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Abstract In this paper, some infinite alternative theorems in locally convex vec-
tor spaces are proved and some applications of these theorems in optimization
theory are addressed. Extensions of constraint qualification conditions, in the ab-
sence of differentiability using Clarke’s generalized gradient and Mordukhovich’s
subdifferential, in Banach and Asplund spaces are introduced; and relationships
between them are established. Some of these relations, are proved using the provided
alternative theorems.
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1 Introduction

Alternative theorems play a vital role in pure and applied mathematical analysis,
especially in mathematical optimization. The classical alternative theorems establish
the equivalence between the existence of solutions for a certain ordinary linear
system and the negation of another proposition that is a statement about the
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position of certain points with respect to one or two polyhedral convex sets as-
sociated with the system. Such results play a crucial role in optimization as well
as game theory (see, e.g., [2, 5, 7, 13]). Thanks to their applications, studying the
alternative theorems is crucial. In this paper, some infinite alternative theorems in
locally convex vector spaces are proved, which generalize some results studied in
[2, 5, 7]. Afterwards, an application of the established results in optimization theory is
addressed.

On the other hand, the notion of generalized differentiation plays a fundamental
role in modern variational analysis and optimization [1, 3, 8–10, 13]. In this paper,
we utilize two well-known classes of generalized differentials: Clarke’s generalized
gradient and Mordukhovich’s subdifferential. These consist of two main classes
of generalized differentials, and play a vital role in pure and applied mathemati-
cal analysis; see [1, 3, 8–10, 14, 15] for some discussions and applications. Using
these generalized differentials, nonsmooth versions of some constraint qualification
conditions in optimization theory, in the absence of differentiability, in Banach
and Asplund spaces are introduced and relationships between them are estab-
lished. To establish some of these relationships, we utilize the provided alternative
theorems.

The rest of the paper unfolds as follows: Section 2 contains some preliminaries
from nonsmooth analysis and optimization; Section 3 is devoted to novel alternative
theorems; and Section 4 addresses nonsmooth constraint qualification conditions.

2 Preliminaries

Throughout this paper, we consider three spaces X, Y, and Z , which are: a real
locally convex space, a real Banach space, and a real Asplund space, respectively.
X∗, Y∗, and Z ∗ denote the topological duals of X, Y, and Z , respectively, equipped
with the weak∗ topology, and 〈., .〉 is the duality pairing.

In this section, we review some preliminaries from nonsmooth analysis about
some well-known generalized differentials: Clarke’s generalized gradient and
Mordukhovich’s subdifferential.

Mordukhovich’s subdifferential consists of a main class of generalized dif-
ferentials, and plays a vital role in pure and applied mathematical analysis [1, 8–
10, 17]. Definition of these subdifferentials and one of their properties are outlined
in this section.

Let ∅ �= � ⊆ Z . Given x ∈ � and ε ≥ 0, the set of ε-normals to � at x is
defined by

̂Nε(x; �) =
{

ζ ∗ ∈ Z ∗ : lim sup
v

�−→x

〈ζ ∗, v − x〉
‖v − x‖ ≤ ε

}

,

in which the symbol v
�−→ x means v −→ x with v ∈ �. If x /∈ �, we set ̂Nε(x;�) = ∅

for all ε ≥ 0. The limiting normal cone to � at x̄ ∈ � is defined as follows:

N(x̄; �) = lim sup
x−→x̄

ε↓0

̂Nε(x; �).
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Set N(x̄; �) = ∅ for x̄ /∈ �. Considering the extended-real-valued function ϕ : Z −→
R = [−∞, +∞], the epigraph of ϕ is defined as, epiϕ = {(x, a) ∈ Z × R : ϕ(x) ≤ a}.
Considering a point x̄ ∈ Z with |ϕ(x̄)| < ∞, the set

∂Mϕ(x̄) = {ζ ∈ Z : (ζ,−1) ∈ N((x̄, ϕ(x̄)); epiϕ)}
is Mordukhovich’s subdifferential of ϕ at x̄, and its elements are Mordukhovich
subdifferentials of ϕ at this point. Set ∂Mϕ(x̄) = ∅ if |ϕ(x̄)| = ∞. See [9, 10] for more
details and applications. One of the classes of functions whose set of Mordukhovich
subdifferentials is nonempty is the class of locally Lipschitz functions. Considering
this class in Z , the following result is obtained (see [9]). This theorem helps us in
Section 4 of the paper.

Theorem 1 [9] Let ϕ be locally Lipschitz on an open set containing [x, y]. Then

ϕ(y) − ϕ(x) ≤ 〈ζ, y − x〉
for some c ∈ [x, y), ζ ∈ ∂Mϕ(c).

We follow this preliminary section by introducing the notion of Clarke’s general-
ized gradient under Banach space Y. Considering h : Y −→ R as a locally Lipschitz
function, the Clarke’s generalized directional derivative of h at x̄ ∈ Y in the direction
d ∈ Y, denoted by h◦(x̄; d), is defined as

h◦(x̄; d) = lim sup
x−→x̄

t↓0

h(x + td) − h(x)

t
.

The Clarke’s generalized gradient of h at x̄ is given by

∂Ch(x̄) = {ξ ∗ ∈ Y∗ : h◦(x̄; d) ≥ 〈ξ ∗, d〉, ∀d ∈ Y}.
The following theorems, which provide some properties of the multifunction ∂C(.),

help us in Section 4.

Theorem 2 [3] Let h be Lipschitz near x with Lipschitz constant K, then

(i) ∂Ch(x) is a nonempty, convex, and weak∗-compact set.
(ii) ‖ξ ∗‖∗ ≤ K for every ξ ∗ ∈ ∂Ch(x), where

‖ξ ∗‖∗ = sup{〈ξ ∗, v〉 : v ∈ Y, ‖v‖ ≤ 1}.
(iii) Let xi and ξ ∗

i be sequences in Y and Y∗ such that ξ ∗
i ∈ ∂Ch(xi). Suppose that xi

converges to x, and that ξ ∗ is a cluster point of ξ ∗
i in the weak∗− topology. Then

ξ ∗ ∈ ∂Ch(x).

Theorem 3 [3] Let x, y ∈ Y, and suppose that h is Lipschitz on an open set containing
the line segment [x, y]. Then there exists a point u ∈ (x, y) such that

h(y) − h(x) ∈ 〈∂Ch(u), y − x〉.

In addition to the above theorems, the following known results are used in the
next sections of the paper as well.
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Lemma 4 [6] Let C1, C2, . . . , Cn be convex subsets of Y. Then the convex hull of
∪n

i=1Ci consists of all vectors of the form
∑n

i=1 λixi, where λi ≥ 0, xi ∈ Ci (1 ≤ i ≤ n),

and
∑n

i=1 λi = 1.

Theorem 5 [6] Let C1, C2 be disjoint nonempty closed convex subsets of a real locally
convex topological vector space X, and suppose that at least one of which is compact.
Then C1 and C2 are strictly separated by a hyperplane, i.e., there is a continuous linear
functional ψ on X such that supC1

ψ < infC2 ψ.

We close this section by providing two definitions of nonsmooth pseudo-convexity
as generalizations of convexity, see [2, 12].

Definition 1 The locally Lipschitz function h : Y −→ R is called a pseudo-convex
function with respect to ∂C (in short, CPC), if for each x, y ∈ Y,

∃ζ ∗ ∈ ∂Ch(y); 〈ζ ∗, x − y〉 ≥ 0 =⇒ h(x) ≥ h(y).

Definition 2 The locally Lipschitz function h : Z −→ R is called a pseudo-convex
function with respect to ∂M (in short, MPC), if for each x, y ∈ Z ,

∃ζ ∗ ∈ ∂Mh(y); 〈ζ ∗, x − y〉 ≥ 0 =⇒ h(x) ≥ h(y).

3 Infinite Alternative Theorems

In this section, we use the locally convex space X. Thanks to their applications, the
alternative theorems are worth studying in pure and applied mathematical analysis.
One of the most important alternative theorems is Motzkin’s theorem, which is
generalized in the following result. If X = R

n, then the following theorem collapses
in Theorem 3.5 in [5]. Furthermore, if X = R

n and Ii sets are finite, then the following
theorem collapses in Theorem 4.2 in [7].

Theorem 6 Let {x∗
i }i∈I1∪I2∪I3 be a family of members in X∗ such that I1 �= ∅ and

conv {x∗
i : i ∈ I1} + cone {x∗

j : j ∈ I2} + span {x∗
k : k ∈ I3}

be closed. Then exactly one of the following statements holds:

(i) 0 ∈ conv {x∗
i : i ∈ I1} + cone {x∗

j : j ∈ I2} + span {x∗
k : k ∈ I3},

(ii) there exists x ∈ X such that

⎧

⎨

⎩

〈x∗
i , x〉 > 0 for all i ∈ I1,

〈x∗
j , x〉 ≥ 0 for all j ∈ I2,

〈x∗
k, x〉 = 0 for all k ∈ I3.

Proof If (i) holds, then it is clear that system (ii) has no solution. So, assume that (i)
does not hold. Thus

{0} ∩ (conv {x∗
i : i ∈ I1} + cone {x∗

j : j ∈ I2} + span {x∗
k : k ∈ I3}) = ∅.
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Since one of the above disjoint convex sets is compact, the other is closed and X∗ is
a locally convex space, by a separation theorem, [4] (See Theorem 5), there exists a
continuous linear functional ψ on X∗ such that

〈ψ, 0〉 < 〈ψ, x∗〉,
for each x∗ ∈ conv {x∗

i : i ∈ I1} + cone {x∗
j : j ∈ I2} + span {x∗

k : k ∈ I3}. Since X∗ has
been equipped with weak∗ topology, X∗∗ = X, and hence ψ ∈ X. Also we have

〈

ψ, x∗
i

〉

> 0 for each i ∈ I1,

and
〈

ψ, x∗
i + λx∗

j

〉

> 0 for each i ∈ I1, j ∈ I2, λ > 0.

Therefore

〈ψ, x∗
i 〉

−λ
<

〈

ψ, x∗
j

〉

for each i ∈ I1, j ∈ I2, λ > 0,

which implies that
〈

ψ, x∗
j

〉

≥ 0 for each j ∈ I2.

Furthermore, we have
〈

ψ, x∗
i + λx∗

k

〉

> 0 for each i ∈ I1, k ∈ I3, λ ∈ R,

which implies that
〈

ψ, x∗
k

〉 = 0 for each k ∈ I3.

Thus ψ is a solution to system (ii) and the proof is complete. ��

Setting I2 = I3 = ∅, the above theorem leads to an infinite generalization of
Gordan’s theorem [5], which is an important alternative theorem. If X = R

n and
I2 = I3 = ∅, then the above theorem collapses in Theorem 3.2 in [5]. And if X =
R

n, I2 = I3 = ∅, and I1 is finite, then the above theorem leads to Corollary 1 of
Theorem 2.4.5 in [2].

The following two theorems provide Farkas-type and Gale-type infinite alterna-
tive theorems for locally convex vector spaces.

Theorem 7 Let {x∗
i }i∈I and {αi}i∈I be two families of members in X∗ and R, re-

spectively. Also suppose that x∗
0 ∈ X∗ and α ∈ R. Then exactly one of the following

statements holds:

(i)
(

x∗
0

α

)

∈ cl cone
{(

x∗
i

αi

)

: i ∈ I,
(

0X∗

−1

)}

or
(

0X∗

1

)

∈ cl cone
{(

x∗
i

αi

)

: i ∈ I
}

,

(ii) there exists x ∈ X such that
{ 〈x∗

i , x〉 ≥ αi for i ∈ I,
〈x∗

0, x〉 < α.
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Proof First assume that (i) holds, and by contradiction suppose that there exists an
x̄ ∈ X which satisfies system (ii). There are two possible cases:

Case a.
(

x∗
0

α

)

∈ cl cone
{(

x∗
i

αi

)

: i ∈ I,
(

0X∗

−1

)}

In this case, there exists a sequence
{(

y∗
j

β j

)}

such that

lim
j−→∞

(

y∗
j

β j

)

=
(

x∗
0

α

)

,

and
(

y∗
j

β j

)

=
∑

i∈I

λ
j
i

(

x∗
i

αi

)

+ λ
j
0

(

0X∗

−1

)

, j = 1, 2, . . .

for some λ j ∈ R
(I)
+ and λ

j
0 ≥ 0. Now we have

〈x∗
0, x̄〉 = lim

j−→∞
〈y∗

j , x̄〉 = lim
j−→∞

∑

i∈I

λ
j
i 〈x∗

i , x̄〉

≥ lim
j−→∞

∑

i∈I

λ
j
i αi = lim

j−→∞
(β j + λ

j
0) ≥ lim

j−→∞
β j = α.

Hence, 〈x∗
0, x̄〉 ≥ α. This contradicts the feasibility of x̄ for system (ii) and completes

the proof in this case.

Case b.
(

0X∗

1

)

∈ cl cone
{(

x∗
i

αi

)

: i ∈ I
}

In this case, there exists a sequence
{(

y∗
j

β j

)}

such that

lim
j−→∞

(

y∗
j

β j

)

=
(

0X∗

1

)

,

and
(

y∗
j

β j

)

=
∑

i∈I

λ
j
i

(

x∗
i

αi

)

, j = 1, 2, . . .

for some λ j ∈ R
(I)
+ . Now we have

0 = lim
j−→∞

〈y∗
j , x̄〉 = lim

j−→∞
∑

i∈I

λ
j
i 〈x∗

i , x̄〉 ≥ lim
j−→∞

∑

i∈I

λ
j
i αi = lim

j−→∞
β j = 1.

This is an obvious contradiction and completes the proof in this case.
Now let us to prove the converse statement. Assume that (ii) does not hold, then

there are two possible cases:

Case 1 The system {〈x∗
i , x〉 ≥ αi, i ∈ I} has solution, but all of its solutions satisfy the

relation 〈x∗
0, x〉 ≥ α. Considering

A = cone
{(

x∗
i

αi

)

: i ∈ I,
(

0X∗

−1

)}

,
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in this case we show that
(

x∗
0

α

)

∈ clA. By contradiction suppose that

{(

x∗
0

α

)}

∩ clA = ∅.

Since one of the above disjoint convex sets is compact, the other is closed and X∗
is a locally convex space, by a separation theorem, [4] (See Theorem 5), there exists
(ψ, θ) ∈ X∗∗ × R such that

〈ψ, x∗
0〉 + θα := γ < 〈ψ, x∗〉 + θβ, ∀

(

x∗
β

)

∈ clA.

Since X∗ has been equipped with weak∗ topology, X∗∗ = X, and hence ψ ∈ X. Also
since clA is a cone we have

γ < λ
(〈

ψ, x∗〉 + θβ
)

,

for each λ > 0, which implies that

〈ψ, x∗〉 + θβ ≥ 0, ∀
(

x∗
β

)

∈ clA.

Hence regarding the strong separation,

〈ψ, x∗〉 + θβ ≥ 0 > γ, ∀
(

x∗
β

)

∈ clA.

By setting
(

0X∗

−1

)

in the above inequality we have θ ≤ 0. If θ = 0, then we get

〈ψ, x∗〉 ≥ 0 > γ = 〈ψ, x∗
0〉, ∀

(

x∗
β

)

∈ clA.

Thus considering x̄ as a solution of the system {〈x∗
i , x〉 ≥ αi, i ∈ I}, for a large r > 0,

x = x̄ + rψ is a solution of the system {〈x∗
i , x〉 ≥ αi, i ∈ I} which satisfies the relation

〈x∗
0, x〉 < α. This contradicts the assumption of case 1.
If θ < 0. Defining x̂ = −1

θ
ψ , x̂ is a solution to the system {〈x∗

i , x〉 ≥ αi, i ∈ I} which
does not satisfy the relation 〈x∗

0, x〉 ≥ α. This contradicts the assumption of case 1, and
the proof is complete in this case.

Case 2 The system {〈x∗
i , x〉 ≥ αi, i ∈ I} has no solution x ∈ X. Therefore the system

{〈x∗
i , x〉 + αit ≥ 0, i ∈ I, t < 0

}

has no also solution (x, t) ∈ X × R. Thus for every solution (x, t) of the feasible
system

{〈

x∗
i , x

〉 + αit ≥ 0, i ∈ I
}

we have t ≥ 0. Therefore, regarding Case 1, we have
⎛

⎝

0X∗

1
0

⎞

⎠ ∈ cl cone

⎧

⎨

⎩

⎛

⎝

x∗
i

αi

0

⎞

⎠ : i ∈ I,

⎛

⎝

0X∗

0
−1

⎞

⎠

⎫

⎬

⎭

,
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which leads to
(

0X∗

1

)

∈ cl cone
{(

x∗
i

αi

)

: i ∈ I
}

,

and the proof is complete. ��

Theorem 8 Let {x∗
i }i∈I and {αi}i∈I be two families of members in X∗ and R, respec-

tively. Then exactly one of the following statements holds:

(i)
(

0X∗

1

)

∈ cl cone
{(

x∗
i

αi

)

: i ∈ I
}

,

(ii) there exists x ∈ X such that 〈x∗
i , x〉 ≥ αi, for each i ∈ I.

Proof To prove this result, we only have to consider Cases 2 and b in the proof of
Theorem 7. ��

The alternative theorems provided in this section can be useful tools for estab-
lishing some new results in optimization in infinite-dimensional spaces. Also, these
can help us to provide shortest proofs for some results existing in the optimization
theory. For instance, by studying the proofs of Theorem 3.1 in [13] and Theorem 4.1
in [16], it is not difficult to see that some parts of the proofs of these theorems can be
shorted using Theorem 6 (Remark 1) of the present paper.

Furthermore, in the next section some nonsmooth Constraint Qualification (CQ)
conditions in Banach (Asplund) spaces are studied, and relationships between them
are proved. To prove some of these relations, we utilize the alternative theorems
given in this paper.

4 Constraint Qualification Conditions

Let us to consider the following optimization problem:

min{ f (x) : x ∈ C, gi(x) ≤ 0, i = 1, 2, . . . , m}, (P)

in which C is a nonempty convex subset of space T, that T can be Banach space
Y or Asplund space Z . Also, f, gi : T −→ R for i = 1, 2, . . . , m are locally Lipschitz
functions. Suppose that

S = {x : x ∈ C, gi(x) ≤ 0, i = 1, 2, . . . , m}
is the feasible set of Problem (P). Considering x0 ∈ S, we assume that

Ix0 = {i ∈ {1, 2, . . . , m} : gi
(

x0) = 0}.
The Constraint Qualification (CQ) conditions are some assumptions (conditions)

which help to derive optimality conditions in optimization theory. These conditions
have been defined and studied in many publications, see e.g. Chapter 5 in [2] for a
review. In addition to deriving the optimality conditions, CQ conditions were utilized
for other purposes too, see e.g. [2, 13, 16].

In this section, we provide some novel nonsmooth CQ conditions, for problem
(P) at x0 ∈ S, with respect to Clarke’s generalized gradient and Mordukhovich’s
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subdifferential, in Banach and Asplund spaces, respectively. To this end, we need to
define some sets as follows. The following four sets are defined using ∂C(.) in Banach
space Y.

HC
x0 = {

d ∈ Y : ∀i ∈ Ix0 ∃ζ ∗
i ∈ ∂Cgi

(

x0) such that 〈ζ ∗
i , d〉 < 0

}

,

HC′
x0 = {

d ∈ Y : ∀i ∈ Ix0 ∃ζ ∗
i ∈ ∂Cgi

(

x0) such that 〈ζ ∗
i , d〉 ≤ 0

}

,

GC
x0 =

⎧

⎨

⎩

d ∈ Y : 〈ζ ∗, d〉 < 0, ∀ζ ∗ ∈
⋃

i∈Ix0

∂Cgi
(

x0)

⎫

⎬

⎭

,

GC′
x0 =

⎧

⎨

⎩

d ∈ Y : 〈ζ ∗, d〉 ≤ 0, ∀ζ ∗ ∈
⋃

i∈Ix0

∂Cgi
(

x0)

⎫

⎬

⎭

.

The following four sets are defined using ∂M(.) in Asplund space Z :

HM
x0 = {

d ∈ Z : ∀i ∈ Ix0 ∃ζ ∗
i ∈ ∂Mgi

(

x0) such that 〈ζ ∗
i , d〉 < 0

}

,

HM′
x0 = {

d ∈ Z : ∀i ∈ Ix0 ∃ζ ∗
i ∈ ∂Mgi

(

x0) such that 〈ζ ∗
i , d〉 ≤ 0

}

,

GM
x0 =

⎧

⎨

⎩

d ∈ Z : 〈ζ ∗, d〉 < 0, ∀ζ ∗ ∈
⋃

i∈Ix0

∂Mgi
(

x0)

⎫

⎬

⎭

,

GM′
x0 =

⎧

⎨

⎩

d ∈ Z : 〈ζ ∗, d〉 ≤ 0, ∀ζ ∗ ∈
⋃

i∈Ix0

∂Mgi
(

x0)

⎫

⎬

⎭

.

The following three sets are called the cones of feasible directions, attainable
directions, and tangents of S at x0 (see [2]). In these sets, we used the universal space
T, which can be Y or Z .

DT
x0 = {d ∈ T : d �= 0, ∃δ > 0 such that x0 + λd ∈ S ∀λ ∈ (0, δ)},

AT
x0 =

{

d ∈ T : d �= 0, ∃(δ > 0, α : R → Y); α(λ) ∈ S ∀λ ∈ (0, δ),

α(0) = x0, d = lim
λ↓0

α(λ) − α(0)

λ

}

.

and

TT
x0 =

{

d ∈ T : ∃ ({λk} ⊆ (0,+∞) , {xk} ⊆ S); xk → x0, d = lim
k→+∞

λk(xk − x0)

}

.

Now, we extend some CQ conditions for (P) as follows. These conditions generalize
some popular CQ conditions: Slater CQ, Linear independence CQ, Cottle CQ,
Zangwill CQ, KT CQ, and Abadie CQ. See Chapter 5 in [2] for more details.

Slater–Clarke–CQ (SCCQ) C is open, gi is CPC at x0 for each i ∈ Ix0 , and there
exists x̄ ∈ S such that gi(x̄) < 0, for each i ∈ Ix0 ;
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Slater–Mordukhovich–CQ (SMCQ) C is open, gi is MPC at x0 for each i ∈ Ix0 , and
there exists x̄ ∈ S such that gi(x̄) < 0, for each i ∈ Ix0 ;

Linear Independent–Clarke-CQ (LICCQ) C is open and, 0 /∈ ∑

i∈Ix0
ui∂Cgi(x0), for

each nonzero vector (ui; i ∈ Ix0);

Linear Independent–Mordukhovich–CQ (LIMCQ) C is open and, 0 /∈
conv(

⋃

i∈Ix0
∂Mgi(x0));

Cottle–Clarke–CQ (CCCQ) C is open and, clGC
x0 = GC′

x0 ;

Cottle–Mordukhovich–CQ (CMCQ) C is open and, clGM
x0 = GM′

x0 ;

Zangwill–Clarke–CQ (ZCCQ) clDY
x0 = GC′

x0 ;

Zangwill–Mordukhovich–CQ (ZMCQ) clDZ
x0 = GM′

x0 ;

Kuhn–Tucker-Clarke–CQ (KTCCQ) cl AY
x0 = GC′

x0 ;

Kuhn–Tucker–Mordukhovich-CQ (KTMCQ) cl AZ
x0 = GM′

x0 ;

Abadie–Clarke–CQ (ACCQ) TY
x0 = GC′

x0 ;

Abadie–Mordukhovich–CQ (AMCQ) T Z
x0 = GM′

x0 .

Furthermore, we define some new CQ conditions using two above-defined H-sets,
as follows:

CQ-1: C is open and, clHC
x0 = HC′

x0 ;
CQ-2: clDY

x0 = HC′
x0 ;

CQ-3: cl AY
x0 = HC′

x0 ;
CQ-4: TY

x0 = HC′
x0 ;

CQ-5: C is open and, clHM
x0 = HM′

x0 ;
CQ-6: clDZ

x0 = HM′
x0 ;

CQ-7: cl AZ
x0 = HM′

x0 ;
CQ-8: T Z

x0 = HM′
x0 .

The following theorem, which is the main result of this section, establishes some
relationships between the above CQ conditions for (P). Notice that, in the parts of
this theorem which we prove the relations between the CQ conditions with respect
to ∂C and those with respect to ∂M (Parts (ii), (iv), and (vi)), we assume that the
universal space is the Asplund space Z .

Theorem 9

(i) (SCCQ) =⇒ (CCCQ) =⇒ (CQ-1).
(ii) (SCCQ) =⇒ (SMCQ) =⇒ (CMCQ) =⇒ (CQ-5).

(iii) (LICCQ) =⇒ (CCCQ).
(iv) (LICCQ) =⇒ (LIMCQ).
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(v) If conv
(

⋃

i∈Ix0

∂Mgi(x0)
)

is closed, then: (LIMCQ) =⇒ (CMCQ).

(vi) (CCCQ) =⇒ (CMCQ).
(vii) (CQ-2) =⇒ (CQ-3) =⇒ (CQ-4).
(iix) (CQ-6) =⇒ (CQ-7) =⇒ (CQ-8).
(ix) If gi for each i ∈ Ix0 is convex, then (CCCQ) =⇒ (ZCCQ) =⇒ (KTCCQ) =⇒

(ACCQ).
(x) If gi for each i ∈ Ix0 is convex, then (CMCQ) =⇒ (ZMCQ) =⇒ (KTMCQ) =⇒

(AMCQ).

Proof

(i) Suppose that the SCCQ holds. Then C is open, gi is CPC at x0 for each i ∈ Ix0 ,

and there exists x̄ ∈ S such that gi(x̄) < 0, for each i ∈ Ix0 . Considering ζ ∗ ∈
⋃

i∈Ix0

∂Cgi(x0), there exists an i ∈ Ix0 such that ζ ∗ ∈ ∂Cgi(x0) and

gi(x̄) < 0 = gi
(

x0) .

By CPC assumption on gi at x0, we have
〈

ζ ∗, x̄ − x0〉 < 0.

Therefore,
〈

ζ ∗, x̄ − x0〉 < 0, ∀ζ ∗ ∈
⋃

i∈Ix0

∂Cgi
(

x0) .

This implies that GC
x0 �= ∅.

It is clear that clGC
x0 ⊆ GC′

x0 . Considering d ∈ GC′
x0 and d̄ ∈ GC

x0 , we have d +
λd̄ ∈ GC

x0 for each λ > 0, and lim
λ↓0

(d + λd̄) = d. Hence, d ∈ clGC
x0 . Therefore,

GC′
x0 ⊆ clGC

x0 . Thus clGC
x0 = GC′

x0 and hence (CCCQ) holds.
Now, if (CCCQ) holds, then GC

x0 �= ∅. Considering d̄ ∈ GC
x0 and d ∈ HC′

x0 , we
have d + λd̄ ∈ HC

x0 for each λ > 0, and lim
λ↓0

(d + λd̄) = d. This implies that d ∈
clHC

x0 . Hence HC′
x0 ⊆ clHC

x0 .
Now, we are going to show that clHC

x0 ⊆ HC′
x0 . To this end, assume that there

exists a sequence {dn} ⊆ HC
x0 such that dn −→ d. It is sufficient to show that

d ∈ HC′
x0 . Let i ∈ Ix0 . For each n ∈ N there exists ζ ∗

i,n ∈ ∂Cgi(x0) such that
〈

ζ ∗
i,n, dn

〉

< 0.

The set ∂Cgi(x0) is weak∗ compact, due to Theorem 2 and the Banach–Alaoglu
theorem [4, 11]. Hence, {ζ ∗

i,n}∞n=1 has a cluster point ζ ∗
i ∈ ∂Cgi(x0). Therefore,

the sequence {〈ζ ∗
i,n, d〉}∞n=1 has a subsequence {〈ζ ∗

i,nk
, d〉}∞k=1 convergent to

〈ζ ∗
i , d〉 in R. Consequently, the boundedness of {ζ ∗

i,nk
}∞k=1 implies that

〈

ζ ∗
i , d

〉 = lim
k→+∞

〈

ζ ∗
i,nk

, dnk

〉 ≤ 0.

Thus

∀i ∈ Ix0 ∃ζ ∗
i ∈ ∂Cgi

(

x0) such that
〈

ζ ∗
i , d

〉 ≤ 0.
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Hence d ∈ HC′
x0 . This implies that clHC

x0 ⊆ HC′
x0 .

Therefore, clHC
x0 = HC′

x0 , and so, (CQ-1) holds.
(ii) There is the relation

∂Cϕ
(

x0) = cl∗conv∂Mϕ
(

x0) (1)

between the Clarke and Mordukhovich subdifferential for locally Lipschitzian
functions on Asplund spaces; see Theorem 3.57 in [9]. By equation (1), if a
function is CPC, then it is MPC. Hence, (SCCQ)=⇒(SMCQ). The proof of
(SMCQ) =⇒ (CMCQ) =⇒ (CQ-5) is similar to that of part (i) and is hence
omitted.

(iii) Assume that the (LICCQ) holds. Then by Theorem 2 and Lemma 4,
we have 0 /∈ conv(

⋃

i∈Ix0

∂Cgi(x0)). By Theorem 3.20 in [11] and Theorem 2,

conv(
⋃

i∈Ix0

∂Cgi(x0)) is closed and hence, by alternative Theorem 6, there exists

d ∈ Y, such that

〈

ζ ∗, d
〉

> 0, ∀ζ ∗ ∈
⋃

i∈Ix0

∂Cgi
(

x0) .

Hence, −d ∈ GC
x0 .This implies that GC

x0 �= ∅. Therefore, clGC
x0 = GC′

x0 . Thus,
(CCCQ) holds.

(iv) Assume that (LICCQ) holds, while (LIMCQ) does not hold. This im-
plies that 0 ∈ conv(

⋃

i∈Ix0
∂Mgi(x0)). Hence, by equation (1), we have 0 ∈

conv(
⋃

i∈Ix0
∂Cgi(x0)). And hence, by Theorem 2 and Lemma 4, we get

0 ∈ ∑

i∈Ix0
ui∂Cgi(x0) for some nonzero vector (ui; i ∈ Ix0). This contradicts

(LICCQ). Therefore, (LICCQ)=⇒(LIMCQ).
(v) The proof of this part is similar to that of part (iii) and is hence omitted.

(vi) When C is open, then due to equation (1), we have: (CCCQ)=⇒ clGC
x0 =

GC′
x0 =⇒ GC

x0 �= ∅ =⇒ GM
x0 �= ∅ =⇒ clGM

x0 = GM′
x0 =⇒(CMCQ).

(vii) To prove this part, it is sufficient to show that

clDY
x0 ⊆ cl AY

x0 ⊆ TY
x0 ⊆ HC′

x0 . (2)

Considering d ∈ DY
x0 , there exists a δ > 0 such that x0 + λd ∈ S, ∀λ ∈ (0, δ).

Now, we define α : R → Y by α(λ) = x0 + λd. Then we have α(λ) ∈ S ∀λ ∈
(0, δ), α(0) = x0, and d = α(λ)−α(0)

λ
. Hence d ∈ AY

x0 . This implies that DY
x0 ⊆

AY
x0 . Therefore, clDY

x0 ⊆ cl AY
x0 .

To prove cl AY
x0 ⊆ TY

x0 , we assume that 0 �= d ∈ AY
x0 . Thus, there exist δ > 0, α :

R → Y such that α(λ) ∈ S ∀λ ∈ (0, δ), α(0) = x0, and d = lim
λ↓0

α(λ) − α(0)

λ
. For

each k ∈ N, we define

λk = 2k
δ

, xk = α

(

δ

2k

)

.
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Then δ
2k ∈ (0, δ) and so, xk ∈ S for each k ∈ N. Since, α is right differentiable

at 0, it is right continuous at 0. Thus

lim
k→+∞

xk = lim
k→+∞

α

(

δ

2k

)

= α(0) = x0.

Furthermore,

d = lim
λ↓0

α(λ) − α(0)

λ
= lim

k→+∞

α

(

δ

2k

)

− α(0)

δ

2k

= lim
k→+∞

λk
(

xk − x0) .

Thus, d ∈ AY
x0 which implies AY

x0 ⊆ TY
x0 . Since TY

x0 is a closed set, we have
cl AY

x0 ⊆ TY
x0 .

Now, for completing the proof of (2), we assume that d ∈ TY
x0 . Thus, there

exist {λk} ⊆ (0,+∞) and {xk} ⊆ S such that xk → x0 and d = lim
k→+∞

λk(xk −
x0). Considering i ∈ Ix0 , for each k, by mean value Theorem 3, there exists
ck ∈ (x0, xk) such that

0 ≥ gi(xk) = gi(xk) − gi
(

x0) = 〈

ζ ∗
k , xk − x0〉 , for some ζ ∗

k ∈ ∂Cgi (ck) .

This implies that
〈

ζ ∗
k , λk

(

xk − x0)〉 ≤ 0.

Since gi is Lipschitz near x0, there exist a neighborhood U of x0 and a constant
K > 0 such that gi is Lipschitz on U with Lipschitz rank K. On the other hand,
since ck → x0, there exists k1 ∈ N such that ck ∈ U for each k ≥ k1. Thus, by
Theorem 2,

‖ζ ∗
k ‖ ≤ K, ∀k ≥ k1.

By the Banach–Alaoglu theorem [4, 11], the set {y∗ ∈ Y∗ : ‖y∗‖ ≤ K} is
weak∗ compact. Hence, {ζ ∗

k }∞k=k1
has a cluster point ζ ∗. Therefore, the sequence

{〈ζ ∗
k , d〉}∞k=1 has a subsequence {〈ζ ∗

kn
, d〉}∞n=1 convergent to 〈ζ ∗, d〉 in R. Conse-

quently, the boundedness of {ζ ∗
kn

}∞n=1 implies that
〈

ζ ∗, d
〉 = lim

n→+∞
〈

ζ ∗
kn

, λkn

(

xkn − x0)〉 ≤ 0.

Also, by Theorem 2, ζ ∗ ∈ ∂Cgi(x0), because ck −→ x0 when k → +∞. Thus

∀i ∈ Ix0 ∃ζ ∗
i ∈ ∂Cgi

(

x0) such that
〈

ζ ∗
i , d

〉 ≤ 0.

Hence d ∈ HC′
x0 , and (2) is proved. This completes the proof of part (vii).

(iix) To prove this part, it is sufficient to show that

clDZ
x0 ⊆ cl AZ

x0 ⊆ T Z
x0 ⊆ HM′

x0 . (3)

The relation clDZ
x0 ⊆ cl AZ

x0 ⊆ T Z
x0 is resulted from the proof of the previous

part. To prove T Z
x0 ⊆ HM′

x0 , we assume that d ∈ Tx0 . Thus, there exist {λk} ⊆
(0,+∞) and {xk} ⊆ S such that xk → x0 and d = lim

k→+∞
λk(xk − x0). Consid-

ering i ∈ Ix0 , for each k, by mean value Theorem 1, there exists ck ∈ [xk, x0)
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such that

0 ≤ −gi(xk) = gi
(

x0) − gi(xk) ≤ 〈

ζ ∗
k , x0 − xk

〉

, for some ζ ∗
k ∈ ∂Mgi(ck).

This implies that
〈

ζ ∗
k , λk(xk − x0)

〉 ≤ 0.

Since gi is locally Lipschitz, the sequence {ζ ∗
k } is bounded due to Proposition

1.85 in [9]. Hence, when k → +∞, remembering that Z is an Asplund space,
{ζ ∗

k } has a weak∗ convergent subsequence. For simplicity we denote this
subsequence too by {ζ ∗

k }, and assume that ζ ∗
k −→w∗

ζ ∗
i , where w∗ stands for con-

vergence in the weak∗-topology. On the other hand, if k → +∞, then xk → x0,
and hence ck → x0. Hence, because of ζ ∗

k ∈ ∂Mgi(ck), and remembering that Z
is an Asplund space, we have ζ ∗

i ∈ ∂Mgi(x0). Thus, due to the boundedness of
{ζ ∗

k }∞k=1, we have

0 ≥ lim
k→+∞

〈

ζ ∗
k , λk(xk − x0)

〉 = 〈

ζ ∗
i , d

〉

,

for some ζ ∗
i ∈ ∂Mgi(x0). Thus

∀i ∈ Ix0 ∃ζ ∗
i ∈ ∂Mgi

(

x0) such that
〈

ζ ∗
i , d

〉 ≤ 0.

Hence, we have d ∈ HM′
x0 , which implies that T Z

x0 ⊆ HM′
x0 . This completes the

proof of (3), and so the proof of part (iix) is completed.
(ix) To establish this part of the theorem, it is sufficient to prove that

clGC
x0 ⊆ clDY

x0 ⊆ cl AY
x0 ⊆ TY

x0 ⊆ GC′
x0 . (4)

Suppose that d ∈ GC
x0 . Considering i ∈ Ix0 , assume that

∀k ∈ N ∃λk ∈
(

0,
1
k

)

such that gi
(

x0 + λkd
)

> 0. (5)

Therefore, gi(x0 + λkd) > gi(x0). Hence, by mean value Theorem 3,

∃ck ∈ (

x0, x0 + λkd
) ; 0 < gi

(

x0 + λkd
) − gi

(

x0)

= λk
〈

ζ ∗
k , d

〉

, for some ζ ∗
k ∈ ∂Cgi(ck).

Hence

∀k ∈ N ∃
(

λk ∈
(

0,
1
k

)

, ck ∈ (

x0, x0 + λkd
)

)

;
〈

ζ ∗
k , d

〉

> 0, for some ζ ∗
k ∈ ∂Cgi(ck).

Now, if k −→ +∞, then ck −→ x0, and hence, regarding Theorems 2 and the
Banach–Alaoglu theorem [4, 11], similar to the proof of Part (vii), it can be
shown that

〈

ζ ∗, d
〉 ≥ 0, for some ζ ∗ ∈ ∂Cgi

(

x0) .

This implies that d /∈ GC
x0 and contradicts the assumption. Hence, (5) does not

hold and so

∀i ∈ Ix0 , ∃δi > 0; gi
(

x0 + λd
) ≤ 0, ∀λ ∈ (0, δi).
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On the other hand, gi functions are continuous, and for each i /∈ Ix0 we have
gi(x0) < 0. Therefore,

∀i /∈ Ix0 , ∃δi > 0; gi
(

x0 + λd
)

< 0, ∀λ ∈ (0, δi).

Also, since C is open and x0 ∈ C, there exists δ0 > 0 such that x0 + λd ∈ C for
λ ∈ (0, δ0). Thus setting δ = min

0≤i≤m
{δi}, we have δ > 0 and x0 + λd ∈ S for each

λ ∈ (0, δ). Therefore, d ∈ DY
x0 . Thus GY

x0 ⊆ DY
x0 , and this implies that clGY

x0 ⊆
clDY

x0 .
Furthermore, by (2), we have clDY

x0 ⊆ cl AY
x0 ⊆ TY

x0 . Hence, for completing the
proof of this part of the theorem, it is sufficient to show that TY

x0 ⊆ GC′
x0 . To

this end, we consider d ∈ TY
x0 . Thus, there exist {λk} ⊆ (0,+∞) and {xk} ⊆ S

such that xk → x0 and d = lim
k→+∞

λk(xk − x0). By convexity of gi functions and

because of Theorem 4.3 in [3], for each i ∈ Ix0 and k ∈ N, we have

0 ≥ gi(xk) = gi(xk) − gi
(

x0) ≥ 〈

ζ ∗
i , xk − x0〉 , ∀ζ ∗

i ∈ ∂Cgi
(

x0) .

Hence,
〈

ζ ∗
i , d

〉 = lim
k→+∞

〈

ζ ∗
i , λk

(

xk − x0)〉 ≤ 0, ∀ζ ∗
i ∈ ∂Cgi

(

x0) .

Therefore,
〈

ζ ∗, d
〉 ≤ 0, ∀ζ ∗ ∈

⋃

i∈Ix0

∂Cgi
(

x0) .

Thus, d ∈ GC′
x0 . This implies that TY

x0 ⊆ GC′
x0 , and completes the proof of part

(ix).
(x) The proof of this part is similar to that of part (ix), due to Theorem 1.93 in [9]

and mean value Theorem 1.
��

In part (v) of the above theorem, in a finite dimensional context the assumption
“conv(

⋃

i∈Ix0

∂Mgi(x0)) is closed” automatically holds.

The results established in this paper can be useful in sketching numerical al-
gorithms, establishing duality results and deriving optimality conditions in single
objective programming as well as multi-objective programming [18].
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