of the proposition.
��

Theorem 7 Let x̄ be a locally optimal solution and let u ∈ X be a critical direction
for (1) at x̄. Assume that G has closed graph and that G is metrically subregular in
direction u at (x̄, 0).

(i) If Z is Fréchet smooth or both X and Z are Asplund spaces, then

−{x∗ ∈ ∂̂+ f (x̄; u) | 〈x∗, u〉 ≤ 0} ⊂
⋃

z∗∈Z ∗
D̃∗

MG((x̄, 0); (u, 0))(z∗).

(ii) If f is Lipschitzian near x̄ and both X and Z are Asplund spaces, then there is
some z∗ ∈ Z ∗ such that

0 ∈ ∂ f (x̄; u) + D∗
NG((x̄, 0); (u, 0))(z∗).

Proof To prove (i), consider for fixed x∗ ∈ ∂̂+ f (x̄; u) with 〈x∗, u〉 ≤ 0 the multi-
function Mx∗ . Since M1(x) = 〈x∗, x〉 − R− has the Aubin property, by Lemma 3 the
multifunction M2 is proper subregular in direction u with respect to M1 and 0. By
Proposition 1 it follows that Mx∗ is not mixed regular/subregular in direction (u, 0)

and from Theorem 6 we conclude that ((0, 0), 0) ∈ Cr R×{0}Mx∗((x̄, (〈x∗, x̄〉, 0)); u),
i.e. there exist a constant β > 0 and sequences (εk) ↓ 0, (tk) ↓ 0, (uk, x∗

k) →
(u, 0), (vk) = (τk, wk) → (0, 0) ∈ R × Z , (y∗

k) = (αk, z∗
k) ⊂ SR×Z ∗ with (−x∗

k, y∗
k) ∈

N̂εk((x̄ + tkuk, (〈x∗, x̄〉 + tkτk, 0 + tkwk)); gph Mx∗) and ‖y∗
k|R×{0}

‖ = |αk| ≥ β. Taking
xk := x̄ + tkuk, (γk, zk) := (〈x∗, x̄〉 + tkτk, 0 + tkwk) we have (xk, (γk, zk)) ∈ gph Mx∗

and for each k there is some positive radius ηk > 0 such that

〈−x∗
k, x − xk〉 + αk(γ − γk) + 〈z∗

k, z − zk〉 ≤ ε′
k ‖(x, (γ, z)) − (xk, (γk, zk))‖

for every (x, (γ, z)) ∈ gph Mx∗ ∩ ((xk, (γk, zk)) + ηkBX×(R×Z )), where ε′
k := εk + 1

k .
Taking x = xk, z = zk, γ = γk + ηk and γ = γk + τk(〈x∗, xk〉 − γk) with τk > 0
sufficiently small yields αkηk ≤ ε′

kηk and αkτk(〈x∗, xk〉 − γk) ≤ ε′
kτk(〈x∗, xk〉 − γk).

Since |αk| ≥ β > 0 and (ε′
k) → 0 we obtain αk ≤ −β < 0 and γk = 〈x∗, xk〉 for all k

sufficiently large. Defining (x̃∗
k, z̃∗

k, ε̃k) := (x∗
k, z∗

k, ε
′
k)/(−αk) we obtain

〈−x̃∗
k − x∗, x − xk〉 + 〈z̃∗

k, z − zk〉 ≤ ε̃k
∥
∥(x − xk, (〈x∗, x − xk〉, z − zk))

∥
∥

for all (x, z) ∈ gph G with ‖(x − xk, (〈x∗, x − xk〉, z − zk))‖ ≤ ηk. Since

‖(x − xk, (〈x∗, x − xk〉, z − zk))‖ ≤ 2(1 + ‖x∗‖) ‖(x − xk, z − zk)‖
we conclude (−x̃∗

k − x∗, z̃∗
k) ∈ N̂2(1+‖x∗‖)ε̃k G(xk, zk). In any case Z is Asplund and

therefore, by eventually passing to a subsequence, the bounded sequence z̃∗
k
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weakly∗ converges to some element −z∗. Since −x̃∗
k − x∗ → −x∗, we conclude −x∗ ∈

D̃∗
MG((x̄, 0); (u, 0))(z∗). This justifies (i).
To prove (ii), by again invoking Lemma 3, Proposition 1 and Theorem 6 and using

similar arguments as in the first part of the proof we obtain the existence of sequences
(ε̃k) ↓ 0, (tk) ↓ 0, (uk, x∗

k) → (u, 0), (wk) → 0, (ηk) > 0 and a bounded sequence (z̃∗
k),

such that

〈−x̃∗
k, x − xk〉 − ( f (x) − f (xk)) + 〈z̃∗

k, z − zk〉 ≤ ε̃k ‖(x − xk, ( f (x) − f (xk), z − zk))‖
≤ 2ε̃k((1 + L) ‖(x − xk, z − zk)‖

for all (x, z) ∈ gph G satisfying 2(1 + L) ‖(x − xk, z − zk)‖ ≤ ηk, where xk := x̄ +
tkuk, zk = 0 + tkwk and L denotes the Lipschitz module of f near x̄. Hence, (xk, zk)

is a local minimizer of the problem

min
x,z

f (x) − 〈z̃∗
k, z〉 + 〈x̃∗

k, x〉 + ε̌k ‖(x − xk, z − zk)‖ + χgph G(x, z),

where ε̌k := 2(1 + L)ε̃k and by the fuzzy (semi-Lipschitzian) sum rule (see, e.g., [24,
Theorem 2.33]) we can find points (x′

k, z′
k), (x′′

k, y′′
k) ∈ (xk, zk) + tk

k BX×Z and lin-
ear functionals (x′∗

k , z′∗
k ) ∈ ∂̂ϕ1(x′

k, z′
k), (x′′∗

k , z′′∗
k ) ∈ ∂̂ϕ2(x′′

k, z′′
k) with ϕ1(x, z) := f (x)−

〈z̃∗
k, z〉 + 〈x̃∗

k, x〉, ϕ2(x, z) := χgph G(x, z) + ε̌k ‖(x − xk, z − zk)‖, such that
∥
∥(x′∗

k , z′∗
k )+

(x′′∗
k , z′′∗

k )
∥
∥ ≤ tk

k . Thus x′∗
k ∈ x̃∗

k + ∂ f (x′
k), z′∗

k = −z̃∗
k, (x′′∗

k , z′′∗
k ) ∈ N̂ε̌k((x′′

k, z′′
k), gph G)

and consequently

(−x̃∗
k − x̂∗

k, z̃∗
k) ∈ N̂

ε̌k+ tk
k
((x′′

k, z′′
k), gph G)

with x̂∗
k ∈ ∂ f (x′

k). By Lipschitz continuity of f , ‖x̂∗
k‖ ≤ L and since both X and Z are

Asplund, some subsequence of the bounded sequence (x̂∗
k, z̃∗

k) weakly∗ converges
to some (x∗,−z∗). Since limk(x′

k − x̄)/tk = limk(x′′
k − x̄)/tk = u, lim(z′′

k − 0)/tk = 0,
limk x̃∗

k = 0 we obtain −x∗ ∈ D∗
NG((x̄, 0); (u, 0))(z∗) and x∗ ∈ ∂ f (x̄; u). This com-

pletes the proof of the theorem. ��

Let us compare the results of Theorem 7 in case u = 0 with those of Theorem
3. Even in this case Theorem 7 improves the known results for the upper Fréchet
subdifferential by weakening the assumption of metric regularity of G to metric
subregularity and enlarging the range of applicability to the situation when Y is
Fréchet smooth and X is an arbitrary Banach space. One can show that, by assuming
that G is metrically regular, the condition (5) of Theorem 3 states that for every
x∗ ∈ ∂̂+ f (x̄) the multifunction Mx∗ is not metrically regular near (x̄, (〈x∗, x̄〉, 0)),
whereas Theorem 7 in case u = 0 is based on the stronger statement of Proposition
1, that for a local minimizer x̄ the multifunction Mx∗ is not mixed regular/subregular
at (x̄, (〈x∗, x̄〉, 0)).

Note that for every u ∈ X we have the inclusions D̃∗
MG((x̄, 0); (u, 0))(z∗) ⊂

D̃∗
MG(x̄, 0)(z∗), D∗

NG((x̄, 0); (u, 0))(z∗) ⊂ D∗
NG(x̄, 0)(z∗) and ∂ f (x̄; u) ⊂ ∂ f (x̄). Fur-

ther, if f is Fréchet differentiable at x̄, then 〈∇ f (x̄), u〉 ≤ 0 for every critical direction
u. Hence we obtain the following corollary.

Corollary 2 Let x̄ be a locally optimal solution and assume that G has closed graph.
Further assume that G is metrically subregular in some critical direction u ∈ X at (x̄, 0).
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(i) If f is Fréchet dif ferentiable at x̄ and if Z is Fréchet smooth or both X and Z
are Asplund spaces, then there is some z∗ ∈ Z ∗ such that

0 ∈ ∇ f (x̄) + D̃∗
MG(x̄, 0)(z∗).

(ii) If f is Lipschitzian near x̄ and both X and Z are Asplund spaces, then there is
some z∗ ∈ Z ∗ such that

0 ∈ ∂ f (x̄) + D∗
NG(x̄, 0)(z∗).

For the sake of completeness we state the necessary optimality conditions if no
constraint qualification condition is fulfilled. For every critical direction we obtain
optimality conditions of Fritz–John-type with a nonnegative multiplier corresponding
to the cost functional. If this multiplier is zero these necessary conditions reflect the
circumstance that the constraint mapping is not metrically regular with respect to the
critical direction.

Theorem 8 Let x̄ be a locally optimal solution and let u ∈ X be a critical direction for
(1) at x̄. Assume that G has closed graph and that G is PSNC in direction (u, 0) at
(x̄, 0) with respect to Z .

(i) If Z is Fréchet smooth or both X and Z are Asplund spaces, then for each x∗ ∈
∂̂+ f (x̄; u) with 〈x∗, u〉 ≤ 0 there are some λ0 ≥ 0 and some z∗ ∈ Z ∗ such that
(λ0, z∗) �= (0, 0) and

0 ∈ λ0x∗ + D̃∗
MG((x̄, 0); (u, 0))(z∗).

(ii) If f is Lipschitzian near x̄, ∂ f (x̄; u) �= ∅ and both X and Z are Asplund spaces,
then there are some λ0 ≥ 0 and some z∗ ∈ Z ∗ such that (λ0, z∗) �= (0, 0) and

0 ∈ λ0∂ f (x̄; u) + D∗
NG((x̄, 0); (u, 0))(z∗).

Proof If G is metrically subregular in direction u then the assertion follows from
Theorem 7 with λ0 = 1. Hence we assume that G is not metrically subregular in
direction u and by Lemma 1 and Theorem 4 we obtain (0, 0) ∈ Cr G((x̄, 0); u).
Then there exist sequences (tk) ↓ 0, (εk) ↓ 0, (uk, vk, x∗

k) → (u, 0, 0), (z∗
k) ⊂ SZ ∗ with

(−x∗
k, z∗

k) ∈ N̂εk((x̄ + tkuk, 0 + tkvk), gph G). In any case Z is Asplund and hence,
by passing to a subsequence we can assume that (z∗

k) weakly∗ converges to some
z∗. Since G is PSNC in direction (u, 0) with respect to Z we conclude z∗ �= 0 and,
taking into account D̃∗

MG(x̄, 0); (u, 0)) ⊂ D∗
NG(x̄, 0); (u, 0)), the assertion follows

with λ0 = 0. ��
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