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Abstract In previous work dating back to the early 1970’s F.H. Clarke and the author
had independently derived necessary conditions for minimum including a maximum
principle for optimal control problems defined by ordinary differential equations in
which the right hand side f (t, ·, r) and functions defining side conditions are Lipschitz
continuous in their dependence on the state variable. Our results, though not the
methods, were similar in the formulation of the maximum principle in which the
nonexisting derivative fv(t, v, σ ) was replaced by an unknown element of Clarke’s
generalized Jacobian but differed in handling some side conditions. In the present
paper we exhibit a maximum principle in which the dual variables and the related
functions are limits of appropriate subsequences of computable sequences.

Keywords Optimal control · Maximum principle · Relaxation · Nonsmooth
functions · Generalized derivatives
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1 Introduction

Our purpose is to derive extremality conditions for the optimal control problem
defined by a differential equation in Rn

y(τ ; σ) = a0 +
∫ τ

τ0

f̃ (s, y(s; σ), σ (s))ds ∀τ ∈ T̃ = [τ0, τ1] (1)
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and consisting in finding a relaxed control σ̄ and the corresponding solution ȳ(τ ) =
y(τ ; σ̄ ) that minimize h0(y(τ1; σ)) subject to the restriction

h1(y(τ1; σ)) = 0, (2)

where σ is a relaxed control and the functions f̃ (t, v, σ ), h0(v) and h1(v) are lipschitz
in their dependence of v. Among the basic assumptions are the existence of an
integrable function χ(τ) such that both the norm | f̃ | of f̃ and its time dependent
Lipschitz constant Lf̃ (τ ) are bounded by χ(τ). At an early stage we replace the

independent variable τ by t(τ ) = ∫ τ

τ0
χ(s)ds which transform f̃ to a function f whose

norm and Lipschitz constant are bounded by 1.
While well known proofs of existence of an optimal control σ̄ remain valid, we

search to establish extremality conditions (essentially a maximum principle) for our
problem. Such conditions are well established for the case where f, h0 and h1 are
C1 in their dependence on the state variable v. However, when this dependence is
only Lipschitzian, the only maximum principle of which we are aware, e.g. [1, 5, 7],
are derived by replacing the nonexistent derivatives with not otherwise specified
functions whose pointwise values are elements of some convex sets of which the
corresponding Clarke’s generalized Jacobian turned out to be the smallest [6].
Our aim in what follows is to derive computable sequences whose appropriate
subsequences converges to the dual variables and the corresponding coefficients
of the maximum principle. We don’t provide direct substitutes for the nonexisting
derivatives fv, h0,v and h1,v but deal with the integrals involving their temporary
substitutes. These temporary substitutes are derivatives of mollified approximations
to the Lipschitzian functions and the corresponding sequences converging to the
appropriate dual function appearing in the maximum principle.

This explains why it seemed impossible to present a theorem resembling the
one available for the case of f , h0 and h1 being C1 in their dependence on v. The
main results we derive here, in Theorem 3.8, involves mollified functions and thus
clearly involve concepts introduced by Sobolev [3] and Friedrichs [2] for the study of
partial differential equations but applied here to our specific problems. The form of
Theorem 3.8 appears to lie half way between the results for problems with C1 data
and the results previously obtained for Lipschitzian data. While the latter results
indicated that the desired data lie in specified convex sets, the results here prove that
known sequence have subsequences converging to the desired data. We could get
more definitive results if we could replace nonexisting derivative by derivatives but
we won’t be able to do that.

Section 2 is devoted to the mollification process and associated relaxed deriv-
atives, Section 3 to a maximum principle for a “mollified” problem and to the
statement of our final results, and Section 4 to proofs.

2 Relaxed Derivatives

Let R be the real line, T = [τ0, τ1] ⊂ R, N the set of natural numbers, Rm′
endowed

with the Euclidean norm and the Lebesgue measure μm′ for all m′ ∈ N, Bo
m′ the open

and Bm′ the closed unit ball in Rm′
, Ṽ an open convex subset of Rn and V a compact



Relaxed Derivatives and Extremality Conditions in Optimal Control 469

convex subset of Ṽ such that V + Bn ⊂ Ṽ. We assume that the function (τ, v) �→
φ(τ, v) : T̃ × Ṽ �→ Rm in L1(T, C(Ṽ)m) and integrable function τ �→ χ(τ) : T̃ �→ R+
and τ �→ Lφ(τ ) : T̃ �→ R+ satisfy the inequalities

|φ(τ, v)| ≤ χ(τ), Lφ(τ ) ≤ χ(τ) ∀τ ∈ T̃, v ∈ Ṽ

and

|φ(τ, v1) − φ(τ, v2)| ≤ Lφ(τ )|v1 − v2| ∀τ ∈ T̃, v1, v2 ∈ Ṽ.

Obviously, we may assume that χ(τ) ≥ 1 ∀ τ ∈ T̃.
In anticipation of the arguments to follow, we shall simplify our problem, without

loss of generality, by changing the variable τ , which will be treated as an inte-
gration variable in the expression

∫
T̃ φ(τ, v)dτ , by replacing it with the variable

t = t(τ ) defined by t(τ ) := ∫ τ

τ0
χ(s)ds ∀τ ∈ [τ0, τ1], defining its inverse τ(t) and setting

ψ(t, v) = [χ(τ(t))]−1φ(τ(t), v). Let κ := t(τ1) and T = [0, κ]. Then
∫

T̃ φ(τ, v)dτ =∫
T ψ(t, v)dt. This results in great simplification because the functions like v �→ ψ(t, v)

that we shall be dealing with from now on have a norm and a Lipschitz constant Lψ

independent of t and, in fact, less than or equal to 1.
We shall use mollifiers pj : j−1 Bn �→ R ∀ j ∈ N that are C1 on j−1 Bn and are

approximations to the Dirac measure at 0, with pj(w) positive on j−1 Bo
n and with∫

j−1 Bn
p j(w)μn(dw) = 1. To be specific, we might use the well known C∞ mollifier

(in which ε is replaced by 1/j) defined by the functions

π(w) = exp
(−1/

(
1 − |w|2)) ∀w ∈ Bo

n, π(w) = 0∀w ∈ Rn\Bo
n

π̄(w) = π(w)/

∫
Bo

n

π(w′)μn(dw′), pj(w) = j nπ̄( jw).

We next consider, for all (t, v) ∈ T × V and j ∈ N a sequence of C1 functions

ψ j(t, v) :=
∫

j−1 Bn

p j (w′) ψ
(
t, v − w′) μn(dw′) (3)

Replacing the integration variable w′ with w = v − w′ we obtain the relation

ψ j(t, v) :=
∫

v+ j−1 Bn

p j(v − w)ψ(t, w)μn(dw). (4)

Since by Rademacher’s theorem, the derivative ψv(t, w) exists a.e., we also deduce
from relation (3) that

ψ j
v(t, v) :=

∫
j−1 Bn

p j(w′)ψv(t, v − w′)μn(dw′). (5)

We observe that the integrals above are defined because the function ψ is defined
on all of V + Bn. Furthermore, relation (4) shows that, because the function pj are
C1 for each j ∈ N and because v is in the interior of the domain of integration, the
function v �→ ψ j(t, v) is C1 and its (partial) derivative ψ

j
v(t, v) is for each j ∈ N and

t ∈ T uniformly continuous on the compact space V. This derivative, with t held
constant, is represented by a matrix M with m rows and n columns that we shall
treat as an element of the set Rm,n of all such matrices endowed with the norm of M
treated as a linear operator i.e. |M| := sup{|Mx| | |x| ≤ 1}.
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Now let t �→ η(t) : T �→ V be a continuous function and consider the function t �→
ψ

j
v(t, η(t)) : T �→ Rm,n. Since ψ

j
v is measurable in t and continuous in v, it follows that,

for every j ∈ N, t �→ ψ
j
v(t, η(t)) : T �→ Rm,n is measurable and, being dominated in

the Rm,n norm by Lψ ≤ 1, is itself integrable. Thus, � j := ∫
T ψ

j
v(t, η(t))μT(dt) exists

and is contained in the compact set κRm,n, where κ = ∫
T̃ χ(τ)dτ . It follows then that

there exists a sequence J ⊂ N such that � := lim j∈J � j exists and belongs to κRm,n.
We shall later require

Lemma 1 For all (t, v) ∈ T × V we have

Lψ j = Lψ,
∣∣ψ j

v(t, v)
∣∣ ≤ Lψ,

∣∣ψ j(t, v) − ψ(t, v)
∣∣ ≤ Lψ/j. (6)

Proof By (3),

ψ j(t, v) − ψ j(t, v1) =
∫

j−1 Bn

p j(w′)[ψ(t, v − w′) − ψ(t, v1 − w′)]μn(dw′);

hence
∣∣ψ j(t, v) − ψ j(t, v1)

∣∣
=

∫
j−1 Bn

p j (w′) ∣∣ψ (
t, v − w′) − ψ(t, v1 − w′)

∣∣ μn
(
dw′)

≤ Lψ |v − v1|.
Since the norm of the derivative of a Lipschitzian function, whenever it exists, is
bounded by its Lipschitz constant and the functions pj define a probability measure,
it follows from (5) that |ψ j

v(t, w)| ≤ Lψ ∀t ∈ T, w ∈ V. Finally, again by (3),

|ψ j(t, v) − ψ(t, v)|
=

∫
j−1 Bn

p j (w′) |ψ( t, v − w′ )−ψ(t, v)| μn
(
dw′)

≤ Lψ

∫
j−1 Bn

p j(w′)
∣∣w′∣∣ μn(dw′) ≤ j−1 Lψ .

��

3 Extremality Conditions

Let U be the set of original control functions which are measurable functions from
T̃ = [τ0, τ1] ⊂ R to a compact metric space U . We shall denote by S the set of relaxed
control function σ : T̃ �→ rpm(U), as described in [4, Chapter IV], where rmp(U)

is the set of Radon probability measures on U . Each σ ∈ S is measurable with S
identified as a subset of L1(T, C(U))∗ and endowed with its weak star topology which
is metrizable by its weak norm | |w [4, IV.1.5, p266]. Furthermore, S is a compact
convex subset T̃ of L1(T, C(U))∗. U is treated as a subset of S by identifying u(τ ) for
each u ∈ U with δu(τ ), where δ is the Dirac measure. If ϕ : U �→ Rm for some m ∈ N
is continuous and ζ is a bounded measure on U we write ϕ(ζ ) for

∫
U ϕ(r)ζ(dr). As

before, we define V ⊂ Rn as a compact subset of an open V.
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We shall consider the relaxed optimal control problem defined for σ ∈ S by the
differential equation in Rn

y(τ ; σ) = a0 +
∫ τ

τ0

f̃ (s, y(s; σ), σ (s)) ds ∀τ ∈ T̃ = [τ0, τ1] (7)

and consisting in finding a relaxed control σ̄ and the corresponding solution ȳ(τ ) =
y(τ ; σ̄ ) that minimize h0(y(τ1; σ)) subject to the restriction

h1(y(τ1; σ)) = 0. (8)

We make the following

Assumption 2

(i) The function (τ, v, r) �→ f̃ (τ, v, r) : T̃ × V × R �→ Rn is measurable in τ , Lip-
schitz continuous in v with a Lipschitz constant L f̃ (τ ) independent of τ , and
continuous in r.

(ii) There exists a nonnegative function χ(τ) integrable on T̃ and such that
| f̃ (τ, v, r)| and Lf̃ (τ ) are both bounded by χ(τ) for all τ ∈ T̃.

(iii) h0 : V �→ R and h1 : V �→ Rm are Lipschitz and have Lipschitz constants Lh0

and Lh1 .
(iv) There exists a subset S1 of S such that the solution y(τ ) = y(τ ; σ) of equation

(7) for σ ∈ S1 satisfies the conclusion of Lemma 1.

It easily follows that equation (7) has, for all σ ∈ S , unique uniformly bounded and
absolutely continuous solutions y(τ ) = y(τ ; σ) for all σ ∈ S and we may therefore
assume that V was defined so that every solution y(τ ; σ) has its range in V.

Assumption (2) above satisfy the requirement of [4, Theorem VI.1.1, p348] and
are therefore sufficient to ensure the existence of a minimizing control function
σ̄ . We observe that, as a consequence of Assumption 2, the function f̃ (τ, v, σ (τ ))

satisfies, for each σ ∈ S , the assumptions imposed on the function φ(τ, v) in Section
2 as do the functions h0 and h1 that are independent of τ . We may therefore assume,
without loss of generality, that after the change of the integration variable from τ

to t, the transformed function f corresponding to ψ of Section 2 has a norm and a
Lipschitz constant L f with respect to v bounded by 1; that T̃ = [τ0, τ1] is replaced by
T = [0, κ], where κ = ∫ τ1

τ0
χ(τ)dτ ; that the relaxed control function σ is redefined as

a function on T; that relations (7) and (8) are replaced by

y(t; σ) = a0 +
∫ t

0
f (s, y(s; σ), σ (s))ds ∀t ∈ T; (9)

and

h1(y(κ; σ)) = 0, (10)

and that the control problem defined by the function h0 and relations (9) and (10)
has an optimal control function σ̄ (t) and corresponding function ȳ(t) := y(t; σ̄ ).

Our first step in the search for the extremality conditions relating to the problem
defined by relations (9) and (10) will be to define, for each σ ∈ S and j ∈ N the
mollified functions f j(t, v, σ (t)), h j

0(v) and h j
1(v) by replacing ψ(t, v) in relation (3)
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with f (t, v, σ (t)), h0(v) and h1(v), respectively, and replacing equation (9) with
equation

y j(t; σ) = a0 +
∫ t

0
f j (s, y j(s; σ), σ (s)

)
ds ∀t ∈ T. (11)

which has a unique solution y j(t; σ).
We shall require the following results:

Lemma 3 Let

κ :=
∫ τ1

τ0

χ(τ)dτ, cy := 1 + κeκ , chi := Lhi(cy + 1) ∀i = 0, 1, c f := cy + 1.

Then, for each σ ∈ S , we have

(i) w j(t) := |y j(t; σ) − y(t; σ)| ≤ cy/j,
(ii) | f j(t, y j(t; σ), σ (t)) − f (t, y(t; σ), σ (t))| ≤ c f /j,

(iii) |h j
i (y j(κ; σ)) − hi(y(κ; σ))| ≤ chi/j ∀i = 0, 1.

We next define a function H j
1 : V × B j �→ Rm1 by H j

1(v, b) = h j
1(v) − bj, where

bj ∈ B j is a control parameter and B j = j−1ch1 Bm1 .
We can now formulate our “mollified” problem: let y j(t; σ) denote the unique

solution of equation (11) for the choice of any σ ∈ S . We wish to determine a relaxed
control σ̄ j and a control parameter b̄ j ∈ B j that minimize h j

0(y j(κ; σ)) subject to the
restriction

H j
1

(
y j(κ; σ), b

) = h j
1

(
y j(κ; σ)

) − bj = 0. (12)

The proof that each of these new problems, indexed by j, has a minimizing
solution will follow from the same arguments as in the existence proof for the
original problem defined by relations (9) and (10) once we verify that there exists
a choice of (σ j, b j) ∈ S × B j satisfying relation (12). We claim that the control
(σ j, b j) = (σ̄ , h j

1(y j(κ; σ̄ ))), where σ̄ is the optimal control function for the problem
defined by relations (9) and (10), satisfying these relations. Indeed, by (ii) in Lemma
3, we have |h j

1(y j(κ; σ̄ )) − h1(y(κ; σ̄ ))| = |h j
1(y j(κ; σ̄ ))| ≤ ch1/j and therefore there

exists an element b j ∈ B j equal to h j
1(y j(κ; σ̄ )). Thus the restriction in (12) is satisfied

by the above choice of b j combined with σ = σ̄ .
The corresponding optimal control problems satisfy extremality conditions [4,

Theorem VI.2.3, p360–361] and, in particular, of [4, Step 2 of Theorem VI.2.3.] which
asserts that there exist functions

Z j : T �→ Rn,n, k j : T �→ Rn

and vectors l j = (l j
0, l j

1) ∈ Rm1+1 with l j
0 ≥ 0 such that, setting ȳ j(t) := y j(t; σ̄ j),

Z j(t) = I +
∫ κ

t
Z j(s) f j

v

(
s, ȳ j(s), σ̄ j(s)

)
ds (13)

and

k j(t)tr =
[

l j
0h j

0;v
(
ȳ j(κ)

) +
(

l j
1

)tr
h j

1;v
(
ȳ j(κ)

)]
Z j(t), (14)
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we have

l j
0 +

∣∣∣l j
1

∣∣∣ > 0 (15)

and ∫ κ

0
k j(t)tr f j (t, ȳ j(t), σ j(t)

)
dt ≥

∫ κ

0
k j(t)tr f j (t, ȳ j(t), σ̄ j(t)

)
dt ∀σ ∈ S. (16)

Theorem 4 Let σ̄ ∈ S yield a an optimal solution to the problem of minimizing
h0(y(t; σ)) subject to relations (9) and (10). Then there exist a subsequence J of N
and continuous functions Z : T �→ (1 + κeκ )Rn,n and k : T �→ Rn such that we have
the maximum principle

k j(t)tr f j (t, y(t; σ̄ ) , σ̄ (t)) = min
r∈U

k j(t)tr f j (t, y(t; σ̄ ), r) a.e., (17)

where

Z (t) = lim
j∈J

Z j uniformaly on T,

k(t)tr = [
l0H0 + ltr

1 H1
]

Z (t), (l0, l1) = lim
j∈J

(
l j
0, l j

1

)
,

H0 = lim
j∈J

h j
0;v

(
ȳ j(κ)

) ∈ Lh0 Bn, H1 = lim
j∈J

h j
1;v

(
ȳ j(κ)

) ∈ Lh1 Bm,n.

4 Proofs

Proof of Lemma 3 To prove relation (i) we subtract equation (9) from equation (11)
for each fixed σ ∈ S yielding

w j(t) := ∣∣y j(t; σ) − y(t; σ)
∣∣

≤
∫ t

t0

[ ∣∣ f j(s, y j(s; σ), σ (s)) − f (s, y j(s; σ), σ (s))
∣∣

+ ∣∣ f (s, y j(s; σ), σ (s)) − f (s, y(s; σ), σ (s))
∣∣ ] ds. (18)

Since L f ≤ 1, it follows, by Lemma 1, that the first part of the integrand is bounded
by 1/j and the second part by w j(t). It then follows by Gronwall’s inequality that
relation (i) is valid.

The left hand side of statement (ii) is bounded by the integrand in (18) which itself
is bounded by 1/j + w j(t), hence in view of (i), by c f /j. The proof of (iii) is like the
proof of (ii), with hi replacing f . ��

Proof of Theorem 4 We shall first prove that the solutions Z j of the differential
equations (13) for j ∈ N form an equicontinuous and bounded set in Rn,n and
there exists a sequence J1 ⊂ N such that Z j(t) converge uniformly over J1 to
an absolutely continuous function Z (t). This is because, by Lemma 1, we have
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| f j
v (s, ȳ j(s), σ̄ j(s))| ≤ L f ≤ 1, and therefore |Z j(t)| ≤ ∫ κ

0 |Z j(s)|ds + 1. This implies,
by Gronwall’s inequality, that∣∣Z j(s)

∣∣ ≤ 1 + κeκ := κZ .

Thus all functions t �→ Z j(t) : T �→ R are uniformly bounded. Furthermore, for each
j ∈ N, we have ∣∣(Z j)′(t)

∣∣ ≤ ∣∣Z j(t)
∣∣ ≤ κZ ∀t ∈ T

and this shows that the closure of the set {Z j(·) | j ∈ N} is compact in
C([0, κ], κZ Bn,n) and there exists a sequence J1 ⊂ N such that lim j∈J1 Z j(t) = Z (t) ∈
κZ Bn,n uniformly on T.

We next consider equation (14) defining k j(t). We observe that dividing l j
0 and l j

1

by l j
0 + |l j

1|, which results in dividing k j(t) ∀t ∈ T by the same factor, does not affect
the validity of relations (14)–(16) and justifies assuming that

l j
0 ≥ 0, l j

0 + |l j
1| = 1∀ j ∈ N.

Thus 0 ≤ l j
0 ≤ 1, |l j

1| ≤ 1 and, by Lemma 1, |h j
0;v(ȳ j(κ))| ≤ Lh0 and |h j

1;v(ȳ j(κ))| ≤ Lh1 .
Since lim j∈J1 Z j(t) = Z (t) uniformly on T, it follows that there exist

J2 ⊂ J1, l0 ≥ 0, l1 ∈ Bm,H0 ∈ Lh0 Bn,H1 ∈ Lh1 Bm,n

such that the limits, as j �→ ∞ over J2, of

l j
0, l j

1, h j
0;v(ȳ j(κ)), h j

1;v
(
ȳ j(κ)

)
are, respectively,

l0, l1,H0,H1,

with l0 ≥ 0, l0 + |l1| = 1 and

k(t)tr := lim
j∈J2

k j(t)tr = [
l0H0 + ltr

1 H1
]

Z (t)

uniformly on T.
We next observe that, by Lemma 3 (i), |y j(t; σ̄ j) − y(t; σ̄ j)| ≤ cy/j �→ 0 and the set

Y of all the functions t �→ y(t; σ̄ j) has a compact closure in C(T, Rn) because it is
bounded and equicontinuous. Therefore the argument of [4, theorem VI.1.1, p348]
proves that there exist σ̄ ∈ S and a subsequences J of J2 such that

lim
j∈J

y j (t; σ̄ j) = lim
J

y
(
t; σ̄ j) = y (t; σ̄ ) . (19)

We now consider relation (16). We first observe that, since lim j∈J k j(t) = k(t),
lim j∈J σ̄ j = σ̄ and lim j∈J y j(t; σ̄ j) = y(t; σ̄ ), it follows from [4, Theorem IV.2.9, p278–
279] that

lim
j∈J

∫
T

k j(t)tr f
(
t, y j(t; σ̄ j) , σ̄ j)dt =

∫
T

k(t)tr f (t, y(t; σ̄ ), σ̄ ) dt.

Since | f j(t, v, r) − f (t, v, r)| ≤ 1/j �→ 0, it follows from relation (16) that∫ κ

0
k(t)tr f (t, ȳ(t), σ (t))dt ≥

∫ κ

0
k(t)tr f (t, ȳ(t), σ̄ (t))dt ∀σ ∈ S.
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Applying an argument of [4, Step 2 of Theorem VI.2.3, p360–361] we deduce from
the above maximum principle in integral form the pointwise maximum principle

k(t)tr f (t, y(t; σ̄ ) , σ̄ (t)) = min
r∈U

k(t)tr f (t, y(t; σ̄ ), r) a.e.

By relation (12), we have h j
1(y j(t1; σ̄ j)) − b̄ j = 0. Since (σ̄ j, b̄ j) is an optimal con-

trol for the problem indexed by j, we have h j
0(y j(κ; σ̄ j)) ≤ h j

0(y j(κ; σ j)) for all σ such
that h j

1(y j(κ; σ)) = b̄ j. Furthermore, by the definition of B j we have lim j∈N b̄ j = 0
and , since lim j∈J σ̄ j = σ̄ this implies, by (19) that lim j∈J y j(t; σ̄ j) = y(t; σ̄ ). Therefore,
lim j∈J h j

1(y(t; σ̄ )) = 0 and thus

lim
j∈J

h j
0

(
y j(κ; σ̄ j)

) = h0(y(κ; σ̄ )) ≤ lim
j∈J

h j
0

(
y j(κ; σ)

) = h0(y(κ; σ))

for all σ ∈ S such that h1(y(κ; σ)) = 0. We conclude that σ̄ is an optimal control for
the problem defined by the function h0 and the equations (9) and (10) and that it
satisfies the maximum principle (17). ��
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