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Abstract Given two convex lower semicontinuous extended real valued functions F
and h defined on locally convex spaces, we provide a dual transcription of the relation

F (0, ·) ≥ h (·) . (�)

Some results in this direction are obtained in the first part of the paper (Lemma 2,
Theorem 1). These results then are applied to the case when the left-hand-side in (�)
is the sum of two convex functions with a convex composite one (Theorem 2). In the
spirit of previous works (Hiriart-Urruty and Phelps, J Funct Anal 118:154–166, 1993;
Penot, J Convex Anal 3:207–219, 1996, 2005; Thibault, 1995, SIAM J Control Optim
35:1434–1444, 1997, etc.) we give in Theorem 3 a formula for the subdifferential of
such a function without any qualification condition. As a consequence of that, we
extend to the nonreflexive setting a recent result (Jeyakumar et al., J Glob Optim
36:127–137 2006, Theorem 3.2) about subgradient optimality conditions without
constraint qualifications. Finally, we apply Theorem 2 to obtain Farkas-type lemmas
and new results on DC, convex, semi-definite, and linear optimization problems.
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1 Introduction

This paper deals with transcriptions of inequalities of the form

F (0, ·) ≥ h (·) , (�)

where F and h are two convex and lower semicontinuous extended real valued
functions defined on locally convex vector spaces, and their applications to op-
timization problems. With this purpose, we introduce dual characterizations of
the inequality (�) without constraint qualification (CQ) nor closedness condition
(CC). The results are then applied to the case when the function F is the sum of
two convex functions with a convex composite one. This, in turn, gives rise to a
limiting formula for subdifferentials of such special type of functions. The rest of
the paper is devoted to applications of the previous results to different settings.
Firstly, we get various versions of generalized Farkas-type results without CQ nor
CC which have their own interest. Secondly, several classes of optimization models
are considered: DC problems with convex constraints (including semidefinite ones),
convex and semidefinite problems, and infinite linear problems. For these classes of
problems, optimality and duality theorems are given together with discussions on
their connections with known results in the literature.

The paper is organized as follows. Section 2 contains the preliminary notions and
notations. In Section 3 we give, using a dual approach, a simple characterization of
the epigraph of certain marginal function defined on a dual space. This gives rise
to another simple characterization of inequalities of the form (�) which turns out to
have fruitful applications, as shown in the rest of the paper. In Section 4, we give a
transcription of a special, but important, case of (�) where the function F is the sum
of two convex functions with a convex composite one. An application of this result is
given in Section 5, whose main result is the formula of subdifferential of the function
of the form f + g + k ◦ H without CQ, which covers the well-known one established
by Hiriart-Urruty and Phelps in [14]. The last three sections, namely Sections 6,
7, and 8, present applications of the results obtained in previous sections to three
optimization models: DC optimization problems with convex constraints, convex
and semidefinite optimization, and infinite linear optimization, respectively. In each
section, we firstly establish the Farkas lemma corresponding to the system associated
with the problem, then we provide various forms of optimality conditions (such as
dual and sequential Lagrange forms), and lastly, we give duality results. Throughout
these last sections, discussions on the relation between the results obtained and the
known ones in the literature are given.
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2 Preliminary Notions

Let X be a locally convex Hausdorff topological vector space (l.c.H.t.v.s.) whose
topological dual is denoted by X∗. The only topology we consider on X∗ is the
w∗-topology. Given A ⊂ X, we denote by co A, cone A and A the convex hull, the
conical convex hull and the closure of A, respectively. We denote by R the extended
real line R∪ {±∞} . By convention, (+∞) − (+∞) = +∞.

With any extended real-valued function f : X → R is associated the Legendre–
Fenchel conjugate of f which is the function f ∗ : X∗ → R defined by

f ∗ (x∗) = sup
x∈X

(〈
x∗, x

〉 − f (x)
)
, ∀x∗ ∈ X∗.

A similar notion holds for any ϕ : X∗ → R :
ϕ∗ (x) = sup

x∗∈X∗

(〈
x∗, x

〉 − ϕ
(
x∗)) , ∀x ∈ X.

We represent by dom f := {x ∈ X : f (x) < +∞} the effective domain of f and
say that f is proper if dom f �= ∅ and f (x) > −∞ ∀x ∈ X. We also use the notation

[
f ≤ λ

] := {x ∈ X : f (x) ≤ λ},
as well as the correspondingly defined sets

[
f ≥ λ

]
,
[

f < λ
]
, and

[
f > λ

]
.

The set of proper lower semicontinuous (l.s.c.) convex functions on X is denoted
by � (X). For any proper function f : X → R one has

f ∈ � (X) ⇔ f = f ∗∗.

The infimal convolution of two proper functions f, g : X → R is the function f�g
defined by

( f�g) (x) = inf
{

f
(
x′) + g

(
x′′) : x′ + x′′ = x

}
.

The operator � is associative and if h : X → R is another proper function we set

f�g�h = ( f�g)�h = f� (g�h) .

Given a ∈ f −1 (R) and ε ≥ 0, the ε-subdifferential of f at the point a is defined by

∂ε f (a) = {
x∗ ∈ X∗ : f (x) − f (a) ≥ 〈

x∗, x − a
〉 − ε, ∀x ∈ X

}
.

One has

∂ε f (a) = [
f ∗ − 〈·, a〉 ≤ ε − f (a)

] = {
x∗ ∈ X∗ : f ∗ (x∗) − 〈

x∗, a
〉 ≤ ε − f (a)

}
.

The Young–Fenchel inequality

f ∗ (x∗) ≥ 〈
x∗, a

〉 − f (a)

always holds. The equality holds if and only if x∗ ∈ ∂ f (a) := ∂0 f (a) .

The indicator function of a set A ⊂ X is given by iA (x) = 0 if x ∈ A, iA (x) = +∞
if x ∈ X�A. The conjugate of iA is the support function of A, i∗A : X∗ → R ∪ {+∞}.
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The ε-normal set to A at a point a ∈ A is defined by

Nε (A, a) = ∂εiA (a) .

The limit superior when η → 0+ of the family
(

Aη

)
η>0 of subsets of a topological

space is defined (in terms of generalized sequences or nets) by

lim sup
η→0+

Aη :=
{

lim
i

ai : ai ∈ Aηi , ∀i ∈ I, and ηi → 0+
}

,

where ηi → 0+ means that (ηi)i∈I → 0 and ηi > 0, ∀i ∈ I.

3 Dual Approach of Convex Inequalities

Let U be another l.c.H.t.v.s. whose topological dual we denote by U∗.
Given G : U∗ × X∗ → R, let us consider the marginal function on X∗ associated

with G, which is defined by

γ
(
x∗) = inf

u∗∈U∗ G
(
u∗, x∗) , ∀x∗ ∈ X∗. (3.1)

The closure of γ, that is the greatest l.s.c. extended real-valued function minorizing
γ, is given by

γ
(
x∗) = sup

V∈N(x∗)
inf

x̃∗∈V
γ
(
x̃∗) , ∀x∗ ∈ X∗, (3.2)

where N (x∗) denotes a neighborhood basis of x∗. By using nets, one has

γ
(
x∗) = min

x∗
i →x∗

lim inf
i∈I

γ
(
x∗

i

)
, ∀x∗ ∈ X∗. (3.3)

In terms of epigraphs, epi γ := {(x∗, r) ∈ X∗ × R : γ (x∗) ≤ r} coincides with the
closure of epi γ with respect to the product topology on X∗ × R. More precisely,
one has:

Lemma 1 Let γ be given by (3.1). For any (x∗, r) ∈ X∗ × R, the following are
equivalent:

(a) γ (x∗) ≤ r,
(b) there exists

(
u∗

i , x∗
i , εi

)
i∈I

⊂ U∗ × X∗ × R such that G
(
u∗

i , x∗
i

) ≤ r + εi for all

i ∈ I, and
(
x∗

i , εi
) → (x∗, 0+) .

Proof
[
(a) ⇒ (b)

]
For any V ∈ N(x∗) and any ε > 0 one has, from (3.2),

inf
x̃∗∈V

γ
(
x̃∗) < r + ε.

Hence there are x∗
V,ε ∈ V and u∗

V,ε ∈ U∗ such that G
(
u∗

V,ε, x∗
V,ε

) ≤ r + ε, and the net(
u∗

V,ε, x∗
V,ε, ε

)
(V,ε)∈N(x∗)×]0,+∞[

satisfies (b).
[
(b) ⇒ (a)

]
From (3.3) one has

γ
(
x∗) ≤ lim inf

i∈I
γ
(
x∗

i

) ≤ lim inf
i∈I

G
(
u∗

i , x∗
i

) ≤ r.

��
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Throughout this paper γ will be convex (i.e. epi γ is convex). This is in particular
the case when G itself is convex [27, Theorem 2.1.3]. A classical argument allows us
to express the Legendre–Fenchel conjugate γ ∗ of γ in terms of the one G∗ of G. One
has in fact [27, Theorem 2.6.1]

γ ∗ (x) = G∗ (0, x) , ∀x ∈ X. (3.4)

Assuming that dom γ ∗ = {x ∈ X : G∗ (0, x) < +∞} is nonempty, we get the exis-
tence of a continuous minorant of the convex function γ, and so [9, Proposition 3.3]

γ = γ ∗∗. (3.5)

The following lemma will be very useful in the sequel.

Lemma 2 Assume that γ is convex and dom γ ∗ �= ∅. For any h ∈ � (X), the following
statements are equivalent:

(a) G∗ (0, x) ≥ h (x) , for all x ∈ X,

(b) for every x∗ ∈ dom h∗, there exists
(
u∗

i , x∗
i , εi

)
i∈I

⊂ U∗ × X∗ × R such that

G
(
u∗

i , x∗
i

) ≤ h∗ (x∗) + εi, for all i ∈ I, and
(
x∗

i , εi
) → (x∗, 0+).

Proof
[
(a) ⇒ (b)

]
Since G∗ (0, ·) ≥ h one has [27, Theorem 2.3.1(iii)] (G∗ (0, ·))∗ ≤

h∗, which means, from (3.4) and (3.5), γ ≤ h∗.
Given x∗ ∈ dom h∗, we can apply Lemma 1 with r = h∗ (x∗) , and (b) follows.[
(b) ⇒ (a)

]
Let x∗ ∈ dom h∗ and

(
u∗

i , x∗
i , εi

)
i∈I

as in (b). For any i ∈ I and
x ∈ X one has

〈
x∗, x

〉 − h∗ (x∗) ≤ 〈
x∗, x

〉 − G
(
u∗

i , x∗
i

) + εi

= 〈
x∗ − x∗

i , x
〉 + 〈

x∗
i , x

〉 − G
(
u∗

i , x∗
i

) + εi

≤ 〈
x∗ − x∗

i , x
〉 + G∗ (0, x) + εi.

Passing to the limit on i we get
〈
x∗, x

〉 − h∗ (x∗) ≤ G∗ (0, x) , ∀x∗ ∈ dom h∗.

Taking the supremum over x∗ ∈ dom h∗ we obtain

h (x) = h∗∗ (x) ≤ G∗ (0, x), ∀x ∈ X.

��

Let us consider F ∈ � (U × X) . Applying Lemma 2 with G = F∗, we can state:

Theorem 1 Let F ∈ � (U × X) with {x ∈ X : F (0, x) < +∞} �= ∅. For any h ∈
� (X) , the following statements are equivalent:

(a) F (0, x) ≥ h (x) , for all x ∈ X,

(b) for every x∗ ∈ dom h∗, there exists
(
u∗

i , x∗
i , εi

)
i∈I

⊂ U∗ × X∗ × R such that

F∗ (u∗
i , x∗

i

) ≤ h∗ (x∗) + εi, for all i ∈ I, and
(
x∗

i , εi
) → (x∗, 0+) .
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4 Transcribing the Inequality f + g + k ◦ H ≥ h

Let Z be another l.c.H.t.v.s., f, g ∈ �(X), and k ∈ �(Z ). Let H : X → Z be a
mapping such that

z∗ ◦ H ∈ �(X), for all z∗ ∈ dom k∗. (4.1)

Observe that condition (4.1) implies that k ◦ H ∈ �(X), provided H(X) ∩
dom k �= ∅ : one has in fact, for any x ∈ X,

(k ◦ H) (x) = k∗∗ (H(X)) = sup
z∗∈dom k∗

{(
z∗ ◦ H)

(x) − k∗ (z∗)}

and, so,

k ◦ H = sup
z∗∈dom k∗

{
z∗ ◦ H − k∗ (z∗)} ∈ �(X).

The following example shows that one may have k ◦ H ∈ �(X) with k ∈ �(Z ),

while (4.1) fails: take X = Z = R, H (x) = 0 if x ≤ 0 and H (x) = −1/x otherwise,
and k (z) = max {z, 0} ; we then have 0 ≡ k ◦ H ∈ �(X) and z∗ ◦ H = H /∈ �(X)

for z∗ = id R ∈ dom k∗.
Observe also that, in particular, (4.1) is satisfied when Z is equipped with a closed

convex preordering cone S, k is nondecreasing with respect to S, H is convex with
respect to (w.r.t.) S, and H is lower semicontinuous w.r.t. S, that means (see [23]):

∀x ∈ X, ∀V ∈ N(H(x)), ∃W ∈ N(x) such that H(W) ⊂ V + S.

For further investigation, assume that

(dom f ) ∩ (dom g) ∩ H−1(dom k) �= ∅. (4.2)

We are interested in transcribing the convex inequality of the form

f (x) + g(x) + k(H(x)) ≥ h(x), for all x ∈ X.

The main result is given in the following theorem where Lemma 2 serves as a main
tool for its proof.

Theorem 2 Let f, g ∈ �(X), k ∈ �(Z ), and H : X → Z be such that (4.1) and (4.2)
hold. Then, for any h ∈ �(X), the following statements are equivalent:

(a) f (x) + g(x) + k(H(x)) ≥ h(x), for all x ∈ X,

(b) for every x∗ ∈ dom h∗ there exists a net (x∗
1i, x∗

2i, x∗
3i, z∗

i , εi)i∈I ⊂ (X∗)3 × Z ∗ × R

such that

f ∗(x∗
1i) + g∗(x∗

2i) + k∗(z∗
i ) + (z∗

i ◦ H)∗(x∗
3i) ≤ h∗(x∗) + εi, for all i ∈ I,

and

(x∗
1i + x∗

2i + x∗
3i, εi) → (x∗, 0+).

Proof Let us consider the function

G : (X∗ × X∗ × Z ∗) × X∗ → R
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defined as follows

G((x∗
1, x∗

2, z∗), x∗) = f ∗(x∗
1) + g∗(x∗

2) + k∗(z∗) + (z∗ ◦ H)∗(x∗ − x∗
1 − x∗

2),

for any ((x∗
1, x∗

2, z∗), x∗) ∈ (X∗ × X∗ × Z ∗) × X∗. Here U = X × X × Z .

The marginal function γ associated with G by (3.1) is

γ (x∗) = inf
z∗∈dom k∗

{
k∗(z∗) + (

f ∗�g∗�(z∗ ◦ H)∗
)
(x∗)

}
, for all x∗ ∈ X∗.

It is worth observing first that γ is convex. This is due to the fact that G is convex
because it is the sum of the convex function

((x∗
1, x∗

2, z∗), x∗) �→ f ∗(x∗
1) + g∗(x∗

2) + k∗(z∗),

and the supremum over x ∈ X of the affine functions

((x∗
1, x∗

2, z∗), x∗) �→ 〈
x∗ − x∗

1 − x∗
2, x

〉 − 〈
z∗,H(x)

〉
.

Let us now calculate the conjugate, γ ∗, of the function γ. Thanks to (4.1) we
can write

γ ∗(x) = sup
x∗∈X∗

{〈
x∗, x

〉 − inf
z∗∈dom k∗

{
k∗(z∗) + (

f ∗�g∗�(z∗ ◦ H)∗
)
(x∗)

}}

= sup
x∗∈X∗

sup
z∗∈dom k∗

{〈
x∗, x

〉 − k∗(z∗) − (
f ∗�g∗�(z∗ ◦ H)∗

)
(x∗)

}

= sup
z∗∈dom k∗

{
−k∗(z∗) + sup

x∗∈X∗

{〈
x∗, x

〉 − (
f ∗�g∗�(z∗ ◦ H)∗

)
(x∗)

}}

= sup
z∗∈dom k∗

{−k∗(z∗) + (
f ∗�g∗�(z∗ ◦ H)∗

)∗
(x)

}

= sup
z∗∈dom k∗

{−k∗(z∗) + (
f + g + (z∗ ◦ H)

)
(x)

}

= f (x) + g(x) + sup
z∗∈dom k∗

{〈
z∗,H(x)

〉 − k∗(z∗)
}
,

so that

γ ∗(x) = f (x) + g(x) + k(H(x)). (4.3)

Thus, γ is convex and, by (4.2) and (4.3), dom γ ∗ �= ∅. The conclusion of the theorem
follows from Lemma 2. ��

In the next sections we give relevant applications of Theorem 2. The first one
concerns the subdifferential of the function f + g + k ◦ H. In the spirit of previous
works [13, 14, 21, 24, 25] and [27], we derive a formula without any CQ in terms
of ε-subdifferentials. The remaining applications are Farkas–Minkowski inequality
systems and containments, without CQ nor CC, which provide optimality and duality
results for different optimization models.
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5 Subdifferential of f + g + k ◦ H

Let f, g ∈ �(X), k ∈ �(Z ), and H : X → Z be as in Theorem 2, and let a ∈
(dom f ) ∩ (dom g) ∩ H−1(dom k).

We are now in position to establish a “limiting form” of the subdifferential of f +
g + k ◦ H which is an extension of the well-known one given in [14] (see Corollary 1
below).

Theorem 3 Let f, g ∈ �(X), k ∈ �(Z ), and H : X → Z be such that (4.1) holds.
Then, for every a ∈ X such that f (a) + g(a) + k(H(a)) ∈ R, it holds

∂( f + g + k ◦ H)(a) = lim sup
η→0+

⎛

⎝
⋃

z∗∈∂ηk(H(a))

{
∂η f (a) + ∂ηg(a) + ∂η(z∗ ◦ H)(a)

}
⎞

⎠ .

Proof Let x∗ ∈ X∗.
Assume that x∗ ∈ ∂( f + g + k ◦ H)(a). Observe that x∗ ∈ ∂( f + g + k ◦ H)(a)

if and only if the statement (a) in Theorem 2 holds with

h(x) := 〈
x∗, x − a

〉 + f (a) + g(a) + k(H(a)).

In order to apply Theorem 2 let us first quote that

h∗(·) = i{x∗}(·) + 〈
x∗, a

〉 − f (a) − g(a) − k(H(a)).

Note that dom γ ∗ �= ∅ since a ∈ dom γ ∗ = (dom f ) ∩ (dom g) ∩ H−1(dom k). It
follows, from the previous arguments and Theorem 2, that x∗ ∈ ∂( f + g+
k ◦ H)(a) if and only if there exists a net

(x∗
1i, x∗

2i, x∗
3i, z∗

i , εi)i∈I ⊂ (X∗)3 × Z ∗ × R

such that

f ∗(x∗
1i) + g∗(x∗

2i) + (z∗
i ◦ H)∗(x∗

3i) + k∗(z∗
i ) ≤ 〈

x∗, a
〉

− ( f + g + k ◦ H)(a) + εi, ∀i ∈ I, (5.1)

and

(x∗
1i + x∗

2i + x∗
3i, εi) → (x∗, 0+).

By the Young–Fenchel inequality, we can rewrite (5.1) as follows

[
f ∗(x∗

1i) + f (a) − 〈
x∗

1i, a
〉] + [

g∗(x∗
2i) + g(a) − 〈

x∗
2i, a

〉]

+ [
(z∗

i ◦ H)∗(x∗
3i) + (z∗

i ◦ H)(a) − 〈
x∗

3i, a
〉]

+ [
k∗(z∗

i ) + k(H(a)) − 〈
z∗

i ,H(a)
〉]

≤ 〈
x∗ − x∗

1i − x∗
2i − x∗

3i, a
〉 + εi, ∀i ∈ I.
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Setting ηi := 〈
x∗ − x∗

1i − x∗
2i − x∗

3i, a
〉 + εi, we get ηi → 0+. Moreover, since the four

brackets above are nonnegative, each of them is less or equal than ηi, for any i ∈ I.
Therefore we have

⎧
⎨

⎩

x∗ = limi(x∗
1i + x∗

2i + x∗
3i) with

x∗
1i ∈ ∂ηi f (a), x∗

2i ∈ ∂ηi g(a), x∗
3i ∈ ∂ηi(z

∗
i ◦ H)(a),

z∗
i ∈ ∂ηi k(H(a)), and ηi → 0+

(5.2)

or, equivalently,

x∗ ∈ lim sup
η→0+

⎛

⎝
⋃

z∗∈∂ηk(H(a))

{
∂η f (a) + ∂ηg(a) + ∂η(z∗ ◦ H)(a)

}
⎞

⎠ .

It is worth emphasizing here that ∂ηk(H(a)) (the same for ∂ηi k(H(a))) represents the
η -subdifferential of the function k at the point H(a).

Conversely, assume now that x∗ ∈ X∗ satisfies (5.2). It follows from (3.3), (3.5),
(5.2), and ( 4.3) that

( f + g + k ◦ H)
∗
(x∗) = γ (x∗) ≤ lim inf

i∈I
γ (x∗

1i + x∗
2i + x∗

3i)

≤ lim inf
i∈I

[
k∗(z∗

i ) + f ∗(x∗
1i) + g∗(x∗

2i) + (z∗
i ◦ H)∗(x∗

3i)
]

≤ lim inf
i∈I

[〈x∗
1i+x∗

2i+x∗
3i, a〉− f (a) − g(a) − k(H(a)) + 4ηi

]

= 〈x∗, a〉 − f (a) − g(a) − k(H(a)),

and hence, x∗ ∈ ∂( f + g + k ◦ H)(a). The proof is complete. ��

In Theorem 3, if we take k ≡ 0, then the subdifferential formula in this theorem
collapses to the well-known one established by Hiriart-Urruty and Phelps in [14], as
it is stated in the following corollary.

Corollary 1 Let f, g ∈ �(X). Then

∂( f + g)(a) =
⋂

ε>0

cl (∂ε f (a) + ∂εg(a))

for any a ∈ (dom f ) ∩ (dom g).

6 DC Optimization with Convex Constraints in the Absence of CQ’s

Let f, h ∈ �(X), C be a closed convex set in X, S a preordering closed convex cone
in Z , with its positive dual cone S+ which is defined as

S+ := {z∗ ∈ Z ∗ : 〈z∗, s〉 ≥ 0, ∀s ∈ S},
and let H : X → Z be a mapping. Remember that we use the notation

[ f − h ≥ 0] := {x ∈ X : f (x) − h(x) ≥ 0},
and observe that [ f − h ≥ 0] = [ f ≥ h].
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The main result of this section is the generalized Farkas lemma (in dual form)
without any constraint qualification which is given in Theorem 4 below. This, at the
same time, gives a characterization of set containment of a convex set defined by a
cone constraint, C ∩ H−1 (−S) , in a DC set (i.e., a set defined by a DC inequality)
which, in certain sense, extends the ones involving convex and DC sets in earlier
works [7, 10, 16].

Theorem 4 (Farkas lemma involving DC functions) Let f, h ∈ �(X), C be a closed
convex set in X, S a preordering closed convex cone in Z , and H : X → Z a mapping.
Assume that for all z∗ ∈ S+, z∗ ◦ H ∈ �(X), and C ∩ dom f ∩ H−1(−S) �= ∅. Then the
following statements are equivalent:

(a) C ∩ H−1(−S) ⊂ [ f − h ≥ 0],
(b) for all x∗ ∈ dom h∗, there exists a net (x∗

1i, x∗
2i, x∗

3i, z∗
i , εi)i∈I ⊂ (X∗)3 × Z ∗ × R

such that
(
z∗

i

)
i∈I ⊂ S+,

f ∗(x∗
1i) + i∗C(x∗

2i) + (z∗
i ◦ H)∗(x∗

3i) ≤ h∗(x∗) + εi, for all i ∈ I,

and

(x∗
1i + x∗

2i + x∗
3i, εi) → (x∗, 0+).

Proof We are going to apply Theorem 2, with g = iC and k = i−S. Then k∗ = i∗−S,
and we can easily observe that dom k∗ = S+, which entails the fulfilment of (4.1).
Moreover, if z∗ ∈ S+ then k∗(z∗) = 0.

We are assuming that C ∩ dom f ∩ H−1(−S) �= ∅, which is equivalent to condition
(4.2) in our particular setting. Hence, we can apply Theorem 2, and the rest of the
proof is devoted to verify that statements (a) and (b) here are equivalent to the
corresponding ones in Theorem 2.

Since the equivalence between both statements (a) is straightforward, let us prove
the equivalence of both (b)’s. In fact, statement (b) in Theorem 2 now reads:

For all x∗ ∈ dom h∗, there exists an associated net (x∗
1i, x∗

2i, x∗
3i, z∗

i , εi)i∈I ⊂ (X∗)3 ×
Z ∗ × R such that

f ∗(x∗
1i) + i∗C(x∗

2i) + k∗(z∗
i ) + (z∗

i ◦ H)∗(x∗
3i) ≤ h∗(x∗) + εi, for all i ∈ I, (6.1)

and

(x∗
1i + x∗

2i + x∗
3i, εi) → (x∗, 0+).

Since x∗ ∈ dom h∗, we have h∗(x∗) < +∞, and this entails that z∗
i ∈ S+, and so

k∗(z∗
i ) = 0, for all i ∈ I. In this way, we get statement (b) in our theorem. ��

Theorem 4 can be applied in various situations: convex and reverse convex
containment (see, e.g., [7, 10, 15, 16]), approximate Farkas lemma for systems with
DC functions [3, 4, 19], and DC optimization problems under convex constraints [17].

Now we consider the following model of DC problems:

(DC)

{
minimize [ f (x) − h(x)]
s.t. x ∈ C, H(x) ∈ −S,

where f, h, H, C, and S are as in Theorem 4.
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Let k = i−S and g = iC. Then the relation H(x) ∈ −S is equivalent to (k ◦ H)(x) =
k(H(x)) = 0 and the (DC) problem is equivalent to the following one:

(DC1) inf
x∈X

[ f (x) + iC(x) + i−S(H(x)) − h(x)].

Let us denote the feasible set of (DC) by A := C ∩ H−1(−S).

It is worth mentioning that in the case where the mapping H is convex w.r.t. S
and continuous the problem (DC) collapses to the problem considered in [7]. If in
addition, h ≡ 0 then it is the cone-constrained convex problems in [8, 20], or in [18]
when C = X.

Proposition 1 (Characterization of global optimality for (DC)) Let f, h, H, C, and
S be as in Theorem 4. Then a point a ∈ A ∩ dom f ∩ dom h is a global minimum of
(DC) if and only if for every x∗ ∈ dom h∗ there exists a net (x∗

1i, x∗
2i, x∗

3i, z∗
i , εi)i∈I ⊂

(X∗)3 × Z ∗ × R satisfying
(
z∗

i

)
i∈I ⊂ S+,

f ∗(x∗
1i) + i∗C(x∗

2i) + (z∗
i ◦ H)∗(x∗

3i) ≤ h∗(x∗) + h (a) − f (a) + εi, for all i ∈ I,

and

(x∗
1i + x∗

2i + x∗
3i, εi) → (x∗, 0+).

Proof It is worth observing that a ∈ A ∩ dom f ∩ dom h is a global minimum of
(DC) if and only if a is a global optimal solution of (DC1), if and only if

f (x) + iC(x) + i−S(H(x)) − h(x) ≥ f (a) − h (a) , ∀x ∈ X,

if and only if

f (x) + iC(x) + i−S(H(x)) ≥ h(x) + f (a) − h (a) , ∀x ∈ X.

Applying Theorem 2 with iC, i−S, and h̃(·) := h(·) + f (a) − h (a) playing the roles
of g, k, and h, respectively, the last inequality is equivalent to the following
fact: for every x∗ ∈ dom h∗ there exists a net (x∗

1i, x∗
2i, x∗

3i, z∗
i , εi)i∈I ⊂ (X∗)3 × Z ∗ ×

R satisfying

f ∗(x∗
1i) + i∗C(x∗

2i) + i∗−S(z
∗
i ) + (z∗

i ◦ H)∗(x∗
3i) ≤ h∗(x∗) + h (a) − f (a) + εi, for all i ∈ I,

and

(x∗
1i + x∗

2i + x∗
3i, εi) → (x∗, 0+).

The argument used in the last part of the proof of Theorem 4 ensures that z∗
i ∈ S+

for all i ∈ I, and hence, i∗−S(z
∗
i ) = 0 for all i ∈ I. The proof is complete. ��

Necessary conditions for local optimality of (DC) without qualification condition
can be derived directly from previous results and the following lemma.

Lemma 3 Let f, h : X → R, a ∈ f −1(R) ∩ h−1(R), and assume that f is convex. If a
is a local minimum of f − h, then

∂h(a) ⊂ ∂ f (a).
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Proof By assumption, there is V ∈ N(a) such that

f (x) − h(x) ≥ f (a) − h(a), ∀x ∈ V.

For any x∗ ∈ ∂h(a) one thus has

f (x) ≥ h(x) + f (a) − h(a)

≥ 〈
x∗, x − a

〉 + f (a), ∀x ∈ V,

and

f (x) − 〈
x∗, x

〉 ≥ f (a) − 〈
x∗, a

〉
, ∀x ∈ V,

which implies that a is a local minimum (hence, global) of the convex function f −
〈x∗, ·〉 . Thus,

0 ∈ ∂( f − 〈
x∗, ·〉)(a) = ∂ f (a) − {x∗},

entailing x∗ ∈ ∂ f (a). ��

Proposition 2 (Necessary condition for local optimality for (DC)) Let f, h, H, C,

and S be as in Theorem 4. If a ∈ A ∩ dom f ∩ dom h is a local minimum of (DC) then

∂h(a) ⊂ lim sup
η→0+

⎛

⎝
⋃

z∗∈∂ηi−S(H(a))

{
∂η f (a) + ∂η(z∗ ◦ H)(a) + Nη(C, a)

}
⎞

⎠ ,

or, equivalently, for any x∗ ∈ ∂h(a), there exists a net (x∗
1i, x∗

2i, x∗
3i, z∗

i , ηi)i∈I ⊂ (X∗)3 ×
Z ∗ × R such that

x∗
1i ∈ ∂ηi f (a), x∗

2i ∈ Nηi(C, a), x∗
3i ∈ ∂ηi(z

∗
i ◦ H)(a),

z∗
i ∈ S+, 0 ≤ 〈z∗

i , −H(a)〉 ≤ ηi, and

(x∗
1i + x∗

2i + x∗
3i, ηi) −→ (x∗, 0+).

Proof If a ∈ A ∩ dom f ∩ dom h is a local minimum of (DC), then it is also a local
solution of the DC program (DC1). Since f + iC + i−S ◦ H is convex, it follows from
Lemma 3 that

∂h(a) ⊂ ∂( f + iC + i−S ◦ H)(a).

Combining this inclusion and the formula of subdifferentials of the function f + iC +
i−S ◦ H in Theorem 3, we get

∂h(a) ⊂ lim sup
η→0+

⎛

⎝
⋃

z∗∈∂ηi−S(H(a))

{
∂η f (a) + ∂η(z∗ ◦ H)(a) + Nη(C, a)

}
⎞

⎠ .

The first assertion is proved.
The second assertion is just another representation of the first one if we observe

that z∗
i ∈ ∂ηi−S(H(a)) is equivalent to z∗

i ∈ S+ and 0 ≤ 〈z∗
i ,−H(a)〉 ≤ ηi. The proof is

complete. ��

Since z∗ ∈ ∂ηi−S(H(a)) implies z∗ ∈ S+, the following result is a direct conse-
quence of Proposition 2.
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Corollary 2 (Necessary condition for local optimality for (DC)) Let f, h, H, C, and
S be as in Theorem 4. If a ∈ A ∩ dom f ∩ dom h is a local minimum of (DC) then

∂h(a) ⊂ lim sup
η→0+

(
⋃

z∗∈S+

{
∂η f (a) + ∂η(z∗ ◦ H)(a) + Nη(C, a)

}
)

.

We now consider a special case of (DC) where X = R
m, Z = Sn is the space of

symmetric (n × n)-matrices, and H(x) := −F0 − ∑m
j=1 xi F j for all x = (x1, · · · , xm) ∈

R
m, where F0, F j ∈ Sn. Denote by � the L öwer partial order of Sn, that is, for M, N ∈

Sn, M � N means that M − N is a positive semidefinite matrix. Sn will be considered
as a vector space with the trace inner product defined by 〈M, N〉 := Tr [MN] where
Tr [.] is the trace operation.

Let S be the cone of all positive semidefinite matrices of Sn. Then S+ = S and
M ∈ S if and only if Tr [Z M] ≥ 0 for all Z ∈ S. Given F0, F j ∈ Sn, j = 1, · · · , m, we
are interested in the inclusion involving a semidefinite inequality and a DC inequality
of the following form:

{x ∈ R
m : x ∈ C, F0 +

m∑

j=1

x jF j � 0} ⊂ [ f − h ≥ 0].

Recall that H(x) = −F0 − ∑m
j=1 x jF j. Let Ĥ(x) = ∑m

j=1 x jF j. Then Ĥ : R
m → Sn

is a linear operator and its dual operator Ĥ∗ is

Ĥ∗(Z ) = (Tr [F1 Z ], . . . , Tr [Fm Z ]), Z ∈ Sn.

The proof of the next result is based upon Theorem 4.

Proposition 3 (Farkas lemma involving semidefinite and DC inequalities) Let X =
R

m, f, h ∈ �(Rm), and C ⊂ R
m be a closed convex set. Assume that C ∩ dom f ∩

H−1(−S) �= ∅. Then the following statements are equivalent:

(a) {x ∈ R
m : x ∈ C, F0 + ∑m

j=1 x jF j � 0} ⊂ [ f − h ≥ 0],
(b) for all x∗ ∈ dom h∗, there exists a net (x∗

1i, x∗
2i, Zi, εi)i∈I ⊂ (Rm)2 × Sn × R such

that Zi � 0 , for all i ∈ I,

f ∗(x∗
1i) + i∗C(x∗

2i) + Tr [F0 Zi] ≤ h∗(x∗) + εi, for all i ∈ I,

and

(x∗
1i + x∗

2i − Ĥ∗(Zi), εi) → (x∗, 0+).

Proof We observe first that the inequality in (a) can be rewritten as follows:

C ∩ H−1(−S) ⊂ [ f − h ≥ 0].
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Moreover, for each Z ∈ S and u ∈ R
m, we have

(Z ◦ H)∗(u) = sup
x∈Rm

{〈u, x〉 − 〈Z ,H(x)〉}

= sup
x∈Rm

⎧
⎨

⎩
〈u, x〉 +

m∑

j=1

x jTr [Z F j] + Tr [Z F0]
⎫
⎬

⎭

= Tr [Z F0] + sup
x∈Rm

〈u + Ĥ∗(Z ), x〉.

Therefore,

(Z ◦ H)∗(u) =
{

Tr [Z F0], if u = −Ĥ∗(Z ),

+∞, otherwise.

The conclusion now follows directly from Theorem 4. ��

7 Convex and Semidefinite Optimization without CQ’s

Taking h ≡ 0 in Theorem 4 we get a generalized version of Farkas lemma for convex
system without constraint qualification as shown in the next result.

Proposition 4 (Farkas lemma for convex systems) Assume that f, C, H, and S satisfy
the conditions in Theorem 4. Then the following statements are equivalent:

(a) C ∩ H−1(−S) ⊂ [ f ≥ 0],
(b) there exists a net (x∗

1i, x∗
2i, x∗

3i, z∗
i , εi)i∈I ⊂ (X∗)3 × Z ∗ × R such that

(
z∗

i

)
i∈I ⊂ S+,

f ∗(x∗
1i) + i∗C(x∗

2i) + (z∗
i ◦ H)∗(x∗

3i) ≤ εi, for all i ∈ I,

and

(x∗
1i + x∗

2i + x∗
3i, εi) → (0, 0+).

(c) there exists a net (z∗
i )i∈I ⊂ S+ such that

f (x) + lim inf
i∈I

(z∗
i ◦ H)(x) ≥ 0, ∀x ∈ C.

��

Proof The equivalence between (a) and (b) follows directly from Theorem 4 with
h ≡ 0 (and hence, dom h∗ = {0}). Next, we prove [(b) ⇒ (c)] and [(c) ⇒ (a)].

[(b) ⇒ (c)] Assume that (b) holds. By the definition of conjugate functions, we
get, for any x ∈ C, any i ∈ I,

f ∗(x∗
1i) ≥ 〈x∗

1i, x〉 − f (x),

i∗C(x∗
2i) ≥ 〈x∗

2i, x〉,
(z∗

i ◦ H)∗(x∗
3i) ≥ 〈x∗

3i, x〉 − (z∗
i ◦ H)(x),
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where x∗
1i, x∗

2i, x∗
3i, and z∗

i , i ∈ I, are the elements in the net whose existence is
assumed in (b). Then the inequality in (b) yields

f (x) + (z∗
i ◦ H)(x) ≥ −εi + 〈x∗

1i + x∗
2i + x∗

3i, x〉, ∀i ∈ I.

We get (c) by taking the lim infi∈I in both sides of the last inequality.
[(c) ⇒ (a)] Assume (c) holds. If x ∈ C ∩ H−1(−S) then (z∗

i ◦ H)(x) ≤ 0 for all i ∈ I
(note that z∗

i ∈ S+ and H(x) ∈ −S). Hence, since x ∈ C,

f (x) ≥ f (x) + lim inf
i∈I

(z∗
i ◦ H)(x) ≥ 0.

Thus, (a) holds. ��

It is worth observing that the equivalence between statements (a) and (c) in
Proposition 4 was established in [7] and [18] in the case where X is a reflexive Banach
space and H is continuous, S-convex (i.e., convex w.r.t. the cone S), while the other
equivalences, to our knowledge, are new. The generalized version of Farkas lemma
in Proposition 4 and its counterpart for the system involving semidefinite functions
given below are the key tools for establishing limiting Lagrangian conditions for
convex and semidefinite programs (see [8, 20]).

Corollary 3 (Farkas lemma for convex systems with semidefinite constraints) As-
sume that f, C, and H satisfy the conditions in Proposition 3. Then the following
statements are equivalent:

(a) {x ∈ R
m : x ∈ C, F0 + ∑m

j=1 x jF j � 0} ⊂ [ f ≥ 0],
(b) there exists a net (x∗

1i, x∗
2i, Zi, εi)i∈I ⊂ (Rm)2 × Sn × R such that Zi � 0, for

all i ∈ I,

f ∗(x∗
1i) + i∗C(x∗

2i) + Tr [F0 Zi] ≤ εi, for all i ∈ I,

and

(x∗
1i + x∗

2i − Ĥ∗(Zi), εi) → (x∗, 0+).

(c) there exists a net (Zi)i∈I ⊂ Sn such that Zi � 0, for all i ∈ I, and

f (x) + lim inf
i∈I

Tr [ZiH(x)] ≥ 0, ∀x ∈ C.

Proof It is a direct consequence of Proposition 4 with H(x) = −F0 − ∑m
j=1 x jF j. The

equivalence between the first two statements comes from Proposition 3. ��

Taking h ≡ 0 in the problem (DC), we come back to the classical convex optimiza-
tion problem of the following form

(PC) minimize f (x) s.t. x ∈ C and H(x) ∈ −S,

which was considered in many recent works (see, for instance, [2, 20, 25, 26]). We
now give some consequences of the previous results for this class of problems. More
precisely, we will give a result about sequential optimality conditions and Lagrange
duality for (PC), which improves those established in [8, 18, 20] and [25].
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Proposition 5 (Optimality characterization for (PC)) Let f ∈ �(X), H : X → Z
satisfying z∗ ◦ H ∈ �(X) for all z∗ ∈ S+. For any a ∈ C ∩ (dom f ) ∩ H−1(−S) the
following assertions are equivalent :

(a) a is optimal for (PC),

(b) there exist (ηi)i∈I → 0+, and for every i ∈ I, there also exist x∗
1i ∈ ∂ηi f (a), x∗

2i ∈
Nηi(C, a), z∗

i ∈ S+, and x∗
3i ∈ ∂ηi(z

∗
i ◦ H)(a) such that 0 ≤ 〈

z∗
i , −H(a)

〉 ≤ ηi and
limi(x∗

1i + x∗
2i + x∗

3i) = 0.

Proof Observe that the local minima of (PC) are global because this problem is
convex.

For the implication [(a) ⇒ (b)], apply Proposition 2 with h ≡ 0, and hence,
∂h(a) = {0}.

The converse implication can be proved directly, using definitions of η -
subdifferentials as in [20, Theorem 3.2]. ��

We now give a direct application of Proposition 5 to a class of simple semidefinite
programming problems which have received much attention in the last decades (see,
e.g., [2, 5], and references therein). For the sake of simplicity, we consider the case
where C = X = R

m and f (x) = 〈c, x〉, x ∈ R
m, where c is a given vector in R

m.
Specifically, we consider the linear semidefinite programming problem:

(SDP) minimize 〈c, x〉 s.t. F0 +
m∑

j=1

x jF j � 0.

Here F0, F1, · · · , Fm are given matrices of Sn (we maintain the notation of Proposi-
tion 3). We get the following result from Proposition 5.

Corollary 4 (Optimality characterization for (SDP)) Let c ∈ X = R
m. Assume that a

is a feasible solution of (SDP). Then a is an optimal solution of (SDP) if and only if
there exists a net (Zi)i∈I ⊂ Sn such that Zi � 0, for all i ∈ I, and

Ĥ∗(Zi) → c, Tr [ZiH(a)] → 0.

Proof It is worth observing that for any η > 0, and any Z ∈ Sn, ∂η(Z ◦ H)(a) =
−Ĥ∗(Z ). The conclusion now follows directly from Proposition 5. ��

Farkas lemmas for convex/semidefinite systems (Proposition 4 and Corollary 3)
may be used to derive limiting Lagrangian conditions for convex problem (PC),
which recover the ones given recently in [20] and [8] as shown in the next result.
But first, let us denote by

L(x, z∗) := f (x) + (z∗ ◦ H)(x)

the Lagrange function of (PC). Sometimes we write (z∗
i ) instead of (z∗

i )i∈I .
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Proposition 6 (Duality theorem for (PC)) Let f ∈ �(X) and H : X → Z satisfying
z∗ ◦ H ∈ �(X) for all z∗ ∈ S+. If dom f ∩ C ∩ H−1(−S) �= ∅ then there exists a net
(z̄∗

i ) ⊂ S+ such that

sup
(z∗

i )⊂S+
inf
x∈C

lim inf
i∈I

L(x, z∗
i ) = inf

x∈C
lim inf

i∈I
L(x, z̄∗

i ) = inf(PC).

Moreover,

inf
x∈C

sup
(z∗

i )⊂S+
lim inf

i∈I
L(x, z∗

i ) = sup
(z∗

i )⊂S+
inf
x∈C

lim inf
i∈I

L(x, z∗
i ).

Proof When inf(PC) = −∞ the equalities hold trivially (the net (z̄∗
i )i∈I ⊂ S+ can be

an arbitrarily chosen). Assume that inf(PC) ∈ R. Then we have

C ∩ H−1(−S) ⊂ [ f ≥ inf(PC)].
By Proposition 4, applied to f − inf(PC) instead of f , there exists (z̄∗

i )i∈I ⊂ S+
such that

f (x) + lim inf
i∈I

(z̄∗
i ◦ H)(x) ≥ inf(PC), ∀x ∈ C,

which yields

inf
x∈C

lim inf
i∈I

L(x, z̄∗
i ) = inf

x∈C
[ f (x) + lim inf

i∈I
(z̄∗

i ◦ H)(x)] ≥ inf(PC). (7.1)

On the other hand, note that if z∗ ∈ S+ and x ∈ H−1(−S) then (z∗ ◦ H)(x) ≤ 0.
Therefore,

inf(PC) ≥ inf
x∈C∩H−1(−S)

sup
(z∗

i )⊂S+
lim inf

i∈I
L(x, z∗

i ) ≥ inf
x∈C

sup
(z∗

i )⊂S+
lim inf

i∈I
L(x, z∗

i ). (7.2)

The statement follows by combining (7.1), (7.2), and the following straightforward
inequalities:

inf
x∈C

sup
(z∗

i )⊂S+
lim inf

i∈I
L(x, z∗

i ) ≥ sup
(z∗

i )⊂S+
inf
x∈C

lim inf
i∈I

L(x, z∗
i ) ≥ inf

x∈C
lim inf

i∈I
L(x, z̄∗

i ).

��

Remark 1 When X and Z are reflexive Banach spaces, and H is an S -convex
and continuous mapping, Proposition 5 coincides with [20, Theorem 3.2] (see also
[18, 25]) while, under the additional condition C = X, Proposition 6 coincides with
[8, Theorem 3.1]. In the same manner, using the Farkas lemma for semidefinite
systems (Corollary 3), we can establish the limiting Lagrangian condition for (SDP)

that covers the one given in [8].

8 Infinite Linear Optimization without CQ’s

In this section we consider different kinds of linear systems and linear optimization
problems with an arbitrary number of constraints.

Proposition 7 (Farkas lemma for linear systems I) Consider two l.c.H.t.v.s.’s X and
Z , let S be a preordering closed convex cone in Z , let A : X → Z be a linear mapping
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such that for all z∗ ∈ S+ we have A∗z∗ ∈ X∗, where A∗ is the adjoint operator of A,
and let b ∈ Z be such that the linear system Ax ≤ b (i.e. Ax − b ∈ −S) is consistent.
Then, for any x∗ ∈ X∗, r ∈ R, the following statements are equivalent:

(a) x ∈ X and Ax ≤ b =⇒ 〈x∗, x〉 ≤ r,
(b) there exists a net (z∗

i , εi)i∈I ⊂ S+ × R such that

〈z∗
i , b〉 ≤ r + εi, ∀i ∈ I, and (A∗z∗

i , εi) → (x∗, 0+).

Proof This is a direct consequence of the generalized Farkas lemma, Theorem 4,
with f ≡ 0, C = X, H(x) = Ax − b , and h(x) = 〈x∗, x〉 − r. ��

Remark 2 If A is continuous, for all z∗ ∈ Z ∗, A∗z∗ is continuous since 〈A∗z∗, ·〉 =
〈z∗,A(·)〉. Therefore, the assumption in Proposition 7 holds.

Given an arbitrary set T, consider the space R
T equipped with the product

topology and the space

R
(T) = {λ ∈ R

T : finitely many λt are different from 0},
equipped with the direct sum topology. It is well-known that (RT , R

(T)) is a dual pair
through the bilinear form given by

〈γ, λ〉 =
∑

t∈T

γtλt, for all γ ∈ R
(T), λ ∈ R

T ,

and according to this fact, (RT)∗ = R
(T) and (R(T))∗ = R

T .
By means of this notation, the convex conical hull of a set {xt, t ∈ T} ⊂ X can be

expressed as cone {xt, t ∈ T} =
{
∑

t∈T
λtxt : λ ∈ R

(T)
+

}
, where λt := λ (t), t ∈ T.

Proposition 8 (Farkas lemma for linear systems II) Let X be an l.c.H.t.v.s., let T be
an arbitrary (possibly inf inite) index set, and let x∗

t ∈ X∗, rt ∈ R, for all t ∈ T, such
that the linear inequality system {〈x∗

t , x〉 ≤ rt, t ∈ T} is consistent. Then, for any pair
x∗ ∈ X∗, r ∈ R , the following statements are equivalent:

(a) x ∈ X and 〈x∗
t , x〉 ≤ rt, for all t ∈ T =⇒ 〈x∗, x〉 ≤ r,

(b) there is a net
(
λi, εi

)
i∈I ⊂ R

(T)
+ × R such that

∑

t∈T

λi
trt ≤ r + εi, ∀i ∈ I, and

(
∑

t∈T

λi
tx

∗
t , εi

)

→ (x∗, 0+).

(c) (x∗, r) ∈ cone
{(

x∗
t , rt

)
, t ∈ T; (0, 1)

}
.

Proof The equivalence between (a) and (b) follows directly from Proposition 7,
just by taking Z = R

T , S = R
T+, Ax = (〈x∗

t , x〉)t∈T , b = (rt)t∈T , Z ∗ = R
(T), and S+ =

R
(T)
+ . Here, if γ = (γt)t∈T ∈ R

(T)
+ we have A∗γ = ∑

t∈T γtx∗
t ∈ X∗. The equivalence

between (b) and (c) follows by standard arguments. However, for easy reading and
for the completeness of the proof, we present the implication [(b) ⇒ (c)].
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Assume that (b) holds. Let μi := r + εi − ∑

t∈T
λi

trt ≥ 0, ∀i ∈ I. Then (c) holds

because

(
x∗, r

) = lim
i∈I

{
∑

t∈T

λi
t

(
x∗

t , rt
) + μi (0, 1)

}

and
∑

t∈T
λi

t

(
x∗

t , rt
) + μi (0, 1) ∈ cone

{(
x∗

t , rt
)
, t ∈ T; (0, 1)

}
for all i ∈ I.

To complete the proof it is sufficient to prove the implication [(c) ⇒ (a)].
Assume that (c) holds. Let (λi)i∈I ⊂ R

(T)
+ and (μi)i∈I be such that (x∗, r) =

limi∈I

{
∑

t∈T
λi

t

(
x∗

t , rt
) + μi (0, 1)

}
. Then, for any x ∈ X such that 〈x∗

t , x〉 ≤ rt, t ∈ T,

we have

〈x∗, x〉 − r = 〈(x∗, r) , (x,−1)〉
= limi∈I

{
∑

t∈T
λi

t

〈(
x∗

t , rt
)
, (x, −1)

〉 + μi 〈(0, 1) , (x, −1)〉
}

= limi∈I

{
∑

t∈T
λi

t

(〈
x∗

t , x
〉 − rt

) − μi

}
≤ 0.

Thus (a) holds. ��

The equivalence between (a) and (c) was proved in [6, Theorem 2]. The finite
dimensional version of this result (X = R

n) is a basic theoretical tool in linear
semi-infinite programming (LSIP in brief). Next we consider the infinite linear
programming problem

(LIP)

{
minimize 〈c∗, x〉
s.t. x ∈ A,

A := {
x ∈ X : 〈x∗

t , x〉 ≤ rt, t ∈ T
}
.

Proposition 9 (Primal optimal value of (LIP)) Let X, T, x∗
t , and rt, t ∈ T, be as in

Proposition 8, and let c∗ ∈ X∗. Then, one has

inf(LIP) = sup
{
s ∈ R : (c∗, s) ∈ −cone

{(
x∗

t , rt
)
, t ∈ T; (0, 1)

}} ∈ R ∪ {−∞}.

Proof Let us denote

α : = inf(LIP),

β : = sup
{
s ∈ R : (c∗, s) ∈ − cone

{(
x∗

t , rt
)
, t ∈ T; (0, 1)

}}
.

We first prove that β ≥ α.

If α = −∞, the inequality trivially holds. If α > −∞, one has α ∈ R because the
feasible set of (LIP) is nonempty by assumption. Observe that (x∗, r) := −(c∗, α)

satisfies the condition (a) in Proposition 8, which is equivalent to (c), i.e. to

(c∗, α) ∈ −cone
{(

x∗
t , rt

)
, t ∈ T; (0, 1)

}

and, so, by the own definition of β, β ≥ α.

We now prove the opposite inequality α ≥ β. Let s ∈ R be such that

(c∗, s) ∈ −cone
{(

x∗
t , rt

)
, t ∈ T; (0, 1)

}
.
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By Proposition 8, for any feasible point x of (LIP) we have 〈c∗, x〉 ≥ s. Taking the
supremum over s and the infimum over x ∈ A, we get α ≥ β. ��

Corollary 5 (Optimality characterization for (LIP)) Let X, T, x∗
t , and rt, t ∈ T, be

as in Proposition 8. Let c∗ ∈ X∗ and consider a ∈ A. Then the following statements
are equivalent:

(a) a is an optimal solution of (LIP),
(b) there is a net

(
λi, εi

)
i∈I ⊂ R

(T)
+ × R such that

∑

t∈T

λi
trt ≤ εi − 〈

c∗, a
〉
, ∀i ∈ I, and

(
∑

t∈T

λi
tx

∗
t , εi

)

→ (−c∗, 0+).

In that case, the optimal value of (LIP) is

inf(LIP) = max
{
s ∈ R : (c∗, s) ∈ −cone

{(
x∗

t , rt
)
, t ∈ T; (0, 1)

}} ∈ R. (8.1)

Proof Taking x∗ = −c∗ and r = −〈c∗, a〉 , the equivalence between (a) and (b)
follows from the corresponding equivalence in Proposition 8, whose statement (c)
becomes here

(
c∗,

〈
c∗, a

〉) ∈ −cone
{(

x∗
t , rt

)
, t ∈ T; (0, 1)

}
,

and this, together with Proposition 9, implies (8.1). ��

To the authors’ knowledge the above characterization of optimality in (LIP) is
new. Even in finite dimensions, no characterization of the optimal solution in (LSIP)
without CQ is available (the KKT condition is sufficient, but not necessary, and the
same is true for stronger conditions as those obtained in [12] by means of the concept
of extended active constraints). In the same framework, the finite dimensional
version of (8.1) is the well-known geometric interpretation of the optimal value of the
primal (LSIP) problem (see, e.g., [11, (8.5)]). If one considers (LIP) as a parametric
optimization problem with parameter c∗, then (8.1) can be interpreted in terms of the
hypograph of the optimal value function of (LIP), −i∗A (−c∗) :

−epi i∗A(·) = hypo − i∗A (− (·)) = −cone
{(

x∗
t , rt

)
, t ∈ T; (0, 1)

}
.

Next we extend from (LSIP) to (LIP) the notion of Haar’s dual problem:

(DLIP)

⎧
⎨

⎩

maximize
∑

t∈T
λtrt

s.t.
∑

t∈T
λtx∗

t = c∗, λ ∈ −R
(T)
+ .

It is easy to check that, adopting the standard conventions sup ∅ = −∞ and inf ∅ =
+∞, one has

− ∞ ≤ sup(DLIP)

= sup
{
s ∈ R : (c∗, s

) ∈ −cone
{(

x∗
t , rt

)
, t ∈ T; (0, 1)

}}

≤ inf(LIP) ≤ +∞, (8.2)
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and so, the weak duality holds. If (LIP) is feasible and cone
{(

x∗
t , rt

)
, t ∈ T; (0, 1)

}
is

w∗−closed, it comes from Proposition 9 and (8.2) that

−∞ ≤ sup(DLIP) = inf(LIP) < +∞.

Moreover if (DLIP) is feasible, then

−∞ < max(DLIP) = inf(LIP) < +∞,

i.e. strong duality holds in the sense that there is no duality gap and the dual problem
has at least an optimal solution.

It is worth observing that the constraints of (DLIP) constitute a linear system in
the decision space R

(T). The following corollary is a Farkas lemma for linear systems

posed in R
(T), whose general form is

{
∑

t∈T
λta

j
t ≤ s j, j ∈ J

}
, with a j ∈ R

T and s j ∈ R,

for all j ∈ J.

Corollary 6 (Farkas lemma for linear systems III) Let {∑
t∈T

λta
j
t ≤ s j, j ∈ J} be a

consistent system in R
(T). Then, for any pair a ∈ R

T , s ∈ R, the following statements
are equivalent:

(a) λ ∈ R
(T) and

∑

t∈T
λta

j
t ≤ s j, j ∈ J =⇒ ∑

t∈T
λtat ≤ s,

(b) there exists a net (γ i, εi)i∈I ⊂ R
(J)
+ × R such that

∑

j∈J

γ i
jr j ≤ r + ε, ∀i ∈ I, and (A∗γ i, εi) → (a, 0+),

where A∗γ i = ∑

j∈J
γ i

ja
j.

Proof It is a direct consequence of Proposition 7 taking X = R
(T), A : R

(T) → Z =
R

J (equipped with the product topology) such that (Aλ) j = ∑

t∈T
λta

j
t , ∀ j ∈ J, S = R

J+

(so that S+ = R
(J)
+ ), b = (

s j
)

j∈J , and x∗ = a. ��

Corollary 7 (Optimality characterization for (DLIP)) Let X be an l.c.H.t.v.s., let T be
an arbitrary (possibly inf inite) index set, and let c∗, x∗

t ∈ X∗, rt ∈ R, for all t ∈ T, such
that the linear inequality system {∑

t∈T
λtx∗

t = c∗, λ ∈ −R
(T)
+ } is consistent. Let α ∈ R

(T)

be a feasible solution of (DLIP). Then the following statements are equivalent:

(a) α is an optimal solution of (DLIP),

(b) there exists a net (μi, εi)i∈I ⊂
(
R(X) × R

(T)
+

)
× R such that

∑

x∈X

〈
c∗, x

〉
μi

x ≤
∑

t∈T

αtrt + εi, ∀i ∈ I, and
(
A∗μi, εi

) → (r, 0+),

where r = (rt)t∈T and
(
A∗μi

)
t = ∑

x∈X

〈
x∗

t , x
〉
μi

x + μi
t, ∀i ∈ I.
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Proof (a) can be reformulated as

λ ∈ R
(T)and

∑

t∈T

λta
j
t ≤ s j, j ∈ J =⇒

∑

t∈T

λtat ≤ s,

just taking at = rt, for all t ∈ T, s = ∑

t∈T
αtrt, J = (X × {0, 1}) ∪ T, with a(x,k)

t =
(−1)k 〈x∗

t , x
〉
, s(x,k) = (−1)k 〈c∗, x〉 , for all (x, k) ∈ X × {0, 1} , au

t = 1, if t = u, and
au

t = 0, otherwise, and su = 0, for all u ∈ T. Applying Corollary 6 we get (a) ⇔ (b)

by defining μi
x := γ i

(x,0) − γ i
(x,1) for all x ∈ X and μi

t = γ i
t for all t ∈ T. ��

The last two results are new even in finite dimensions (compare, e.g., with [1]
and [11]).
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