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Abstract In convex optimization, duality theory can sometimes lead to simpler
solution methods than those resulting from direct primal analysis. In this paper,
this principle is applied to a class of composite variational problems arising in
particular in signal recovery. These problems are not easily amenable to solution
by current methods but they feature Fenchel–Moreau–Rockafellar dual problems
that can be solved by forward-backward splitting. The proposed algorithm produces
simultaneously a sequence converging weakly to a dual solution, and a sequence
converging strongly to the primal solution. Our framework is shown to capture and
extend several existing duality-based signal recovery methods and to be applicable
to a variety of new problems beyond their scope.
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1 Introduction

Over the years, several structured frameworks have been proposed to unify the
analysis and the numerical solution methods of classes of signal (including image)
recovery problems. An early contribution was made by Youla in 1978 [75]. He
showed that several signal recovery problems, including those of [44, 60], shared
a simple common geometrical structure and could be reduced to the following
formulation in a Hilbert space H with scalar product 〈· | ·〉 and associated norm ‖ · ‖:
find the signal in a closed vector subspace C which admits a known projection r onto
a closed vector subspace V, and which is at minimum distance from some reference
signal z. This amounts to solving the variational problem

minimize
x∈C

PV x=r

1
2
‖x − z‖2, (1.1)

where PV denotes the projector onto V. Abstract Hilbert space signal recovery
problems have also been investigated by other authors. For instance, in 1965, Levi
[50] considered the problem of finding the minimum energy band-limited signal
fitting N linear measurements. In the Hilbert space H = L2(R), the underlying
variational problem is to

minimize
x∈C〈x|s1〉=ρ1

...〈x|sN〉=ρN

1
2
‖x‖2, (1.2)

where C is the subspace of band-limited signals, (si)1≤i≤N ∈ HN are the measurement
signals, and (ρi)1≤i≤N ∈ R

N are the measurements. In [62], Potter and Arun observed
that, for a general closed convex set C, the formulation 1.2 models a variety of
problems, ranging from spectral estimation [9, 68] and tomography [52], to other
inverse problems [10]. In addition, they employed an elegant duality framework to
solve it, which led to the following result.

Proposition 1.1 [62, Theorems 1 and 3] Set r = (ρi)1≤i≤N and L : H → R
N : x �→

(〈x | si〉)1≤i≤N, and let γ ∈ ]0, 2[. Suppose that
∑N

i=1 ‖si‖2 ≤ 1 and that r lies in the
relative interior of L(C). Set

w0 ∈ R
N and (∀n ∈ N) wn+1 = wn + γ

(
r − LPC L∗wn

)
, (1.3)

where L∗ : R
N → H : (νi)1≤i≤N �→ ∑N

i=1 νisi is the adjoint of L. Then (wn)n∈N con-
verges to a point w such that LPC L∗w = r and PC L∗w is the solution to Eq. 1.2.

Duality theory plays a central role in convex optimization [40, 56, 65, 78] and it
has been used, in various forms and with different objectives, in several places in
signal recovery, e.g., [9, 12, 21, 23, 33, 37, 41, 45, 47, 49, 74]; let us add that, since the
completion of the present paper [29], other aspects of duality in imaging have been
investigated in [13]. For our purposes, the most suitable type of duality is the so-called
Fenchel–Moreau–Rockafellar duality, which associates to a composite minimization
problem a “dual” minimization problem involving the conjugates of the functions
and the adjoint of the linear operator acting in the primal problem. In general, the
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dual problem sheds a new light on the properties of the primal problem and enriches
its analysis. Moreover, in certain specific situations, it is actually possible to solve
the dual problem and to recover a solution to the primal problem from any dual
solution. Such a scenario underlies Proposition 1.1: the primal problem 1.2 is difficult
to solve but, if C is simple enough, the dual problem can be solved efficiently and,
furthermore, a primal solution can be recovered explicitly. This principle is also
explicitly or implicitly present in other signal recovery problems. For instance, the
variational denoising problem

minimize
x∈H

g(Lx) + 1
2
‖x − z‖2, (1.4)

where z is a noisy observation of an ideal signal, L is a bounded linear operator from
H to some Hilbert space G, and g : G → ]−∞, +∞] is a proper lower semicontinuous
convex function, can often be approached efficiently using duality arguments [33].
A popular development in this direction is the total variation denoising algorithm
proposed in [21] and refined in [22].

The objective of the present paper is to devise a duality framework that captures
problems such as Eqs. 1.1, 1.2, and 1.4 and leads to improved algorithms and
convergence results, in an effort to standardize the use of duality techniques in signal
recovery and extend their range of potential applications. More specifically, we focus
on a class of convex variational problems which satisfy the following.

(a) They cover the above minimization problems.
(b) They are not easy to solve directly, but they admit a Fenchel–Moreau–

Rockafellar dual which can be solved reliably in the sense that an imple-
mentable algorithm is available with proven weak or strong convergence to
a solution of the sequences of iterates it generates. Here “implementable” is
taken in the classical sense of [61]: the algorithm does not involve subprograms
(e.g., “oracles” or “black-boxes”) which are not guaranteed to converge in a
finite number of steps.

(c) They allow for the construction of a primal solution from any dual solution.

A problem formulation which complies with these requirements is the following,
where we denote by sri C the strong relative interior of a convex set C (see Eq. 2.5
and Remark 2.1).

Problem 1.2 (Primal problem) Let H and G be real Hilbert spaces, let z ∈ H, let
r ∈ G, let f : H → ]−∞,+∞] and g : G → ]−∞, +∞] be lower semicontinuous
convex functions, and let L : H → G be a nonzero linear bounded operator such that
the qualification condition

r ∈ sri
(
L(dom f ) − dom g

)
(1.5)

holds. The problem is to

minimize
x∈H

f (x) + g(Lx − r) + 1
2
‖x − z‖2. (1.6)
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In connection with (a), it is clear that Eq. 1.6 covers Eq. 1.4 for f = 0. Moreover,
if we let f and g be the indicator functions (see Eq. 2.1) of closed convex sets C ⊂ H
and D ⊂ G, respectively, then Eq. 1.6 reduces to the best approximation problem

minimize
x∈C

Lx−r∈D

1
2
‖x − z‖2, (1.7)

which captures both Eqs. 1.1 and 1.2 in the case when C is a closed vector subspace
and D = {0}. Indeed, Eq. 1.1 corresponds to G = H and L = PV , while Eq. 1.2
corresponds to G = R

N , L : H → R
N : x �→ (〈x | si〉)1≤i≤N , r = (ρi)1≤i≤N , and z = 0.

As will be seen in Section 4, Problem 1.2 models a broad range of additional signal
recovery problems.

In connection with (b), it is natural to ask whether the minimization problem 1.6
can be solved reliably by existing algorithms. Let us set

h : H → ]−∞, +∞] : x �→ f (x) + g(Lx − r). (1.8)

Then it follows from Eq. 1.5 that h is a proper lower semicontinuous convex function.
Hence its proximity operator proxh, which maps each y ∈ H to the unique minimizer
of the function x �→ h(x) + ‖y − x‖2/2, is well defined (see Section 2.3). Accordingly,
Problem 1.2 possesses a unique solution, which can be concisely written as

x = proxh z. (1.9)

Since no-closed form expression exists for the proximity operator of composite
functions such as h, one can contemplate the use of splitting strategies to construct
proxh z since Eq. 1.6 is of the form

minimize
x∈H

f1(x) + f2(x), (1.10)

where

f1 : x �→ f (x) + 1
2
‖x − z‖2 and f2 : x �→ g(Lx − r) (1.11)

are lower semicontinuous convex functions from H to ]−∞, +∞]. To tackle Eq. 1.10,
a first splitting framework is that described in [33], which requires the additional
assumption that f2 be Lipschitz-differentiable on H (see also [11, 14, 17, 18, 24, 30,
36, 43] for recent work within this setting). In this case, Eq. 1.10 can be solved by the
proximal forward-backward algorithm, which is governed by the updating rule

⌊
xn+ 1

2
= ∇ f2(xn) + a2,n

xn+1 = xn + λn

(
proxγn f1

(
xn − γnxn+ 1

2

)+ a1,n − xn

)
,

(1.12)

where λn > 0 and γn > 0, and where a1,n and a2,n model respectively tolerances in
the approximate implementation of the proximity operator of f1 and the gradient of
f2. Precise convergence results for the iterates (xn)n∈N can be found in Theorem 3.6.
Let us add that there exist variants of this splitting method, which do not guarantee
convergence of the iterates but do provide an optimal (in the sense of [57]) O(1/n2)

rate of convergence of the objective values [7]. A limitation of this first framework is
that it imposes that g be Lipschitz-differentiable and therefore excludes key problems
such as Eq. 1.7. An alternative framework, which does not demand any smoothness
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assumption in Eq. 1.10, is investigated in [31]. It employs the Douglas–Rachford
splitting algorithm, which revolves around the updating rule

⌊
xn+ 1

2
= proxγ f2

xn + a2,n

xn+1 = xn + λn

(
proxγ f1

(
2xn+ 1

2
− xn

)+ a1,n − xn+ 1
2

)
,

(1.13)

where λn > 0 and γ > 0, and where a1,n and a2,n model tolerances in the approximate
implementation of the proximity operators of f1 and f2, respectively (see [31, Theo-
rem 20] for precise convergence results and [25] for further applications). However,
this approach requires that the proximity operator of the composite function f2 in
Eq. 1.11 be computable to within some quantifiable error. Unfortunately, this is
not possible in general, as explicit expressions of proxg◦L in terms of proxg require
stringent assumptions, for instance L ◦ L∗ = κ Id for some κ > 0 (see Example 2.8),
which does not hold in the case of Eq. 1.2 and many other important problems.
A third framework that appears to be relevant is that of [5], which is tailored for
problems of the form

minimize
x∈H

h1(x) + h2(x) + 1
2
‖x − z‖2, (1.14)

where h1 and h2 are lower semicontinuous convex functions from H to ]−∞,+∞]
such that dom h1 ∩ dom h2 �= ∅. This formulation coincides with our setting for h1 =
f and h2 : x �→ g(Lx − r). The Dykstra-like algorithm devised in [5] to solve Eq. 1.14
is governed by the iteration

Initialization⎢
⎢
⎢
⎣

y0 = z
q0 = 0
p0 = 0

For n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎣

xn = proxh2
(yn + qn)

qn+1 = yn + qn − xn

yn+1 = proxh1
(xn + pn)

pn+1 = xn + pn − yn+1

(1.15)

and therefore requires that the proximity operators of h1 and h2 be computable
explicitly. As just discussed, this is seldom possible in the case of the composite
function h2. To sum up, existing splitting techniques do not offer satisfactory options
to solve Problem 1.2 and alternative routes must be explored. The cornerstone of our
paper is that, by contrast, Problem 1.2 can be solved reliably via Fenchel–Moreau–
Rockafellar duality so long as the operators prox f and proxg can be evaluated to
within some quantifiable error, which will be shown to be possible in a wide variety
of problems.

The paper is organized as follows. In Section 2 we provide the convex analytical
background required in subsequent sections and, in particular, we review proximity
operators. In Section 3, we show that Problem 1.2 satisfies properties (b) and (c). We
then derive the Fenchel–Moreau–Rockafellar dual of Problem 1.2 and then show
that it is amenable to solution by forward-backward splitting. The resulting primal-
dual algorithm involves the functions f and g, as well as the operator L, separately
and therefore achieves full splitting of the constituents of the primal problem. We



378 P.L. Combettes et al.

show that the primal sequence produced by the algorithm converges strongly to
the solution to Problem 1.2, and that the dual sequence converges weakly to a
solution to the dual problem. Finally, in Section 4, we highlight applications of the
proposed duality framework to best approximation problems, denoising problems
using dictionaries, and recovery problems involving support functions. In particular,
we extend and provide formal convergence results for the total variation denoising
algorithm proposed in [22]. Although signal recovery applications are emphasized in
the present paper, the proposed duality framework is applicable to any variational
problem conforming to the format described in Problem 1.2.

2 Convex-analytical Tools

2.1 General Notation

Throughout the paper, H and G are real Hilbert spaces, and B (H,G) is the space
of bounded linear operators from H to G. The identity operator is denoted by
Id, the adjoint of an operator T ∈ B (H,G) by T∗, the scalar products of both H
and G by 〈· | ·〉 and the associated norms by ‖ · ‖. Moreover, ⇀ and → denote
respectively weak and strong convergence. Finally, we denote by �0(H) the class
of lower semicontinuous convex functions ϕ : H → ]−∞,+∞] which are proper in
the sense that dom ϕ = {

x ∈ H
∣
∣ ϕ(x) < +∞} �= ∅.

2.2 Convex Sets and Functions

We provide some background on convex analysis; for a detailed account, see [78]
and, for finite-dimensional spaces, [64].

Let C be a nonempty convex subset of H. The indicator function of C is

ιC : x �→
{

0, if x ∈ C;
+∞, if x /∈ C,

(2.1)

the distance function of C is

dC : H → [0,+∞[ : x �→ inf
y∈C

‖x − y‖, (2.2)

the support function of C is

σC : H → ]−∞,+∞] : u �→ sup
x∈C

〈x | u〉, (2.3)

and the conical hull of C is

cone C =
⋃

λ>0

{
λx

∣
∣ x ∈ C

}
. (2.4)

If C is also closed, the projection of a point x in H onto C is the unique point
PCx in C such that ‖x − PCx‖ = dC(x). We denote by int C the interior of C, by
span C the span of C, and by span C the closure of span C. The core of C is core C ={

x ∈ C
∣
∣ cone(C − x) = H

}
, the strong relative interior of C is

sri C = {
x ∈ C

∣
∣ cone(C − x) = span (C − x)

}
, (2.5)
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and the relative interior of C is ri C = {
x ∈ C

∣
∣ cone(C − x) = span (C − x)

}
. We have

int C ⊂ core C ⊂ sri C ⊂ ri C ⊂ C. (2.6)

The strong relative interior is therefore an extension of the notion of an interior. This
extension is particularly important in convex analysis as many useful sets have empty
interior infinite-dimensional spaces.

Remark 2.1 The qualification condition 1.5 in Problem 1.2 is rather mild. In view
of Eq. 2.6, it is satisfied in particular when r belongs to the core and, a fortiori, to
the interior of L(dom f ) − dom g; the latter is for instance satisfied when L(dom f )∩
(r + int dom g) �= ∅. If f and g are proper, then Eq. 1.5 is also satisfied when
L(dom f ) − dom g = H and, a fortiori, when f is finite-valued and L is surjective,
or when g is finite-valued. If G is finite-dimensional, then Eq. 1.5 reduces to
[64, Section 6]

r ∈ ri
(
L(dom f ) − dom g

) = (ri L(dom f )) − ri dom g, (2.7)

i.e., (ri L(dom f )) ∩ (r + ri dom g) �= ∅.

Let ϕ ∈ �0(H). The conjugate of ϕ is the function ϕ∗ ∈ �0(H) defined by

(∀u ∈ H) ϕ∗(u) = sup
x∈H

〈x | u〉 − ϕ(x). (2.8)

The Fenchel–Moreau theorem states that ϕ∗∗ = ϕ. The subdifferential of ϕ is the
set-valued operator

∂ϕ : H → 2H : x �→ {
u ∈ H

∣
∣ (∀y ∈ H) 〈y − x | u〉 + ϕ(x) ≤ ϕ(y)

}
. (2.9)

We have

(∀(x, u) ∈ H × H) u ∈ ∂ϕ(x) ⇔ x ∈ ∂ϕ∗(u). (2.10)

Moreover, if ϕ is Gâteaux differentiable at x, then

∂ϕ(x) = {∇ϕ(x)}. (2.11)

Fermat’s rule states that

(∀x ∈ H) x ∈ Argmin ϕ = {
x ∈ dom ϕ

∣
∣ (∀y ∈ H) ϕ(x) ≤ ϕ(y)

} ⇔ 0 ∈ ∂ϕ(x).

(2.12)

If Argmin ϕ is a singleton, we denote by argminy∈H ϕ(y) the unique minimizer of ϕ.

Lemma 2.2 [78, Theorem 2.8.3] Let ϕ ∈ �0(H), let ψ ∈ �0(G), and let M ∈ B (H,G)

be such that 0 ∈ sri(M(dom ϕ) − dom ψ). Then ∂(ϕ + ψ ◦ M) = ∂ϕ + M∗ ◦ (∂ψ) ◦ M.
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2.3 Moreau Envelopes and Proximity Operators

Essential to this paper is the notion of a proximity operator, which is due to Moreau
[54] (see [33, 55] for detailed accounts and Section 2.4 for closed-form examples).
The Moreau envelope of ϕ is the continuous convex function

ϕ̃ : H → R : x �→ min
y∈H

ϕ(y) + 1
2
‖x − y‖2. (2.13)

For every x ∈ H, the function y �→ ϕ(y) + ‖x − y‖2/2 admits a unique minimizer,
which is denoted by proxϕ x. The proximity operator of ϕ is defined by

proxϕ : H → H : x �→ argmin
y∈H

ϕ(y) + 1
2
‖x − y‖2 (2.14)

and characterized by

(∀(x, p) ∈ H × H) p = proxϕ x ⇔ x − p ∈ ∂ϕ(p). (2.15)

Lemma 2.3 [55] Let ϕ ∈ �0(H). Then the following hold.

(i) (∀x ∈ H)(∀y ∈ H) ‖ proxϕ x − proxϕ y‖2 ≤ 〈
x − y | proxϕ x − proxϕ y

〉
.

(ii) (∀x ∈ H)(∀y ∈ H) ‖ proxϕ x − proxϕ y‖ ≤ ‖x − y‖.
(iii) ϕ̃ + ϕ̃∗ = ‖ · ‖2/2.
(iv) ϕ̃∗ is Fréchet dif ferentiable and ∇ϕ̃∗ = proxϕ = Id − proxϕ∗ .

The identity proxϕ = Id − proxϕ∗ can be stated in a slightly extended context.

Lemma 2.4 [33, Lemma 2.10] Let ϕ ∈ �0(H), let x ∈ H, and let γ ∈ ]0,+∞[. Then
x = proxγ ϕ x + γ proxγ −1ϕ∗(γ −1x).

The following fact will also be required.

Lemma 2.5 Let ψ ∈ �0(H), let w ∈ H, and set ϕ : x �→ ψ(x) + ‖x − w‖2/2. Then
ϕ∗ : u �→ ψ̃∗(u + w) − ‖w‖2/2.

Proof Let u ∈ H. It follows from Eq. 2.8 and Lemma 2.3(iii) that

ϕ∗(u) = − inf
x∈H

ψ(x) + 1
2
‖x − w‖2 − 〈x | u〉

= 1
2
‖u‖2 + 〈w | u〉 − inf

x∈H
ψ(x) + 1

2
‖x − (w + u)‖2

= 1
2
‖u + w‖2 − 1

2
‖w‖2 − ψ̃(u + w)

= ψ̃∗(u + w) − 1
2
‖w‖2, (2.16)

which yields the desired identity. ��
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2.4 Examples of Proximity Operators

To solve Problem 1.2, our algorithm will use (approximate) evaluations of the prox-
imity operators of the functions f and g∗ (or, equivalently, of g by Lemma 2.3(iv)).
In this section, we supply examples of proximity operators which admit closed-form
expressions.

Example 2.6 Let C be a nonempty closed convex subset of H. Then the following
hold.

(i) Set ϕ = ιC. Then proxϕ = PC [55, Example 3.d].
(ii) Set ϕ = σC. Then proxϕ = Id −PC [33, Example 2.17].

(iii) Set ϕ = d2
C/(2α). Then (∀x ∈ H) proxϕ x = x + (1 + α)−1(PCx − x) [33, Exam-

ple 2.14].
(iv) Set ϕ = (‖ · ‖2 − d2

C)/(2α). Then (∀x ∈ H) proxϕ x = x − α−1 PC(α(α + 1)−1x)

[33, Lemma 2.7].

Example 2.7 [33, Lemma 2.7] Let ψ ∈ �0(H) and set ϕ = ‖ · ‖2/2 − ψ̃ . Then ϕ ∈
�0(H) and (∀x ∈ H) proxϕ x = x − proxψ/2(x/2).

Example 2.8 [31, Proposition 11] Let G be a real Hilbert space, let ψ ∈ �0(G), let M ∈
B (H,G), and set ϕ = ψ ◦ M. Suppose that M ◦ M∗ = κ Id , for some κ ∈ ]0,+∞[.
Then ϕ ∈ �0(H) and

proxϕ = Id + 1
κ

M∗ ◦ (proxκψ − Id ) ◦ M. (2.17)

Example 2.9 [24, Proposition 2.10 and Remark 3.2(ii)] Set

ϕ : H → ]−∞,+∞] : x �→
∑

k∈K

φk(〈x | ok〉), (2.18)

where:

(i) ∅ �= K ⊂ N;
(ii) (ok)k∈K is an orthonormal basis of H;

(iii) (φk)k∈K are functions in �0(R);
(iv) Either K is finite, or there exists a subset L of K such that:

(a) K � L is finite;
(b) (∀k ∈ L) φk ≥ φk(0) = 0.

Then ϕ ∈ �0(H) and

(∀x ∈ H) proxϕ x =
∑

k∈K

(
proxφk

〈x | ok〉
)
ok. (2.19)
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Example 2.10 [15, Proposition 2.1] Let C be a nonempty closed convex subset of H,
let φ ∈ �0(R) be even, and set ϕ = φ ◦ dC. Then ϕ ∈ �0(H). Moreover, proxϕ = PC if
φ = ι{0} + η for some η ∈ R and, otherwise,

(∀x ∈ H) proxϕ x=

⎧
⎪⎪⎨

⎪⎪⎩

x+ proxφ∗ dC(x)

dC(x)
(PCx−x), if dC(x) > max ∂φ(0);

PCx, if x /∈ C and dC(x) ≤ max ∂φ(0);
x, if x ∈ C.

(2.20)

Remark 2.11 Taking C = {0} and φ �= ι{0} + η (η ∈ R) in Example 2.10 yields the
proximity operator of φ ◦ ‖ · ‖, namely (using Lemma 2.3(iv))

(∀x ∈ H) proxϕ x =
⎧
⎨

⎩

proxφ ‖x‖
‖x‖ x, if ‖x‖ > max ∂φ(0);

0, if ‖x‖ ≤ max ∂φ(0).

(2.21)

On the other hand, if φ is differentiable at 0 in Example 2.10, then ∂φ(0) = {0} and
Eq. 2.20 yields

(∀x ∈ H) proxϕ x =
⎧
⎨

⎩

x + proxφ∗ dC(x)

dC(x)
(PCx − x), if x /∈ C;

x, if x ∈ C.

(2.22)

Example 2.12 [15, Proposition 2.2] Let C be a nonempty closed convex subset of H,
let φ ∈ �0(R) be even and nonconstant, and set ϕ = σC + φ ◦ ‖ · ‖. Then ϕ ∈ �0(H)

and

(∀x ∈ H) proxϕ x =

⎧
⎪⎪⎨

⎪⎪⎩

proxφ dC(x)

dC(x)
(x − PCx), if dC(x) > max Argmin φ;

x − PCx, if x /∈ C and dC(x) ≤ max Argmin φ;
0, if x ∈ C.

(2.23)

Example 2.13 Let A ∈ B (H) be positive and self-adjoint, let b ∈ H, let α ∈ R,
and set ϕ : x �→ 〈Ax | x〉/2 + 〈x | b〉 + α. Then ϕ ∈ �0(H) and (∀x ∈ H) proxϕ x =
(Id +A)−1(x − b).

Proof It is clear that ϕ is a finite-valued continuous convex function. Now fix x ∈
H and set ψ : y �→ ‖x − y‖2/2 + 〈Ay | y〉/2 + 〈y | b〉 + α. Then ∇ψ : y �→ y − x +
Ay + b . Hence, (∀y ∈ H) ∇ψ(y) = 0 ⇔ y = (Id +A)−1(x − b). ��

Example 2.14 For every i ∈ {1, . . . , m}, let (Gi, ‖ · ‖) be a real Hilbert space, let ri ∈
Gi, let Ti ∈ B (H,Gi), and let αi ∈ ]0,+∞[. Set (∀x ∈ H) ϕ(x) = (1/2)

∑m
i=1 αi‖Tix −

ri‖2. Then ϕ ∈ �0(H) and

(∀x ∈ H) proxϕ x =
(

Id +
m∑

i=1

αiT∗
i Ti

)−1(

x +
m∑

i=1

αiT∗
i ri

)

. (2.24)
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Proof We have ϕ : x �→ ∑m
i=1 αi〈Tix − ri | Tix − ri〉/2 = 〈Ax | x〉/2 + 〈x | b〉 + α,

where A = ∑m
i=1 αiT∗

i Ti, b = −∑m
i=1 αiT∗

i ri, and α = ∑m
i=1 αi‖ri‖2/2. Hence, Eq. 2.24

follows from Example 2.13. ��

As seen in Examples 2.9, 2.10, Remark 2.11, and Example 2.12, some important
proximity operators can be decomposed in terms of those of functions in �0(R). Here
are explicit expressions for the proximity operators of such functions.

Example 2.15 [24, Examples 4.2 and 4.4] Let p ∈ [1,+∞[, let α ∈ ]0, +∞[, let
φ : R → R : η �→ α|η|p, let ξ ∈ R, and set π = proxφ ξ . Then the following hold.

(i) π = sign(ξ) max{|ξ | − α, 0}, if p = 1;

(ii) π = ξ + 4α

3 · 21/3

(
|ρ − ξ |1/3 − |ρ + ξ |1/3

)
, where ρ = √

ξ 2 + 256α3/729, if p =
4/3;

(iii) π = ξ + 9α2 sign(ξ)
(
1 −√

1 + 16|ξ |/(9α2)
)
/8, if p = 3/2;

(iv) π = ξ/(1 + 2α), if p = 2;
(v) π = sign(ξ)

(√
1 + 12α|ξ | − 1

)
/(6α), if p = 3;

(vi) π =
∣
∣
∣
∣
ρ + ξ

8α

∣
∣
∣
∣

1/3

−
∣
∣
∣
∣
ρ − ξ

8α

∣
∣
∣
∣

1/3

, where ρ = √
ξ 2 + 1/(27α), if p = 4.

Example 2.16 [33, Example 2.18] Let α ∈ ]0,+∞[ and set

φ : ξ �→
{

−α ln(ξ), if ξ > 0;
+∞, if ξ ≤ 0.

(2.25)

Then (∀ξ ∈ R) proxφ ξ = (ξ +√
ξ 2 + 4α)/2.

Example 2.17 [30, Example 3.5] Let ω ∈ ]0,+∞[ and set

φ : R → ]−∞,+∞] : ξ �→
{

ln(ω) − ln(ω − |ξ |), if |ξ | < ω;
+∞, otherwise.

(2.26)

Then

(∀ξ ∈ R) proxφ ξ =

⎧
⎪⎪⎨

⎪⎪⎩

sign(ξ)
|ξ | + ω −

√∣
∣|ξ | − ω

∣
∣2 + 4

2
, if |ξ | > 1/ω;

0 otherwise.

(2.27)

Example 2.18 [24, Example 4.5] Let ω ∈ ]0,+∞[, τ ∈ ]0,+∞[, and set

φ : R → ]−∞,+∞] : ξ �→
⎧
⎨

⎩

τξ 2, if |ξ | ≤ ω/
√

2τ ;

ω
√

2τ |ξ | − ω2/2, otherwise.

(2.28)



384 P.L. Combettes et al.

Then

(∀ξ ∈ R) proxφ ξ =

⎧
⎪⎨

⎪⎩

ξ

2τ + 1
, if |ξ | ≤ ω(2τ + 1)/

√
2τ ;

ξ − ω
√

2τ sign(ξ), if |ξ | > ω(2τ + 1)/
√

2τ .

(2.29)

Further examples can be constructed via the following rules.

Lemma 2.19 [30, Proposition 3.6] Let φ = ψ + σ�, where ψ ∈ �0(R) and � ⊂ R is a
nonempty closed interval. Suppose that ψ is dif ferentiable at 0 with ψ ′(0) = 0. Then
proxφ = proxψ ◦ soft� , where

soft� : R → R : ξ �→

⎧
⎪⎨

⎪⎩

ξ − ω, if ξ < ω;
0, if ξ ∈ �;
ξ − ω, if ξ > ω,

with

{
ω = inf �,

ω = sup �.
(2.30)

Lemma 2.20 [31, Proposition 12(ii)] Let φ = ιC + ψ , where ψ ∈ �0(R) and where C
is a closed interval in R such that C ∩ dom ψ �= ∅. Then proxιC+ψ = PC ◦ proxψ .

3 Dualization and Algorithm

3.1 Fenchel–Moreau–Rockafellar Duality

Our analysis will revolve around the following version of the Fenchel–Moreau–
Rockafellar duality formula (see [42, 56], and [63] for historical work). It will also
exploit various aspects of the Baillon–Haddad theorem [6].

Lemma 3.1 [78, Corollary 2.8.5] Let ϕ ∈ �0(H), let ψ ∈ �0(G), and let M ∈ B (H,G)

be such that 0 ∈ sri(M(dom ϕ) − dom ψ). Then

inf
x∈H

ϕ(x) + ψ(Mx) = − min
v∈G

ϕ∗(−M∗v) + ψ∗(v). (3.1)

The problem of minimizing ϕ + ψ ◦ M on H in Eq. 3.1 is referred to as the
primal problem, and that of minimizing ϕ∗ ◦ (−M∗) + ψ∗ on G as the dual problem.
Lemma 3.1 gives conditions under which a dual solution exists and the value of the
dual problem coincides with the opposite of the value of the primal problem. We can
now introduce the dual of Problem 1.2.

Problem 3.2 (Dual problem) Under the same assumptions as in Problem 1.2,

minimize
v∈G

f̃ ∗(z − L∗v) + g∗(v) + 〈v | r〉. (3.2)
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Proposition 3.3 Problem 3.2 is the dual of Problem 1.2 and it admits at least one
solution. Moreover, every solution v to Problem 3.2 is characterized by the inclusion

L
(

prox f (z − L∗v)
)− r ∈ ∂g∗(v). (3.3)

Proof Let us set w = z, ϕ = f + ‖ · −w‖2/2, M = L, and ψ = g(· − r). Then (∀x ∈
H) ϕ(x) + ψ(Mx) = f (x) + g(Lx − r) + ‖x − z‖2/2. Hence, it results from Eq. 3.1
and Lemma 2.5 that the dual of Problem 1.2 is to minimize the function

ϕ∗ ◦ (−M∗) + ψ∗ : v �→ f̃ ∗(−M∗v + w) − 1
2
‖w‖2 + ψ∗(v)

= f̃ ∗(z − L∗v) − 1
2
‖z‖2 + g∗(v) + 〈v | r〉 (3.4)

or, equivalently, the function v �→ f̃ ∗(z − L∗v) + g∗(v) + 〈v | r〉. In view of Eq. 1.5,
the first two claims therefore follow from Lemma 3.1. To establish the last claim, note
that Eq. 2.13 asserts that dom f̃ ∗ ◦ (z − L∗·) = G. Hence, using Eq. 2.12, Lemma 2.2,
Eq. 2.11, and Lemma 2.3(iv), we get

v solves Eq. 3.2 ⇔ 0 ∈ ∂
(

f̃ ∗ ◦ (z − L∗·) + g∗ + 〈· | r〉
)
(v)

⇔ 0 ∈ −L
(∇ f̃ ∗(z − L∗v)

)+ ∂g∗(v) + r

⇔ 0 ∈ −L
(

prox f (z − L∗v)
)+ ∂g∗(v) + r, (3.5)

which yields Eq. 3.3. ��

A key property underlying our setting is that the primal solution can actually be
recovered from any dual solution (this is property (c) in the Section 1).

Proposition 3.4 Let v be a solution to Problem 3.2 and set

x = prox f (z − L∗v). (3.6)

Then x is the solution to Problem 1.2.

Proof We derive from Eqs. 3.6 and 2.15 that z − L∗v − x ∈ ∂ f (x). Therefore

−L∗v ∈ ∂ f (x) + x − z. (3.7)

On the other hand, it follows from Eqs. 3.3, 3.6, and 2.10 that

v solves Eq. 3.2 ⇔ Lx − r ∈ ∂g∗(v)

⇔ v ∈ ∂g(Lx − r)

⇒ L∗v ∈ L∗(∂g(Lx − r)
)
. (3.8)
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Upon adding Eqs. 3.7 and 3.8, invoking Lemma 2.2, and then Eq. 2.12 we obtain

v solves Eq. 3.2 ⇒ 0 = L∗v − L∗v

∈ ∂ f (x) + L∗(∂g(Lx − r)
)+ x − z

= ∂ f (x) + L∗(∂g(Lx − r)
)+ ∇

(1
2
‖ · −z‖2

)
(x)

= ∂
(

f + g(L · −r) + 1
2
‖ · −z‖2

)
(x)

⇔ x solves Eq. 1.6, (3.9)

which completes the proof. ��

3.2 Algorithm

As seen in Eq. 1.9, the unique solution to Problem 1.2 is proxh z, where h is defined in
Eq. 1.8. Since proxh z cannot be computed directly, it will be constructed iteratively
by the following algorithm, which produces a primal sequence (xn)n∈N as well as a
dual sequence (vn)n∈N.

Algorithm 3.5 Let (an)n∈N be a sequence in G such that
∑

n∈N
‖an‖ < +∞ and let

(b n)n∈N be a sequence in H such that
∑

n∈N
‖b n‖ < +∞. Sequences (xn)n∈N and

(vn)n∈N are generated by the following routine.

Initialization⌊
ε ∈ ]

0, min{1, ‖L‖−2}[
v0 ∈ G

For n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎣

xn = prox f (z − L∗vn) + b n

γn ∈ [
ε, 2‖L‖−2 − ε

]

λn ∈ [ε, 1]
vn+1 = vn + λn

(
proxγng∗(vn + γn(Lxn − r)) + an − vn

)
.

(3.10)

It is noteworthy that each iteration of Algorithm 3.5 achieves full splitting with
respect to the operators L, prox f , and proxg∗ , which are used at separate steps.
In addition, Eq. 3.10 incorporates tolerances an and b n in the computation of the
proximity operators at iteration n.

3.3 Convergence

Our main convergence result will be a consequence of Proposition 3.4 and the
following results on the convergence of the forward-backward splitting method.

Theorem 3.6 [33, Theorem 3.4] Let f1 and f2 be functions in �0(G) such that the set
G of minimizers of f1 + f2 is nonempty and such that f2 is dif ferentiable on G with
a 1/β-Lipschitz continuous gradient for some β ∈ ]0,+∞[. Let (γn)n∈N be a sequence
in ]0, 2β[ such that infn∈N γn > 0 and supn∈N γn < 2β, let (λn)n∈N be a sequence in ]0, 1]
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such that infn∈N λn > 0, and let (a1,n)n∈N and (a2,n)n∈N be sequences in G such that∑
n∈N

‖a1,n‖ < +∞ and
∑

n∈N
‖a2,n‖ < +∞. Fix v0 ∈ G and, for every n ∈ N, set

vn+1 = vn + λn

(
proxγn f1

(
vn − γn(∇ f2(vn) + a2,n)

)+ a1,n − vn

)
. (3.11)

Then (vn)n∈N converges weakly to a point v ∈ G and
∑

n∈N

∥
∥∇ f2(vn) − ∇ f2(v)‖2 <

+∞.

The following theorem describes the asymptotic behavior of Algorithm 3.5.

Theorem 3.7 Let (xn)n∈N and (vn)n∈N be sequences generated by Algorithm 3.5, and
let x be the solution to Problem 1.2. Then the following hold.

(i) (vn)n∈N converges weakly to a solution v to Problem 3.2 and x = prox f (z − L∗v).
(ii) (xn)n∈N converges strongly to x.

Proof Let us define two functions f1 and f2 on G by f1 : v �→ g∗(v) + 〈v | r〉 and
f2 : v �→ f̃ ∗(z − L∗v). Then Eq. 3.2 amounts to minimizing f1 + f2 on G. Let us first
check that all the assumptions specified in Theorem 3.6 are satisfied. First, f1 and f2

are in �0(G) and, by Proposition 3.3, Argmin f1 + f2 �= ∅. Moreover, it follows from
Lemma 2.3(iv) that f2 is differentiable on G with gradient

∇ f2 : v �→ −L
(

prox f (z − L∗v)
)
. (3.12)

Hence, we derive from Lemma 2.3(ii) that

(∀v ∈ G)(∀w ∈ G) ‖∇ f2(v) − ∇ f2(w)‖ ≤ ‖L‖ ‖ prox f (z − L∗v) − prox f (z − L∗w)‖
≤ ‖L‖ ‖L∗v − L∗w‖
≤ ‖L‖2 ‖v − w‖. (3.13)

The reciprocal of the Lipschitz constant of ∇ f2 is therefore β = ‖L‖−2. Now set

(∀n ∈ N) a1,n = an and a2,n = −Lb n. (3.14)

Then
∑

n∈N
‖a1,n‖ = ∑

n∈N
‖an‖ < +∞ and

∑
n∈N

‖a2,n‖ ≤ ‖L‖∑n∈N
‖b n‖ < +∞.

Moreover, for every n ∈ N, Eq. 3.10 yields

xn = prox f (z − L∗vn) + b n (3.15)

and, together with [33, Lemma 2.6(i)],

vn+1 = vn + λn

(
proxγng∗

(
vn + γn(Lxn − r)

)+ an − vn

)

= vn + λn

(
proxγng∗+〈·|γnr〉

(
vn + γn Lxn

)+ an − vn

)

= vn + λn

(
proxγn(g∗+〈·|r〉)

(
vn + γn L(prox f (z − L∗vn) + b n)

)+ an − vn

)

= vn + λn

(
proxγn f1

(
vn − γn(∇ f2(vn) + a2,n)

)+ a1,n − vn

)
. (3.16)
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This provides precisely the update rule (Eq. 3.11), which allows us to apply
Theorem 3.6.

(i) In view of the above, we derive from Theorem 3.6 that (vn)n∈N converges weakly
to a solution v to Eq. 3.2. The second assertion follows from Proposition 3.4.

(ii) Let us set

(∀n ∈ N) yn = xn − b n = prox f (z − L∗vn). (3.17)

As seen in (i), vn ⇀ v, where v is a solution to Eq. 3.2, and x = prox f (z − L∗v).
Now set ρ = supn∈N ‖vn − v‖. Then ρ < +∞ and, using Lemma 2.3(i) and Eq. 3.12,
we obtain

‖yn − x‖2 = ‖ prox f (z − L∗vn) − prox f (z − L∗v)‖2

≤ 〈
L∗v − L∗vn | prox f (z − L∗vn) − prox f (z − L∗v)

〉

= 〈
vn − v | −L

(
prox f (z − L∗vn)

)+ L
(

prox f (z − L∗v)
)〉

= 〈vn − v | ∇ f2(vn) − ∇ f2(v)〉
≤ ρ‖∇ f2(vn) − ∇ f2(v)‖. (3.18)

However, as seen in Theorem 3.6, ‖∇ f2(vn) − ∇ f2(v)‖ → 0. Hence, we derive from
Eq. 3.18 that yn → x. In turn, since b n → 0, Eq. 3.17 yields xn → x. ��

Remark 3.8 (Dykstra-like algorithm) Suppose that, in Problem 1.2, G = H, L = Id ,
and r = 0. Then it follows from Theorem 3.7(ii) that the sequence (xn)n∈N produced
by Algorithm 3.5 converges strongly to x = prox f+g z. Now let us consider the special
case when Algorithm 3.5 is implemented with v0 = 0, γn ≡ 1, λn ≡ 1, and no errors,
i.e., an ≡ 0 and b n ≡ 0. Then it follows from Lemma 2.3(iv) that Eq. 3.10 simplifies
to

Initialization⌊
v0 = 0

For n = 0, 1, . . .⌊
xn = prox f (z − vn)

vn+1 = xn + vn − proxg(xn + vn).

(3.19)

Using [5, Eq. 2.10] it can then easily be shown by induction that the resulting
sequence (xn)n∈N coincides with that produced by the Dykstra-like algorithm Eq. 1.15
(with h1 = g and h2 = f ) and that the sequence (vn)n∈N coincides with the se-
quence (pn)n∈N of Eq. 1.15. The fact that xn → prox f+g z was established in [5,
Theorem 3.3(i)] using different tools. Thus, Algorithm 3.5 can be regarded as a
generalization of the Dykstra-like algorithm (Eq. 1.15).

Remark 3.9 Theorem 3.7 remains valid if we introduce explicitly errors in the
implementation of the operators L and L∗ in Algorithm 3.5. More precisely, we can
replace the steps defining xn and vn in Eq. 3.10 by

⌊
xn = prox f (z − L∗vn − d2,n) + d1,n

vn+1 = vn + λn
(

proxγng∗(vn + γn(Lxn + c2,n − r)) + c1,n − vn
)
,

(3.20)
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where (d1,n)n∈N and (d2,n)n∈N are sequences in H such that
∑

n∈N
‖d1,n‖ < +∞ and∑

n∈N
‖d2,n‖ < +∞, and where (c1,n)n∈N and (c2,n)n∈N are sequences in G such that∑

n∈N
‖c1,n‖ < +∞ and

∑
n∈N

‖c2,n‖ < +∞. Indeed set, for every n ∈ N,
{

an = c1,n + proxγng∗(vn + γn(Lxn + c2,n − r)) − proxγng∗(vn + γn(Lxn − r))

b n = d1,n + prox f (z − L∗vn − d2,n) − prox f (z − L∗vn).
(3.21)

Then Eq. 3.20 reverts to
⌊

xn = prox f (z − L∗vn) + b n

vn+1 = vn + λn
(

proxγng∗(vn + γn(Lxn − r)) + an − vn
)
,

(3.22)

as in Eq. 3.10. Moreover, by Lemma 2.3(ii),

(∀n ∈ N) ‖an‖ ≤ ‖c1,n
∥
∥+‖ proxγng∗(vn + γn(Lxn + c2,n − r))

− proxγng∗(vn + γn(Lxn − r))
∥
∥

≤ ‖c1,n‖ + γn‖c2,n‖
≤ ‖c1,n‖ + 2‖L‖−2‖c2,n‖. (3.23)

Thus,
∑

n∈N
‖an‖ < +∞. Likewise, we have

∑
n∈N

‖b n‖ < +∞.

4 Application to Specific Signal Recovery Problems

In this section, we present a few applications of the duality framework presented
in Section 3, which correspond to specific choices of H, G, L, f , g, r, and z in
Problem 1.2.

4.1 Best Feasible Approximation

A standard feasibility problem in signal recovery is to find a signal in the intersection
of two closed convex sets modeling constraints on the ideal solution [28, 67, 70, 77].
A more structured variant of this problem, is the so-called split feasibility problem
[16, 19, 20], which requires to find a signal in a closed convex set C ⊂ H and such that
some affine transformation of it lies in a closed convex set D ⊂ G. Such problems
typically admit infinitely many solutions and one often seeks to find the solution
that lies closest to a nominal signal z ∈ H [26, 62]. This leads to the formulation 1.7,
which consists in finding the best approximation to a reference signal z ∈ H from the
feasibility set C ∩ L−1(r + D).

Problem 4.1 Let z ∈ H, let r ∈ G, let C ⊂ H and D ⊂ G be closed convex sets, and
let L be a nonzero operator in B (H,G) such that

r ∈ sri
(
L(C) − D

)
. (4.1)

The problem is to

minimize
x∈C

Lx−r∈D

1
2
‖x − z‖2, (4.2)
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and its dual is to

minimize
v∈G

1
2
‖z − L∗v‖2 − 1

2
d2

C(z − L∗v) + σD(v) + 〈v | r〉. (4.3)

Proposition 4.2 Let (b n)n∈N be a sequence in H such that
∑

n∈N
‖b n‖ < +∞, let

(cn)n∈N be a sequence in G such that
∑

n∈N
‖cn‖ < +∞, and let (xn)n∈N and (vn)n∈N

be sequences generated by the following routine.

Initialization⌊
ε ∈ ]

0, min{1, ‖L‖−2}[
v0 ∈ G

For n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎣

xn = PC(z − L∗vn) + b n

γn ∈ [
ε, 2‖L‖−2 − ε

]

λn ∈ [ε, 1]
vn+1 = vn + λnγn

(
Lxn − r − PD(γ −1

n vn + Lxn − r) + cn
)
.

(4.4)

Then the following hold, where x designates the primal solution to Problem 4.1.

(i) (vn)n∈N converges weakly to a solution v to Eq. 4.3 and x = PC(z − L∗v).
(ii) (xn)n∈N converges strongly to x.

Proof Set f = ιC and g = ιD. Then Eq. 1.6 reduces to Eq. 4.2, and Eq. 1.5 reduces to
Eq. 4.1. In addition, we derive from Lemma 2.3(iii) that f̃ ∗ = ‖ · ‖2/2 − ι̃C = (‖ · ‖2 −
d2

C)/2. Hence, in view of Eq. 3.2, Eq. 4.3 is indeed the dual of Eq. 4.2. Furthermore,
items (i) and (ii) in Example 2.6 yield prox f = PC and

(∀n ∈ N) proxγng∗ = proxγnσD
= proxσγn D

= Id −Pγn D = Id − γn PD(·/γn). (4.5)

Finally, set (∀n ∈ N) an = γncn. Then
∑

n∈N
‖an‖ ≤ 2‖L‖−2 ∑

n∈N
‖cn‖ < +∞ and,

altogether, Eq. 3.10 reduces to Eq. 4.4. Hence, the results follow from Theorem 3.7.
��

Our investigation was motivated in the Introduction by the duality framework of
[62]. In the next example we recover and sharpen Proposition 1.1.

Example 4.3 Consider the special case of Problem 4.1 in which z = 0, G = R
N ,

D = {0}, r = (ρi)1≤i≤N , and L : x �→ (〈x | si〉)1≤i≤N , where (si)1≤i≤N ∈ HN satisfies∑N
i=1 ‖si‖2 ≤ 1. Then, by Eq. 2.7, Eq. 4.1 reduces to r ∈ ri L(C) and Eq. 4.2 to
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Eq. 1.2. Since ‖L‖ ≤ 1, specializing Eq. 4.4 to the case when cn ≡ 0 and λn ≡ 1, and
introducing the sequence (wn)n∈N = (−vn)n∈N for convenience yields the following
routine.

Initialization⌊
ε ∈ ]0, 1[

w0 ∈ R
N

For n = 0, 1, . . .⎢
⎢
⎢
⎢
⎣

xn = PC(L∗wn) + b n

γn ∈ [
ε, 2‖L‖−2 − ε

]

wn+1 = wn + γn
(
r − Lxn

)
.

(4.6)

Thus, if
∑

n∈N
‖b n‖ < +∞, we deduce from Propositions 4.2(i) and 3.3 the weak

convergence of (wn)n∈N to a point w such that v = −w satisfies Eq. 3.3, i.e.,
L(PC(−L∗v)) − r ∈ ∂ι∗{0}(v) = {0} or, equivalently, L(PC(L∗w)) = r, and such that
PC(−L∗v) = PC(L∗w) is the solution to Eq. 1.2. In addition, we derive from Proposi-
tion 4.2(ii), the strong convergence of (xn)n∈N to the solution to Eq. 1.2. These results
sharpen the conclusion of Proposition 1.1 (note that Eq. 1.3 corresponds to setting
b n ≡ 0 and γn ≡ γ ∈ ]0, 2[ in Eq. 4.6).

Example 4.4 We consider the standard linear inverse problem of recovering an ideal
signal x ∈ H from an observation

r = Lx + s (4.7)

in G, where L ∈ B (H,G) and where s ∈ G models noise. Given an estimate x
of x, the residual r − Lx should ideally behave like the noise process. Thus, any
known probabilistic attribute of the noise process can give rise to a constraint.
This observation was used in [32, 70] to construct various constraints of the type
Lx − r ∈ D, where D is closed and convex. In this context, Eq. 4.2 amounts to finding
the signal which is closest to some nominal signal z and which satisfies a noise-based
constraint and some convex constraint on x represented by C. Such problems were
considered for instance in [26], where they were solved by methods that require the
projection onto the set

{
x ∈ H

∣
∣ Lx − r ∈ D

}
, which is typically hard to compute,

even in the simple case when D is a closed Euclidean ball [70]. By contrast, the
iterative method (Eq. 4.4) requires only the projection onto D to enforce such
constraints.

4.2 Soft Best Feasible Approximation

It follows from Eq. 4.1 that the underlying feasibility set C ∩ L−1(r + D) in Prob-
lem 4.1 is nonempty. In many situations, feasibility may not guaranteed due to, for
instance, imprecise prior information or unmodeled dynamics in the data formation
process [27, 76]. In such instances, one can relax the hard constraints x ∈ C and
Lx − r ∈ D in Eq. 4.2 by merely forcing that x be close to C and Lx − r be close
to D. Let us formulate this problem within the framework of Problem 1.2.
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Problem 4.5 Let z ∈ H, let r ∈ G, let C ⊂ H and D ⊂ G be nonempty closed convex
sets, let L ∈ B (H,G) be a nonzero operator, and let φ and ψ be even functions in
�0(R) � {ι{0}} such that

r ∈ sri
(
L
({

x ∈ H
∣
∣ dC(x) ∈ dom φ

})− {
y ∈ G

∣
∣ dD(y) ∈ dom ψ

})
. (4.8)

The problem is to

minimize
x∈H

φ
(
dC(x)

)+ ψ
(
dD(Lx − r)

)+ 1
2
‖x − z‖2, (4.9)

and its dual is to

minimize
v∈G

1
2
‖z − L∗v‖2 − (φ ◦ dC)∼(z − L∗v) + σD(v) + ψ∗(‖v‖) + 〈v | r〉. (4.10)

Since φ and ψ are even functions in �0(R) � {ι{0}}, we can use Example 2.10
to get an explicitly expression of the proximity operators involved and solve the
minimization problems 4.9 and 4.10 as follows.

Proposition 4.6 Let (b n)n∈N be a sequence in H such that
∑

n∈N
‖b n‖ < +∞, let

(cn)n∈N be a sequence in G such that
∑

n∈N
‖cn‖ < +∞, and let (xn)n∈N and (vn)n∈N

be sequences generated by the following routine.

Initialization⌊
ε ∈ ]

0, min{1, ‖L‖−2}[
v0 ∈ G

For n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yn = z − L∗vn

if dC(yn) > max ∂φ(0)⌊

xn = yn + proxφ∗ dC(yn)

dC(yn)
(PC yn − yn) + b n

if dC(yn) ≤ max ∂φ(0)⌊
xn = PC yn + b n

γn ∈ [
ε, 2‖L‖−2 − ε

]

wn = γ −1
n vn + Lxn − r

if dD(wn) > γ −1
n max ∂ψ(0)⌊

pn = prox(γ −1
n ψ)∗ dD(wn)

dD(wn)
(wn − PDwn) + cn

if dD(wn) ≤ γ −1
n max ∂ψ(0)⌊

pn = wn − PDwn + cn

λn ∈ [ε, 1]
vn+1 = vn + λn

(
γn pn − vn

)
.

(4.11)
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Then the following hold, where x designates the primal solution to Problem 4.5.

(i) (vn)n∈N converges weakly to a solution v to Eq. 4.10 and, if we set y = z − L∗v,

x =
⎧
⎨

⎩

y + proxφ∗ dC(y)

dC(y)
(PC y − y), if dC(y) > max ∂φ(0);

PC y, if dC(y) ≤ max ∂φ(0).

(4.12)

(ii) (xn)n∈N converges strongly to x.

Proof Set f = φ ◦ dC and g = ψ ◦ dD. Since dC and dD are continuous convex
functions, f ∈ �0(H) and g ∈ �0(G). Moreover, Eq. 4.8 implies that Eq. 1.5 holds.
Thus, Problem 4.5 is a special case of Problem 1.2. On the other hand, it follows
from Lemma 2.3(iii) that f̃ ∗ = ‖ · ‖2/2 − (φ ◦ dC)∼ and from [15, Lemma 2.2] that
g∗ = σD + ψ∗ ◦ ‖ · ‖. This shows that Eq. 4.10 is the dual of Eq. 4.9. Let us now
examine iteration n of the algorithm. In view of Example 2.10, the vector xn in
Eq. 4.11 is precisely the vector xn = prox f (z − L∗vn) + b n of Eq. 3.10. Moreover,
using successively the definition of wn in Eq. 4.11, Lemma 2.4, Example 2.10, and the
definition of pn in Eq. 4.11, we obtain

γ −1
n proxγng∗(vn + γn(Lxn − r))

= γ −1
n proxγng∗(γnwn)

= wn − proxγ −1
n g wn

= wn − prox(γ −1
n ψ)◦dD

wn

=
⎧
⎨

⎩

prox(γ −1
n ψ)∗ dD(wn)

dD(wn)
(wn − PDwn) if dD(wn) > γ −1

n max ∂ψ(0)

wn − PDwn if dD(wn) ≤ γ −1
n max ∂ψ(0)

= pn − cn. (4.13)

Altogether, Eq. 4.11 is a special instance of Eq. 3.10 in which (∀n ∈ N) an = γncn.
Therefore, since

∑
n∈N

‖an‖ ≤ 2‖L‖−2 ∑
n∈N

‖cn‖ < +∞, the assertions follow from
Theorem 3.7, where we have used Eq. 2.20 to get Eq. 4.12. ��

Example 4.7 We can obtain a soft-constrained version of the Potter–Arun problem
1.2 revisited in Example 4.3 by specializing Problem 4.5 as follows: z = 0, G = R

N ,
D = {0}, r = (ρi)1≤i≤N , and L : x �→ (〈x | si〉)1≤i≤N , where (si)1≤i≤N ∈ HN satisfies∑N

i=1 ‖si‖2 ≤ 1. We thus arrive at the relaxed version of Eq. 1.2

minimize
x∈H

φ(dC(x)) + ψ
(√∑N

i=1|〈x | si〉 − ρi|2
)

+ 1
2
‖x‖2. (4.14)

Since D = {0}, we can replace each occurrence of dD(wn) by ‖wn‖ and each occur-
rence of wn − PDwn by wn in Eq. 4.11. Proposition 4.6(ii) asserts that any sequence
(xn)n∈N produced by the resulting algorithm converges strongly to the solution to
Eq. 4.14. For the sake of illustration, let us consider the case when φ = α| · |4/3 and
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ψ = β| · |, for some α and β in ]0,+∞[. Then dom ψ = R and Eq. 4.8 is trivially
satisfied. In addition, Eq. 4.14 becomes

minimize
x∈H

αd4/3
C (x) + β

√
∑N

i=1|〈x | si〉 − ρi|2 + 1
2
‖x‖2. (4.15)

Since φ∗ : μ �→ 27|μ|4/(256α3), proxφ∗ in Eq. 4.11 can be derived from Exam-
ple 2.15(vi). On the other hand, since ψ∗ = ι[−β,β], Example 2.6(i) yields proxψ∗ =
P[−β,β]. Thus, upon setting, for simplicity, b n ≡ 0, cn ≡ 0, λn ≡ 1, and γn ≡ 1 (note
that ‖L‖ ≤ 1) in Eq. 4.11 and observing that ∂φ(0) = {0} and ∂ψ(0) = [−β, β], we
obtain the following algorithm, where L∗ : (νi)1≤i≤N �→ ∑N

i=1 νisi.

Initialization⎢
⎢
⎢
⎣

τ = 3/(2α41/3), σ = 256α3/729

v0 ∈ R
N

For n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

yn = z − L∗vn

if yn /∈ C
⎢
⎢
⎢
⎢
⎣ xn = yn +

∣
∣
∣
∣

√
d2

C(yn) + σ + dC(yn)

∣
∣
∣
∣

1/3

−
∣
∣
∣
∣

√
d2

C(yn) + σ − dC(yn)

∣
∣
∣
∣

1/3

τdC(yn)
(PC yn − yn)

if yn ∈ C⌊
xn = yn

wn = vn + Lxn − r

if ‖wn‖ > β⌊

vn+1 = β

‖wn‖wn

if ‖wn‖ ≤ β⌊
vn+1 = wn.

As shown above, the sequence (xn)n∈N converges strongly to the solution to Eq. 4.15.

Remark 4.8 Alternative relaxations of Eq. 1.2 can be derived from Problem 1.2. For
instance, given an even function φ ∈ �0(R) � {ι{0}} and α ∈ ]0,+∞[, an alternative to
Eq. 4.14 is

minimize
x∈H

φ(dC(x)) + α max
1≤i≤N

|〈x | si〉 − ρi| + 1
2
‖x‖2. (4.16)

This formulation results from Eq. 1.6 with z = 0, f = φ ◦ dC, G = R
N , r = (ρi)1≤i≤N ,

L : x �→ (〈x | si〉)1≤i≤N , and g = α‖ · ‖∞ (note that Eq. 1.5 holds since dom g = G).
Since g∗ = ιD, where D = {

(νi)1≤i≤N ∈ R
N
∣
∣
∑N

i=1 |νi| ≤ α
}
, the dual problem 3.2

therefore assumes the form

minimize
(νi)1≤i≤N∈D

1
2

∥
∥
∥
∥

N∑

i=1

νisi

∥
∥
∥
∥

2

− (φ ◦ dC)∼
(

−
N∑

i=1

νisi

)

+
N∑

i=1

ρiνi. (4.17)
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The proximity operators of f = φ ◦ dC and γng∗ = ιD required by Algorithm 3.5 are
supplied by Examples 2.10 and 2.6(i), respectively. Strong convergence of the result-
ing sequence (xn)n∈N to the solution to Eq. 4.16 is guaranteed by Theorem 3.7(ii).

4.3 Denoising Over Dictionaries

In denoising problems, the goal is to recover the original form of an ideal signal x ∈ H
from a corrupted observation

z = x + s, (4.18)

where s ∈ H is the realization of a noise process which may for instance model
imperfections in the data recording instruments, uncontrolled dynamics, or physical
interferences. A common approach to solve this problem is to minimize the least-
squares data fitting functional x �→ ‖x − z‖2/2 subject to some constraints on x that
represent a priori knowledge on the ideal solution x and some affine transformation
Lx − r thereof, where L ∈ B (H,G) and r ∈ G. By measuring the degree of violation
of these constraints via potentials f ∈ �0(H) and g ∈ �0(G), we arrive at Eq. 1.6. In
this context, L can be a gradient [21, 39, 48, 66], a low-pass filter [2, 71], a wavelet
or a frame decomposition operator [31, 38, 73]. Alternatively, the vector r ∈ G may
arise from the availability of a second observation in the form of a noise-corrupted
linear measurement of x, as in Eq. 4.7 [24].

In this section, the focus is placed on models in which information on the scalar
products (〈x | ek〉)k∈K of the original signal x against a finite or infinite a sequence of
reference unit norm vectors (ek)k∈K of H, called a dictionary, is available. In practice,
such information can take various forms, e.g., sparsity, distribution type, statistical
properties [24, 30, 35, 43, 51, 69], and they can often be modeled in a variational
framework by introducing a sequence of convex potentials (φk)k∈K. If we model the
rest of the information available about x via a potential f , we obtain the following
formulation.

Problem 4.9 Let z ∈ H, let f ∈ �0(H), let (ek)k∈K be a sequence of unit norm vectors
in H such that

(∃ δ ∈ ]0,+∞[)(∀x ∈ H)
∑

k∈K

|〈x | ek〉|2 ≤ δ‖x‖2, (4.19)

and let (φk)k∈K be functions in �0(R) such that

(∀k ∈ K) φk ≥ φk(0) = 0 (4.20)

and

0 ∈ sri
{
(〈x | ek〉 − ξk

)
k∈K

∣
∣
∣
∣ (ξk)k∈K ∈ �2(K),

∑

k∈K

φk(ξk) < +∞, and x ∈ dom f
}

.

(4.21)

The problem is to

minimize
x∈H

f (x) +
∑

k∈K

φk(〈x | ek〉) + 1
2
‖x − z‖2, (4.22)
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and its dual is to

minimize
(νk)k∈K∈�2(K)

f̃ ∗
(

z −
∑

k∈K

νn,kek

)

+
∑

k∈K

φ∗
k(νk). (4.23)

Problems 4.22 and 4.23 can be solved by the following algorithm, where αn,k stands
for a numerical tolerance in the implementation of the operator proxγnφ∗

k
. Let us

note that closed-form expressions for the proximity operators of a wide range of
functions in �0(R) are available [24, 30, 33], in particular in connection with Bayesian
formulations involving log-concave densities, and with problems involving sparse
representations (see also Examples 2.15–2.18 and Lemmas 2.19–2.20).

Proposition 4.10 Let ((αn,k)n∈N)k∈K be sequences in R such that∑
n∈N

√∑
k∈K

|αn,k|2 < +∞, let (b n)n∈N be a sequence in H such that
∑

n∈N
‖b n‖ <

+∞, and let (xn)n∈N and (vn)n∈N = ((νn,k)k∈K)n∈N be sequences generated by the
following routine.

Initialization⌊
ε ∈ ]

0, min{1, δ−1}[
(ν0,k)k∈K ∈ �2(K)

For n = 0, 1, . . .
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xn = prox f

(
z −∑

k∈K
νn,kek

)+ b n

γn ∈ [
ε, 2δ−1 − ε

]

λn ∈ [ε, 1]
For every k ∈ K⌊

νn+1,k = νn,k + λn
(

proxγnφ∗
k
(νn,k + γn〈xn | ek〉) + αn,k − νn,k

)
.

(4.24)

Then the following hold, where x designates the primal solution to Problem 4.9.

(i) (vn)n∈N converges weakly to a solution (νk)k∈K to Eq. 4.23 and x = prox f (z −∑
k∈K

νkek).
(ii) (xn)n∈N converges strongly to x.

Proof Set G = �2(K) and r = 0. Define

L : H → G : x �→ (〈x | ek〉)k∈K and g : G → ]−∞, +∞] : (ξk)k∈K �→
∑

k∈K

φk(ξk).

(4.25)
Then L ∈ B (H,G) and its adjoint is the operator L∗ ∈ B (G,H) defined by

L∗ : (ξk)k∈K �→
∑

k∈K

ξkek. (4.26)

On the other hand, it follows from our assumptions that g ∈ �0(G) (Example 2.9)
and that

g∗ : G → ]−∞,+∞] : (νk)k∈K �→
∑

k∈K

φ∗
k(νk). (4.27)
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In addition, Eq. 4.21 implies that Eq. 1.5 holds. This shows that Eq. 4.22 is a special
case of Eq. 1.6 and that Eq. 4.23 is a special case of Eq. 3.2. We also observe that
Eqs. 4.19 and 4.25 yield

‖L‖2 = sup
‖x‖=1

‖Lx‖2 = sup
‖x‖=1

∑

k∈K

|〈x | ek〉|2 ≤ δ. (4.28)

Hence,
[
ε, 2δ−1 − ε

] ⊂ [
ε, 2‖L‖−2 − ε

]
. Next, we derive from Eqs. 2.8 and 4.20 that,

for every k ∈ K, φ∗
k(0) = supξ∈R −φk(ξ) = − infξ∈R φk(ξ) = φk(0) = 0 and that (∀ν ∈

R) φ∗
k(ν) = supξ∈R ξν − φk(ξ) ≥ −φk(0) = 0. In turn, we derive from Eq. 4.27 and

Example 2.9 (applied to the canonical orthonormal basis of �2(K)) that

(∀γ ∈ ]0,+∞[)(∀v = (νk)k∈K ∈ G) proxγ g∗ v = (
proxγφ∗

k
νk
)

k∈K
. (4.29)

Altogether, Eq. 4.24 is a special case of Algorithm 3.5 with (∀n ∈ N) an = (αn,k)k∈K.
Hence, the assertions follow from Theorem 3.7. ��

Remark 4.11 Using Eq. 4.25, we can write the potential on the dictionary coefficients
in Problem 4.9 as

g ◦ L : x �→
∑

k∈K

φk(〈x | ek〉). (4.30)

(i) If (ek)k∈K were an orthonormal basis in Problem 4.9, we would have L−1 =
L∗ and proxg◦L would be decomposable as L∗ ◦ proxg ◦L [33, Lemma 2.8].
As seen in the Introduction, we could then approach Eq. 4.22 directly via
forward-backward, Douglas–Rachford, or Dykstra-like splitting, depending on
the properties of f . Our duality framework allows us to solve Eq. 4.22 for the
much broader class of dictionaries satisfying Eq. 4.19 and, in particular, for
frames [34].

(ii) Suppose that each φk in Problem 4.9 is of the form φk = ψk + σ�k , where
ψk ∈ �0(R) satisfies ψk ≥ ψk(0) = 0 and is differentiable at 0 with ψ ′

k(0) = 0,
and where �k is a nonempty closed interval. In this case, Eq. 4.30 aims at
promoting the sparsity of the solution in the dictionary (ek)k∈K [30] (a standard
case is when, for every k ∈ K, ψk = 0 and �k = [−ωk, ωk], which gives rise
to the standard weighted �1 potential x �→ ∑

k∈K
ωk|〈x | ek〉|). Moreover, the

proximity operator proxγnφ∗
k

in Eq. 4.24 can be evaluated via Lemma 2.4 and
Lemma 2.19.

4.4 Denoising with Support Functions

Suppose that g in Problem 1.2 is positively homogeneous, i.e.,

(∀λ ∈ ]0,+∞[)(∀y ∈ G) g(λy) = λg(y). (4.31)

Instances of such functions arising in denoising problems can be found in [1, 7, 8,
22, 30, 33, 36, 59, 66, 74] and in the examples below. It follows from Eq. 4.31 and [4,
Theorem 2.4.2] that g is the support function of a nonempty closed convex set D ⊂ G,
namely

g = σD = sup
v∈D

〈· | v〉, where D = ∂g(0) = {
v ∈ G

∣
∣ (∀y ∈ G) 〈y | v〉 ≤ g(y)

}
.

(4.32)
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If we denote by bar D = {
y ∈ G

∣
∣ supv∈D 〈y | v〉 < +∞}

the barrier cone of D, we thus
obtain the following instance of Problem 1.2.

Problem 4.12 Let z ∈ H, r ∈ G, let f ∈ �0(H), let D be a nonempty closed convex
subset of G, and let L be a nonzero operator in B (H,G) such that

r ∈ sri
(
L(dom f ) − bar D

)
. (4.33)

The problem is to

minimize
x∈H

f (x) + σD(Lx − r) + 1
2
‖x − z‖2, (4.34)

and its dual is to

minimize
v∈D

f̃ ∗(z − L∗v) + 〈v | r〉. (4.35)

Proposition 4.13 Let (an)n∈N be a sequence in G such that
∑

n∈N
‖an‖ < +∞, let

(b n)n∈N be a sequence in H such that
∑

n∈N
‖b n‖ < +∞, and let (xn)n∈N and (vn)n∈N

be sequences generated by the following routine.

Initialization⌊
ε ∈ ]

0, min{1, ‖L‖−2}[
v0 ∈ G

For n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎣

xn = prox f (z − L∗vn) + b n

γn ∈ [
ε, 2‖L‖−2 − ε

]

λn ∈ [ε, 1]
vn+1 = vn + λn

(
PD(vn + γn(Lxn − r)) + an − vn

)
.

(4.36)

Then the following hold, where x designates the primal solution to Problem 4.12.

(i) (vn)n∈N converges weakly to a solution v to Eq. 4.35 and x = prox f (z − L∗v).
(ii) (xn)n∈N converges strongly to x.

Proof The assertions follow from Theorem 3.7 with g = σD. Indeed, g∗ = ιD and,
therefore, (∀γ ∈ ]0,+∞[) proxγ g∗ = PD. ��

Remark 4.14 Condition 4.33 is trivially satisfied when D is bounded, in which case
bar D = G.

In the remainder of this section, we focus on examples that feature a bounded set
D onto which projections are easily computed.

Example 4.15 In Problem 4.12, let D be the closed unit ball of G. Then PD : y �→
y/ max{‖y‖, 1} and σD = ‖ · ‖. Hence, Eq. 4.34 becomes

minimize
x∈H

f (x) + ‖Lx − r‖ + 1
2
‖x − z‖2, (4.37)



Dualization of Signal Recovery Problems 399

and the dual problem 4.35 becomes

minimize
v∈G, ‖v‖≤1

f̃ ∗(z − L∗v) + 〈v | r〉. (4.38)

In signal recovery, variational formulations involving positively homogeneous
functionals to control the behavior of the gradient of the solutions play a prominent
role, e.g., [3, 12, 46, 59, 66]. In the context of image recovery, such a formulation
can be obtained by revisiting Problem 4.12 with H = H1

0(�), where � is a bounded
open domain in R

2, G = L2(�) ⊕ L2(�), L = ∇, D = {
y ∈ G

∣
∣ |y|2 ≤ μ a.e.

}
where

μ ∈ ]0,+∞[, and r = 0. With this scenario, Eq. 4.34 is equivalent to

minimize
x∈H1

0 (�)

f (x) + μ tv(x) + 1
2
‖x − z‖2, (4.39)

where tv(x) = ∫
�

|∇x(ω)|2dω. In mechanics, such minimization problems have
been studied extensively for certain potentials f [40]. For instance, f = 0 yields
Mossolov’s problem and its dual analysis is carried out in [40, Section IV.3.1]. In
image processing, Mossolov’s problem corresponds to the total variation denoising
problem. Interestingly, in 1980, Mercier [53] proposed a dual projection algorithm
to solve Mossolov’s problem. This approach was independently rediscovered by
Chambolle in a discrete setting [21, 22]. Next, we apply our framework to a discrete
version of Eq. 4.39 for N × N images. This will extend the method of [22], which is
restricted to f = 0, and provide a formal proof for its convergence (see also [74] for
an alternative scheme based on Nesterov’s algorithm [58]).

By way of preamble, let us introduce some notation. We denote by y =(
η

(1)

k,l , η
(2)

k,l

)
1≤k,l≤N a generic element in R

N×N ⊕ R
N×N and by

∇ : R
N×N → R

N×N ⊕ R
N×N : (ξk,l

)
1≤k,l≤N �→ (

η
(1)

k,l , η
(2)

k,l

)
1≤k,l≤N (4.40)

the discrete gradient operator, where

(∀(k, l) ∈ {1, . . . , N}2)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

η
(1)

k,l = ξk+1,l − ξk,l, if k < N;
η

(1)

N,l = 0;
η

(2)

k,l = ξk,l+1 − ξk,l, if l < N;
η

(2)

k,N = 0.

(4.41)

Now let p ∈ [1,+∞]. Then p∗ is the conjugate index of p, i.e., p∗ = +∞ if p = 1,
p∗ = 1 if p = +∞, and p∗ = p/(p − 1) otherwise. We define the p-th order discrete
total variation function as

tvp : R
N×N → R : x �→ ||∇x||p,1 , (4.42)

where

(∀y ∈ R
N×N ⊕ R

N×N) ‖y‖p,1 =
∑

1≤k,l≤N

∣
∣(η(1)

k,l , η
(2)

k,l )
∣
∣

p, (4.43)
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with

(∀(η(1), η(2)) ∈ R
2) ∣

∣(η(1), η(2))
∣
∣

p =
{

p
√|η(1)|p + |η(2)|p, if p < +∞;
max

{|η(1)|, |η(2)|}, if p = +∞.
(4.44)

In addition, the discrete divergence operator is defined as [21]

div : R
N×N ⊕ R

N×N → R
N×N : (η(1)

k,l , η
(2)

k,l

)
1≤k,l≤N �→ (

ξ
(1)

k,l + ξ
(2)

k,l

)
1≤k,l≤N, (4.45)

where

ξ
(1)

k,l =

⎧
⎪⎨

⎪⎩

η
(1)

1,l if k = 1;
η

(1)

k,l − η
(1)

k−1,l if 1 < k < N;
−η

(1)

N−1,l if k = N;

and ξ
(2)

k,l =

⎧
⎪⎨

⎪⎩

η
(2)

k,1 if l = 1;
η

(2)

k,l − η
(2)

k,l−1 if 1 < l < N;
−η

(2)

k,N−1 if l = N.

(4.46)

Problem 4.16 Let z ∈ R
N×N , let f ∈ �0(R

N×N), let μ ∈ ]0,+∞[, let p ∈ [1,+∞],
and set

Dp =
{
(
ν

(1)

k,l , ν
(2)

k,l

)
1≤k,l≤N ∈ R

N×N ⊕ R
N×N

∣
∣
∣
∣ max

1≤k,l≤N

∣
∣(ν(1)

k,l , ν
(2)

k,l )
∣
∣

p∗ ≤ 1
}

. (4.47)

The problem is to

minimize
x∈RN×N

f (x) + μ tvp(x) + 1
2
‖x − z‖2, (4.48)

and its dual is to

minimize
v∈Dp

f̃ ∗(z + μ div v). (4.49)

Proposition 4.17 Let
(
α

(1)

n,k,l

)
n∈N

and
(
α

(2)

n,k,l

)
n∈N

be sequences in R
N×N such that

∑

n∈N

√ ∑

1≤k,l≤N

∣
∣α(1)

n,k,l

∣
∣2 + ∣

∣α(2)

n,k,l

∣
∣2 < +∞, (4.50)
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let (b n)n∈N be a sequence in R
N×N such that

∑
n∈N

‖b n‖ < +∞, and let (xn)n∈N and
(vn)n∈N be sequences generated by the following routine, where (π(1)

p y, π(2)
p y) denotes

the projection of a point y ∈ R
2 onto the closed unit �p∗

ball in the Euclidean plane.

Initialization⌊
ε ∈ ]

0, min{1, μ−1/8}[

v0 = (
ν

(1)

0,k,l, ν
(2)

0,k,l

)
1≤k,l≤N ∈ R

N×N ⊕ R
N×N

For n = 0, 1, . . .⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xn = prox f (z + μ div vn) + b n

τn ∈ [
ε, μ−1/4 − ε

]

(
ζ

(1)

n,k,l, ζ
(2)

n,k,l

)
1≤k,l≤N = vn + τn∇xn

λn ∈ [ε, 1]
For every (k, l) ∈ {1, . . . , N}2

⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν
(1)

n+1,k,l = ν
(1)

n,k,l + λn

(
π(1)

p

(
ζ

(1)

n,k,l, ζ
(2)

n,k,l

)+ α
(1)

n,k,l − ν
(1)

n,k,l

)

ν
(2)

n+1,k,l = ν
(2)

n,k,l + λn

(
π(2)

p

(
ζ

(1)

n,k,l, ζ
(2)

n,k,l

)+ α
(2)

n,k,l − ν
(2)

n,k,l

)

vn+1 = (
ν

(1)

n+1,k,l, ν
(2)

n+1,k,l

)
1≤k,l≤N

(4.51)

Then (vn)n∈N converges to a solution v to Eq. 4.49, x = prox f (z + μ div v) is the primal
solution to Problem 4.16, and xn → x.

Proof It follows from Eqs. 4.43 and 4.47 that ‖ · ‖p,1 = σDp . Hence, Problem 4.16
is a special case of Problem 4.12 with H = R

N×N , G = R
N×N ⊕ R

N×N , L = μ∇ (see
Eq. 4.40), D = Dp, and r = 0. Moreover, L∗ = −μ div (see Eq. 4.45), ‖L‖ = μ‖∇‖ ≤
2
√

2μ [21], and the projection of y onto the set Dp of Eq. 4.47 can be decomposed
coordinatewise as

PDp y =
(
π(1)

p

(
η

(1)

k,l , η
(2)

k,l

)
, π(2)

p

(
η

(1)

k,l , η
(2)

k,l

))

1≤k,l≤N
. (4.52)

Altogether, upon setting, for every n ∈ N, τn = μγn and an = (
α

(1)

n,k,l, α
(2)

n,k,l

)
1≤k,l≤N , Eq.

4.51 appears as a special case of Eq. 4.36. The results therefore follow from Eq. 4.50
and Proposition 4.13. ��

Remark 4.18 The inner loop in Eq. 4.51 performs the projection step. For certain
values of p, this projection can be computed explicitly and we can therefore dispense
with errors. Thus, if p = 1, then p∗ = +∞ and the projection loop becomes

For every (k, l) ∈ {1, . . . , N}2
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν
(1)

n+1,k,l = ν
(1)

n,k,l + λn

(
ζ

(1)

n,k,l

max
{
1,
∣
∣ζ (1)

n,k,l

∣
∣
} − ν

(1)

n,k,l

)

ν
(2)

n+1,k,l = ν
(2)

n,k,l + λn

(
ζ

(2)

n,k,l

max
{
1,
∣
∣ζ (2)

n,k,l

∣
∣
} − ν

(2)

n,k,l

)

.

(4.53)
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Likewise, if p = 2, then p∗ = 2 and the projection loop becomes

For every (k, l) ∈ {1, . . . , N}2

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

ν
(1)

n+1,k,l = ν
(1)

n,k,l + λn

(
ζ

(1)

n,k,l

max
{
1,
∣
∣
(
ζ

(1)

n,k,l, ζ
(2)

n,k,l

)∣
∣
2

} − ν
(1)

n,k,l

)

ν
(2)

n+1,k,l = ν
(2)

n,k,l + λn

(
ζ

(2)

n,k,l

max
{
1,
∣
∣
(
ζ

(1)

n,k,l, ζ
(2)

n,k,l

)∣
∣
2

} − ν
(2)

n,k,l

)

.

(4.54)

In the special case when f = 0, λn ≡ 1, and τn ≡ τ ∈ ]
0, μ−1/4

[
the two resulting

algorithms reduce to the popular methods proposed in [22]. Finally, if p = +∞, then
p∗ = 1 and the efficient scheme described in [72] to project onto the �1 ball can be
used.
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