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Abstract In this paper, some exact calculus rules are obtained for calculating the
coderivatives of the composition of two multivalued maps. Similar rules are displayed
for sums. A crucial role is played by an intermediate set-valued map called the resol-
vent. We first establish inclusions for contingent, Fréchet and limiting coderivatives.
Combining them, we get equality rules. The qualification conditions we present are
natural and less exacting than classical conditions.
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Openness with a linear rate · Synergetic sets
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1 Introduction

Set-valued mappings (or multivalued maps, multimaps, in short) are objects of funda-
mental importance, especially for optimization. Feasible sets of parametrized opti-
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mization problems, sets of solutions of such problems are instances of such multimaps
[14, 19, 30, 33, 34, 36, 43, 65]. It has been well recognized that differential inclusions,
which are certainly of independent interest, play a key role in optimal control theory
([1–3, 7–10, 13, 15, 20, 21, 37, 40, 70, 73]...). Many sophisticated control systems
can be associated with differential inclusions, such as closed loop control systems,
implicit control systems, systems with uncertainties and so on. Moreover, maximum
principles are fundamental results of optimal control theories in which the adjoint
inclusions are the basis of recent maximum principles [41, 50]. Naturally, funnels of
solutions to differential inclusions and the adjoint inclusions are set-valued [42, 51].
Thus, many control systems are related to set-valued maps.

The analysis of sets and the analysis of functions can be incorporated in the
analysis of multimaps and, conversely, the latter benefits from the study of the former
objects. These passages explain the importance of codifferential analysis. The study
of coderivatives of multimaps gives a rich collection of results about the behavior
of the involved multimaps (see [41, 54, 71] for instance). However, coderivatives
are not as intuitive as set-valued (graphical) derivatives. The reason stems from
the dualization process which is a kind of reflection. Such a process reverses the
directions of the maps, for instance, and, as in convex analysis, the dual of a property
has features different from the ones of the primal property.

As with subdifferentials of functions (which also involve a form of dualization), the
main advantage of coderivatives is represented by their calculus rules. A number of
results have been obtained in the literature about such calculus rules ([22, 24, 28, 34,
41, 44–49, 71]...). In [44] subdifferential calculus is related to codifferential calculus.
In [26] approximate (or fuzzy) rules are displayed. In [62] compactness conditions
are introduced in order to provide openness criteria; see also [27] and [44]. Recent
studies about error bounds also provide keys for calculus rules (see [25, 52, 53, 68, 72,
75–77]...). Applications to sensitivity analysis, variational inequalities, equilibrium
problems are numerous ([4, 11, 12, 16–18, 29, 31–33, 63]...).

Some calculus rules for coderivatives are obvious. This is the case in particular
for the coderivative of the product F1 × F2 : X1 × X2 ⇒ Y1 × Y2 of two multimaps
F1 : X1 ⇒ Y1, F2 : X2 ⇒ Y2, as the graph of F1 × F2 is isometric to the product
of the graphs of F1 and F2. In some other cases, estimates are not so obvious.
This is the case for the multimap (F1, F2) : X ⇒ Y1 × Y2 defined by (F1, F2)(x) :=
F1(x) × F2(x) when X1 := X2 := X. We also consider the case of composition and
sum. For subdifferential calculus for functions, one may equivalently start from
composition or sums; here we adopt the viewpoint that composition is an appropriate
starting point for codifferential calculus. Since in [41] the starting step is a sum rule,
we get that a similar situation prevails for coderivatives. In fact, composition involves
two operations from the calculus of normal cones: projection and intersection. Both
are rather simple and we deal with them from the beginning. As in [26] and [64] some
metric estimates can ensure the expected inclusions for coderivatives. However, we
aim at assumptions formulated in terms of coderivatives, as in [41]. The qualification
conditions we present are slightly more general than the conditions in [41]; we show
that through some examples and we make a thorough study of the relationships
between various qualification conditions. We also stress the importance of giving
symmetric qualification conditions. Such a viewpoint can be illustrated by the fact
that a team may win because one of its member is very strong; but it may also win
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because the team is well coordinated and the weaknesses of some of its members is
compensated by the quality of other members.

Although such a study is simpler when limited to finite dimensional spaces, we
adopt an infinite dimensional framework in order to make the results available for
some applications and for an easier comparison with previous results in [5, 26, 41, 45,
48, 49, 64]. It appears that some results remain valid without change in the infinite
dimensional dimensional case; for some others one has to use compactness or metric
qualification conditions. We strive to deal with elementary coderivatives as they
inevitably play a role in the proofs, so that we consider it is useful to put them in
full light, especially for some inclusions. Then, with some regularity assumptions on
the given maps, we get regularity results for compositions or sums.

Applications to parametrized optimization problems and second-order analysis
will be presented elsewhere.

2 Preliminaries

In the sequel, for the sake of simplicity, we identify a multimap F with its graph
gphF. Such an identification cannot cause ambiguities because we do not use any
operation on graphs but intersections. If F : X ⇒ Y is a multimap, F−1 denotes the
multimap from Y to X given by F−1(y) := {x ∈ X : y ∈ F(x)}. Thus its graph is given
by F−1 := {(y, x) : (x, y) ∈ F}.

The closed unit ball of a normed vector space X is denoted by BX . The notation
∗→ stands for weak∗ convergence in a dual space, while (xn)

S→ x means that the
sequence (xn) is contained in the subset S and converges to x.

Let us recall some classical concepts in order to fix the terminology. We start with
openness properties.

Definition 1 A multimap F : X ⇒ Y between two metric spaces is said to be open
at some (x, y) ∈ F if for every neighborhood U of x the set F(U) is a neighborhood
of y.

It is said to be open with a linear rate at some (x, y) ∈ F if there exists some c > 0
such that B(y, r) ⊂ F(B(x, cr)) for r > 0 small enough.

It is said to be open around some (x, y) ∈ F with a linear rate if there exist some
c > 0 and some neighborhoods U of x, V of y such that B(y, r) ⊂ F(B(x, cr)) for all
x ∈ U , y ∈ F(x) ∩ V and r > 0 small enough.

Given subsets C ⊂ X, D ⊂ Y, a map p : X → Y is said to be open around some
x ∈ C from C to D with a linear rate if the restriction F : C ⇒ D given by F(x) :=
{p(x)} for x ∈ C ∩ p−1(D), F(x) := ∅ otherwise is open around (x, p(x)) with a linear
rate.

Now let us turn to some continuity/compactness properties.

Definition 2 [57] A multimap G : Y ⇒ Z between two metric spaces is said to be
lower (or inner) semicontinuous (lsc) at (y, B) (on E ⊂ Y), where B is some subset
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of Z if for every sequence (yn) (of E) converging to y there exist some z ∈ B and a
sequence (zn) → z such that zn ∈ G(yn) for n in an infinite subset N of N.

Three special cases are of interest in the preceding definition: the case B is a
singleton {z}, the case B = G(y) and the case B := Z . In the later case, the property
has been renamed semi-compactness of G at y in [41] and elsewhere. It is of interest
to combine such a property with closedness at y : G is said to be closed at y if for any

sequence ((yn, zn))
G→ (y, z) one has (y, z) ∈ G.

Let us note that when B is the singleton {z}, the given definition of lower semi-
continuity at (y, B) coincides with the classical one since then, for every sequence
(yn) → y one has (d(z, G(yn))) → 0. Let us also note that the preceding definition is
related to a variant of the classical notion of properness [6, 55] described in the next
definition.

Definition 3 A multimap F : Z ⇒ Y between two metric spaces is said to be proper
at (B, y) (with respect to E ⊂ Y), where B is some subset of Z if for every sequence
(yn) (of E) converging to y there exist some z ∈ B and a sequence (zn) → z such that
yn ∈ F(zn) for n in an infinite subset N of N.

Clearly, G is lsc at (y, B) (on E ⊂ Y) if, and only if F := G−1 is proper at (B, y)

(with respect to E ⊂ Y). In the classical literature, the multimap F is just a map.
Quantitative notions can be added to the preceding qualitative property.

Definition 4 A multimap G : Y ⇒ Z between two metric spaces is said to be lower
semicontinuous at (y, z) ∈ G (on C ⊂ Y) with a linear rate if there exist some c > 0
and some neighborhood V of y such that for all y ∈ V(∩C) one can find some z ∈
G(y) satisfying d(z, z) ≤ cd(y, y).

We observe that when Z := X, z := x and G := F−1, G is lsc at (y, z) ∈ G with
a linear rate if, and only if, F is open at (x, y) with linear rate (see [59]). A stronger
property has been called Lipschitz-like property or Aubin property.

Definition 5 A multimap G : Y ⇒ Z between two metric spaces is said to be
Lipschitz-like around (y, z) if there exist c > 0 and neighborhoods V of y, W of z
such that d(z, G(y′)) ≤ cd(y, y′) for all y, y′ ∈ V, z ∈ G(y) ∩ W.

We also observe that when Z := X, z := x and G := F−1, G is Lipschitz-like
around (y, z) ∈ G, if and only if, F is open around (x, y) with a linear rate, if, and
only if, F is metrically regular around (x, y) ∈ F (see [59]).

Now let us turn to notions of infinitesimal analysis. In the sequel we say that a
function r : X → R∞ := R ∪ {+∞} on a normed vector space X is a remainder if
lim‖x‖→0 r(x)/ ‖x‖ = 0.

Definition 6 The contingent cone (or just tangent cone) T(S, x) to a subset S of a
normed vector space X at x ∈ S is the set of limits of sequences (t−1

n (xn − x)), where
(tn) → 0+, xn ∈ S for all n. The normal cone N(S, x) to S at x is the polar cone of
T(S, x).
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Given ε ∈ R+, the firm or Fréchet ε-normal cone to S at x is the set Nε
F(S, x)

of x∗ ∈ X∗ such that there exists a remainder r satisfying 〈x∗, x − x〉 ≤ r(x − x) +
ε ‖x − x‖ for x ∈ S. For ε = 0, one sets NF(S, x) := N0

F(S, x).

The limiting normal cone to S at x is the set NL(S, x) of weak∗ limits of sequences

(x∗
n) such that x∗

n ∈ Nεn
F (S, xn) for some sequences (εn) → 0+, (xn)

S→ x.

Let us recall the concepts of coderivative which form the core of our study.

Definition 7 The contingent coderivative D∗ F(x, y) of a multimap F : X ⇒ Y be-
tween two normed vector spaces at (x, y) ∈ F is the multimap D∗ F(x, y) : Y∗ ⇒ X∗
whose graph is {(y∗, x∗) : (x∗, −y∗) ∈ N(F, (x, y))}.

The Fréchet coderivative D∗
F F(x, y) and the limiting (or normal) coderivative

D∗
L F(x, y) are obtained similarly by replacing N(F, (x, y)) with NF(F, (x, y)) and

NL(F, (x, y)) respectively.

It is well known that when X is an Asplund space one can replace Nεn
F (S, xn) with

NF(S, xn) in the definition of NL(S, x) (see [41, 44]). The concept of coderivative
has been introduced by Mordukhovich in [39]. In that paper he mainly used the
limiting normal cone introduced earlier in [38]. We refer to [41] and [69] for historical
information about the concepts of limiting normal cones and coderivatives.

Definition 8 [41, Definition 1.32] The mixed coderivative D∗
M F(x, y) of a mul-

timap F : X ⇒ Y between two normed vector spaces at (x, y) ∈ F is the multimap
D∗

M F(x, y) : Y∗ ⇒ X∗ defined by

D∗
M F(x, y)(y∗) := {x∗ :∃((xn, yn))

F→ (x, y), (εn) → 0+, (x∗
n)

∗→ x∗, (y∗
n) → y∗,

∀n ∈ N (x∗
n,−y∗

n) ∈ Nεn
F (F, (xn, yn))}.

It is of interest to introduce a definition for the case these notions coincide at a
given point.

Definition 9 [67] A multimap F : X ⇒ Y is said to be soft (resp. Fréchet
soft or firmly soft, in short F-soft) at (x, y) ∈ F if D∗

L F(x, y) = D∗ F(x, y)

(resp. D∗
L F(x, y) = D∗

F F(x, y)). Then, one also has D∗
M F(x, y) = D∗ F(x, y) (resp.

D∗
M F(x, y) = D∗

F F(x, y)).

When X and Y are Asplund spaces, F is F-soft at (x, y) if, and only if F is F-regular
at (x, y) in the sense that NF(F, (x, y)) coincides with the Clarke normal cone to F at
(x, y).

Let us recall some compactness notions we shall use. They derive from a general
concept of compactness for maps and multimaps [58].

Definition 10 [60, 62] A subset S of a normed vector space X is said to be (sequen-

tially) normally compact at x ∈ S if for every sequences (xn)
S→ x, (x∗

n)
∗→ 0 with

x∗
n ∈ NF(S, xn) for all n ∈ N, one has (x∗

n) → 0.
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In [60] this condition is formulated in an equivalent way (for the case S is convex);
it is shown in [60] that if S is a closed convex set with nonempty interior, then S is
normally compact at each of its points. It is obviously also the case for an arbitrary
subset of a finite dimensional space.

The following definition introduced in [62, Definition 4.1] (for nets) is an adapta-
tion to multimaps of the preceding compactness notion for sets. It is also considered
in [23, 27, 41] and in numerous papers of Mordukhovich under the name partial
sequential normal compactness (PSNC) (resp. strong partial sequential normal
compactness) of the inverse.

Definition 11 [62] A multimap F : X ⇒ Y is said to be coderivatively compact (resp.

strongly coderivatively compact) at (x, y) ∈ F if for every sequences ((xn, yn))
F→

(x, y), (x∗
n) → 0 (resp. (x∗

n)
∗→ 0), (y∗

n)
∗→ 0 with x∗

n ∈ D∗
F F(xn, yn)(y∗

n) for all n ∈ N

one has (y∗
n) → 0.

Clearly, if the graph of F is normally compact at (x, y) ∈ F, then F is strongly
coderivatively compact at (x, y). A subset S of Y is normally compact at y ∈ S if, and
only if, for x ∈ C ⊂ X, the multimap F : X ⇒ Y with graph C × S is coderivatively
compact at (x, y). Coderivative compactness is obviously satisfied when Y is finite
dimensional. In view of the following lemma, it is also satisfied when F−1 is Lipschitz-
like around (y, x).

Lemma 12 [41, Theorem 1.43] Suppose F : X ⇒ Y is Lipschitz-like around (x, y).

Then there exists c > 0 such that ‖x∗‖ ≤ c ‖y∗‖ for all y∗ ∈ Y∗, all (x, y) near (x, y) and
all x∗ ∈ D∗

M F(x, y)(y∗), hence for all x∗ ∈ D∗
F F(x, y)(y∗). If Y is f inite dimensional,

the same inequality holds when x∗ ∈ D∗
L F(x, y)(y∗).

3 Coderivatives of Intersections

Given multimaps F : X ⇒ Y, G : X ⇒ Y between two normed vector spaces, the
multimap F ∩ G is defined by (F ∩ G)(x) := F(x) ∩ G(x), so that its graph is the
intersection of the graphs of F and G and our notation is unambiguous. This remark
allows to reduce the computation of the coderivative of F ∩ G to the calculus of the
normal cone to an intersection.

We introduce the multimap F�G : X ⇒ Y by

(F�G) (x) := {F(u) + G(v) : u, v ∈ X, u + v = x}.
Thus the graph of F�G is simply the sum of the graphs of F and G.

We also use the following notions of joint behavior. The first one is automatically
satisfied in finite dimensional spaces.

Definition 13 [64, Definition 3.2] Two closed subsets F and G of a normed vector

space Z are said to be synergetic at z ∈ F ∩ G if (xn)
F→ z, (yn)

G→ z, (x∗
n)

∗→ 0,

(y∗
n)

∗→ 0 are such that x∗
n ∈ NF(F, xn), y∗

n ∈ NF(G, yn) for all n ∈ N and (x∗
n + y∗

n) →
0, then one has (x∗

n) → 0, (y∗
n) → 0.
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The sets F and G are synergetic at z ∈ F ∩ G whenever one of them is normally
compact at z. It is easy to give examples showing that F and G can be synergetic at z
while none of them is normally compact at z.

Example Let X, Y be infinite dimensional normed vector spaces, let Z := X × Y
and let S ⊂ X and T ⊂ Y be normally compact at x ∈ S and y ∈ T, respectively.
Then, for any subsets S′ ⊂ X, T ′ ⊂ Y containing x and y respectively, the sets F :=
S × T ′ and G := S′ × T are synergetic at z := (x, y).

Example [64] Two closed convex subsets C and D of Z are synergetic at z ∈ C ∩ D
whenever they are transverse (see [56]) in the sense that R+ (C − z) − R+ (D − z) =
Z .

Definition 14 [41, Definition 3.2] Given two closed subsets F and G of a normed vec-
tor space Z , one says that they satisfy the limiting qualification condition (LQC) at

z ∈ F ∩ G if (xn)
F→ z, (yn)

G→ z, (x∗
n)

∗→ x∗, (y∗
n)

∗→ y∗ are such that x∗
n ∈ NF(F, xn),

y∗
n ∈ NF(G, yn) for all n ∈ N and (x∗

n + y∗
n) → 0, then one has x∗ = 0, y∗ = 0.

Such a condition is obviously a consequence of the so-called normal qualif ication
condition (NQC)

(−NL(F, z)) ∩ NL(G, z) = {0}. (1)

If Z is finite dimensional, (1) is equivalent to the (LQC) condition.
In [26] the following notion was introduced in a slightly different form. Clearly, it

is a property stronger than the synergy and the (LQC) conditions.

Definition 15 [64] Given two closed subsets F and G of a normed vector space Z ,
one says that they are allied at z ∈ F ∩ G (for the Fréchet normal cones) whenever

(xn)
F→ z, (yn)

G→ z, x∗
n ∈ NF (F, xn), y∗

n ∈ NF (G, yn), the relation
(
x∗

n + y∗
n

) → 0
implies

(
x∗

n

) → 0,
(
y∗

n

) → 0.

The crucial proposition which follows reduces alliedness to a much easier
requirement.

Proposition 16 Two closed subsets F and G of Z are allied at z ∈ F ∩ G whenever

given (xn)
F→ z, (yn)

G→ z, x∗
n ∈ NF (F, xn) ∩ BZ ∗ , y∗

n ∈ NF (G, yn) ∩ BZ ∗ , the relation(
x∗

n + y∗
n

) → 0 implies
(
x∗

n

) → 0,
(
y∗

n

) → 0.

Proof Suppose F and G satisfy this condition. Let (xn)
F→ z, (yn)

G→ z, (x∗
n), (y∗

n)

be sequences satisfying
(
x∗

n + y∗
n

) → 0 and x∗
n ∈ NF (F, xn) , y∗

n ∈ NF (G, yn) for all
n ∈ N. Let rn := max(

∥
∥x∗

n

∥
∥ ,

∥
∥y∗

n

∥
∥). If (rn) is bounded, changing (x∗

n) and (y∗
n) into

(x∗
n/r) and (y∗

n/r), with r > supn rn, we get that (x∗
n) → 0 and (y∗

n) → 0. It remains
to discard the case (rn) is unbounded. Taking a subsequence, we may suppose (rn) →
+∞. Setting u∗

n := x∗
n/rn, v∗

n := y∗
n/rn, so that (

∥∥u∗
n + v∗

n

∥∥) → 0, we obtain from our
assumption that

(∥∥u∗
n

∥
∥) → 0,

(∥∥v∗
n

∥
∥) → 0, a contradiction with max(

∥
∥u∗

n

∥
∥ ,

∥
∥v∗

n

∥
∥) = 1.

��
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The following equivalence stems from the proposition via extraction of
subsequences.

Corollary 17 Suppose the dual unit ball of Z is weak∗ sequentially compact. Two
closed subsets F and G of Z are allied at z ∈ F ∩ G if, and only if, they are synergetic
at z and satisfy the (LQC) condition at z.

Let us give criteria ensuring the limiting qualification condition (LQC) or the
alliedness property. In order to formulate one of them, it is convenient to use the
notion of apart cones.

Definition 18 [66] Two cones P, Q of a normed vector space Z are said to be apart
if gap(P ∩ SZ , Q ∩ SZ ) > 0, where SZ is the unit sphere in Z and for two subsets
C, D of Z , gap(C, D) is defined by

gap(C, D) := inf{‖x − y‖ : x ∈ C, y ∈ D}.

In [66] several characterizations of this property are displayed. In particular, P, Q
are apart if, and only if, for some ε > 0, their enlargements (or plasterings) Pε, Qε

satisfy Pε ∩ Qε = {0}, if, and only if for some α > 0 one has Pα ∩ Q = {0}, where

Pε := {z ∈ Z : d(z, P) < ε ‖z‖} ∪ {0}.

Proposition 19 The limiting qualif ication condition (LQC) at z ∈ F ∩ G and the
alliedness property are satisf ied whenever the following local uniform alliedness prop-
erty (LUA) holds: there exists ε > 0 such that for all x ∈ F ∩ B(z, ε), y ∈ G ∩ B(z, ε)

one has (−NF(F, x)) ∩ (NF(G, y))ε = {0}.

Proof Suppose the local uniform alliedness property holds while the alliedness

property fails. Then there exist r > 0 and sequences (xn)
F→ z, (yn)

G→ z, (x∗
n), (y∗

n)

such that (x∗
n + y∗

n) → 0 and x∗
n ∈ NF(F, xn), y∗

n ∈ NF(G, yn),
∥∥x∗

n

∥∥ > r for all n ∈ N.

Picking ε > 0 as in the local uniform alliedness property, we get a contradiction with
(x∗

n + y∗
n) → 0:

∥∥x∗
n + y∗

n

∥∥ ≥ d(−x∗
n, NF(G, yn)) ≥ ε

∥∥−x∗
n

∥∥ ≥ εr.

Even when the ball BZ ∗ is not sequentially compact, the (LQC) condition follows
from the local uniform alliedness property. In fact, if the (LQC) condition fails, one

can find x∗, y∗ ∈ Z\{0} and sequences (xn)
F→ z, (yn)

G→ z, (x∗
n)

∗→ x∗, (y∗
n)

∗→ y∗
such that x∗

n ∈ NF(F, xn), y∗
n ∈ NF(G, yn) for all n ∈ N and (x∗

n + y∗
n) → 0. Taking

r ∈ (0, ‖x∗‖) and using the weak∗ compactness of rBZ ∗ one has
∥
∥x∗

n

∥
∥ > r for n large

enough. Then, as above, one gets a contradiction with the local uniform alliedness
property. ��

Following the request of an anonymous referee of a preliminary version of the
present paper, let us compare our assumptions with the fuzzy qualif ication condition
of [41, p. 264] which is as follows: there exists γ > 0 such that

(NF(F, x) + γ BZ ∗) ∩ (−NF(G, y) + γ BZ ∗) ∩ BZ ∗ ⊂ (1/2)BZ ∗ (2)
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for all x ∈ F ∩ B(z, γ ), y ∈ G ∩ B(z, γ ).

Lemma 20 The fuzzy qualif ication condition (FQC) is equivalent to the local uniform
alliedness property (LUA).

Proof Suppose the fuzzy qualification condition holds. Let γ > 0 be as in (2) and
let us show that for ε = γ we have (−NF(F, x)) ∩ (NF(G, y))ε = {0} for all x ∈ F ∩
B(z, ε), y ∈ G ∩ B(z, ε). Suppose, on the contrary, that we can find x ∈ F ∩ B(z, γ ),

y ∈ G ∩ B(z, γ ) and x∗ ∈ (−NF(F, x)) ∩ (NF(G, y))ε with x∗ �= 0. Replacing x∗ with
x∗/ ‖x∗‖ if necessary, we may suppose −x∗ ∈ SZ ∗ ∩ NF(F, x) and d(x∗, NF(G, y)) <

ε. Then, we can find y∗ ∈ NF(G, y) satisfying ‖x∗ + y∗‖ < ε, so that, by (2) x∗ ∈
(1/2)BZ ∗ , a contradiction.

Suppose now that the fuzzy qualification condition does not hold: given a sequence
(γn) → 0+, one can find sequences (xn), (yn) in F and G respectively, (u∗

n), (v∗
n), (w∗

n),

(z∗
n) with d(xn, z) < γn, d(yn, z) < γn u∗

n ∈ NF(F, xn), v∗
n ∈ NF(G, yn), (w∗

n), (z
∗
n) ∈

γn BZ ∗ , u∗
n + w∗

n = −v∗
n + z∗

n ∈ BZ ∗\(1/2)BZ ∗ for all n ∈ N. We may suppose γn ≤
1/4 for all n ∈ N, so that

∥∥u∗
n

∥∥ ≥ 1/4 and

d(−u∗
n, NF(G, yn)) ≤ ∥

∥u∗
n + v∗

n

∥
∥ = ∥

∥z∗
n − w∗

n

∥
∥ ≤ 2γn ≤ 8γn

∥
∥u∗

n

∥
∥ .

Thus the local uniform alliedness property does not hold. ��

The following result is inspired by a hint kindly given by the referee. It closes the
circle of qualification conditions and shows the interest of giving symmetric roles to
F and G.

Proposition 21 Suppose the unit ball of Z ∗ is weak∗ sequentially compact, suppose F
and G are synergetic at z ∈ F ∩ G and the limiting qualif ication condition holds at z.

Then the local uniform alliedness property is satisf ied at z.

Proof Suppose on the contrary that there exist sequences (xn)
F→ z, (yn)

G→ z
such that (gap(NF(F, xn) ∩ SZ ∗ , (−NF(G, yn)) ∩ SZ ∗))n → 0. Then, there exist x∗

n ∈
NF(F, xn) ∩ SZ ∗ , y∗

n ∈ NF(G, yn) ∩ SZ ∗ such that (x∗
n + y∗

n) → 0. Since BZ ∗ is se-
quentially compact, taking subsequences if necessary, we may suppose (x∗

n) and (y∗
n)

have weak∗ limits x∗ and y∗ respectively. The limiting qualification condition ensures
that x∗ = 0, y∗ = 0. Now, since F and G are synergetic at z, we get (x∗

n) → 0, a
contradiction with

∥∥x∗
n

∥∥ = 1 for all n. ��

It is shown in [64, Thoerem 3.7] that when Z is an Asplund space and the normal
qualification condition holds, the synergy condition implies the following linear
estimate for some r, c > 0 :

∀z ∈ B(z, r) d(z, F ∩ G) ≤ cd(z, F) + cd(z, G) (3)

which in turn ([23, Proposition 6.2], [61, Proposition 5.2] and [64, Proposition 2.6] for
instance) entails

NL(F ∩ G, z) ⊂ NL(F, z) + NL(G, z). (4)

We give here a direct proof of this inclusion while relaxing the qualification
condition. It uses the following alternative.
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Proposition 22 Let F and G be two closed subsets of an Asplund space Z and let
z ∈ F ∩ G. Then, either NL(F ∩ G, z) ⊂ NL(F, z) + NL(G, z) or there exist sequences

(xn)
F→ z, (yn)

G→ z, (x∗
n), (y∗

n) in Z ∗ such that (x∗
n + y∗

n) → 0, x∗
n ∈ NF(F, xn), y∗

n ∈
NF(G, yn), (

∥∥x∗
n

∥∥) → 1, (
∥∥y∗

n

∥∥) → 1.

This result is a consequence of [26, Proposition 8.1] and of the sum rule for limiting
subdifferentials of Lipschitzian functions. For the reader’s convenience, we derive it
from a fuzzy intersection rule.

Lemma 23 ([41, Lemma 3.1], [74]) Let F and G be two closed subsets of an Asplund
space Z and let z ∈ F ∩ G, z∗ ∈ NL(F ∩ G, z) with

∥
∥z∗∥∥ = 1. Then, there exist

sequences (tn) in [0, 1], (xn)
F→ z, (yn)

G→ z, (x∗
n), (y∗

n), (z∗
n) in Z ∗ such that (z∗

n)
∗→

z∗, (x∗
n + y∗

n − tnz∗
n) → 0, x∗

n ∈ NF(F, xn), y∗
n ∈ NF(G, yn), max(tn,

∥∥x∗
n

∥∥) = 1 for all
n ∈ N.

Proof of Proposition 22 Let z∗ ∈ NL(F ∩ G, z) with
∥
∥z∗∥∥ = 1. In view of Lemma 23,

we can find sequences (tn) in [0, 1], (xn)
F→ z, (yn)

G→ z, (x∗
n), (y∗

n), (z∗
n) such that

(z∗
n)

∗→ z∗, (x∗
n + y∗

n − tnz∗
n) → 0, x∗

n ∈ NF(F, xn), y∗
n ∈ NF(G, yn), max(tn,

∥∥x∗
n

∥∥) = 1

for all n ∈ N. Taking subsequences if necessary, we may assume (tn) → t, (x∗
n)

∗→
x∗, (y∗

n)
∗→ y∗ for some t ∈ [0, 1], x∗ ∈ BZ ∗ , y∗ ∈ Z ∗ with x∗ + y∗ = tz∗. Suppose t =

0. Then, as (z∗
n) is bounded, we have (x∗

n + y∗
n) → 0 and since

∥
∥x∗

n

∥
∥ = 1 for n large

enough, the second case of the alternative holds. When that case is excluded, we
must have t > 0. Then, setting x∗ := t−1x∗ ∈ NL(F, z), y∗ := t−1 y∗ ∈ NL(G, z), we
have z∗ = x∗ + y∗. ��

The following result does not require any compactness assumption.

Proposition 24 Given two closed subsets F and G of an Asplund space Z and z ∈
F ∩ G, the inclusion (4) holds provided the alliedness property holds at z ∈ F ∩ G.

Proof The result follows from the fact that alliedness excludes the second case in the
alternative of Proposition 22. ��

Taking into account Proposition 21 and the fact that the closed unit ball of
the dual of an Asplund space is weak∗ sequentially compact, we get the following
consequence. In view of the preceding examples we thus get a generalization of [41,
Theorem 3.4].

Corollary 25 Let F and G be two closed subsets of an Asplund space Z and let z ∈
F ∩ G. Then inclusion (4) holds provided the sets F and G are synergetic at z and the
limiting qualif ication condition (LQC) holds at z ∈ F ∩ G.

The local uniform alliedness property is just a sufficient condition. Other condi-
tions ensuring (4) can be given. In the following example, this relation is satisfied
while the local uniform alliedness property does not hold.
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Example Let X = Y = R, Z := X × Y, F := R− × R+, G := R− × R−, so that
F ∩ G = R− × {0} and for z := (0, 0) one has NL(F, z) = R+ × R−, NL(G, z) =
R+ × R+, NL(F ∩ G, z) = R+ × R = NL(F, z) + NL(G, z) although for any ε > 0,
{0} × R+ ⊂ (−NF(F, z)) ∩ NF(G, z)ε.

Denoting by (S) the synergy condition at z, by (A) the alliedness property, by
(LUA) the local uniform alliedness property, by (FQC) the fuzzy qualification con-
dition and by (I) the inclusion property (4), we summarize the revealed implications
in the following diagram, Z being an Asplund space:

(S) ∧ (LQC) ⇔ (FQC) ⇔ (LUA) ⇔ (A) ⇒ (LQC) ⇐ (NQC)
⇓
(I)

Now let us pass to multimaps. Since the graph of a multimap is a subset of a
product space, the preceding concepts can be adapted to such a product structure.

Definition 26 Two multimaps F, G : X ⇒ Y are said to be range-allied (resp.

source-allied) at z ∈ F ∩ G if (wn)
F→ z, (zn)

G→ z, (w∗
n) := ((u∗

n, v
∗
n)), (z∗

n) :=
((x∗

n, y∗
n)) in X∗ × Y∗ are such that w∗

n ∈ NF(F, wn), z∗
n ∈ NF(G, zn) for all n ∈ N and

(w∗
n + z∗

n) → 0, then one has (v∗
n) → 0 (resp. (u∗

n) → 0).

Clearly, if F := B × C, G := D × E where C and E are allied at y, then F and G
are range allied at z := (x, y) for all x ∈ B ∩ D. A similar assertion holds for source-
alliedness.

It is also easy to see that when F, G are source-allied at z and F or G is
coderivatively compact at z, then F, G are synergetic at z. Similarly, if F, G are range-
allied at z and F−1 or G−1 is coderivatively compact at z, then F, G are synergetic
at z.

Calculus rules for the intersection of two multimaps are given in the next state-
ment. It encompasses [41, Theorem 3.4] in its cases (f) and (g).

Proposition 27 Let F, G : X ⇒ Y be two multimaps and let z := (x, y) ∈ F ∩ G.

Then

D∗ F(x, y)�D∗G(x, y) ⊂ D∗(F ∩ G)(x, y),

D∗
F F(x, y)�D∗

F G(x, y) ⊂ D∗
F(F ∩ G)(x, y).

In order that the inclusion

D∗
L(F ∩ G)(x, y) ⊂ D∗

L F(x, y)�D∗
LG(x, y). (5)

holds, it suf f ices that X and Y are Asplund spaces, the graphs of F and G are closed
and one of the following assumptions is satisf ied:

(a) the graphs of F and G are allied at z;
(b) they are synergetic at z and satisfy the (LQC) condition at z;
(c) they are synergetic at z and satisfy the following condition

u∗ ∈ (−D∗
L F(x, y)(v∗)) ∩ D∗

LG(x, y)(−v∗) =⇒ u∗ = 0, v∗ = 0; (6)
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(d) F−1 is coderivatively compact at (y, x), G is strongly coderivatively compact at z
and (6) holds;

(e) F is coderivatively compact at z, G−1 is strongly coderivatively compact at z and
(6) holds.

(f) F and G are range-allied at z, either F−1 or G−1 is coderivatively compact at
(y, x) and the following condition holds

(−D∗
M F(x, y)(0)) ∩ D∗

MG(x, y)(0) = {0}; (7)

(g) F and G are source-allied at z, either F or G is coderivatively compact at (x, y)

and the following condition holds

(−D∗
M F−1(y, x)(0)) ∩ D∗

MG−1(y, x)(0) = {0}. (8)

Proof The first assertion is an immediate consequence of an estimate for the normal
cone to an intersection; here one uses the facts that the normal cones are convex and
that the passage to the normal cone is antitone.

Under the assumptions (a), (b), (c), inclusion (5) is a consequence of Proposition
24 and of the preceding analysis, observing that condition (6) is equivalent to
(1) and that (y∗, x∗) ∈ D∗

L F(x, y)�D∗
LG(x, y) if, and only if (x∗, −y∗) ∈ NL(F, z) +

NL(G, z).

Let us prove case (d) by showing that the graphs of F and G are synergetic at
z := (x, y) whenever F is coderivatively compact at z and G−1 is strongly coderiv-

atively compact at (y, x). In fact, if (wn)
F→ z, (zn)

G→ z, (w∗
n)

∗→ 0, (z∗
n)

∗→ 0 are
such that w∗

n := (u∗
n, v

∗
n) ∈ NF(F, wn), z∗

n := (x∗
n, y∗

n) ∈ NF(G, zn) for all n ∈ N and
(w∗

n + z∗
n) → 0, we have (u∗

n) → 0 as F−1 is strongly coderivatively compact at (y, x),

hence (x∗
n) → 0 and (y∗

n) → 0, (v∗
n) → 0 as G is coderivatively compact at z. Case (e)

is similar.
Let us prove case (f). Suppose F and G are range-allied at z, F−1 is coderivatively

compact at (y, x) and relation (7) holds. If the inclusion (5) does not hold, by

Proposition 22, we can find sequences (wn)
F→ z, (zn)

G→ z, (w∗
n)

∗→ w∗, (z∗
n)

∗→
−w∗ such that (w∗

n + z∗
n) → 0, (

∥∥w∗
n

∥∥) → 1 and w∗
n := (u∗

n, v
∗
n) ∈ NF(F, wn), z∗

n :=
(x∗

n, y∗
n) ∈ NF(G, zn) for all n ∈ N. Since F and G are range-allied, we have (v∗

n) → 0,

(y∗
n) → 0. We may assume that (u∗

n) has a weak∗ limit u∗. Then u∗ ∈ (D∗
M F(x, y)(0)) ∩

(−D∗
MG(x, y)(0)), so that u∗ = 0 by condition (7). Now, as F−1 is coderivatively

compact at (y, x), we have (u∗
n) → 0, a contradiction with (

∥∥w∗
n

∥∥) → 1. Case (g) is
similar, changing F and G into F−1 and G−1 respectively. ��

Corollary 28 Let X and Y be Asplund spaces, let F, G : X ⇒ Y be two closed
multimaps which are soft (resp. F-soft) at (x, y) ∈ F ∩ G and satisfy one of the
assumptions (a)–(g) of Proposition 27. Then F ∩ G is soft (resp. F-soft) at (x, y) and

D∗
L(F ∩ G)(x, y) = D∗

L F(x, y)�D∗
LG(x, y).

Given normed vector spaces X, Y1, Y2 and two multimaps F1 : X ⇒ Y1, F2 :
X ⇒ Y2, in order to estimate the coderivative of the multimap F := (F1, F2) :
X ⇒ Y := Y1 × Y2 defined by F(x) := F1(x) × F2(x), let us introduce the following
definition in which x ∈ X, (y1, y2) ∈ F(x).



Codifferential Calculus 517

Definition 29 The multimaps F1 : X ⇒ Y1, F2 : X ⇒ Y2 are said to be cooper-

ative (resp. coordinated) at (x, y1, y2) if for any sequences ((x′
n, y′

n))
F1→ (x, y1),

((x′′
n, y′′

n))
F2→ (x, y2), (x′∗

n ), (x′′∗
n ) in X∗ (resp. (x′∗

n ), (x′′∗
n )

∗→ 0), (y′∗
n ), (y′′∗

n ) → 0 such
that (x′∗

n + x′′∗
n ) → 0 and x′∗

n ∈ D∗
F F1(x′

n, y′
n)(y′∗

n ), x′′∗
n ∈ D∗

F F2(x′′
n, y′′

n)(y′′∗
n ) for all n,

one has (x′∗
n ) → 0 (and (x′′∗

n ) → 0).

Clearly, two subsets S1, S2 of a normed vector space X are allied (resp. synergetic)
at x ∈ S1 ∩ S2 if, and only if, the multimaps F1, F2 : X ⇒ Y := {0} with graphs S1 ×
{0} and S2 × {0} respectively are cooperative (resp. coordinated) at (x, 0, 0).

If F−1
1 is coderivatively compact at (y1, x) (or if F−1

2 is coderivatively compact at
(y2, x)) , then F1 and F2 are coordinated at (x, y1, y2).

Introducing the multimaps M1, M2 : X ⇒ Y := Y1 × Y2 by setting M1(x) :=
F1(x) × Y2, M2(x) := Y1 × F2(x), one can easily check the following equivalence.

Lemma 30 The multimaps F1 and F2 are cooperative (resp. coordinated) at
(x, y1, y2) if, and only if, M1 and M2 are allied (resp. synergetic) at (x, (y1, y2)).

Also, F1 and F2 are coordinated at (x, y1, y2) if, and only if, M1 and M2 are source-
allied at (x, (y1, y2)).

Corollary 31 Let X, Y1, Y2 be Asplund spaces and let the multimaps F1 : X ⇒ Y1,
F2 : X ⇒ Y2 have closed graphs. If they are cooperative at (x, y1, y2) then, for every
(y∗

1, y∗
2) ∈ Y∗

1 × Y∗
2 , one has

D∗
L(F1, F2)(x, y1, y2)(y∗

1, y∗
2) ⊂ D∗

L F1(x, y1)(y∗
1) + D∗

L F2(x, y2)(y∗
2). (9)

The same relation holds if they are coordinated at (x, y1, y2) and if

(−D∗
M F1(x, y1)(0)) ∩ D∗

M F2(x, y2)(0) = {0}. (10)

Proof Let F := (F1, F2) and let M1 and M2 be defined as above, so that F = M1 ∩
M2 and one has the relations

D∗
L F1(x, y1)(y∗

1) = D∗
L M1(x, y1, 0)(y∗

1, 0),

D∗
L F2(x, y2)(y∗

2) = D∗
L M2(x, 0, y1)(0, y∗

2)

and similar ones in which the limiting coderivatives are replaced with mixed coderiv-
atives. In view of the preceding lemma, the first assertion is a consequence of
Proposition 24.

The proof of the second one is similar to the proof of case (f) of Proposition
27, observing that here we can dispense with the condition that M−1

1 or M−1
2 is

coderivatively compact at z := (x, y1, y2) ∈ M1 ∩ M2. The details are as follows.
We have to prove that the second case of the alternative of Proposition 22 does

not occur under the assumptions of the second assertion. Suppose ((x′
n, y′

n, v
′
n))

M1→
z, ((x′′

n, v
′′
n, y′′

n))
M2→ z, ((x′∗

n , y′∗
n , v′∗

n ))
∗→ (x′∗, y′∗, v′∗), ((x′′∗

n , v′′∗
n , y′′∗

n ))
∗→ (x′′∗, v′′∗, y′′∗)

and (x′∗
n , y′∗

n , v′∗
n ) ∈ NF(M1, (x′

n, y′
n, v

′
n)), (x′′∗

n , v′′∗
n , y′′∗

n ) ∈ NF(M2, (x′′
n, v

′′
n, y′′

n)) are
such that ((x′∗

n , y′∗
n , v′∗

n ) + (x′′∗
n , v′′∗

n , y′′∗
n )) → 0. Since v′∗

n = 0, v′′∗
n = 0 for all n ∈ N, we

get (y′∗
n ) → 0, (y′′∗

n ) → 0. Since x′∗
n ∈ D∗

F F1(x′
n, y′

n)(−y′∗
n ), x′′∗

n ∈ D∗
F F2(x′′

n, y′′
n)(−y′′∗

n )

for all n, we have x′∗ ∈ D∗
M F1(x, y1)(0), x′′∗ ∈ D∗

M F2(x, y2)(0) and x′∗ + x′′∗ = 0.
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Relation (10) ensures that x′∗ = 0 = x′′∗. Since F1 and F2 are coordinated at z,
we have (x′∗

n ) → 0 and (x′′∗
n ) → 0, so that the requirement (

∥∥(x′∗
n , y′∗

n , v′∗
n )

∥∥) → 1 is
impossible. ��

Definition 29 and Corollary 31 can be generalized to a finite family of multimaps
in an obvious way. We just state an application to the case of a map with values
in R

k.

Corollary 32 Let X be an Asplund space and let f := ( f1, ..., fk) : X → R
k. Suppose

( f1, ..., fk) is cooperative at (x, y) := (x, y1, ..., yk) := (x, f1(x), ..., fk(x)). Then, for
all (y∗

1, ..., y∗
k) ∈ R

k one has

D∗
L f (x, y)(y∗

1, ..., y∗
k) ⊂ D∗

L f1(x, y1)(y∗
1) + ... + D∗

L f (x, yk)(y∗
k).

The versatility of set-valued analysis can be experienced through the following
statement whose proof consists in taking inverses.

Corollary 33 Let X1, X2, Y be Asplund spaces, let G1 : X1 ⇒ Y, G2 : X2 ⇒ Y be
multimaps with closed graphs and let C : X1 × X2 ⇒ Y be def ined by C(x1, x2) :=
G1(x1) ∩ G2(x2) for (x1, x2) ∈ X := X1 × X2. If G−1

1 and G−1
2 are cooperative at

(y, x1, x2) then, for every y∗ ∈ Y∗ one has

D∗
LC(x1, x2, y)(y∗) ⊂

⋃

v∗∈Y∗
D∗

LG1(x1, y)(v∗) × D∗
LG2(x2, y)(y∗ − v∗).

The same conclusion holds when G−1
1 and G−1

2 are coordinated at (y, x1, x2) and

(−D∗
MG−1

1 (y, x1)(0)) ∩ D∗
MG−1

2 (y, x2)(0) = {0}. (11)

Proof One has y ∈ C(x1, x2) if, and only if (x1, x2) ∈ F1(y) × F2(y) for F1 := G−1
1 ,

F2 := G−1
2 . Thus, the result stems from Corollary 31 when rewriting coderivatives in

terms of normal cones. ��

4 Coderivatives of Compositions

In the present section we study the coderivatives of H := G ◦ F, where F : X ⇒ Y,

G : Y ⇒ Z are multimaps between two normed vector spaces. We set

C := {(x, z, y) : (x, y) ∈ F, (y, z) ∈ G},
FZ := {((x, z), y) : (x, y) ∈ F, z ∈ Z }, GX := {(y, (x, z)) : x ∈ X, (y, z) ∈ G},

so that G−1
X = {(x, z, y) : x ∈ X, (y, z) ∈ G} = X × G−1,

C = FZ ∩ G−1
X (12)

and, denoting by pX×Z the canonical projection X × Z × Y → X × Z ,

H := G ◦ F = pX×Z (C).

An easy dualization enables to pass from a composition result for contingent
derivatives to a result for contingent coderivatives. In that statement, various choices
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for B can be adopted, for instance a singleton, or F(x) ∩ G−1(z), or any intermediate
choice. In [35], criteria ensuring the assumption are provided.

Proposition 34 Suppose that for a subset B of Y one has

DH(x, z) ⊂
⋃

y∈B

DG(y, z) ◦ DF(x, y).

Then
⋂

y∈B

D∗ F(x, y) ◦ D∗G(y, z) ⊂ D∗ H(x, z). (13)

Proof Let z∗ ∈ Z ∗ and x∗ ∈ (D∗ F(x, y) ◦ D∗G(y, z))(z∗) for all y ∈ B. Let us prove
that x∗ ∈ D∗ H(x, z)(z∗), i.e. for all (u, w) ∈ T(H, (x, z)) one has 〈(x∗,−z∗), (u, w)〉 ≤
0. Since w ∈ DH(x, z)(u), by assumption, there exist some y ∈ B and some v ∈
DF(x, y)(u) such that w ∈ DG(y, z)(v). Since x∗ ∈ (D∗ F(x, y) ◦ D∗G(y, z))(z∗),
there exists y∗ ∈ D∗G(y, z)(z∗) such that x∗ ∈ D∗ F(x, y)(y∗). Then one has
〈(x∗,−y∗), (u, v)〉 ≤ 0 and 〈(y∗,−z∗), (v,w)〉 ≤ 0, hence, by addition 〈x∗, u〉 −
〈z∗, w〉 ≤ 0 or 〈(x∗,−z∗), (u, w)〉 ≤ 0. ��

Now we directly tackle the dual viewpoint. We first establish an easy inclusion. It
relies on the following result of independent interest. Again, various choices for A
and B can be adopted.

Lemma 35 Let V, W be normed vector spaces, C ⊂ V, E ⊂ W, p : V → W be linear
and continuous and such that p(C) ⊂ E. Let e ∈ E, A ⊂ p−1({e}) ∩ C and c ∈ A.

Then

(a) one has N(E, e) ⊂ (p∗)−1 (N(C, c)); if T(E, e) ⊂ p(T(C, c)), in particular if
there exists a map q : W → V which is Hadamard dif ferentiable at e and such
that q(e) = c, q(E) ⊂ C, p ◦ q |E= IE, then N(E, e) = (p∗)−1 (N(C, c));

(b) one has NF(E, e) ⊂ (p∗)−1 (NF(C, c)) and for all ε ∈ R+, Nε
F(E, e) ⊂

(p∗)−1 (N‖p‖ε
F (C, c)); if p is open at c from C to E with a linear rate κ , then

(p∗)−1 (Nγ

F(C, c)) ⊂ Nκγ

F (E, e), in particular NF(E, e) = (p∗)−1 (NF(C, c));
(c) if p is open from C to E at c, one has NL(E, e) ⊂ (p∗)−1 (NL(C, c)); more

generally, if p |C is proper at (A, e) with respect to E, one has NL(E, e) ⊂⋃

c∈A
(p∗)−1 (NL(C, c));

(d) if V = W × U, and C is (the graph of) a multimap from W to U with domain E,

which is lsc at (e, B) for some B ⊂ U, one has NL(E, e) ⊂ ⋃

b∈B
D∗

MC(e, b)(0); if

C is Lipschitz-like around c := (e, u) on E, then NL(E, e) = D∗
MC(e, u)(0).

Proof

(a) The first assertion is a consequence of the inclusion p(T(C, c)) ⊂ T(E, e)
which is immediate. When T(E, e) ⊂ p(T(C, c)), given e∗ ∈ W∗ such that c∗ :=
p∗(e∗) ∈ N(C, c), for all w ∈ T(E, e), picking v ∈ T(C, c) such that p(v) = w,

we get that 〈e∗, w〉 = 〈e∗, p(v)〉 = 〈c∗, v〉 ≤ 0, so that e∗ ∈ N(E, e). The inclu-
sion T(E, e) ⊂ p(T(C, c)) is clearly satisfied when there exists a Hadamard



520 S.J. Li et al.

differentiable right inverse q of p such that q(e) = c, q(E) ⊂ C since then
q′(e)(w) ∈ T(C, c) and p(q′(e)w) = w for all w ∈ T(E, e).

(b) Let e∗ ∈ Nε
F(E, e) with ε ∈ R+. There exists a remainder r such that 〈e∗, w −

e〉 ≤ r(w − e) + ε ‖w − e‖ for all w ∈ E. Then r ◦ p is a remainder and for v ∈
C one has p(v) ∈ E, hence 〈p∗(e∗), v − c〉 = 〈e∗, p(v) − p(c)〉 ≤ r(p(v − c)) +
ε ‖p‖ ‖v − c‖ , so that p∗(e∗) ∈ N‖p‖ε

F (C, c).
Suppose p is open at c with rate κ > 0 from C to E and e∗ ∈ W∗ is such that
c∗ := p∗(e∗) ∈ Nγ

F(C, c). Let o be a remainder such that 〈c∗, v − c〉 ≤ o(v − c) +
γ ‖v − c‖ for v ∈ C. Then, given ε > 0, λ > κ, for all w ∈ E close enough to
e one can find some v ∈ C such that w = p(v), ‖v − c‖ ≤ λ ‖w − e‖ and o(v −
c) ≤ ε ‖v − c‖ , so that

〈e∗, w − e〉 = 〈c∗, v − c〉 ≤ (ε + γ ) ‖v − c‖ ≤ (ε + γ )λ ‖w − e‖ .

Since (ε + γ )λ can be chosen arbitrarily close to γ κ , we get e∗ ∈ Nγ κ

F (E, e). In
particular, if γ = 0, we have e∗ ∈ NF(E, e).

(c) Let e∗ ∈ NL(E, e). There exist sequences (εn) → 0+, (en)
E→ e, (e∗

n)
∗→ e∗ such

that e∗
n ∈ Nεn

F (E, en) for all n. When p |C is proper at (A, e) with respect to

E there exist c ∈ A and a sequence (cn)
C→ c such that p(cn) = en for n large

enough. By (b) we have p∗(e∗
n) ∈ Nαn

F (C, cn) with αn := ‖p‖ εn. Since (p∗(e∗
n))

∗→
p∗(e∗), we conclude that p∗(e∗) ∈ NL(C, c). Taking A := {c}, we get the first
assertion of (c).

(d) Suppose V = W × U and C is (the graph of) a multimap from W to U with
domain E, which is lsc at (e, B). Since in what precedes p∗(e∗

n) = (e∗
n, 0) ∈

Nαn
F (C, cn), we see that e∗ ∈ D∗

MC(e, b)(0), where c := (e, b) ∈ A := {e} × B.

Suppose now that C is Lipschitz-like around c on E with rate λ. Let

e∗ ∈ D∗
MC(e, u)(0). There exist sequences (γn) → 0+, (cn) := (en, un)

C→ c, (c∗
n) :=

(e∗
n, u∗

n)
∗→ c∗ := (e∗, 0) such that c∗

n ∈ Nγn
F (C, cn) for all n and (u∗

n) → 0. Let δn > 0
be such that 〈c∗

n, c′ − cn〉 ≤ 2γn
∥∥c′ − cn

∥∥ for c′ ∈ C ∩ B(cn, δn). Taking δn > 0 small
enough, for every e′ ∈ E ∩ B(en, δn/(λ + 1)) one can find some u′ ∈ C(e′) such that∥∥u′ − un

∥∥ ≤ λ
∥∥e′ − en

∥∥ . Let c′ := (e′, u′). Then one has c′ ∈ C ∩ B(cn, δn) and

〈e∗
n, e′ − en〉 = 〈c∗

n, c′ − cn〉 − 〈u∗
n, u′ − un〉

≤ 2γn
∥∥c′ − cn

∥∥ + ∥∥u∗
n

∥∥ .
∥∥u′ − un

∥∥ ≤ (2γn(λ + 1) + λ
∥∥u∗

n

∥∥)
∥∥e′ − en

∥∥ ,

so that e∗
n ∈ Nαn

F (E, en) with αn := 2γn(λ + 1) + λ
∥
∥u∗

n

∥
∥ and (αn) → 0 since (

∥
∥u∗

n

∥
∥) →

0. Thus e∗ ∈ NL(E, e). ��

Remark When V = W × U, where U is a finite dimensional normed vector space
and when p is the canonical projection pW : W × U → W, the inclusion T(E, e) ⊂
p(T(C, c)) holds whenever p is open at c := (e, u) ∈ C from C to E with a linear
rate β. In fact, given γ > β, w ∈ T(E, e) and sequences (wn) → w, (tn) → 0+ such
that en := e + tnwn ∈ E for all n, one can find cn ∈ C such that p(cn) = en and
‖cn − c‖ ≤ γ ‖en − e‖ . Setting cn := (en, un), we have ‖un − u‖ ≤ γ tn ‖wn‖ . Since U
is finite dimensional, taking a subsequence if necessary, we may suppose (t−1

n (un − u))

has a limit y. Then (w, y) ∈ T(C, c) and w = p(w, y).
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Example Let f : R → R be a function which is differentiable on R\{0}, stable at 0
(i.e. such that for some c > 0 one has | f (x) − f (0)| ≤ c |x| for x near 0) and such
that there exists a sequence (rn) → 0+ with ( f ′(rn)) → +∞, f (R) = R. Let C be
the graph of f in V := R

2, let E := W := R and let p : (r, s) �→ r. Then p is open
from C to E with a linear rate at (0, f (0)) and (1, 0) ∈ NL(C, (0, f (0))). However
NL(E, 0) = {0}, so that (1, 0) /∈ p∗(NL(E, 0)). Therefore, the inclusion NL(E, e) ⊂
(p∗)−1 (NL(C, c)) is strict.

Let us first draw a direct application of the preceding lemma to composition.

Proposition 36

(a) Suppose the multimap C : X × Z ⇒ Y of (12) is lsc at ((x, z), y) on H with a
linear rate and Y is f inite dimensional. Then

D∗ F(x, y) ◦ D∗G(y, z) ⊂ D∗ H(x, z). (14)

(b) Suppose C : X × Z ⇒ Y is lsc at ((x, z), y) on H with a linear rate. Then

D∗
F F(x, y) ◦ D∗

F G(y, z) ⊂ D∗
F H(x, z). (15)

(c) Suppose the multimap C : X × Z ⇒ Y is lsc at ((x, z), y) on H with a linear rate
and

∀y∗ ∈ Y∗ D∗
L F(x, y)(y∗) × D∗

LG−1(z, y)(−y∗) ⊂ D∗
FC(x, z, y)(0) (16)

or C is Lipschitz-like around ((x, z), y) on H and

∀y∗ ∈ Y∗ D∗
L F(x, y)(y∗) × D∗

LG−1(z, y)(−y∗) ⊂ D∗
MC(x, z, y)(0), (17)

Then

D∗
L F(x, y) ◦ D∗

LG(y, z) ⊂ D∗
L H(x, z).

Proof We use the fact that H := pX×Z (C) with C = FZ ∩ G−1
X and that the trans-

pose of the canonical projection p := pX×Z : V := X × Z × Y → W := X × Z is
given by p∗(u∗, w∗) = (u∗, w∗, 0) for all (u∗, w∗) ∈ X∗ × Z ∗.

(a), (b) Given z∗ ∈ Z ∗, y∗ ∈ D∗G(y, z)(z∗) and x∗ ∈ D∗ F(x, y)(y∗), the definition
of the coderivative ensures that (x∗,−y∗) ∈ N(F, (x, y)), (y∗, −z∗) ∈
N(G, (y, z)), hence (−z∗, y∗) ∈ N(G−1, (z, y)), and

(x∗, 0,−y∗) ∈ N(FZ , (x, z, y)), (0,−z∗, y∗) ∈ N(G−1
X , (x, z, y)),

by the construction of FZ and G−1
X . Since C ⊂ FZ , C ⊂ G−1

X and since
taking the normal cone is an antitone process, by convexity of the normal
cone, we have

N(FZ , (x, z, y)) + N(G−1
X , (x, z, y)) ⊂ N(C, (x, z, y)). (18)

Thus, we get (x∗,−z∗, 0) ∈ N(C, (x, z, y)). Then, the preceding remark and
assertion (a) of the preceding lemma ensure that (x∗,−z∗) ∈ N(H, (x, z))

and x∗ ∈ D∗ H(x, z)(z∗). The proof with the Fréchet coderivatives is similar
since

NF(FZ , (x, z, y)) + NF(G−1
X , (x, z, y)) ⊂ NF(C, (x, z, y)).
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(c) Now, given z∗ ∈ Z ∗, y∗ ∈ D∗
LG(y, z)(z∗) and x∗ ∈ D∗

L F(x, y)(y∗), it fol-
lows from −z∗ ∈ D∗

LG−1(z, y)(−y∗) that condition (16) ensures that
(x∗,−z∗) ∈ D∗

FC(x, z, y)(0). Then Lemma 35(b) ensures that (x∗, −z∗) ∈
NF(H, (x, z)), hence x∗ ∈ D∗

F H(x, z)(z∗) ⊂ D∗
L H(x, z)(z∗).

The case C is Lipschitz-like around ((x, z), y) on H follows from Lemma
35(d).

��

Remarks

(a) In view of Lemma 12, it is crucial to assume that C is Lipschitz-like on H rather
than Lipschitz-like since the latter assumption would make condition (17) very
restrictive.

(b) Let us observe that (16) is a consequence of the condition

NL(FZ , (x, z, y)) + NL(G−1
X , (x, z, y)) ⊂ NF(C, (x, z, y)) (19)

In fact, given y∗ ∈ Y∗ and (x∗, z∗) ∈ D∗
L F(x, y)(y∗) × D∗

LG−1(z, y)(−y∗), the
definition of the coderivative ensures that (x∗, −y∗) ∈ NL(F, (x, y)), (z∗, y∗) ∈
NL(G−1, (z, y)), hence

(x∗, 0,−y∗) ∈ NL(FZ , (x, z, y)), (0, z∗, y∗) ∈ NL(G−1
X , (x, z, y)),

by the construction of FZ and G−1
X . Then, by addition, using (19), we get

(x∗, z∗, 0) ∈ NF(C, (x, z, y)), i.e. (x∗, z∗) ∈ D∗
FC(x, z, y)(0) and (16) holds.

Let us compare (16) with other conditions.

Proposition 37 Among the following assertions one has the implications

(a) =⇒ (b) =⇒ (c) =⇒ (f), (b) =⇒ (d) =⇒ (e) =⇒ (f)

(a) F and G are F-soft at (x, y) and (y, z) respectively;
(b) NL(FZ , (x, z, y)) + NL(G−1

X , (x, z, y)) ⊂ NF(C, (x, z, y));
(c) NL(FZ , (x, z, y)) + NL(G−1

X , (x, z, y)) ⊂ NL(C, (x, z, y));
(d) D∗

L F(x, y)(y∗) × D∗
LG−1(z, y)(−y∗) ⊂ D∗

FC(x, z, y)(0) for all y∗ ∈ Y∗;
(e) D∗

L F(x, y)(y∗) × D∗
LG−1(z, y)(−y∗) ⊂ D∗

MC(x, z, y)(0) for all y∗ ∈ Y∗.
(f) D∗

L F(x, y)(y∗) × D∗
LG−1(z, y)(−y∗) ⊂ D∗

LC(x, z, y)(0) for all y∗ ∈ Y∗.

Proof

(a)=⇒(b) As already observed, in view of (12), we have NF(FZ , (x, z, y)) ⊂
NF(C, (x, z, y)) and NF(G−1

X , (x, z, y)) ⊂ NF(C, (x, z, y)), so that when
(a) holds, the inclusion in (b) stems from the fact that NF(C, (x, z, y)) is
a convex cone.

(b)=⇒(c), (d)=⇒(e)=⇒(f) are obvious.
(c)=⇒(f) has been proved in the preceding remark.

(b)=⇒(d) is similar. ��

Recall that a map f : X → Y between two metric spaces is said to be stable at
x ∈ X (or Stepanovian at x) if there exist some σ > 0 and some neighborhood U of
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x such that d( f (x), f (x)) ≤ σd(x, x) for all x ∈ U. Such a property is clearly satisfied
when X and Y are normed vector spaces and f is (Fréchet) differentiable at x.

Corollary 38 Suppose F is a single-valued map which is stable at x or G−1 is a single-
valued map which is stable at z. Then (15) holds and, if Y is f inite dimensional, (14)
holds.

In particular, when F is a single-valued map which is Fréchet dif ferentiable
(resp. Hadamard dif ferentiable and stable) at x, one has F ′(x)∗ ◦ D∗

F G(y, z) ⊂
D∗

F H(x, z) (resp. F ′(x)∗ ◦ D∗G(y, z) ⊂ D∗ H(x, z)) and when G−1 is a single-
valued map which is Fréchet dif ferentiable (resp. Hadamard dif ferentiable and
stable) at z one has D∗

F F(x, y) ◦ [((G−1
)′

(z))∗]−1 ⊂ D∗
F H(x, z) (resp. D∗ F(x, y) ◦

[((G−1
)′

(z))∗]−1 ⊂ D∗ H(x, z)).

Proof Assuming that F is single-valued and stable at x, setting y := F(x), taking
σ > 0 and U as in the definition of stability, for all (x, z) ∈ (U × Z ) ∩ H one has
‖F(x) − y‖ ≤ σ ‖x − x‖ ≤ σ ‖(x, z) − (x, z)‖ and F(x) ∈ C(x, z) since z ∈ G(F(x)),

so that C is lsc on H at (x, z, y) with linear rate σ.

When G−1 is single-valued and stable at z, taking σ > 0 and U as in the definition
of stability, for all (x, z) ∈ (X × U) ∩ H one has

∥
∥G−1(z) − y

∥
∥ ≤ σ ‖z − z‖ ≤

σ ‖(x, z) − (x, z)‖ with y := G−1(z) and G−1(z) ∈ C(x, z), so that again, C is lsc at
(x, z, y) with linear rate σ.

The last inclusion follows from the equivalences

y∗ ∈ D∗G(y, z)(z∗) ⇔ −z∗ ∈ D∗G−1(z, y)(−y∗)

⇔ z∗ = (
(
G−1

)′
(z))∗(y∗) ⇔ y∗ ∈ [((G−1

)′
(z))∗]−1(z∗).

Let us note that in the last assertion we do not require Y be finite dimensional in
the Hadamard differentiable case because we dispose of a Hadamard differentiable
right inverse q of the projection pX×Z given by q(x, z) = (x, z, F(x)) or q(x, z) =
(x, z, G−1(z)) for (x, z) ∈ X × Z which is such that q(x, z) = (x, z, y), q(H) ⊂ C, as
required by the assumptions of Lemma 35(a). ��

Now, let us turn to the reverse of inclusion (14) and its variants. In order to
get some versatility, we introduce a subset B of C(x, z). The extreme cases B =
C(x, z) and B a singleton, B = {y}, are the most remarkable cases, but intermediate
situations may occur.

Theorem 39

(a) Suppose that for some subset B of C(x, z) one has
⋂

y∈C(x,z)

D∗C(x, z, y)(0) ⊂
⋃

y∈B

⋃

y∗∈Y∗
D∗ F(x, y)(y∗) × D∗G−1(z, y)(−y∗). (20)

Then one has

D∗ H(x, z) ⊂
⋃

y∈B

D∗ F(x, y) ◦ D∗G(y, z). (21)
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(b) Suppose that for some subset B of C(x, z) one has
⋂

y∈C(x,z)

D∗
FC(x, z, y)(0) ⊂

⋃

y∈B

⋃

y∗∈Y∗
D∗

F F(x, y)(y∗) × D∗
F G−1(z, y)(−y∗). (22)

Then

D∗
F H(x, z) ⊂

⋃

y∈B

D∗
F F(x, y) ◦ D∗

F G(y, z). (23)

(c) Suppose C is lsc at ((x, z), B) on H for some subset B of C(x, z) and that
⋃

y∈B

D∗
MC(x, z, y)(0) ⊂

⋃

y∈B

⋃

y∗∈Y∗
D∗

L F(x, y)(y∗) × D∗
LG−1(z, y)(−y∗). (24)

Then

D∗
L H(x, z) ⊂

⋃

y∈B

D∗
L F(x, y) ◦ D∗

LG(y, z). (25)

Proof

(a) Let z∗ ∈ Z ∗ and let x∗ ∈ D∗ H(x, z)(z∗), i.e. (x∗, −z∗) ∈ N(H, (x, z)). For
all y ∈ C(x, z), the first assertion of Lemma 35 ensures that (x∗,−z∗, 0) =
p∗(x∗,−z∗) ∈ N(C, (x, z, y)), i.e. (x∗,−z∗) ∈ D∗C(x, z, y)(0). Then (20) implies
that there exists some y′ ∈ B, y∗ ∈ Y∗ such that x∗ ∈ D∗ F(x, y′)(y∗), −z∗ ∈
D∗G−1(z, y′)(−y∗). As already observed, the last relation means that y∗ ∈
D∗G(y′, z)(z∗). Therefore, we have x∗ ∈ (

D∗ F(x, y′) ◦ D∗G(y′, z)
)
(z∗) and

(21) holds.
(b) The proof is similar.
(c) Let z∗ ∈ Z ∗ and let x∗ ∈ D∗

L H(x, z)(z∗). Then (x∗,−z∗) ∈ NL(H, (x, z)) and
since C is lsc at (x, z, B) on H, Lemma 35(d) yields some y ∈ B such
that (x∗,−z∗) ∈ D∗

MC((x, z), y)(0), hence, by (24) there exists some y′ ∈ B,
y∗ ∈ Y∗ such that x∗ ∈ D∗

L F(x, y′)(y∗), −z∗ ∈ D∗
LG−1(z, y′)(−y∗). Thus x∗ ∈(

D∗
L F(x, y′) ◦ D∗

LG(y′, z)
)
(z∗).

��

We give an example to illustrate the conditions and conclusions of Theorem 39.

Example Let X = Y = Z = R and let F, G be defined by F(x) = {0, x} for x ∈ X
and G(y) = |y − 1| for y ∈ Y, so that H(x) := G(F(x)) = {1, |x − 1|} for x ∈ X and

C = R × {(1, 0)} ∪ {(x, |x − 1|, x) | x ∈ R}.
We see that C(x, z) = {x} for z = |1 − x| and z �= 1, C(x, 1) = {0} for x �= 2,

C(2, 1) = {0, 2} and C(x, z) = ∅ else. Let (x, z) = (2, 1), y1 = 0 and y2 = 2. Clearly,
z ∈ (G ◦ F)(x) and C(x, z) = {y1, y2}. Easy computations show that, for any
y∗ ∈ R, z∗ ∈ R, D∗ F(x, y1)(y∗) = 0, D∗ F(x, y2)(y∗) = y∗, D∗G(y1, z)(z∗) = −z∗,
D∗G(y2, z)(z∗) = z∗. Similar relations hold for the Fréchet and the limiting coderiva-
tives. On the other hand, D∗C(x, z, y1)(0) = D∗

FC(x, z, y1)(0) = D∗
LC(x, z, y1)(0) =

{0} × R and D∗C(x, z, y2)(0) = D∗
FC(x, z, y2)(0) = D∗

MC(x, z, y2)(0) = {(x∗, z∗) ∈
R × R : x∗ + z∗ = 0}. Therefore, (20), (22) and (24) are satisfied, so that (21), (23)
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and (25) hold. That can be checked directly as D∗ H(x, z) = D∗
F H(x, z) = {(0, 0)}

and D∗
L H(x, z)(z∗) = {0, z∗} for any z∗ ∈ R.

Remark Let us observe that the condition

∀y ∈ B NL(C, (x, z, y)) ⊂ NL(FZ , (x, z, y)) + NL(G−1
X , (x, z, y)) (26)

implies (24) and similarly

∀y ∈ B N(C, (x, z, y)) ⊂ N(FZ , (x, z, y)) + N(G−1
X , (x, z, y)), (27)

∀y ∈ B NF(C, (x, z, y)) ⊂ NF(FZ , (x, z, y)) + NF(G−1
X , (x, z, y)) (28)

imply (20) and (22) respectively. In fact, given (x∗, z∗) ∈ D∗
LC(x, z, y)(0), so that

(x∗, z∗, 0) ∈ NL(C, (x, z, y)), (26) asserts that one can find y∗ ∈ Y∗ such that

(x∗, 0,−y∗) ∈ NL(FZ , (x, z, y)), (0, z∗, y∗) ∈ NL(G−1
X , (x, z, y)).

Since the projections pX×Y : FZ → F and pZ×Y : G−1
X → G−1 are open with a linear

rate, Lemma 35(c) entails that (x∗,−y∗) ∈ NL(F, (x, y)), (z∗, y∗) ∈ NL(G−1, (z, y)),
or (x∗, z∗) ∈ D∗

L F(x, y)(y∗) × D∗
LG−1(z, y)(−y∗). ��

More sufficient conditions for (24) will be drawn from Section 3.
In the next corollary we point out the links with an approach using metric

conditions, as in [26] and [64].

Corollary 40 Suppose X, Y, Z are Asplund spaces, F and G have closed graphs, C is
lsc at ((x, z), B) on H and for every y ∈ B there are c > 0 and a neighborhood U of
(x, z, y) such that for all (x, y, z) ∈ U one has

d((x, z, y), C) ≤ cd((x, y), F) + cd((y, z), G). (29)

Then (25) holds.

Proof Relation (29) ensures that for all y ∈ B condition (26) is satisfied by well
known rules for computing limiting subdifferentials in Asplund spaces and the fact
that the limiting normal cone to a subset C at some w ∈ C is the cone generated by
∂LdC(w). ��

In the following corollary we make a comparison with [64, Corollary 5.6] and [41,
Theorem 3.13].

Definition 41 [64, Definition 5.3] The multimaps F : X ⇒ Y, G : Y ⇒ Z are said
to be allied at (x, y, z) with y ∈ R(x, z) := F(x) ∩ G−1(z), if for any sequences

(xn, yn)
F→ (x, y), (wn, zn)

G→ (y, z), (x∗
n) → 0, (w∗

n),(y∗
n) in Y∗, (z∗

n) → 0 with (w∗
n −

y∗
n) → 0, x∗

n ∈ D∗
F F(xn, yn)(y∗

n), w∗
n ∈ D∗

F G(wn, zn)(z∗
n) one has (y∗

n) → 0. They are
said to be synergetic at (x, y, z) if the conditions (y∗

n)
∗→ 0, (w∗

n)
∗→ 0 are added to the

preceding assumptions.

Thus the multimaps F and G are allied (resp. synergetic) at (x, y, z) if F−1 and G
are cooperative (resp. coordinated) at (y, x, z). Synergy is obviously fulfilled if Y is
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finite dimensional. It is also satisfied if F is coderivatively compact at (x, y) or if G−1

is coderivatively compact at (z, y).

Let us note that the multimaps F and G are synergetic (resp. allied) at (x, y, z)

if, and only if the associated sets FZ and G−1
X are synergetic (resp. allied) subsets of

X × Z × Y. Therefore, to get an estimate of the normal cone to C = FZ ∩ G−1
X we

can use Proposition 24.

Theorem 42 Suppose X, Y, Z are Asplund spaces, F and G have closed graphs and
are allied at (x, y, z). Then (24) holds with B := {y}. If, for some subset B of C(x, z),

C is lsc at ((x, z), B) on H and F and G are allied at (x, y, z) for all y ∈ B, then (25)
holds.

We can also use Proposition 27. However, the qualification condition we present
in the next corollary is weaker than the condition obtained from (1) or (6) for FZ

and G−1
X .

Corollary 43 Suppose X, Y, Z are Asplund spaces, F and G have closed graphs
and are synergetic at (x, y, z) for all y ∈ B. Then (24) holds whenever the following
condition is satisf ied for all y ∈ B:

(−D∗
M F−1(y, x)(0)) ∩ D∗

MG(y, z)(0) = {0}. (30)

When Y is finite dimensional, one can replace condition (30) with

(
D∗

L F(x, y)
)−1

(0) ∩ D∗
LG(y, z)(0) = {0}. (31)

Proof We apply Corollary 33 with X1 := X, X2 := Z , G1 := F, G2 := G−1, as
C(x, z) = F(x) ∩ G−1(z) for all (x, z) ∈ X × Z and as (30) coincides with (11). ��

Using Lemma 12, we get the following consequence.

Corollary 44 Suppose X, Y, Z are Asplund spaces, F and G have closed graphs,
and, for every y ∈ B, either G is Lipschitz-like around (y, z) or F−1 is Lipschitz-like
around (y, x). Then (24) holds.

Combining Proposition 36 with Theorem 39, we get an exact expression for the
coderivative of the composition H. Corollary 43 can also be used here.

Corollary 45 Suppose C : X × Z ⇒ Y is lsc at (x, z, y) on H with a linear rate and
(22) holds (resp. (20) holds, Y being f inite dimensional) with B := {y}. Then

D∗
F H(x, z) = D∗

F F(x, y) ◦ D∗
F G(y, z) (32)

(resp. D∗ H(x, z) = D∗ F(x, y) ◦ D∗G(y, z)). (33)

If moreover F and G have closed graphs, F is F-soft (resp. soft) at (x, y), G is F-soft
(resp. soft) at (y, z) and (24) holds, then H is F-soft (resp. soft) at (x, y) and

D∗
L H(x, z) = D∗

L F(x, y) ◦ D∗
LG(y, z).
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Proof The first assertions are consequences of Proposition 36(b) (resp. (a)) and
Theorem 39(b) (resp. (a)). The last one follows from Proposition 36(b) (resp. (a)),
Theorem 39(c) and the inclusions

D∗
L H(x, z) ⊂ D∗

L F(x, y) ◦ D∗
LG(y, z) = D∗

F F(x, y) ◦ D∗
F G(y, z) ⊂ D∗

F H(x, z)

and their analogues with directional coderivatives. ��

A simple case in which condition (20) is satisfied is given in the next corollary
with some variants; thus, we recover the Fréchet and limiting cases obtained in
[47, Theorem 4.6] and [41, Theorem 3.13]. Here a map G : Y → Z is said to be
strictly dif ferentiable at y ∈ Y if there exist a continuous linear map A : Y → Z and a
modulus μ such that

∥∥G(y) − G(y′) − A(y − y′)
∥∥ ≤ μ(‖y − y‖ + ∥∥y′ − y

∥∥)
∥∥y − y′∥∥ .

Corollary 46 Suppose G is a single-valued map which is Hadamard dif ferentiable at
y ∈ F(x) (resp. Fréchet dif ferentiable at y, resp. strictly dif ferentiable at y, C being lsc
at ((x, z), y) on H, with z := G(y)). Then

D∗ H(x, z) ⊂ D∗ F(x, y) ◦ (
G′(y)

)∗

(resp. D∗
F H(x, z) ⊂ D∗

F F(x, y) ◦ (
G′(y)

)∗
,

resp. D∗
L H(x, z) ⊂ D∗

L F(x, y) ◦ (
G′(y)

)∗
).

Proof Let us observe that for every (u, v) ∈ T(F, (x, y)) we have (u, G′(y)v, v) ∈
T(C, (x, z, y)) since we can find sequences (tn) → 0+, ((un, vn)) → (u, v) such
that (x + tnun, G(y + tnvn), y + tnvn) ∈ C for all n. Thus, for every (x∗, z∗) ∈
D∗C(x, z, y)(0), we have

〈(x∗,
(
G′(y)

)∗
z∗), (u, v)〉 = 〈(x∗, z∗, 0), (u, G′(y)v, v)〉 ≤ 0,

hence, for y∗ := − (
G′(y)

)∗
(z∗), we obtain x∗ ∈ D∗ F(x, y)(y∗), z∗ ∈ D∗G−1(z, y)

(−y∗), so that (20) is satisfied with B := {y}.
Suppose (x∗, z∗) ∈ D∗

FC(x, z, y)(0). Let y∗ := − (
G′(y)

)∗
(z∗) and let r be a re-

mainder such that 〈(x∗, z∗, 0), (x − x, z − z, y − y)〉 ≤ r(x − x, z − z, y − y) for all
(x, z, y) ∈ C. Then, for all (x, y) ∈ F, taking z := G(y), we get

〈(x∗,−y∗), (x − x, y − y)〉
= 〈(x∗, z∗, 0), (x − x, G′(y)(y − y), y − y)〉
≤ r(x − x, z − z, y − y) + ∥

∥z∗∥∥ .
∥
∥G(y) − G(y) − G′(y)(y − y)

∥
∥

= r(x − x, G′(y)(y − y)+r1(y − y), y − y)+∥∥z∗∥∥ .
∥∥G(y)−G(y)−G′(y)(y − y)

∥∥ ,

where r1 is another remainder. Since this last term is a remainder in (x, y), we obtain
x∗ ∈ D∗

F F(x, y)(y∗). Thus (22) is satisfied for B := {y}.
When G is strictly differentiable at y, using similar arguments, one can show that

(24) holds. The last inclusion follows from Theorem 39(c) and the expression of the
coderivative of G. ��

Relaxing the lower semicontinuity condition on C, we get the following variant.
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Corollary 47 Suppose F has a closed graph, C is lsc at ((x, z), B) on H and, for every
y ∈ B, G is single-valued around y and strictly dif ferentiable at y. Then (24) holds and

D∗
L H(x, z) ⊂

⋃

y∈B

D∗
L F(x, y) ◦ (

G′(y)
)∗

. (34)

Replacing Y by Y × Y and taking for G a continuously differentiable operation,
one gets numerous calculus rules as in [41, Theorem 3.18, Corollary 3.19]. In the next
section we shall consider the case of the sum.

Corollary 48 Suppose (22) (resp. (20)) holds and F is a single-valued map which is
stable at x or G−1 is a single-valued map which is stable at z. Then (32) holds (resp.
(33) holds if Y is f inite dimensional).

In particular, when (22) (resp. (20)) holds and F is a single-valued map
which is Fréchet dif ferentiable (resp. Hadamard dif ferentiable and stable) at x one
has D∗

F H(x, z) = F ′(x)∗ ◦ D∗
F G(y, z) (resp. D∗ H(x, z) = F ′(x)∗ ◦ D∗G(y, z)) and

when G−1 is a single-valued map which is Fréchet dif ferentiable (resp. Hadamard
dif ferentiable and stable) at z one has D∗

F H(x, z) = D∗
F F(x, y) ◦ (

(
G−1

)′
(z)∗)−1

(resp. D∗
F H(x, z) = D∗

F F(x, y) ◦ (
(
G−1

)′
(z)∗)−1).

Under strict differentiability of F or G−1, one gets an analogous assertion about
D∗

L H(x, z).

Proof As already observed, the assumptions on F or G−1 ensure that C is lsc at
(x, z, y) on H with a linear rate.

The second assertions are consequences of calculations made in the proof of
Corollary 38. ��

Let us give two examples to show that the qualification conditions we present are
slightly more general than the conditions in [41, Theorem 3.13].

Example Let X = Y = Z = R and let F, G be given by F(x) = {0} for x ∈ X,
G(y) := [0, y] for y ∈ R+, G(y) := ∅ else. Then H := G ◦ F = X × {0}. For x = 0,

y = 0, z = 0 one has D∗ F(x, y)(y∗) = {0} for all y∗ ∈ R, D∗G(y, z)(z∗) = (−∞, 0]
for z∗ ∈ R+, D∗G(y, z)(z∗) = (−∞,−z∗] else and D∗ H(x, z)(z∗) = {0}. Similar rela-
tions hold for the Fréchet, the limiting and the mixed coderivatives. The qualification
condition (31) does not hold as

(
D∗

M F(x, y)
)−1

(0) ∩ D∗
MG(y, z)(0) = (−∞, 0].

On the other hand, C = (R × {0}) × {0}, so that NL(C, (x, z, y)) = {0} × R × R,
while FZ = R × R × {0}, G−1

X = R × G−1 so that NL(FZ , (0, 0, 0)) = {0} × {0} × R,

NL(G−1
X , (0, 0, 0)) = {0} × NL(G−1, (0, 0)) = {(0, z∗, y∗) : y∗ ≤ 0, z∗ ≤ −y∗} and (19)

and (26) are satisfied. Note that here F, G, H are simple convex processes, not
sophisticated multimaps.

Example Suppose that X = Y = Z = R, F(x) = {x} for x ∈ {0} ∪ {an : n ∈ N},
F(x) = ∅ else, where (an) is a decreasing sequence of positive numbers with
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limit 0 and G(y) = R+ for x ∈ R+, G(y) = ∅ else. Let x = 0, y = 0, z = 0. The
definition of the limiting coderivative shows that D∗

L F(x, y)(y∗) = R for all y∗ ∈ R,
D∗

LG(y, z)(z∗) = R− for z∗ ∈ R+, D∗
LG(y, z)(z∗) = ∅ else. Then, D∗

M F(x, y)−1(0) ∩
D∗

MG(y, z)(0) = R− �= {0}. However, since C(x, z) = F(x) for (x, z) ∈ R × R+,

C(x, z) = ∅ else and NL(C, (x, z, y)) = R × R− × R, we have D∗
LC(x, z, y)(0) =

R × R− and thus conditions (16 ) and (24) hold with B := {0}.

5 Coderivatives of Sums

Now we turn to the case of the sum S := F1 + F2 of two multimaps F1, F2 : X ⇒ Y.

There are several ways of reducing the computation of the coderivatives of a sum
to the case of a composition. One can decompose F1 + F2 into F1 + F2 = G ◦ F or
F1 + F2 = Q ◦ P, where

F := (F1, F2) : x ⇒ F1(x) × F2(x), G : (y1, y2) �→ y1 + y2,

P : x ⇒ {x} × F1(x), Q : (x, y) ⇒ y + F2(x).

For the first decomposition the intermediate space is Y2 while for the second one it
is X × Y. Both ways are interesting: the first one is symmetric but the second one
allows asymmetric assumptions such as differentiability of one of the maps F1, F2.
Moreover, the codifferential properties of F1 and F2 are easily transferred to P and
Q. These close relationships allow to easily translate the results of the preceding
sections. On the other hand, while G is a map easy to deal with, the coderivative of
F := (F1, F2) cannot be obtained from the coderivatives of F1 and F2 without some
qualification condition. Thus we shall use both decompositions and set for (x, z) ∈
X × Y

R1(x, z) := F1(x) ∩ (z − F2(x)), R2(x, z) := F2(x) ∩ (z − F1(x)),

C(x, z) := {(y1, y2) ∈ F1(x) × F2(x) : y1 + y2 = z}.
Thus, the resultant multimap C1 associated to P and Q as in the preceding section is
given by

C1(x, z) := P(x) ∩ Q−1(z) = {x} × R1(x, z),

while interchanging the roles of F1 and F2 would lead to consider R2 and C2 given
by C2(x, z) = {x} × R2(x, z). Because of the symmetric character of the multimap C
associated with the first decomposition, we shall use it in most statements. Clearly C
is lsc (resp. lsc with a linear rate) at (x, z, (y1, y2)) if, and only if, R1 is lsc (resp. lsc
with a linear rate) at (x, z, y1), if, and only if, R2 is lsc (resp. lsc with a linear rate) at
(x, z, y2). Here and in the sequel, x ∈ X, y1 ∈ F1(x), y2 ∈ F2(x), z := y1 + y2.

Lemma 49 The coderivatives of P : x �→ {x} × F1(x) and Q : (x, y) �→ y + F2(x) are
given by

D∗ P(x, (x, y1))(x∗, y∗) = x∗ + D∗ F1(x, y1)(y∗),

D∗ Q((x, y1), z)(z∗) = D∗ F2(x, y2)(z
∗) × {z∗},
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with similar relations when D∗ is replaced with D∗
F or D∗

L. Moreover, for every y1 ∈
R1(x, z)

D∗ P(x, (x, y1)) ◦ D∗ Q((x, y1), z) = D∗ F1(x, y1) + D∗ F2(x, y2)

and similar relations in which D∗ is replaced with D∗
F or D∗

L.

Proof

(a) Clearly, T(P, (x, x, y1)) = {(u, u, v) : (u, v) ∈ T(F1, (x, y1))}, so that u∗ ∈
D∗ P(x, (x, y1))(x∗, y∗) if, and only if u∗ − x∗ ∈ D∗ F1(x, y1)(y∗) or u∗ ∈ x∗+
D∗ F1(x, y1)(y∗).
Now (u, v, w) ∈ T(Q, (x, y1, z)) if, and only if, there exist sequences (tn) →
0+, ((un, vn, wn)) → (u, v, w) such that z + tnwn ∈ y1 + tnvn + F2(x + tnun) for
all n, if, and only if (u, w − v) ∈ T(F2, (x, z − y1)). Therefore, (x∗, y∗) ∈
D∗ Q((x, y1), z)(z∗) if, and only if, y∗ = z∗ and x∗ ∈ D∗ F2(x, y2)(z

∗).
(b) Let x∗ ∈ X∗, y∗ ∈ Y∗, x∗

1 ∈ D∗
F F1(x, y1)(y∗) and let r1 be a remainder such that

〈(x∗
1,−y∗), (x, y) − (x, y1)〉 ≤ r1(x − x, y − y1) for (x, y) ∈ F1. Then, whenever

(x, x, y) ∈ P, we have (x, y) ∈ F1 hence

〈(x∗ + x∗
1, −x∗,−y∗), (x, x, y) − (x, x, y1)〉 = 〈(x∗

1,−y∗), (x, y) − (x, y1)〉
≤ r1(x − x, y − y1),

so that x∗ + x∗
1 ∈ D∗

F P(x, (x, y1))(x∗, y∗). Conversely, given x∗, x∗
1 ∈ X∗, y∗ ∈

Y∗ such that x∗ + x∗
1 ∈ D∗

F P(x, (x, y1))(x∗, y∗), let r be a remainder such that
for all (x, y) ∈ F1

〈(x∗ + x∗
1,−x∗,−y∗), (x, x, y) − (x, x, y1)〉 ≤ r(x − x, y − y1).

Then we have 〈(x∗
1,−y∗), (x, y) − (x, y1)〉 ≤ r(x − x, y − y1) and x∗

1 ∈
D∗

F F1(x, y1)(y∗).
Now, let z∗ ∈ Y∗ and let (x∗, y∗) ∈ D∗

F Q((x, y1), z)(z∗). Let r be a remain-
der such that 〈(x∗, y∗, −z∗), (x, y, z) − (x, y1, z)〉 ≤ r(x − x, y − y1, z − z) for all
(x, y, z) ∈ Q. Taking y = y1 we see that x∗ ∈ D∗ F2(x, y2)(z

∗). Taking x = x and
z = y2 + y, we get y∗ = z∗. Conversely, it is easy to see that for every (x∗, z∗)
such that x∗ ∈ D∗ F2(x, y2)(z

∗) one has (x∗, z∗) ∈ D∗ Q((x, y1), z)(z∗).
(c) The case of the limiting coderivatives is obtained by easy passages to the limit.

Now given z∗ ∈ Z ∗, (u∗, y∗) ∈ D∗ Q((x, y1), z)(z∗) and x∗ ∈ D∗ P(x, (x, y1))

(u∗, y∗) one has u∗ ∈ D∗ F2(x, y1)(z
∗), y∗ = z∗ and x∗ − u∗ ∈ D∗ F1(x, y1)(y∗),

hence x∗ ∈ D∗ F1(x, y1)(z
∗) + D∗ F2(x, y2)(z

∗). Conversely, if x∗ ∈ D∗ F1(x, y1)

(z∗) + D∗ F2(x, y2)(z
∗), taking u∗ ∈ D∗ F2(x, y1)(z

∗) such that x∗ − u∗ ∈ D∗
F1(x, y1)(z

∗), we see that (u∗, z∗)∈ D∗ Q((x, y1), z)(z∗) and x∗ ∈ D∗ P(x, (x, y1))

(u∗, z∗), so that x∗ ∈ (D∗ P(x, (x, y1)) ◦ D∗ Q((x, y1), z))(z∗). A similar analysis
holds for D∗

F and D∗
L. ��

Similar computations yield the following formula for the coderivative of C1.

Lemma 50 The coderivative of C1 at ((x, z), (x, y1)) ∈ C1 satisf ies

D∗C1((x, z), (x, y1))(x∗, z∗) = (x∗, 0) + D∗ R1((x, z), y1)(z
∗),
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for all (x∗, z∗) ∈ X∗ × Y∗, with similar expressions for the Fréchet and the limiting
coderivatives.

Proposition 51

(a) Suppose Y is f inite dimensional and the multimap R1 : X × Y ⇒ Y is lsc at
(x, z, y1) on S with a linear rate. Then,

D∗ F1(x, y1) + D∗ F2(x, y2) ⊂ D∗S(x, y1 + y2). (35)

(b) Suppose the multimap R1 : X × Z ⇒ Y is lsc at (x, z, y1) on S with a linear rate.
Then

D∗
F F1(x, y1) + D∗

F F2(x, y2) ⊂ D∗
F S(x, y1 + y2). (36)

(c) If the multimap R1 : X × Y ⇒ Y is lsc at ((x, z), y1) on S with a linear rate and
if

∀y∗ ∈ Y∗ (D∗
L F1(x, y1)(y∗) + D∗

L F2(x, y2)(y∗),−y∗) ⊂ D∗
F R1((x, z), y1)(0)

(37)
then

D∗
L F1(x, y1) + D∗

L F2(x, y2) ⊂ D∗
LS(x, y1 + y2). (38)

Proof (a) and (b) follow from Proposition 36 and the last part of Lemma 49. For
assertion (c), let us show that (37) implies (16) with C, F, G replaced with C1,

P, Q. Let (x∗, y∗) ∈ X∗ × Y∗ and let u∗ ∈ D∗
L P(x, (x, y1))(x∗, y∗), z∗ ∈

D∗
L Q−1(z, (x, y1))(−x∗,−y∗). Then by Lemma 49 u∗ − x∗ ∈ D∗

L F1(x, y1)(y∗) and
(x∗, y∗) ∈ D∗

L Q((x, y1), z)(−z∗) = D∗
L F2(x, y2)(−z∗) × {−z∗}, so that z∗ = −y∗ and

x∗ ∈ D∗
L F2(x, y2)(y∗), hence, by (37) and Lemma 50, (u∗, z∗) ∈ D∗

F R1((x, z), y1)

(0) = D∗
FC1((x, z), (x, y1))(0, 0) : (16) holds with C replaced with C1. ��

Now, let us turn to the reverse inclusion. We first use the multimap F := (F1, F2).

Theorem 52 Suppose that F1 and F2 have closed graphs, C is lsc at ((x, z), B) on S
for some subset B of C(x, z) and, for every y := (y1, y2) ∈ B, one has

D∗
L(F1, F2)(x, (y1, y2))(y∗

1, y∗
2) ⊂ D∗

L F1(x, y1)(y∗
1) + D∗

L F2(x, y2)(y∗
2). (39)

Then, for all z∗ ∈ Y∗, one has the inclusion

D∗
L(F1 + F2)(x, z)(z∗) ⊂

⋃

(y1,y2)∈B

D∗
L F1(x, y1)(z

∗) + D∗
L F2(x, y2)(z

∗). (40)

Proof This is an immediate consequence of Corollary 47, as G is linear continuous,
hence strictly differentiable, with

(
G′(y)

)∗
(z∗) = (z∗, z∗), so that relation (34) yields

for all z∗ ∈ Y∗

D∗
LS(x, z)(z∗) ⊂

⋃

y∈B

(
D∗

L F(x, y) ◦ (
G′(y)

)∗)
(z∗) =

⋃

y∈B

D∗
L F(x, y)(z∗, z∗).

Then, (39) entails (40). ��
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Let us observe that (39) is a rather abstract assumption. It can be replaced by
the following one in which we set M1(x) := F1(x) × Y, M2(x) := Y × F2(x) : for all
(y1, y2) ∈ B

NL((F1, F2), (x, y1, y2)) ⊂ NL(M1, (x, y1, y2)) + NL(M2, (x, y1, y2)).

When F1 and F2 are coordinated at (x, y1, y2), such a relation is ensured by the
condition

(−D∗
M F1(x, y1))(0) ∩ D∗

M F2(x, y2)(0) = {0}, (41)

as seen in Corollary 31. Thus, assumption (39) is a consequence of the assumptions
of [41, Thm 3.10]. Other conditions can be found in [25] and [68].

The following example shows that the qualification condition (39) is weaker than
the corresponding qualification condition (41) in [41, Theorem 3.10].

Example Let X = Y = Z = R, F1 = R− × R−, F2 = R+ × R+ and (x, z) = (0, 0),
(y1, y2) = (0, 0). Then we have D∗

L F1(x, y1) = R− × R+ and D∗
L F2(x, y2) =

R+ × R−, hence D∗
L F1(x, y1) + D∗

L F2(x, y2) = R × R = D∗
L(F1 + F2)(x, z). The

qualification condition (41) does not hold as

(−D∗
M F1(x, y1)(0)) ∩ D∗

M F2(x, y2)(0) = R− �= {0}.
On the other hand, since (F1, F2) = {0} × R− × R+, we have D∗

L(F1, F2)(x, y1, y2) =
R− × R+ × R and condition (39) holds. ��

Taking into account Corollary 31, we get the following corollary.

Corollary 53 Let X, Y1, Y2 be Asplund spaces and let the multimaps F1 : X ⇒ Y1,
F2 : X ⇒ Y2 have closed graphs. If C is lsc at ((x, z), B) on S for some subset B of
C(x, z) and, for every y := (y1, y2) ∈ B, F1 and F2 are cooperative at (x, y1, y2) then,
for all z∗ ∈ Y∗ relation (40) holds.

Let us show that the second decomposition of S which reduces the sum to a
composition gives similar results and again includes [47, Corollary 3.3] and [41,
Theorem 3.10].

Theorem 54 Suppose X and Y are Asplund spaces, F1 and F2 have closed graphs,
C is lsc at ((x, z), B) on S for some subset B of C(x, z) and, for every (y1, y2) ∈ B,

either the multimaps F1, F2 are cooperative at (x, y1, y2) or coordinated at (x, y1, y2)

and (41) holds. Then, for all z∗ ∈ Y∗, inclusion (40) holds.

Proof Lemma 49 shows that P, Q are allied (resp. synergetic) at (x, (x, y1), y1 +
y2) whenever F1 and F2 are cooperative (resp. coordinated) at (x, y1, y2). Thus, the
cooperative case follows from Theorem 42, since inclusion (25) can be transformed
into inclusion (40) by using Lemma 49. The coordinated case ensues from Corollary
43 provided we check the analogue of condition (30) which reads as follows: for every
(y1, y2) ∈ B

(−D∗
M P−1((x, y1), x)(0)) ∩ D∗

M Q((x, y1), z)(0) = {(0, 0)}.
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A calculation similar to the one in Lemma 49 shows that for all w∗ ∈ X∗, z∗ ∈ Y∗
one has

−D∗
M P−1((x, y1), x)(−w∗) = {(x∗, y∗) : x∗ ∈ w∗ − D∗

M F1(x, y1)(y∗)},
D∗

M Q((x, y1), z)(z∗) = D∗
M F2(x, y2)(z

∗) × {z∗}.
Let (x∗, y∗) ∈ D∗

M Q((x, y1), z)(0), so that x∗ ∈ D∗
M F2(x, y1)(0), y∗ = 0. If more-

over (−x∗, −y∗) ∈ D∗
M P−1((x, y1), x)(0), we have x∗ ∈ −D∗

M F1(x, y1)(0), hence x∗ =
0 by (41). ��

Along with Proposition 51, this theorem and the preceding one yield sum rules in
equality form by combining the assumptions. We leave this task to the reader, but we
focus on a case of special interest as in [41, Theorem 1.62].

Corollary 55 Suppose F2 is a single-valued map which is strictly dif ferentiable at x.

Then

D∗
LS(x, y1 + y2) = D∗

L F1(x, y1) + F ′
2(x)∗.

Proof It is easy to see that the multimaps F1, F2 are coordinated at (x, y1, y2) and
(41) holds. Moreover C is lsc at ((x, z), (y1, y2)) on S. Theorem 54 yields

D∗
L(F1 + F2)(x, z)(z∗) ⊂ D∗

L F1(x, y1)(z
∗) + F ′

2(x)∗(z∗).

Since F1(x) = S(x) − F2(x), a similar argument proves the reverse inclusion. ��
Acknowledgement The authors are grateful to an anonymous referee for giving incitations to
clarify the relationships between various qualification conditions and for providing some references
such as [43].
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