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Abstract We study the new variational inequality problem, called the Common
Solutions to Variational Inequalities Problem (CSVIP). This problem consists of
finding common solutions to a system of unrelated variational inequalities corre-
sponding to set-valued mappings in Hilbert space. We present an iterative procedure
for solving this problem and establish its strong convergence. Relations with other
problems of solving systems of variational inequalities, both old and new, are
discussed as well.
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1 Introduction

In this paper we study the new variational inequality problem which was called the
Common Solutions to Variational Inequalities Problem (CSVIP) in [9, Subsection
7.2]. This problem is formulated as follows.

Problem 1.1 Let H be a real Hilbert space. Let there be given, for each i =
1, 2, . . . , N, a set-valued mapping Ai : H → 2H and a nonempty, closed and convex
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subset Ki ⊆ H, with
⋂N

i=1 Ki �= ∅. The CSVIP is to find a point x∗ ∈ ⋂N
i=1 Ki such

that, for each i = 1, 2, . . . , N, there exists u∗
i ∈ Ai(x∗) satisfying

〈
u∗

i , x − x∗〉 ≥ 0 for all x ∈ Ki, i = 1, 2, . . . , N. (1.1)

Obviously, if N = 1 then the problem is nothing but the well-known Variational
Inequality Problem (VIP), first introduced (with a single-valued mapping) by Hart-
man and Stampacchia in 1966 (see [15]). The motivation for defining and studying
such CSVIPs with N > 1 stems from the simple observation that if we choose all
Ai = 0, then the problem reduces to that of finding a point x∗ ∈ ⋂N

i=1 Ki in the
nonempty intersection of a finite family of closed and convex sets, which is the well-
known Convex Feasibility Problem (CFP). If the sets Ki are the fixed point sets of a
family of operators Ti : H → H, then the CFP is the Common Fixed Point Problem
(CFPP). These problems have been intensively studied over the past decades both
theoretically (existence, uniqueness, properties, etc. of solutions) and algorithmically
(devising iterative procedures which generate sequences that converge, finitely or
asymptotically, to a solution).

Since the phrase “system of variational inequalities” has been extensively used in
the literature for many different problems, as can be seen from the cases mentioned
in Section 1.1 below, it seems natural that this new problem was called the Common
Solutions to Variational Inequalities Problem in [9, Subsection 7.2].

The significance of studying the CSVIP lies in the fact that besides its enabling a
unified treatment of such well-known problems as the CFP and the CFPP, the CSVIP
also opens a path to a variety of new “common point problems” that are created from
various special cases of the VIP. For an excellent treatise on variational inequality
problems in finite-dimensional spaces, see the two-volume book by Facchinei and
Pang [11]. The books by Konnov [20] and Patriksson [26] contain extensive studies
of VIPs including applications, algorithms and numerical results. For a wide range
of applications of VIPs, see, e.g., the book by Kinderlehrer and Stampacchia [21].
The importance of VIPs stems from the fact that several fundamental problems in
Optimization Theory can be formulated as VIPs, as the following few examples show.

Example 1.2 (Constrained Minimization) Let K ⊆ H be a nonempty, closed and
convex subset and let g : H → R be a continuously differentiable function which is
convex on K. Then x∗ is a minimizer of g over K if and only if x∗ solves the VIP

〈∇g(x∗), x − x∗〉 ≥ 0 for all x ∈ K, (1.2)

where ∇g is the gradient of g (see, e.g., [5, Proposition 3.1, p. 210]). When g is not
differentiable, we get the VIP

〈
u∗, x − x∗〉 ≥ 0 for all x ∈ K, (1.3)

where u∗ ∈ ∂g(x∗) and ∂g is the set-valued subdifferential of g (see, e.g., [14, Chapter
4, Section 3.5]).

Example 1.3 When the Hilbert space H is R
n− and the set K is R

n+, then the VIP ob-
tained from (1.1) with N = 1 is equivalent to the nonlinear complementarity
problem: find a point x∗ ∈ R

n+ and a point u∗ ∈ A(x∗) such that u∗ ∈ R
n+ and

〈u∗, x∗〉 = 0.
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Indeed, let H be R
n and K = R

n+. So, if x∗ solves (1.1) with N = 1 and A : R
n →

2R
n
, then there exists x∗ ∈ R

n+ such that u∗ ∈ A(x∗) satisfies
〈
u∗, x − x∗〉 ≥ 0 for all x ∈ R

n
+. (1.4)

So, in particular, if we take x = 0 we obtain 〈u∗, x∗〉 ≤ 0 and if we take x = 2x∗ we
obtain 〈u∗, x∗〉 ≥ 0. Combining the above two inequalities, we see that 〈u∗, x∗〉 = 0.
As a consequence, this yields

〈
u∗, x

〉 ≥ 0 for all x ∈ R
n
+ (1.5)

and hence u∗ ∈ R
n+. Conversely, if x∗ solves the nonlinear complementarity problem,

then 〈u∗, x − x∗〉 = 〈u∗, x〉 ≥ 0 for all x ∈ R
n+ (since u∗ ∈ R

n+), which means that x∗
solves (1.1) with N = 1.

Example 1.4 When the set K is the whole space H, then the VIP obtained from
(1.1) with N = 1 is equivalent to the problem of finding zeros of a set-valued
mapping A, i.e., to find an element x∗ ∈ H such that 0 ∈ A(x∗).

Example 1.5 Let H1 and H2 be two real Hilbert spaces, and let K1 and K2 be two
convex subsets of H1 and H2, respectively. Given a function g : H1 × H2 → R, the
Saddle-Point Problem is to find a point (u∗

1, u∗
2) ∈ K1 × K2 such that

g(u∗
1, u2) ≤ g(u∗

1, u∗
2) ≤ g(u1, u∗

2) for all (u1, u2) ∈ K1 × K2. (1.6)

This problem can be written as the VIP of finding (u∗
1, u∗

2) ∈ K1 × K2 such that
〈( ∇gu1(u

∗
1, u∗

2)

−∇gu2(u
∗
1, u∗

2)

)

,

(
u1

u2

)

−
(

u∗
1

u∗
2

)〉

≥ 0 for all (u1, u2) ∈ K1 × K2. (1.7)

Our main goal in this paper is to present an iterative procedure for solving CSVIPs
and prove its strong convergence. Our algorithm, besides generating a sequence
which strongly converges to a solution, also solves the, so called, Best Approximation
Problem (BAP), which consists of finding the nearest point projection of a point
onto the (unknown) intersection of N closed and convex subsets (see, e.g., [6] and
the references therein). More precisely, our algorithm generates a sequence which
converges strongly to the nearest point projection of the starting point onto the
solution set of the CSVIP.

A special case of the CSVIP (in the Euclidean space R
d and with single-valued

mappings Ai : R
d → R

d, i = 1, 2, . . . , N) was considered in [9, Section 7.2]. There we
transformed that CSVIP into a Constrained Variational Inequality Problem (CVIP)
in an appropriate product space, i.e.,

find a point x∗ ∈ K ∩ � such that
〈
A(x∗), x − x∗〉 ≥ 0 (1.8)

for all x = (x1, x2, . . . , xN) ∈ K, (1.9)

where K := �N
i=1 Ki, the diagonal set in R

Nd is

� := {x ∈ R
Nd : x=(a, a, . . . , a), a ∈ R

d} (1.10)

and A : R
Nd → R

Nd is defined by

A
(
(x1, x2, . . . , xN)

) = (A1(x1), . . . , AN(xN)), (1.11)
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where xi ∈ R
d for all i = 1, 2, . . . , N. So, problem (1.8)–(1.9) can be solved by

[9, Algorithm 4.4]. In the present paper, besides extending the CSVIP to the set-
valued case, we propose an algorithm that does not require the transformation into
a product space.

The paper is organized as follows. In Section 1.1 we describe the connections
between our work and some earlier papers and in Section 2 we list several known
facts about functions, operators and mappings that we need in the sequel. In Section 3
we present our algorithm for solving the CSVIP and prove its strong convergence
through a sequence of claims. In Section 4 we present five special cases of the CSVIP.

1.1 Relation with Previous Work

Several variants of systems of variational inequalities appeared during the last
decades. We present some of them in detail and show their connection to the CSVIP.

1. Konnov [19] considers the following system of variational inequalities. Let K ⊆
R

n be a nonempty, closed and convex set and let Ai : K → 2R
n
, i = 1, 2, . . . , N,

be N set-valued mappings. The problem is to find a point x∗ ∈ K such that for
each i = 1, 2, . . . , N, there exists u∗

i ∈ Ai(x∗) satisfying

〈
u∗

i , x − x∗〉 ≥ 0 for all x ∈ K, i = 1, 2, . . . , N. (1.12)

This means that Konnov solves a CSVIP with H = R
n and Ki = K for all i =

1, 2, . . . , N.
2. Ansari and Yao [1] studied the following system of variational inequalities. Let

I be an index set and for each i ∈ I, let Xi be a Hausdorff topological vector
space with its topological dual X∗

i . Let Ki, i ∈ I, be nonempty, closed and convex
subsets of Xi. Let K = ∏N

i=1 Ki and let Ai : K → X∗
i , i = 1, 2, . . . , N, be single-

valued mappings (see also [25] for more details). Ansari and Yao then consider
the problem of finding a point x∗ ∈ K such that

〈
Ai(x∗), x − x∗〉 ≥ 0 for all x ∈ Ki, i = 1, 2, . . . , N. (1.13)

3. Kassay and Kolumbán [18] solve another system of two variational inequalities.
Let X and Y be two reflexive real Banach spaces and let K1 ⊆ X and K2 ⊆ Y
be nonempty, closed and convex sets. Denote by X∗ and Y∗ the dual spaces
of X and Y, respectively. Consider two set-valued mappings A1 : K1 × K2 →
2X∗

and A2 : K1 × K2 → 2Y∗
. Kassay’s and Kolumbán’s problem is to find a pair

(x1, x2) ∈ K1 × K2 such that

sup
w∈A1(x1,x2)

〈w, x − x1〉 ≥ 0 for all x ∈ K1,

sup
z∈A2(x1,x2)

〈z, y − x2〉 ≥ 0 for all y ∈ K2. (1.14)

4. Recently, Zhao et al. [32] have considered the following system of two variational
inequalities in Euclidean spaces. Let K1 and K2 be two closed and convex subsets
of R

n and R
m, respectively. Let A1 : K1 × K2 → R

n and A2 : K1 × K2 → R
m
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be two single-valued mappings. Then Zhao et al.’s problem is to find a point
(u∗

1, u∗
2) ∈ K1 × K2 such that

〈
A1(u∗

1, u∗
2), u1 − u∗

1

〉 ≥ 0 for all u1 ∈ K1,
〈
A2(u∗

1, u∗
2), u2 − u∗

2

〉 ≥ 0 for all u2 ∈ K2. (1.15)

The main difference between problems (1.1) and (1.15) is that our system
includes any finite number (not only two) of mappings (not only single-valued)
defined on different sets. In addition, our problem is formulated in Hilbert space
(not only in Euclidean space).

2 Preliminaries

Let H be a real Hilbert space with inner product 〈·, ·〉 and induced norm ‖·‖. In what
follows, a point-to-set function A : H → 2H is called a set-valued mapping (or
a mapping for short) on H. When each set A(x) is either empty or a singleton we call
A a single-valued mapping (or an operator for short) on H. The domain of a
mapping A is the set

dom A := {x ∈ H : A(x) �= ∅} . (2.1)

The range of a mapping A is the set

ran A := {u ∈ A(x) : x ∈ dom A} . (2.2)

The graph of a mapping A is the subset of H × H defined by

graph A := {(x, u) ∈ H × H : u ∈ A(x)} . (2.3)

We write w-limn→+∞ xn = x to indicate that the sequence {xn}n∈N converges weakly
to x and limn→+∞ xn = x to indicate that the sequence {xn}n∈N converges strongly
to x.

The next property is known as the Opial condition (see [24]). Every Hilbert
space enjoys this property.

Condition 2.1 (Opial Condition) For any sequence {xn}n∈N in H that converges
weakly to x, we have

lim inf
n→+∞

∥
∥xn − x

∥
∥ < lim inf

n→+∞
∥
∥xn − y

∥
∥ (2.4)

for all y �= x.

Any Hilbert space H has the Kadec-Klee property (see, for instance,
[12]), that is, if {xn}n∈N is a sequence in H which satisfies w-limn→+∞ xn = x and
limn→+∞ ‖xn‖ = ‖x‖, then limn→+∞ ‖xn − x‖ = 0.

Definition 2.2 (Weakly Lower Semicontinuous) A function g : H → (−∞,+∞] is
called weakly lower semicontinuous if

g(x) ≤ lim inf
n→+∞ g(xn) (2.5)

for any sequence {xn}n∈N which satisfies w-limn→+∞ xn = x.
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Definition 2.3 (Monotone Mappings) Let A : H → 2H be a mapping. We say that

(i) A is monotone if for any x, y ∈ dom A we have

〈u − v, x − y〉 ≥ 0 for all u ∈ A(x) and v ∈ A(y); (2.6)

(ii) A is maximal monotone if it is monotone and graph A is not properly
contained in the graph of any other monotone mapping.

The notion of maximal monotonicity can be equivalently formulated in the
following way.

Remark 2.4 (Maximal Monotone Mappings) The mapping A : H → 2H is maximal
monotone if and only if we have

∀(y, v) ∈ graph A
〈u − v, x − y〉 ≥ 0

}

=⇒ u ∈ A(x). (2.7)

We now recall two definitions. Let K ⊆ H be a nonempty, closed and convex set.
Denote by CB(K) ⊆ 2K the family of all nonempty, closed, convex and bounded
subsets of K.

Definition 2.5 (Hausdorff Metric) Let K1, K2 ∈ CB(K). The Hausdorff metric
on CB(K) is defined by

H (K1, K2) := max
{

sup
x∈K2

d (x, K1) , sup
y∈K1

d (y, K2)
}
, (2.8)

where the distance function is defined by d(x, K) := inf {‖x − z‖ : z ∈ K}.

Definition 2.6 (Nonexpansive Mappings) Let A : H → 2H be a mapping such that
A(x) ∈ CB(H) for each x ∈ H. We say that

(i) A is Lipschitz continuous with constant LA > 0 if

H (A (x) , A (y)) ≤ LA ‖x − y‖ for all x, y ∈ H. (2.9)

So, given x ∈ H, ux ∈ A(x) and y ∈ H, there exists vy ∈ A(y) such that∥
∥ux − vy

∥
∥ ≤ LA ‖x − y‖.

(ii) A is nonexpansive (see, for example, [16]) if it is Lipschitz continuous with
LA = 1.

Let K be a nonempty, closed and convex subset H. For each point x ∈ H, there
exists a unique nearest point in K, denoted by PK(x). That is,

‖x − PK (x)‖ ≤ ‖x − y‖ for all y ∈ K. (2.10)

The operator PK : H → K is called the metric projection of H onto K. It
is well known that PK is a nonexpansive operator from H onto K. The metric
projection PK is characterized (see [13, Section 3]) by the following two properties:

PK (x) ∈ K (2.11)
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and

〈x − PK (x) , y − PK (x)〉 ≤ 0 for all x ∈ H, y ∈ K. (2.12)

If K is a hyperplane, then (2.12) becomes an equality. It is easy to check that (2.12)
is equivalent to

‖x − PK (x)‖2 + ‖y − PK (x)‖2 ≤ ‖x − y‖2 for all x ∈ H, y ∈ K. (2.13)

We denote by NK (v) the normal cone of K at v ∈ K, i.e.,

NK (v) := {z ∈ H : 〈z, y − v〉 ≤ 0 for all y ∈ K} . (2.14)

We also recall that in a real Hilbert space H,

‖λx + (1 − λ)y‖2 = λ ‖x‖2 + (1 − λ) ‖y‖2 − λ(1 − λ) ‖x − y‖2 (2.15)

for all x, y ∈ H and λ ∈ [0, 1].
The following result will be essential in the proof of our main theorem.

Claim 2.7 Consider the half-space

H (x, y) := {z ∈ H : 〈x − y, z − y〉 ≤ 0} . (2.16)

Given two points x and y in H, set yλ := λx + (1 − λ)y for any λ ∈ [0, 1]. Then H :=
H(x, y) ⊆ H(x, yλ) =: Hλ.

Proof Let z ∈ H. In order to show that z ∈ Hλ, λ ∈ [0, 1], we need to check that
〈x − yλ, z − yλ〉 ≤ 0. We have

〈x − yλ, z − yλ〉 = 〈x − (λx + (1 − λ) y) , z − (λx + (1 − λ) y)〉
= 〈(1 − λ) x − (1 − λ) y, (λz + (1 − λ) z) − (λx + (1 − λ) y)〉
= (1 − λ) 〈x − y, (1 − λ) (z − y) + λ (z − x)〉
= (1 − λ)2 〈x − y, z − y〉 + (1 − λ) λ 〈x − y, z − x〉
= (1 − λ)2 〈x − y, z − y〉 + (1 − λ) λ 〈x − y, y − x〉

+ (1 − λ) λ 〈x − y, z − y〉
= (1 − λ) 〈x − y, z − y〉 − (1 − λ) λ ‖x − y‖2

≤ (1 − λ) 〈x − y, z − y〉 . (2.17)

Since z ∈ H, we know that 〈x − y, z − y〉 ≤ 0. Hence z ∈ Hλ for any λ ∈ [0, 1], as
claimed. ��

Definition 2.8 (Fixed point set) For a mapping A : H → 2H, we denote by Fix A the
fixed point set of A, i.e.,

Fix A := {x ∈ H : x ∈ A(x)}. (2.18)
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3 The Algorithm

In this section we present a new algorithm for solving the CSVIP. Let {Ki}N
i=1 be

N nonempty, closed and convex subsets of H. Let {Ai}N
i=1 be a set of N mappings

from H into 2H such that Ai(x) ∈ CB(H) for each x ∈ H and i = 1, . . . , N. Denote
by SOL(Ai, Ki) the solution set of the Variational Inequality Problem VIP(Ai, Ki)

corresponding to the mapping Ai and the set Ki.

Algorithm 3.1

Initialization: Select an arbitrary starting point x1 ∈ H.
Iterative step: Given the current iterate xn, calculate the next iterate as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn
i = PKi

(
xn − λn

i un
i

)
, un

i ∈ Ai (xn) ,

find vn
i ∈ Ai

(
yn

i

)
which satisfies Definition 2.5(i) with un

i ,

zn
i = PKi

(
xn − λn

i v
n
i

)
,

Cn
i = {

z ∈ H : 〈
xn − zn

i , z − xn − γ n
i

(
zn

i − xn
)〉 ≤ 0

}
,

Cn = ⋂N
i=1 Cn

i ,

Wn = {
z ∈ H : 〈

x1 − xn, z − xn
〉 ≤ 0

}
,

xn+1 = PCn∩Wn

(
x1

)
.

(3.1)

This algorithm is quite complex in comparison with more “direct” iterative
methods. In order to calculate the next approximation to the solution of the problem,
the latter only use a value of one main operator at the current approximation. On
the other hand, Algorithm 3.1 generates strongly convergent sequences, as is proved
below, and this important property apparently complicates the process. It seems
natural to ask by how much and how difficult it is to calculate Cn

i , Cn = ∩N
i=1Cn

i ,
Wn and Cn ∩ Wn.

Our main interest here is not to develop a practical numerical method and whether
our work can help in the design and analysis of more practical algorithms remains to
be seen. In Section 4.6 we give some simple computational examples to demonstrate
the practical difficulties.

In order to prove our convergence theorem we assume that the following condi-
tions hold.

Condition 3.2 The mappings {Ai}N
i=1 are maximal monotone and Lipschitz continu-

ous with LAi = αi.

Condition 3.3 The common solution set F := ⋂N
i=1 SOL(Ai, Ki) is nonempty.

Condition 3.4 The sequence
{
λn

i

}
n∈N

⊂ [
a, b

]
, i = 1, . . . , N, for some a and b with

0 < a < b < 1/α, where α := max1≤i≤N αi.

Condition 3.5 The sequence
{
γ n

i

}
n∈N

⊂ [
ε, 1/2

]
for each i = 1, . . . , N, where ε ∈

(0, 1/2
]
.
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Theorem 3.6 Assume that Conditions 3.2–3.5 hold. Then any sequences {xn}n∈N,{
yn

i

}
n∈N

and
{
zn

i

}
n∈N

, generated by Algorithm 3.1, converge strongly to PF(x1).

Proof We divide the proof into four claims. ��

Claim 3.7 The projection PF(x1) and the sequence {xn}n∈N are well-def ined.

Proof It is known that each SOL(Ai, Ki), i = 1, . . . , N, is a closed and convex subset
of H (see, e.g., [4, Lemma 2.4(ii)]). Hence F is nonempty (by Condition 3.3), closed
and convex, so PF(x1) is well defined. Next, it is clear that both Cn

i and Wn are closed
half-spaces for all n ≥ 1. Therefore Cn and Cn ∩ Wn are closed and convex for all
n ≥ 1. It remains to be proved that Cn ∩ Wn is not empty for all n. When γ n

i = 1/2
for all n ∈ N and for all i = 1, . . . , N, then the set Cn

i has the following form:

C̃n
i := {

z ∈ H : ∥
∥zn

i − z
∥
∥ ≤ ∥

∥xn − z
∥
∥
}
. (3.2)

From Claim 2.7 it follows that

C̃n
i ⊂ {

z ∈ H : 〈
xn − zn

i , z − xn − γ n
i

(
zn

i − xn)〉 ≤ 0
} = Cn

i . (3.3)

Let C̃n = ⋂N
i=1 C̃n

i . It is enough to show that F ⊆ C̃n ∩ Wn for all n ∈ N. First we
prove that F ⊆ C̃n for all n ∈ N. To this end, let s ∈ F and let wi ∈ Ai(s) for any
i = 1, . . . , N. It now follows from (2.13) that

∥
∥zn

i − s
∥
∥2 = ∥

∥PKi

(
xn − λn

i v
n
i

) − s
∥
∥2

≤ ∥
∥
(
xn − λn

i v
n
i

) − s
∥
∥2 − ∥

∥
(
xn − λn

i v
n
i

) − zn
i

∥
∥2

= ∥
∥xn − s

∥
∥2 − ∥

∥xn − zn
i

∥
∥2 + 2λn

i

〈
vn

i , s − zn
i

〉

= ∥
∥xn − s

∥
∥2 − ∥

∥xn − zn
i

∥
∥2

+ 2λn
i

[〈
vn

i − wi, s − yn
i

〉 + 〈
wi, s − yn

i

〉 + 〈
vn

i , yn
i − zn

i

〉]
(3.4)

for any i = 1, . . . , N. Using the monotonicity of Ai and the fact that s ∈ SOL(Ai, Ki) ,

we obtain from (3.4) that

∥
∥zn

i − s
∥
∥2 ≤ ∥

∥xn − s
∥
∥2 − ∥

∥xn − zn
i

∥
∥2 + 2λn

i

〈
vn

i , yn
i − zn

i

〉

= ∥
∥xn − s

∥
∥2 − ∥

∥xn − yn
i + yn

i − zn
i

∥
∥2 + 2λn

i

〈
vn

i , yn
i − zn

i

〉

= ∥
∥xn − s

∥
∥2 − ∥

∥xn − yn
i

∥
∥2 − 2

〈
xn − yn

i , yn
i − zn

i

〉

− ∥
∥yn

i − zn
i

∥
∥2 + 2λn

i

〈
vn

i , yn
i − zn

i

〉

= ∥
∥xn − s

∥
∥2 − ∥

∥xn − yn
i

∥
∥2 − ∥

∥yn
i − zn

i

∥
∥2

+ 2
〈
xn − λn

i v
n
i − yn

i , zn
i − yn

i

〉
. (3.5)
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From (2.12) we have
〈
xn − λn

i v
n
i − yn

i , zn
i − yn

i

〉 = 〈
xn − λn

i un
i − yn

i , zn
i − yn

i

〉

+ λn
i

〈
un

i − vn
i , zn

i − yn
i

〉

≤ λn
i

〈
un

i − vn
i , zn

i − yn
i

〉
(3.6)

and from the Cauchy–Schwarz inequality it follows that
〈
xn − λn

i v
n
i − yn

i , zn
i − yn

i

〉 ≤ λn
i

∥
∥un

i − vn
i

∥
∥

∥
∥zn

i − yn
i

∥
∥ . (3.7)

Each mapping Ai, 1, . . . , N, is Lipschitz continuous with constant αi. Therefore Ai is
obviously Lipschitz continuous with constant α. Using this fact, we obtain

〈
xn − λn

i v
n
i − yn

i , zn
i − yn

i

〉 ≤ λn
i α

∥
∥xn − yn

i

∥
∥

∥
∥zn

i − yn
i

∥
∥ . (3.8)

Hence
∥
∥zn

i − s
∥
∥2 ≤ ∥

∥xn − s
∥
∥2 − ∥

∥xn − yn
i

∥
∥2 − ∥

∥yn
i − zn

i

∥
∥2

+ 2λn
i α

∥
∥xn − yn

i

∥
∥

∥
∥zn

i − yn
i

∥
∥ . (3.9)

Since

0 ≤ (
λn

i α
∥
∥xn − yn

i

∥
∥ − ∥

∥zn
i − yn

i

∥
∥
)2

= (
λn

i α
)2 ∥

∥xn − yn
i

∥
∥2 − 2λn

i α
∥
∥xn − yn

i

∥
∥

∥
∥zn

i − yn
i

∥
∥

+ ∥
∥zn

i − yn
i

∥
∥2

, (3.10)

we obtain that

2λn
i α

∥
∥xn − yn

i

∥
∥

∥
∥zn

i − yn
i

∥
∥ ≤ (

λn
i α

)2 ∥
∥xn − yn

i

∥
∥2 + ∥

∥zn
i − yn

i

∥
∥2

. (3.11)

Thus,
∥
∥zn

i − s
∥
∥2 ≤ ∥

∥xn − s
∥
∥2 − ∥

∥xn − yn
i

∥
∥2 − ∥

∥yn
i − zn

i

∥
∥2

+ (
λn

i α
)2 ∥

∥xn − yn
i

∥
∥2 + ∥

∥zn
i − yn

i

∥
∥2

= ∥
∥xn − s

∥
∥2 −

(
1 − (

λn
i α

)2
) ∥

∥xn − yn
i

∥
∥2

. (3.12)

Since λn
i < 1/α it follows that

∥
∥zn

i − s
∥
∥2 ≤ ‖xn − s‖2. Therefore s ∈ C̃n. Conse-

quently, F ⊆ C̃n for all n ≥ 1. Now we prove by induction that the sequence {xn}n∈N

is well defined. Indeed, since F ⊆ C̃1 and F ⊆ W1 = H, it follows that F ⊆ C̃1 ∩ W1

and therefore x2 = PC̃1∩W1(x1) is well defined. Now suppose that F ⊆ C̃n−1 ∩ Wn−1

for some n > 2. Let xn = PC̃n−1∩Wn−1(x1). Again we have F ⊆ C̃n and for any s ∈ F, it
follows from (2.12) that

〈
x1 − xn, s − xn〉 = 〈

x1 − PC̃n−1∩Wn−1(x1), s − PC̃n−1∩Wn−1(x1)
〉 ≤ 0. (3.13)

This implies that s ∈ Wn. Therefore F ⊆ C̃n ∩ Wn for any n ≥ 1, as required. This
shows that the sequence {xn}n∈N is indeed well defined. ��
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Claim 3.8 The sequences {xn}n∈N,
{

yn
i

}
n∈N

and
{
zn

i

}
n∈N

are bounded for any i =
1, . . . , N.

Proof Since xn+1 = PCn∩Wn(x1), we have for any s ∈ Cn ∩ Wn,
∥
∥xn+1 − x1

∥
∥ ≤ ∥

∥s − x1
∥
∥ . (3.14)

Therefore {xn}n∈N is bounded. It follows from the definition of Wn that xn = PWn(x1).
Since xn+1 ∈ Wn, it follows from (2.13) that

∥
∥xn+1 − xn

∥
∥2 + ∥

∥xn − x1
∥
∥2 ≤ ∥

∥xn+1 − x1
∥
∥2

. (3.15)

Thus the sequence
{∥
∥xn − x1

∥
∥
}

n∈N
is increasing and bounded, hence convergent. This

shows that limn→∞
∥
∥xn − x1

∥
∥ exists. In addition, from (3.15) we get that

lim
n→∞

∥
∥xn+1 − xn

∥
∥ = 0. (3.16)

Since xn+1 ∈ Cn
i , i = 1, . . . , N, we have

〈
xn − zn

i , xn+1 − xn − γ n
i

(
zn

i − xn)〉 ≤ 0. (3.17)

Thus

γ n
i

∥
∥zn

i − xn
∥
∥2 ≤ 〈

xn − zn
i , xn − xn+1〉 . (3.18)

Hence
∥
∥zn

i − xn
∥
∥ ≤ ∥

∥xn − xn+1
∥
∥ and therefore

lim
n→∞

∥
∥zn

i − xn
∥
∥ = 0, for all i = 1, . . . , N. (3.19)

Thus
{
zn

i

}
n∈N

is a bounded sequence for each i = 1, . . . , N. Using (3.12), we see that

∥
∥xn − yn

i

∥
∥2 ≤

(
1 − (

λn
i α

)2
)−1 (∥

∥xn − s
∥
∥2 − ∥

∥zn
i − s

∥
∥2

)

=
(

1 − (
λn

i α
)2

)−1 (∥
∥xn − s

∥
∥ − ∥

∥zn
i − s

∥
∥
) (∥

∥xn − s
∥
∥ + ∥

∥zn
i − s

∥
∥
)

≤
(

1 − (
λn

i α
)2

)−1 ∥
∥xn − zn

i

∥
∥

(∥
∥xn − s

∥
∥ + ∥

∥zn
i − s

∥
∥
)
. (3.20)

Since both {xn}n∈N and
{
zn

i

}
n∈N

are bounded, Condition 3.4 and (3.19), imply that

lim
n→∞

∥
∥xn − yn

i

∥
∥ = 0 for all i = 1, . . . , N. (3.21)

Therefore
{

yn
i

}
n∈N

is a bounded sequence for each i = 1, . . . , N, which completes the
proof of Claim 3.8. ��

Claim 3.9 Any weak accumulation point of the sequences {xn}n∈N,
{

yn
i

}
n∈N

and
{
zn

i

}
n∈N

belongs to F.

Proof Since {xn}n∈N is bounded (see Claim 3.8), there exists a subsequence {xnk}k∈N

of {xn}n∈N which converges weakly to x∗. Therefore it follows from (3.21) that
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there also exists a subsequence
{

ynk
i

}
k∈N

of
{

yn
i

}
n∈N

which converges to x∗ for each
i = 1, . . . , N. Define the mapping Ti as follows:

Ti(r) =
{

Ai(r) + NKi (r) , r ∈ Ki,

∅, otherwise,
(3.22)

where NKi (r) is the normal cone of Ki at r ∈ Ki. Since Ai is a maximal monotone
mapping, it follows from [27, Theorem 5, p. 85] that Ti is a maximal monotone
operator and T−1

i (0) = SOL(Ai, Ki). Let (r, w) ∈ graph (Ti) with r ∈ Ki and let pi ∈
Ai(r). Since w ∈ Ti(r) = Ai(r) + NKi (r), we get w − pi ∈ NKi (r). Since ynk

i ∈ Ki, we
obtain

〈
w − pi, r − ynk

i

〉 ≥ 0. On the other hand, since ynk
i = PKi

(
xnk − λ

nk
i unk

i

)
, we

also have
〈(

xnk − λ
nk
i unk

i

) − ynk
i , r − ynk

i

〉 ≤ 0 (3.23)

and thus
〈

xnk − ynk
i

λ
nk
i

− unk
i , r − ynk

i

〉

≤ 0. (3.24)

Therefore it follows from the monotonicity of the mapping Ai, i = 1, . . . , N, that
〈
w, r − ynk

i

〉 ≥ 〈
pi, r − ynk

i

〉

≥ 〈
pi, r − ynk

i

〉 +
〈

xnk − ynk
i

λ
nk
i

− unk
i , r − ynk

i

〉

= 〈
pi − v

nk
i , r − ynk

i

〉 + 〈
v

nk
i − unk

i , r − ynk
i

〉

+
〈

xnk − ynk
i

λ
nk
i

, r − ynk
i

〉

≥ 〈
v

nk
i − unk

i , r − ynk
i

〉 +
〈

xnk − ynk
i

λ
nk
i

, r − ynk
i

〉

. (3.25)

From the Cauchy–Schwarz inequality and the Lipschitz continuity with constant α it
follows that

〈
w, r − ynk

i

〉 ≥ −α
∥
∥r − ynk

i

∥
∥

∥
∥xnk − ynk

i

∥
∥ − ∥

∥r − ynk
i

∥
∥

∥
∥xnk − ynk

i

∥
∥

a

= −Mi

(

α
∥
∥xnk − ynk

i

∥
∥ +

∥
∥xnk − ynk

i

∥
∥

a

)

, (3.26)

where Mi = supk∈N

{∥
∥r − ynk

i

∥
∥
}
. Taking the limit as k → ∞ and using the fact that{∥

∥r − ynk
i

∥
∥
}

k∈N
is bounded, we see that 〈w, r − x∗〉 ≥ 0. The maximality of Ti and

Remark 2.4 now imply that x∗ ∈ T−1
i (0) = SOL(Ai, Ki). Hence x∗ ∈ F. ��

Claim 3.10 The sequences {xn}n∈N,
{

yn
i

}
n∈N

and
{
zn

i

}
n∈N

converge strongly to PF(x1).

Proof Since (3.14) holds for all s ∈ Cn ∩ Wn and F ⊆ Cn ∩ Wn by the proof of Claim
3.7, we get for s = PF(x1) that

∥
∥xn − x1

∥
∥ ≤ ∥

∥PF(x1) − x1
∥
∥ (3.27)
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and furthermore,

lim
n→∞

∥
∥xn − x1

∥
∥ ≤ ∥

∥PF(x1) − x1
∥
∥ . (3.28)

Now, since the sequence {xn}n∈N is bounded (see Claim 3.8), there exists a subse-
quence {xnk}k∈N of {xn}n∈N which converges weakly to x∗. From Claim 3.9 it follows
that x∗ ∈ F. From the weak lower semicontinuity of the norm and (3.28) it follows
that

‖x∗ − x1‖ ≤ lim inf
k→∞

‖xnk − x1‖

= lim
n→∞ ‖xn − x1‖ = ∥

∥PF(x1) − x1
∥
∥ . (3.29)

Since x∗ ∈ F, it follows that x∗ = PF(x1). So, since by Claim 3.9 any weak accumu-
lation point of the sequence {xn}n∈N belong to F, it follows that w-limn→∞ xn = x∗ =
PF(x1). Finally,

‖x∗ − x1‖ ≤ lim inf
k→∞

‖xn − x1‖ = lim
n→∞ ‖xn − x1‖ = ∥

∥x∗ − x1
∥
∥ . (3.30)

Since w-limn→∞(xn − x1) = x∗ − x1 and limn→∞ ‖xn − x1‖ = ‖x∗ − x1‖, it follows
from the Kadec–Klee property of H that limn→∞ ‖xn − x∗‖ = 0, as asserted. ��

This completes the proof of Theorem 3.6.
Now we present several consequences of our main result.
First, consider the case where Condition 3.2 is replaced with the following condi-

tion.

Condition 3.11 Each one of the mappings {Ai}N
i=1 is maximal monotone and αi-

inverse strongly monotone (αi-ism) with constant αi > 0, that is,

〈u − v, x − y〉 ≥ αi‖u − v‖2 for all u ∈ Ai(x) and v ∈ Ai(y). (3.31)

The class of inverse strongly monotone mappings is commonly used in variational
inequality problems (see e.g., [17] and references therein). The Cauchy–Schwarz in-
equality shows that inverse strong monotonicity implies monotonicity and Lipschitz
continuity with constant LA = 1/α, where α is the ism constant. Thus it is clear that
Theorem 3.6 applies to this case too.

Second, consider the case where we take Ai as single-valued mappings, that is,
Ai : H → H, and we change Condition 3.2 to the following one: The mappings Ai

are monotone and Lipschitz continuous. It is known that, in general, monotonicity
and Lipschitz continuity do not imply inverse strong monotonicity. However, our
strong convergence theorem is also applicable in this case.

4 Applications

The CSVIP encompasses several previously separately studied problems, as well as
some new ones. For example, the following five problems are special cases of the
CSVIP.
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4.1 The Convex Feasibility Problem

Let H be a real Hilbert space. Given N nonempty, closed and convex subsets Ki ⊆ H,
with

⋂N
i=1 Ki �= ∅, the Convex Feasibility Problem (CFP) is to find a point x∗ such that

x∗ ∈
N⋂

i=1

Ki. (4.1)

This is obviously a special case of the CSVIP with all Ai = 0. The literature on the
CFP is vast and many algorithms for solving it have been developed (see, e.g., [2, 7]).
It plays a fundamental role in many real-world applications. See, e.g., [8].

4.2 The Common Minimizer Problem

A new problem which can be seen as a special case of the CSVIP is the Common Min-
imizer Problem (CMP). Given N nonempty, closed and convex subsets Ki ⊆ H, with⋂N

i=1 Ki �= ∅, and functions gi, i = 1, 2, . . . , N, that are continuously differentiable
and convex on Ki, respectively, the CMP is to find a point x∗ so that

x∗ ∈
N⋂

i=1

Ki and x∗ = argmin{gi(x) : x ∈ Ki} for all i = 1, 2, . . . , N. (4.2)

The problem of finding a minimizer of a continuously differentiable and convex
function over a convex set K is equivalent to solving a certain variational inequality.
See Example 1.2. Therefore, this CMP translates to a CSVIP (with single-valued
mappings) by choosing in (1.1) Ai = ∇gi for all i = 1, 2, . . . , N.

Replacing ∇gi by ∂gi, we see that the CSVIP also includes the case where the gi

are not necessarily differentiable.

4.3 The Common Saddle-Point Problem

The equivalence between certain VIPs and the saddle-point problems of Example 1.4
leads us to present the Common Saddle-Point Problem (CSPP). Let H1 and H2 be
two real Hilbert spaces and let {Ui}N

i=1 ⊆ H1 and {Vi}N
i=1 ⊆ H2 be nonempty, closed

and convex. Set H := H1 × H2. Given N functions { fi : H → R}N
i=1, the CSPP is to

find a point (u∗
1, u∗

2) ∈ (∩N
i=1Ui

) × (∩N
i=1Vi

)
such that for all i = 1 . . . N, we have

fi(u∗
1, u2) ≤ fi(u∗

1, u∗
2) ≤ fi(u1, u∗

2) (4.3)

for all (u1, u2) ∈ Ui × Vi. This problem reduces to the CSVIP when we take in (1.1)
Ai = (∇( fi)u1 ,−∇( fi)u2) and Ki = Ui × Vi for all i = 1, 2, . . . , N.

4.4 The Hierarchical Variational Inequality Problem

Next we present another variant of the CSVIP, namely, the Hierarchical Variational
Inequality Problem (HVIP). Let H be a real Hilbert space.

1. Let K be a nonempty, closed and convex subset of H and let U : K → K and
V : K → K be two nonexpansive single-valued mappings. Consider the operator
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B := I − V. Xu [28] studied the problem of finding a point x∗ ∈ Fix U such
that

〈B(x∗), x − x∗〉 ≥ 0 for all x ∈ Fix U. (4.4)

2. Yao and Liou [31] considered the following Hierarchical Variational Inequality
Problem (HVIP). Let H be a real Hilbert space and let K ⊆ H be a nonempty,
closed and convex subset. Given the single-valued mappings U : K → H and V :
K → H, set B := I − V. Then the HVIP is to find a point x∗ ∈ SOL(U, K) such
that

〈B(x∗), x − x∗〉 ≥ 0 for all x ∈ SOL(U, K). (4.5)

Since it is well known that x∗ ∈ SOL(U, K) ⇔ x∗ ∈ Fix PK(x∗ − λU(x∗)) for all
λ ≥ 0, this problem is essentially a special case of Xu’s problem. Both problems can
be formulated as a special CSVIP in the following way. Find a point x∗ ∈ H such that

〈(I − U)(x∗), x − x∗〉 ≥ 0 for all x ∈ H (4.6)

and

〈B(x∗), x − x∗〉 ≥ 0 for all x ∈ Fix U. (4.7)

This is a two-set CSVIP with the single-valued mappings A1 = I − U and A2 = B,

and the sets K1 = H and K2 = Fix U .
Recently, hierarchical fixed point problems and hierarchical minimization prob-

lems have attracted attention because of their connections with some convex pro-
gramming problems. See, e.g., [22, 23, 28, 30] and the references therein.

4.5 Variational Inequality Problem over the Intersection of Convex Sets

Let H be a real Hilbert space. Given N nonempty, closed and convex subsets
Ki ⊆ H, i = 1, 2, . . . , N, with

⋂N
i=1 Ki �= ∅, we consider the CSVIP (1.1) with Ai ≡ A

for each i = 1, 2, . . . , N. We obtain a single variational inequality problem over a
nonempty intersection of N nonempty, closed and convex subsets. More precisely,
we have to find a point x∗ ∈ ⋂N

i=1 Ki such that there exists u∗ ∈ A(x∗) satisfying
〈
u∗, x − x∗〉 ≥ 0 for all x ∈ Ki, i = 1, 2, . . . , N, (4.8)

and, in particular,

〈
u∗, x − x∗〉 ≥ 0 for all x ∈

N⋂

i=1

Ki. (4.9)

This problem is closely related to the work of Yamada [29] who considered a
variational inequality problem with a singled-valued mapping over the intersection
of the fixed point sets of nonexpansive mappings, i.e., Ki = Fix Ti, for i = 1, 2, . . . , N.

4.6 Implementation

In this subsection we demonstrate, using a simple low-dimensional example,
the practical difficulties associated with the implementation of Algorithm 3.1
(see also our comment after the formulation of Algorithm 3.1). We consider a
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two-disc convex feasibility problem in R
2 and provide an explicit formulation

of our Algorithm 3.1, as well as some numerical results. More explicitly, let
K1 = {

(x, y) ∈ R
2 : (x − a1)

2 + (y − b 1)
2 ≤ r2

1

}
and K2 = {

(x, y) ∈ R
2 : (x − a2)

2+
(y − b 2)

2 ≤ r2
2

}
with K1 ∩ K2 �= ∅. Consider the problem of finding a point (x∗, y∗) ∈

R
2 such that (x∗, y∗) ∈ K1 ∩ K2. Observe that in this case A1 = A2 = 0. For sim-

plicity we choose γ n
1 = γ n

2 = 1/2. Given the current iterate xn = (u, v), the explicit
formulation of the iterative step of Algorithm 3.1 becomes:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn
1 = PK1 (xn) =

(

a1 + r1 (u − a1)

‖(u − a1, v − b 1)‖ , b 1 + r1 (v − b 1)

‖(u − a1, v − b 1)‖
)

,

yn
2 = PK2 (xn) =

(

a2 + r2 (u − a2)

‖(u − a2, v − b 2)‖ , b 1 + r2 (v − b 2)

‖(u − a2, v − b 2)‖
)

,

Cn
1 = {

z = (s, t) ∈ R
2 : ‖z − yn

1‖ ≤ ‖z − xn‖} ,

Cn
2 = {

z = (s, t) ∈ R
2 : ‖z − yn

2‖ ≤ ‖z − xn‖} ,

Wn = {
z ∈ R

2 : 〈
x1 − xn, z − xn

〉 ≤ 0
}
,

xn+1 = PCn
1 ∩Cn

2 ∩Wn

(
x1) .

(4.10)
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Fig. 1 Geometric illustration of Algorithm 3.1 in each iterative step, i.e., the discs and the three
half-spaces Cn

1 , Cn
2 and Wn, with the starting point x1 = (−1/2, 3)
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Fig. 2 Geometric illustration of Algorithm 3.1 in each iterative step, i.e., the discs and the three
half-spaces Cn

1 , Cn
2 and Wn, with the starting point x1 = (3, 3)

In order to calculate xn+1, we solve the following constrained minimization problem:
{

min ‖x1 − z‖2,

such that z ∈ Cn
1 ∩ Cn

2 ∩ Wn.
(4.11)

In the case of the metric projection onto two half-spaces, an explicit formula can be
found in [3, Definition 3.1] and in [10, Section 3.1]. Using the same technique, we
are able to obtain the solution to (4.11) even for more than three half-spaces, but

Table 1 Ten iterations with
the starting point
x1 = (−1/2, 3)

Iteration number x-value y-value

1 −0.500000000 3.0000000000
2 0.0263507717 1.9471923798
3 0.2898391508 1.4209450920
4 0.4211545167 1.1576070220
5 0.4687763141 1.0169184232
6 0.4862238741 0.9429308114
7 0.4935428246 0.9048859275
8 0.4968764116 0.8855650270
9 0.4984644573 0.8758239778
10 0.4992386397 0.8709324060
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Table 2 Ten iterations with
the starting point x1 = (3, 3)

Iteration number x-value y-value

1 3.0000000000 3.0000000000
2 1.8536075595 1.8534992168
3 1.2802790276 1.2803811470
4 0.9937807510 0.9936561265
5 0.8503033752 0.8505218683
6 0.7789970157 0.7785224690
7 0.7423971596 0.7434698006
8 0.7264747366 0.7235683325
9 0.7115677773 0.7205826742
10 0.7260458319 0.6973591138

there are many subcases in the explicit formula (two to the power of the number of
half-spaces).

Now we present some numerical results for the particular case where K1 ={
(x, y) ∈ R

2 : x2 + y2 ≤ 1
}

and K2 = {
(x, y) ∈ R

2 : (x − 1)2 + y2 ≤ 1
}
. We choose

separately two starting points (−1/2, 3) and (3, 3), and for each starting point we
present a table with the (x, y) coordinates for the first 10 iterations of Algorithm 3.1.
In addition, Figs. 1 and 2 illustrate the geometry in each iterative step, i.e., the discs
and the three half-spaces Cn

1 , Cn
2 and Wn.

Case 4.1 Starting point x1 = (−1/2, 3) with the first ten iterations of the algorithm
(Table 1).

Case 4.2 Starting point is x1 = (3, 3) with the first ten iterations of the algorithm
(Table 2).

Acknowledgements We thank an anonymous referee and Sedi Bartz for their constructive com-
ments. The work of Y. C. was partially supported by grant number 2009012 from the United
States-Israel Binational Science Foundation (BSF) and by US Department of Army award number
W81XWH-10-1-0170. The work of S. R. was partially supported by the Israel Science Foundation
grant number 647/07, by the Fund for the Promotion of Research at the Technion and by the
Technion President’s Research Fund.

References

1. Ansari, Q.H., Yao, J.C.: A fixed point theorem and its applications to a system of variational
inequalities. Bull. Aust. Math. Soc. 59, 433–442 (1999)

2. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems.
SIAM Rev. 38, 367–426 (1996)

3. Bauschke, H.H., Combettes, P.L. Luke, D.R.: A strongly convergent reflection method for
finding the projection onto the intersection of two closed convex sets in a Hilbert space. J.
Approx. Theory 141, 63–69 (2006)

4. Bello Cruz, J.Y., Iusem, A.N.: A strongly convergent direct method for monotone variational
inequalities in Hilbert spaces. Numer. Funct. Anal. Optim. 30, 23–36 (2009)

5. Bertsekas, D.P., Tsitsiklis, J.N.: Parallel and Distributed Computation: Numerical Methods.
Prentice-Hall, Englwood Cliffs (1989)

6. Censor, Y.: Computational acceleration of projection algorithms for the linear best approxima-
tion problem. Linear Algebra Appl. 416, 111–123 (2006)

7. Censor, Y., Zenios, S.A.: Parallel Optimization: Theory, Algorithms, and Applications. Oxford
University Press, New York (1997)



Common Solutions to Variational Inequalities 247

8. Censor, Y., Chen, W., Combettes, P.L., Davidi, R., Herman, G.T.: On the effectiveness of
projection methods for convex feasibility problems with linear inequality constraints. Comput.
Optim. Appl. (2011, accepted for publication). doi:10.1007/s10589-011-9401-7

9. Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problem. Numer.
Algorithms (2011, accepted for publication)

10. Censor, Y., Gibali, A., Reich, S.: Strong convergence of subgradient extragradient methods for
the variational inequality problem in Hilbert space. Optim. Methods Softw. (2011, accepted for
publication)

11. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity
Problems, vols. I and II. Springer, New York (2003)

12. Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge University Press,
Cambridge (1990)

13. Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings.
Marcel Dekker, New York (1984)

14. Golshtein, E.G., Tretyakov, N.V.: Modified Lagrangians and Monotone Maps in Optimization.
Wiley, New York (1996)

15. Hartman, P., Stampacchia, G.: On some non-linear elliptic diferential-functional equations. Acta
Math. 115, 271–310 (1966)

16. Husain, T., Latif, A.: Fixed points of multivalued nonexpansive maps. Math. Jpn. 33, 385–391
(1988)

17. Iiduka, H., Takahashi, W.: Strong convergence theorems for nonexpansive mappings and
inverse-strongly monotone mappings. Nonlinear Anal. 61, 314–350 (2005)

18. Kassay, G., Kolumbán, J.: System of multi-valued variational inequalities. Publ. Math. (Debr.)
56, 185–195 (2000)

19. Konnov, I.V.: On systems of variational inequalities. Russ. Math. 41, 79–88 (1997)
20. Konnov, I.V.: Combined Relaxation Methods for Variational Inequalities. Springer, Berlin

(2001)
21. Kinderlehrer, D., Stampacchia, G.: An Introduction to Variational Inequalities and Their Appli-

cations. Academic, New York (1980)
22. Moudafi, A., Maingé, P.E.: Towards viscosity approximations of hierarchical fixed-point prob-

lems. Fixed Point Theory and Applications, Article ID 95453, vol. 2006, p. 10 (2006)
23. Moudafi, A., Maingé, P.E.: Strong convergence of an iterative method for hierarchical fixed-

point problems. Pac. J. Optim. 3, 529–538 (2007)
24. Opial, Z.: Weak convergence of the sequence of successive approximations for nonexpansive

mappings. Bull. Am. Meteorol. Soc. 73, 591–597 (1967)
25. Pang, J.S.: Asymmetric variational inequality problems over product sets: applications and itera-

tive methods. Math. Program. 31, 206–219 (1985)
26. Patriksson, M.: Nonlinear Programing and Variational Inequality Problems, A Unified

Approach. Kluwer Academic, Dordrecht (1999)
27. Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am.

Math. Soc. 149, 75–88 (1970)
28. Xu, H.-K.: Viscosity method for hierarchical fixed point approach to variational inequalities.

Taiwan. J. Math. 14, 463–478 (2010)
29. Yamada, I.: The hybrid steepest descent method for the variational inequality problem over

the intersection of fixed point sets of nonexpansive mappings, In: Butnariu, D., Censor, Y.,
Reich, S. (eds.) Inherently Parallel Algorithms in Feasibility and Optimization and Their
Applications, pp. 473—504. Elsevier, Amsterdam (2001)

30. Yao, Y., Liou, Y.C.: Weak and strong convergence of Krasnoselski–Mann iteration for hierar-
chical fixed point problems. Inverse Probl. 24, 8 (2008)

31. Yao, Y., Liou, Y.C.: An implicit extragradient method for hierarchical variational inequalities.
Fixed Point Theory and Applications 2011, 11 (2011)

32. Zhao, Y., Xia, Z., Pang, L., Zhang, L.: Existence of solutions and algorithm for a system of
variational inequalities. Fixed Point Theory and Applications 2010, 11 (2010)

http://dx.doi.org/10.1007/s10589-011-9401-7

	Common Solutions to Variational Inequalities
	Abstract
	Introduction
	Relation with Previous Work

	Preliminaries
	The Algorithm
	Applications
	The Convex Feasibility Problem
	The Common Minimizer Problem
	The Common Saddle-Point Problem
	The Hierarchical Variational Inequality Problem
	Variational Inequality Problem over the Intersection of Convex Sets
	Implementation

	References



