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Abstract The primary goal of this paper is to study some notions of normals
to nonconvex sets in finite-dimensional and infinite-dimensional spaces and their
images under single-valued and set-valued mappings. The main motivation for our
study comes from variational analysis and optimization, where the problems under
consideration play a crucial role in many important aspects of generalized differential
calculus and applications. Our major results provide precise equality formulas (some-
times just efficient upper estimates) allowing us to compute generalized normals
in various senses to direct and inverse images of nonconvex sets under single-
valued and set-valued mappings between Banach spaces. The main tools of our
analysis revolve around variational principles and the fundamental concept of metric
regularity properly modified in this paper.

Keywords Variational analysis · Metric regularity · Generalized differentiation ·
Normal cones · Coderivatives · Calculus rules · Set images

Mathematics Subjects Classifications (2000) Primary 49J52 · 49J53; Secondary
46B20 · 58C20 · 90C31

Dedicated to Alex Ioffe in honor of his 70th birthday.

The research of Boris S. Mordukhovich was partially supported by the National Science
Foundation under grant DMS-0603846.

B. S. Mordukhovich (B)
Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
e-mail: boris@math.wayne.edu

N. M. Nam
Department of Mathematics, The University of Texas—Pan American,
Edinburg, TX 78539–2999, USA

B. Wang
Department of Mathematics, Eastern Michigan University,
Ypsilanti, MI 48197, USA



360 B.S. Mordukhovich et al.

1 Introduction

This paper primarily concerns applications of the concept and machinery of metric
regularity to deriving new results of generalized differential calculus and to the study
of some other related issues of variational analysis. The concept of metric regularity
goes back to the seminal Lyusternik-Graves theorem of the classical nonlinear
analysis and has been long recognized among the most fundamental tools in the
modern stage of nonlinear analysis especially regarding its variational aspects; see,
e.g., the books [5, 15, 17, 18, 22, 23], the extended surveys [2, 7, 12], the papers
[1, 13, 14, 16, 20, 21], and the references therein for more details as well as for
recent developments. Alex Ioffe is surely one of the major original contributors
and nowadays leaders in this and related fields of modern set-valued and variational
analysis. The range and depth of his results on metric regularity, starting with the
now classical work [10] and including the very recent paper [13], are difficult to
overstate. In particular, he was the first to apply variational principles into the
area of metric regularity, to derive quantitative estimates of the regularity/surjection
moduli, to apply metric regularity to subdifferential calculus, to introduce and deeply
investigate new notions of relative metric regularity, etc.

This paper is mainly devoted to new applications of variational/extremal principles
and metric regularity to generalized differential calculus in both settings of finite-
dimensional spaces and infinite-dimensional Banach spaces.

Having a single-valued mapping f : X → Y between Banach spaces and a set
� ⊂ X with x̄ ∈ �, we pay the major attention to evaluating generalized normals
(in various senses) to the image set f (�) at the point f (x̄). Our primary goal is
to derive precise (equality-type) formulas for computing generalized normals under
appropriate differentiability assumptions on f at x̄ in the framework of arbitrary
Banach spaces with no surjectivity requirement on the derivative ∇ f (x̄) as in the
classical Lyusternik-Graves theorem.

It is well known that the surjectivity of ∇ f (x̄) is a characterization of metric reg-
ularity for smooth (or strictly differentiable) mappings; see, e.g., [17, Theorem 1.57].
To deal with such mappings between Banach spaces that fail to have surjective
derivatives at the points in question, we introduced in [20] the notion of restrictive
metric regularity (RMR) for f : X → Y around the given point x̄ by considering
the usual (metrically defined) property of metric regularity for the mapping f from
the original domain space X to the nonlinear metric space f (X) ⊂ Y instead of
the original range space Y with a linear structure. The RMR notion and verifiable
conditions for its validity obtained in [20] allowed us to derive therein equality
formulas for computing Fréchet-like and limiting normals to inverse images f −1(�)

of arbitrary sets � ⊂ Y under strictly differentiable mappings f between Banach
spaces such that the derivative ∇ f (x̄) may not be surjective.

In this paper we continue the line of development in [20] focusing mainly on
computing generalized normals to direct images f (�) under differentiable (not
always strictly) mappings f : X → Y, with deriving new results for various normals
(not only Fréchet-like and limiting ones) to inverse images as well. In the majority
of our new results we relax the aforementioned RMR property requiring the metric
regularity of the mapping f : � → f (�) between the both metric spaces � and f (�)

(around and sometimes just at the reference point), verifiable conditions for the
fulfillment of which are obtained by using advantages of the linear structure on the
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Banach spaces X and Y and differentiability of f . We also present counterparts of
these results for evaluating (as upper estimates) generalized normals to images of
set-valued mappings F : X →→ Y between Asplund spaces.

The rest of the paper is organized as follows. Section 2 describes some major
constructions of generalized differentiation and related notions of variational analysis
widely used in formulating and proving the main results below. In Section 3 we
introduce and discuss various modifications of the concept of restrictive metric
regularity and establish some verifiable conditions for their fulfillment in terms of
pointbased generalized differential constructions.

Section 4 concerns evaluating Fréchet normals and ε-normals to set images under
Fréchet differentiable single-valued mappings between Banach spaces and presents
also some related and auxiliary material of independent interest. In Section 5 we deal
with sequential weak∗ limits of Fréchet-like normals to direct and inverse set images
in general Banach spaces as well as in some of their remarkable subclasses. We derive
upper estimate and equality types results under relaxed RMR assumptions on strictly
differentiable mappings. We also obtain upper estimates for limiting normals to set
images under set-valued mappings.

Section 6 is devoted to counterparts of the equality-type results from Section 4 for
the so-called Hölder s-normal cones (with s ∈ (0, 1]) to direct and inverse images of
sets under Hölder s-differentiable mappings between Banach spaces. In the case of
s = 1 the Hölder normal cone reduces to the proximal normal cone, which may be
smaller than the Fréchet one even in finite dimensions. Further, in this section we
establish equality-type results for computing the convexified normal cone to direct
and inverse set images, which agrees with the Clarke normal cone in reflexive spaces.

Our notation is basically conventional in variational analysis; see, e.g., [17, 22].
Unless otherwise stated, all the spaces under consideration are Banach with their
norms denoted by ‖ · ‖ and the canonical pairing 〈·, ·〉 between the space X in
question and its topological dual X∗. Recall that the symbol

Lim sup
x→x̄

F(x) :=
{

x∗ ∈ X∗
∣∣∣ ∃ sequences xk → x̄ and x∗

k
w∗→ x∗

with x∗
k ∈ F(xk) for all k ∈ IN

} (1.1)

stands for the sequential Painlevé-Kuratowski upper/outer limit of a set-valued map-
ping F : X →→ X∗ as x → x̄ in the norm topology of X and the weak∗ topology w∗ of
X∗, where IN := {1, 2, . . .}. Given a set � ⊂ X, denote by cl � and co � the closure
and convex hull of �, respectively; cl ∗ signifies the closure of a subset of the dual

space in the weak∗ topology. The symbol x
�→ x̄ means that x → x̄ with x ∈ �. If no

confusion arises, IB and IB∗ stand for the closed unit balls of the space and dual space
in question.

2 Constructions of Generalized Differentiation

In this section we present the underlying constructions of generalized differentiation
and related properties of variational analysis widely used in the paper. We mainly
follow the book [17] referring the reader also to [5, 12, 18, 22, 23] for associated and
additional material.
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Given a nonempty set � ⊂ X in a Banach space X and a number ε ≥ 0, define the
collection of ε-normals to � at x ∈ � by

N̂ε(x; �) :=
{

x∗ ∈ X∗
∣∣∣ lim sup

u
�→x

〈x∗, u − x〉
‖u − x‖ ≤ ε

}
(2.1)

and let N̂ε(x; �) := ∅ if x /∈ �. When ε = 0 in Eq. 2.1, the set N̂(x; �) := N̂0(x; �) is
a convex cone known as the Fréchet or regular normal cone to � at this point.

In general, we do not have satisfactory calculus and related properties for the
normal collection Eq. 2.1 whenever ε ≥ 0 even in finite dimensions; e.g., they may be
trivial at boundary points of closed sets in IR2. Much better calculus rules and other
properties hold for the sequential outer limit Eq. 1.1 of the constructions N̂ε(x; �)

given by

N(x̄; �) := Lim sup
x→x̄
ε↓0

N̂ε(x; �) (2.2)

and known as the basic, or limiting, or Mordukhovich normal cone to � at x̄ ∈ �.
It follows from Eqs. 2.2 and 1.1 that x∗ ∈ N(x̄;�) if and only if there are sequences

εk ↓ 0, xk
�→ x̄, and x∗

k
w∗→ x∗ as k → ∞ such that x∗

k ∈ N̂εk(xk; �) for all k ∈ IN. By
[17, Theorem 2.35], we can equivalently let ε = 0 in Eq. 2.2 if the set � is locally
closed around x̄ and if the space X is Asplund, i.e., every separable subspace of it has
a separable dual. The class of Asplund spaces has been well investigated in geometric
theory of Banach spaces and widely employed in variational analysis; see [5, 17, 18]
for more details and references. Note, in particular, that any reflexive Banach space
is Asplund while, e.g., the important classical spaces C[0, 1] and L∞[0, 1] are not.

Despite the nonconvexity of the limiting normal cone Eq. 2.2, or probably due to
it, there is a fairly comprehensive amount of calculus rules available for this normal
cone and the associated coderivative and subdifferential constructions, mainly in the
Asplund space framework; see [17, Chapter 3] and the references therein. The list
of calculus rules and related results for Eq. 2.2 known in general Banach spaces and
largely presented in [17, Chapter 1] is by far less impressive. We extend this list in the
paper.

Consider next a set-valued mapping F : X →→ Y between Banach spaces with the
graph

gph F := {
(x, y) ∈ X × Y

∣∣ y ∈ F(x)
}
,

we define the coderivative constructions generated by the above normal cones as
follows: the Fréchet coderivative of F at (x̄, ȳ) ∈ gph F given by

D̂∗ F(x̄, ȳ)(y∗) := {
x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N̂

(
(x̄, ȳ); gph F

)}
, y∗ ∈ Y∗, (2.3)

the normal coderivative of F at (x̄, ȳ) ∈ gph F given by

D∗
N F(x̄, ȳ)(y∗) := {

x∗ ∈ X∗∣∣ (x∗,−y∗) ∈ N
(
(x̄, ȳ); gph F

)}
, y∗ ∈ Y∗, (2.4)
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and the mixed coderivative of F at (x̄, ȳ) ∈ gph F given by

D∗
M F(x̄, ȳ)(y∗) :=

{
x∗ ∈ X∗

∣∣∣ ∃ sequences εk ↓ 0, (xk, yk)
gph F→ (x̄, ȳ), x∗

k
w∗→ x∗,

y∗
k → y∗ with

(
x∗

k,−y∗
k

) ∈ N̂εk

(
(xk, yk); gph F

)}
. (2.5)

As before, note that we can equivalently put εk ≡ 0 in Eq. 2.5 if both spaces X and Y
(and hence their products) are Asplund and if the graph of F is locally closed around
(x̄, ȳ). Observe also that the normal coderivative Eq. 2.4 can be described in a similar
limiting way as Eq. 2.5 with the replacement of the normal convergence y∗

k → y∗ by

the weak∗ one y∗
k

w∗→ y∗ in Y∗.
If F = f : X → Y is a single-valued mapping, we omit ȳ = f (x̄) in the above

coderivative notation. Note that D̂∗ f (x̄)(y∗) = {∇ f (x̄)∗y∗} when f is Fréchet dif-
ferentiable at x̄ and

D∗
N f (x̄)(y∗) = D∗

M f (x̄)(y∗) = {∇ f (x̄)∗y∗} , y∗ ∈ Y∗, (2.6)

when f is strictly differentiable at x̄ in the sense that

lim
x,u→x̄

f (u) − f (x) − 〈∇ f (x̄), u − x〉
‖u − x‖ = 0,

which is automatic when f ∈ C1 around x̄.
Finally in this section, recall some normal compactness properties of sets and

mappings used in the paper that are automatic in finite dimensions while playing a
significant role in infinite-dimensional variational analysis and its applications. Given
a set � ⊂ X, we say that it is sequentially normally compact (SNC) at x̄ ∈ � if for all

sequences εk ↓ 0, xk
�→ x̄, and x∗

k ∈ N̂εk(xk; �), k ∈ IN, we have the implication
[
x∗

k
w∗→ 0

]
=⇒ [‖x∗

k‖ → 0
]

as k → ∞,

which can be equivalently written with εk ≡ 0 when X is Asplund and � is locally
closed around x̄; see [17]. This property is always implied by, being closely related to,
the compactly epi-Lipschitzian property of sets in the sense of Borwein and Strójwas
[4], which is intrinsically defined in the primal space X while can be equivalently
described in the dual space framework as a topological version of the SNC property;
the reader can find all the details and comprehensive results in this direction in [9, 11].

A set-valued mapping F : X →→ Y is SNC at (x̄, ȳ) ∈ gph F if its graph is SNC
at this point. In the case of mappings (or sets in product spaces), a more delicate
property of this type is important for variational theory and applications. We say
that the mapping F is partially SNC (PSNC) at (x̄, ȳ) ∈ gph F if for all sequences

εk ↓ 0, (xk, yk)
gph F→ (x̄, ȳ), and (x∗

k, y∗
k) ∈ N̂εk((xk, yk); gph F) the implication

[
x∗

k
w∗→ 0, ‖y∗

k‖ → 0
]

=⇒ [‖x∗
k‖ → 0

]
as k → ∞

holds. Further, F is strongly PSNC at (x̄, ȳ) if the latter implication is replaced by
[(

x∗
k, y∗

k

) w∗→ (0, 0)
]

=⇒ [‖x∗
k‖ → 0

]
as k → ∞.

We refer the reader to [17, Subsections 1.1.4, 1.2.5, 3.1.1] and commentaries therein
for the genesis and efficient conditions ensuring these properties. In particular, it
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follows from [17, Theorem 1.43] that the PSNC property of F at (x̄, ȳ) ∈ gph F
automatically holds for every mapping F : X →→ Y between Banach spaces satisfying
the following Lipschitz-like, or pseudo-Lipschitzian, or Aubin property around (x̄, ȳ):
there are neighborhoods U of x̄ and V of ȳ and a constant � ≥ 0 such that

F(u) ∩ V ⊂ F(x) + �‖u − x‖IB whenever x, u ∈ U. (2.7)

The latter property is well known to be equivalent to the metric regularity of the
inverse mapping F−1 around (ȳ, x̄). Appropriate modifications of metric regularity
for single-valued mappings are studied in the next section and are applied in what
follows.

3 Versions of Restrictive Metric Regularity

Given a mapping f : E1 → E2 between two metric spaces (E1, d1) and (E2, d2), recall
that this mapping is metrically regular around x̄ if there are neighborhoods U of x̄ and
V of f (x̄) and a constant μ > 0 such that

dist
(
x; f −1(y)

) := inf
u∈ f −1(y)

d1(x, u) ≤ μ d2
(

f (x), y
)

for all x∈U and y∈V. (3.1)

Furthermore, we say that f is metrically regular at x̄ if Eq. 3.1 holds with x = x̄, i.e.,
there exist a neighborhood V of f (x̄) and a constant μ > 0 such that

dist
(
x̄; f −1(y)

) ≤ μ d2
(

f (x̄), y
)

for all y ∈ V.

There are some conditions ensuring metric regularity of mappings between metric
spaces in terms of the so-called strong slopes; see, e.g., [2, 12] and the references
therein. Considerably larger amount of efficient conditions for metric regularity is
available for mappings between Banach spaces, where the notions of classical and
generalized derivatives as well as tangent and normal constructions associated with
them play a significant role in the study of metric regularity. We mention first of
all the fundamental result known now as the Lyusternik-Graves theorem, which says
that a mapping f : X → Y between Banach spaces strictly differentiable at x̄ is metri-
cally regular around this point if and only if the derivative operator ∇ f (x̄) : X → Y
is surjective. A full coderivative analog of this result is given in [16] for set-valued
mappings between finite-dimensional spaces and in [17, Theorem 4.18] for mappings
between Asplund spaces. We refer the reader to [5, 7, 11, 12, 14, 16, 17, 22, 23] for
the genesis of ideas and various approaches and for more results and discussions in
this direction in finite-dimensional and infinite-dimensional Banach spaces.

It seems that the notion of restrictive metric regularity (RMR) introduced in [20]
is the first one for mappings between Banach spaces, which combines advantages
of Banach spaces with the general metric nature of metric regularity. Recall that
f : X → Y has the RMR property around x̄ if the mapping f : X → f (X) ⊂ Y
between the Banach space X and the metric space (E2, d2) := ( f (X), ‖ · ‖Y) is
metrically regular around x̄ in the sense of Eq. 3.1. A major result of [20] gives a
full characterization of the RMR property of a mapping f strictly differentiable at x̄
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as follows: f is RMR around x̄ if and only if the space ∇ f (x̄)X is finite-codimensional
in Y and

T̃
(
ȳ; f (X)

) = ∇ f (x̄)X with ȳ := f (x̄),

where T̃(ȳ; �) stands for the so-called paratingent cone to � ⊂ Y defined by

T̃(ȳ; �) :=
{
v ∈ Y

∣∣ ∃vk → v, tk ↓ 0, yk
�→ ȳ with yk + tkvk ∈ �

}
.

In this paper we mainly study and employ another modification of the RMR
notion, which deals with the metric regularity in the sense of Eq. 3.1 for the mapping
f : � → f (�) between the two metric spaces (E1, d1) := (�, ‖ · ‖X) and (E2, d2) :=
( f (�), ‖ · ‖Y).

In this section we present some sufficient conditions for this property in the case
of strictly differentiable mappings f between Asplund spaces and locally closed
sets �. The proof of these result is heavily based on the pointbased coderivative
and PSNC characterizations of the Lipschitz-like property of set-valued mappings
between Asplund spaces and efficient rules of the generalized differential and SNC
calculi established in [17, 19] for the limiting constructions involved.

Theorem 3.1 (sufficient conditions for metric regularity of restricted mappings) Let
f : X → Y be a mapping between Asplund spaces strictly differentiable at x̄, and
let � be a subset of X locally closed around x̄ ∈ �. Impose further the qualification
condition

(∇ f (x̄)∗
)−1(

N(x̄; �)
) = {0}. (3.2)

Then the restricted mapping f : � → f (�) between metric spaces is metrically regular
around x̄ in each of the following cases:

(a) either the space Y is finite-dimensional,
(b) or the space ∇ f (x̄)X ⊂ Y is closed and the set � is SNC at x̄.

Proof Denote ȳ := f (x̄) and define a set-valued mapping G : Y →→ X by

G(y) := f −1(y) ∩ �. (3.3)

It follows directly from the definitions that the Lipschitz-like property Eq. 2.7 of the
constructed mapping G around (ȳ, x̄) implies the metric regularity of the restricted
mapping f : � → f (�) around x̄ in the metric sense Eq. 3.1. We intend in what
follows to apply the aforementioned coderivative characterization of the Lipschitz-
like property from [17, Theorem 4.10] to the mapping G from Eq. 3.3. To begin with,
observe by Eq. 3.3 that

gph G = �1 ∩ �2 ⊂ Y × X, (3.4)

where the sets �1 := {(y, x) ∈ Y × X| y = f (x)} and �2 := Y × � are locally closed
around the point (ȳ, x̄). Since both spaces X and Y are Asplund, the product space
Y × X is Asplund as well. To estimate the limiting normal cone Eq. 2.2, we use the
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basic calculus result (normal cone intersection rule) result from [17, Theorem 3.4]. It
is easy to see from the structures of �1 and �2 that

N
(
(ȳ, x̄); �1

) = {(
y∗,−∇ f (x̄)∗y∗)∣∣ y∗ ∈ Y∗} and N

(
(ȳ, x̄);�2

) = {0} × N(x̄; �).

This implies that the main qualification condition of [17, Theorem 3.4] formulated as

N
(
(ȳ, x̄);�1

) ∩ [ − N
(
(ȳ, x̄);�2

)] = {0} (3.5)

is satisfied. To proceed, let us split the proof into the following two cases correspond-
ing to the requirements in (a) and (b) in addition to the common assumptions of the
theorem.

Case 1 The range space Y is finite-dimensional. It follows from the representation
of Fréchet normal to the set �1 with f strictly differentiable at x̄ (cf. the proof of
[17, Theorem 1.38]) and the finite dimensionality of Y that the set �1 is SNC at
(ȳ, x̄). Applying now [17, Corollary 3.5] (a consequence of the aforementioned basic
intersection rule) to the set intersection Eq. 3.4, we get

N
(
(ȳ, x̄); gph G

) ⊂ N
(
(ȳ, x̄);�1

) + N
(
(ȳ, x̄);�2

)
. (3.6)

This implies, by the above normal cone formulas for �1 and �2, that

N
(
(ȳ, x̄); gph G) ⊂ {(

y∗,−∇ f (x̄)∗y∗ + N(x̄; �)
)∣∣ y∗ ∈ Y∗} . (3.7)

The latter allows us to conclude, due to the qualification condition Eq. 3.2, that

D∗
MG(ȳ, x̄)(0) ⊂ D∗

NG(ȳ, x̄)(0) = {0}. (3.8)

The inclusion in Eq. 3.8 is obvious; so it remains to observe by the normal coderiva-
tive definition Eq. 2.4 that the required implication

(y∗, 0) ∈ N
(
(ȳ, x̄); gph G

) =⇒ y∗ = 0

in Eq. 3.8 directly follows from Eq. 3.7 due to the imposed qualification condition
Eq. 3.2.

To conclude that the mapping G : Y →→ X in Eq. 3.3 is Lipschitz-like around (ȳ, x̄)

by using the coderivative criterion from [17, Theorem 4.10(c)], it is sufficient to
observe that G is obviously PSNC at (ȳ, x̄), since Y is finite-dimensional in the case
under consideration.

Case 2 The image space ∇ f (x̄)X is closed in Y and the set � is SNC at x̄. We
begin with a simple observation that the qualification condition Eq. 3.2 implies the
injectivity of the adjoint derivative operator, i.e., the validity of the inclusion

∇ f (x̄)∗y∗ = 0 =⇒ y∗ = 0. (3.9)

Indeed, assuming that Eq. 3.9 does not hold, we find y∗ �= 0 such that

y∗ ∈ (∇ f (x̄)∗
)−1

(0) ⊂ (∇ f (x̄)∗
)−1(

N(x̄;�)
) = {0},
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which contradicts the qualification condition Eq. 3.2. The injectivity of the adjoint
operator ∇ f (x̄)∗ implies, by the closedness requirement on ∇ f (x̄)X, that in fact
∇ f (x̄)X = Y.

To ensure that D∗
MG(ȳ, x̄)(0) = {0}, we proceed similarly to Case 1 observing

that the calculus rule in Eq. 3.6 holds by [17, Corollary 3.5] under the qualification
condition Eq. 3.5 due to the SNC property of �2 at (ȳ, x̄), which is obviously implied
by the assumed SNC property of � at x̄. To conclude now by [17, Theorem 4.10(c)]
that the mapping G : Y →→ X in Eq. 3.3 is Lipschitz-like around (ȳ, x̄), it remains to
check that G is PSNC at this point. Since the qualification condition Eq. 3.5 and the
SNC property of �2 at (ȳ, x̄) are satisfied and the product space Y × X is Asplund,
we have from [17, Corollary 3.80] that the mapping G is PSNC at (ȳ, x̄), which is the
same as the PSNC property of the graph gph G with respect to Y, provided that the
set �1 in the intersection representation of this graph in Eq. 3.4 is PSNC with respect
to Y at (ȳ, x̄), i.e.,

[
y∗

k
w∗→ 0, ‖x∗

k‖→0, (y∗
k, x∗

k) ∈ N̂ ((yk, xk); �1)
]

=⇒ ‖y∗
k‖→0 as k→0. (3.10)

Taking into account that �1 = gph f −1, observe that the implication in Eq. 3.10
means that the mapping f −1 : Y →→ X is PSNC at (ȳ, x̄) in the sense defined in
Section 1. Recall that, by [17, Theorem 1.43], the PSNC property of f −1 at (ȳ, x̄) is
implied by the Lipschitz-like property of f −1 around this point, which is equivalent
to the metric regularity of f around x̄. As shown above, ∇ f (x̄)X = Y under the
assumptions made in (b), which thus ensure the required metric regularity by the
classical Lyusternik-Graves theorem. We have therefore the Lipschitz-like property
of the mapping G in Eq. 3.3 around (ȳ, x̄) in Case 2 and complete the proof of the
theorem in both cases under consideration. ��

4 Fréchet-Like Normals to Set Images

In this section we mainly concentrate on computing Fréchet normals and their ε-
enlargements to images of sets in Banach spaces under Fréchet and strictly dif-
ferentiable mappings satisfying the metric regularity requirements introduced and
discussed in Section 3.

To proceed, we need the following tangential construction generated in duality
by the Fréchet normal cone Eq. 2.1 as ε = 0. Given a set � ⊂ X and a point x̄ ∈ �,
define the Fréchet tangent cone to � at x̄ by

T̂(x̄; �) := {
v ∈ X

∣∣ 〈x∗, v〉 ≤ 0 for all x∗ ∈ N̂(x̄;�)
}
. (4.1)

A natural question that immediately arises is about relationships between the
Fréchet tangent cone Eq. 4.1 and the widely spread in variational analysis tangential
construction

T(x̄; �) := {
v ∈ X

∣∣ ∃vk → v, tk ↓ 0 with x̄ + tkvk ∈ �
}

(4.2)

known as the Bouligand-Severi contingent cone to � at x̄; see [17, Subsection 1.1.2]
and the commentaries therein. The following proposition establishes such relation-
ships in the general Banach space setting.
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Proposition 4.1 (relationships between the Fréchet tangent cone and Bouligand-
Severi contingent cone to arbitrary sets) Let � be a nonempty subset of a Banach
space X, and let x̄ ∈ �. Then we always have the inclusion

clco T(x̄; �) ⊂ T̂(x̄; �), (4.3)

which becomes an equality provided that

N̂
(
0; clco T(x̄; �)

) ⊂ N̂(x̄; �). (4.4)

Furthermore, condition (4.4) is satisfied in each of the following cases:

(a) For any sequence xk
�−→ x̄ with xk �= x̄ for all k ∈ IN, the normalized sequence

{
xk − x̄

‖xk − x̄‖
}
, k ∈ IN,

contains a convergent subsequence as k → ∞. This is true, in particular, when
there is a neighborhood U of x̄ such that the spanned space span(�∩(U −
x̄)) is finite-dimensional, which is automatic if the original space X is finite-
dimensional.

(b) There is a neighborhood U of x̄ such that

� ∩ U ⊂ x̄ + clco T(x̄;�),

which surely holds if � ∩ U ⊂ x̄ + T(x̄; �). The latter is satisfied, in particular,
when the set � is either convex or conic around x̄.

Proof To justify Eq. 4.3, it is sufficient to show that T(x̄; �) ⊂ T̂(x̄; �), since the
Fréchet tangent cone T̂(x̄; �) is obviously closed and convex. Pick any v ∈ T(x̄; �)

and by definition Eq. 4.2 find sequences vk → v and tk ↓ 0 as k → ∞ such that x̄ +
tkvk ∈ � for all k ∈ IN. Given x∗ ∈ N̂(x̄; �) and ε > 0 and using definition Eq. 2.1 of
Fréchet normals, we have

〈x∗, tkvk〉 ≤ ε‖tkvk‖ for all large k ∈ IN,

which implies that 〈x∗, v〉 ≤ 0 by passing to the limit as k → ∞ and taking into
account that ε > 0 was chosen arbitrarily. The latter inequality means that v ∈
T̂(x̄; �), and thus we get the required inclusion Eq. 4.3.

Let us further prove that the equality holds in Eq. 4.3 under the assumption
Eq. 4.4. To proceed, suppose the opposite and find an element v ∈ T̂(x̄;�) with
v /∈ clco T(x̄;�). By the classical convex separation theorem, there is x∗ ∈ X∗ and
γ ∈ IR such that

〈x∗, v〉 > γ > 〈x∗, x〉 for all x ∈ clco T(x̄;�). (4.5)

This implies that γ > 0, since 0 ∈ clco T(x̄; �). Taking now into account that
clco T(x̄; �) is a cone, we get from the second inequality in Eq. 4.5 that

〈x∗, x〉 ≤ 0 for all x ∈ clco T(x̄;�),
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which gives x∗ ∈ N̂(0; clco T(x̄; �)) ⊂ N̂(x̄; �) by the assumption made in Eq. 4.4.
On the other hand, it follows from the first inequality in Eq. 4.5 that x∗ /∈ N̂(x̄; �),
since otherwise we have 〈x∗, v〉 ≤ 0. This contradiction justifies the equality in Eq. 4.3
under the validity of Eq. 4.4. The fulfillment of Eq. 4.4 under the conditions imposed
in either (a) or (b) easily follows from the above definitions of the contingent cone
and the Fréchet normal cone to the set in question. This completes the proof of the
proposition. ��

Observe that inclusion (4.3) is strict in general. To illustrate this, consider the set

� := {
(u, v) ∈ IR2

∣∣ v ≥ −|u|} and x̄ = (0, 0) ∈ �.

Then it is easy to check that T(x̄; �) = � while T̂(x̄;�) = IR2.
The next theorem contains two independent relationships between the Fréchet

normal cone to a set � and to the set image f (�) under a Fréchet differentiable
mapping f while imposing the metric regularity property of f : � → f (�) at the point
x̄ ∈ � in question.

Theorem 4.2 (Fréchet normals to direct images of sets under differentiable map-
pings) Let f : X → Y be a mapping between Banach spaces such that f is Fréchet
differentiable at x̄ ∈ � and the restricted mapping f : � → f (�) is metrically regular
at this point. Denote ȳ := f (x̄). Then we have the equality

N̂
(
ȳ; f (�)

) = (∇ f (x̄)∗
)−1(

N̂(x̄; �)
)
. (4.6)

Furthermore, we have another equality

∇ f (x̄)∗ N̂
(
ȳ; f (�)

) = N̂(x̄; �). (4.7)

provided that the space ∇ f (x̄)X is closed in Y and that

ker ∇ f (x̄) ⊂ T̂(x̄;�), (4.8)

where the latter condition is necessary for the fulfillment of Eq. 4.7.

Proof Observe that the Fréchet differentiability of f at x̄ implies the existence of a
number � > 0 and a neighborhood U of x̄ such that

‖ f (x) − f (x̄)‖ ≤ �‖x − x̄‖ for all x ∈ U.

Fix any y∗ ∈ N̂(ȳ; f (�)) and get from the definition of Fréchet normals that

lim sup

y
f (�)−−→ȳ

〈y∗, y − ȳ〉
‖y − ȳ‖ ≤ 0.
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Applying the following transformations and estimates

lim sup
x

�−→x̄

〈∇ f (x̄)∗y∗, x − x̄〉
‖x − x̄‖ = lim sup

x
�−→x̄

〈y∗,∇ f (x̄)(x − x̄)〉
‖x − x̄‖

≤ lim sup
x

�−→x̄

〈y∗, ∇ f (x̄)(x − x̄) − f (x) + f (x̄) + f (x) − f (x̄)〉
‖x − x̄‖

≤ lim sup
x

�−→x̄

〈y∗, f (x) − f (x̄)〉
‖x − x̄‖ ≤ max

⎧⎪⎨
⎪⎩

0, lim sup

y
f (�)−−→ȳ

〈y∗, y − ȳ)〉
�−1‖y − ȳ‖

⎫⎪⎬
⎪⎭

≤ 0,

we arrive at ∇ f (x̄)∗y∗ ∈ N̂(x̄;�), which justifies the inclusion “⊂” in Eq. 4.6.
To prove the opposite inclusion in Eq. 4.6, employ the metric regularity of f : � →

f (�) at x̄ and find a number μ > 0 such that for any y ∈ f (�) close to ȳ = f (x̄)

we have

dist
(
x̄; f −1(y) ∩ �

) ≤ μ‖y − ȳ‖. (4.9)

Fix any y∗ satisfying ∇ f (x̄)∗y∗ ∈ N̂(x̄; �). Then for any ε > 0 there is η > 0 such that

〈y∗,∇ f (x̄)(x − x̄)〉 ≤ ε

2
‖x − x̄‖ whenever ‖x − x̄‖ < η and x ∈ �. (4.10)

It follows from Eq. 4.10 and the Fréchet differentiability of f at x̄ that for some ν < η

we have

〈y∗, f (x) − f (x̄)〉 ≤ ε‖x − x̄‖ whenever ‖x − x̄‖ < ν and x ∈ �.

Observe that estimate (4.9) ensures that for any y ∈ f (�) sufficiently close to ȳ there
is xy ∈ f −1(y) ∩ � satisfying ‖xy − x̄‖ ≤ 2μ‖y − ȳ‖ < ν. For such xy we have

〈
y∗, y − ȳ

〉 = 〈
y∗, f (xy) − f (x̄)

〉 ≤ ε‖xy − x̄‖ ≤ 2με‖y − ȳ‖,
which implies that y∗ ∈ N̂(ȳ; f (�)), since ε > 0 was chosen arbitrarily. This justifies
the inclusion “⊃” in Eq. 4.6 and thus the equality therein.

Next we prove representation (4.7) under the additional assumptions made. By
Eq. 4.6, it suffices to verify the inclusion

N̂(x̄; �) ⊂ ∇ f (x̄)∗ N̂
(
ȳ; f (�)

)
. (4.11)

To proceed, pick arbitrary x∗ ∈ N̂(x̄; �) and v ∈ T̂(x̄;�) and get by definition (4.1)
that 〈x∗, v〉 ≤ 0. This implies, since −v ∈ ker ∇ f (x̄) whenever v ∈ ker ∇ f (x̄), that

〈x∗, v〉 = 0 for all v ∈ ker ∇ f (x̄) (4.12)

due to the assumed inclusion Eq. 4.8. Define now a bounded linear functional y∗ on
the closed subspace ∇ f (x̄)X of Y by

〈y∗, y〉 = 〈x∗, x〉 for some x ∈ ∇ f (x̄)−1(y).
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It follows from Eq. 4.12 that y∗ is well defined on ∇ f (x̄)X. Using the classical Hahn-
Banach theorem, we can extend y∗ to a bounded linear functional on the whole space
Y, i.e., we can identify it with some y∗ ∈ Y∗. The construction of y∗ implies that
∇ f (x̄)∗y∗ = x∗. Furthermore, by the above proof of the inclusion “⊃” in Eq. 4.6,
we have y∗ ∈ N̂(ȳ; f (�)) and thus justify the equality in Eq. 4.7 under the kernel
condition Eq. 4.8.

It remains to show that the kernel condition Eq. 4.8 is in fact necessary for the
fulfillment of representation (4.7). To proceed, assume that Eq. 4.7 holds and take
any v ∈ ker ∇ f (x̄). Then we obviously have the equality

〈∇ f (x̄)v, y∗〉 = 0 ⇐⇒ 〈v, ∇ f (x̄)∗y∗〉 = 0 for all y∗ ∈ N̂
(
ȳ; f (�)

)
.

By the assumed condition Eq. 4.7, the latter yields that 〈v, x∗〉 = 0 for all x∗ ∈
N̂(x̄; �). Hence we get v ∈ T̂(x̄; �) by definition (4.1) and complete the proof of
the theorem. ��

Next we study a special class of sets � ⊂ X in Theorem 4.2, which are repre-
sentable as inverse images f −1(�) of some subsets � ⊂ Y of the range space for the
mappings f : X → Y from the theorem. We obtain efficient conditions that ensure
the fulfillment of the kernel requirement (4.8) and of the equality in Eq. 4.7 for such
sets. Let us first present a result that justifies the kernel condition Eq. 4.8 for inverse
images and contains an additional information of certain independent interest.

Proposition 4.3 (kernel condition for inverse images) Let f : X → Y be a mapping
between Banach spaces that is Gâteaux differentiable at x̄, and let ȳ := f (x̄). Assume
that the restricted mapping f : X → f (X) is metrically regular at x̄. Then we have the
inclusion

ker ∇ f (x̄) ⊂ T
(
x̄; f −1(ȳ)

)
, (4.13)

which holds as equality provided that f is Fréchet differentiable at x̄.

Proof To justify Eq. 4.13, pick any v ∈ ker ∇ f (x̄) and observe, by the Gâteaux
differentiability of f at x̄, that

f (x̄ + tkv) − ȳ
tk

→ 0 as k → ∞

whenever tk ↓ 0. Since f : X → f (X) is assumed to be metrically regular at x̄, for
any large k ∈ IN we find xk ∈ f −1(ȳ) such that

wk := x̄ + tkv − xk

tk
→ 0 as k → ∞.

Then we have (xk − x̄)/tk = v − wk → v as k → ∞, which gives v ∈ T(x̄; �) by
definition (4.2) of the contingent cone and thus justifies the required inclusion
Eq. 4.13.
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To prove the converse inclusion to Eq. 4.13, take any v ∈ T(x̄; f −1(ȳ)) and by
definition (4.2) find sequences xk→x̄ with xk ∈ f −1(ȳ) and tk ↓ 0 such that (xk −
x̄)/tk → v as k → ∞. By the the Fréchet differentiability of f at x̄ we have

f (xk) − f (x̄) − ∇ f (x̄)(xk − x̄)

tk
→ 0 as k → ∞,

which gives v ∈ ker ∇ f (x̄) and completes the proof of the proposition. ��

The following result presents consequences of Theorem 4.2 for Fréchet normals to
inverse images of sets. The second formula in this corollary is based on Proposition
4.3 and extends the corresponding one in [17, Theorem 1.14], where ∇ f (x̄) is
assumed to be surjective (and hence metrically regular at x̄) that allows us to drop
f (X) in the latter formula.

Corollary 4.4 (Fréchet normals to inverse images of sets) Let f : X → Y be a map-
ping between Banach spaces, and let � be a subset of Y such that f is Fréchet differen-
tiable at x̄ and that ȳ := f (x̄) ∈ �. Assume that the restricted mapping f : f −1(�) →
� ∩ f (X) is metrically regular at x̄. Then

(∇ f (x̄)∗
)−1

N̂
(
x̄; f −1(�)

) = N̂
(

f (x̄);� ∩ f (X)
)
.

Furthermore, we have the equality

N̂
(
x̄; f −1(�)

) = ∇ f (x̄)∗ N̂
(

f (x̄);� ∩ f (X)
)

provided that the mapping f : X → f (X) is metrically regular at x̄.

Proof The first equality in the corollary follows directly from equality (4.6) of
Theorem 4.2 with � = f −1(�). The second one follows from Eq. 4.7, Proposition 4.3,
and the fact that the subspace ∇ f (x̄)X is closed in Y if the restricted mapping
f : X → f (X) is metrically regular at x̄. The latter is proved in [20, Theorem 2.2] (see
also [17, Lemma 1.56]), where the RMR property of f at x̄ is actually used, although
the formulation involves this property around x̄. Note that the metric regularity of
f : X → f (X) at x̄ surely implies that of f : f −1(�) → � ∩ f (X) at this point. Thus
we meet all the assumptions of Theorem 4.2 for � = f −1(�) and complete the proof
of the corollary. ��

Next we study some relations for ε-normals Eq. 2.1 to sets and set images (direct
and inverse) under strictly differentiable mappings between Banach spaces. We de-
rive certain perturbed/fuzzy counterparts of the results for Fréchet normals obtained
above imposing similar metric regularity assumptions on restricted mappings that are
required now around the reference points (not “at” as above). The results established
here for ε-normals are of independent interest while their main role in this paper
concerns applications to new formulas for limiting normals to set images developed
in Section 5.

Our first result on ε-normals to set images gives a uniform fuzzy analog of formula
(4.6) via the rate of strict differentiability of f at x̄ introduced in [20] by

rf (x̄; η) := sup
x,u∈x̄+ηIB

u �=x

‖ f (u) − f (x) − ∇ f (x̄)(u − x)‖
‖u − x‖ , (4.14)
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where η > 0; see also [17, Subsection 1.1.3] for more details. It easily follows from
Eq. 4.14 that rf (x̄; η) ↓ 0 as η ↓ 0 if f is strictly differentiable at x̄.

Theorem 4.5 (estimates of ε-normals to set images via the rate of strict differentiabil-
ity) Let f : X → Y be a mapping between Banach spaces, and let x̄ ∈ � ⊂ X. Assume
that f is strictly differentiable at x̄ ∈ � with the rate of strictly differentiability r f (x̄; η)

defined in Eq. 4.14. Then the following hold:

(i) There are numbers c > 0 and η̄ > 0 such that for any y∗ ∈ N̂ε( f (x); f (�)), ε ≥ 0,
x ∈ (x̄ + ηIB) ∩ �, and 0 < η ≤ η̄ we have the inclusion

y∗ ∈ (∇ f (x̄)∗
)−1(

N̂γ (x; �)
)

with γ := cε + ‖y∗‖r f (x̄; η). (4.15)

(ii) Assume in addition that the restricted mapping f : � → f (�) is metrically
regular around x̄. Then there are numbers c > 0 and η̄ > 0 such that for any
y∗ ∈ (∇ f (x̄)∗)−1 N̂ε(x; �), ε ≥ 0, x ∈ (x̄ + ηIB) ∩ �, and 0 < η ≤ η̄ we have the
inclusion

y∗ ∈ N̂ν

(
f (x); f (�)

)
with ν := cε + c‖y∗‖r f (x̄; η). (4.16)

Proof Since f is strictly differentiable at x̄, it is locally Lipschitzian around this point,
i.e., there are � > 0 and η̄ > 0 such that f is Lipschitz continuous on the set x̄ + η̄IB
with constant �. Then we have

lim sup
u

�−→x

〈∇ f (x̄)∗y∗, u − x〉
‖u − x‖ = lim sup

u
�−→x

〈y∗,∇ f (x̄)(u − x)〉
‖u − x‖

= lim sup
u

�−→x

〈y∗, f (u) − f (x)〉
‖u − x‖ + ||y∗||r f (x̄; η)

≤ lim sup

v
f (�)−−→ f (x)

max

{
0,

〈y∗, v − f (x)〉
�−1‖v − f (x)‖

}
+ ‖y∗‖r f (x̄; η)

≤ �ε + ‖y∗‖r f (x̄; η) for all η ∈ (0, η̄].

This gives the inclusion ∇ f (x̄)∗y∗ ∈ N̂γ (x; �) with c := � and γ defined in Eq. 4.15.
Thus y∗ ∈ (∇ f (x̄)∗)−1(N̂γ (x; �)), which justifies assertion (i).

To prove (ii), we employ the metric regularity of f : � → f (�) around x̄ and find
numbers μ > 0 and η̄ > 0 such that

dist
(
x; f −1(y) ∩ �

)≤μ‖y − f (x)‖ for any x∈(x̄+η̄IB) ∩ � and y ∈ f (�) (4.17)

with y close to f (x). Pick any y∗ ∈ (∇ f (x̄)∗)−1 N̂(x;�) for such x with some ε ≥ 0 and
get by definition (2.1) the two equivalent inequalities

⎡
⎣lim sup

u
�−→x

〈∇ f (x̄)∗y∗, u − x〉
‖u − x‖ ≤ ε

⎤
⎦ ⇐⇒

⎡
⎣lim sup

u
�−→x

〈y∗, ∇ f (x̄)(u − x)〉
‖u − x‖ ≤ ε

⎤
⎦ .
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The latter implies by construction (4.14) that

lim sup
u

�−→x

〈y∗, f (u) − f (x)〉
‖u − x‖ ≤ ε + ‖y∗‖rf (x̄; η) for any 0 < η ≤ η̄.

Fix x ∈ (x̄ + ηIB) ∩ � and, by metric regularity (4.17), for each y ∈ f (�) close to f (x)

find xy ∈ f −1(y) ∩ � satisfying ‖x − xy‖ ≤ 2μ‖y − f (x)‖. Thus we get

lim sup

y
f (�)−−→ f (x)

〈y∗, y − f (x)〉
‖y − f (x)‖ ≤ lim sup

v
f (�)−−→ f (x)

〈y∗, f (xy) − f (x)〉
‖ f (xy) − f (x)‖

≤ lim sup

y
f (�)−−→ f (x)

max

{
0,

〈y∗, f (xy) − f (x)〉
(2μ)−1‖xy − x‖

}

≤ 2με + 2μ‖y∗‖r f (x̄; η) whenever 0 < η ≤ η̄.

This justifies the inclusion y∗ ∈ N̂ν( f (x); f (�)) with c := 2μ and ν defined in Eq. 4.16
and thus completes the proof of the theorem. ��

The next result a fuzzy ε-normal counterpart of the inclusion “⊃” in Eq. 4.7; the
opposite inclusion of this type is an immediate consequence of Theorem 4.5(ii). To
proceed in this direction, we introduce a new concept used in what follows.

Definition 4.6 (tangential distance for sets) Let � be a subset of a Banach space X
with x̄ ∈ �, and let L be a linear subspace of X. The tangential distance between
� and L at x̄ with accuracy η ≥ 0 is defined by

tand �,L(x̄; η) := sup
u∈L\{0}, x∈(x̄+ηIB)∩�

lim inf
v

�→x

∥∥∥∥
u

‖u‖ − v − x
‖v − x‖

∥∥∥∥ (4.18)

with the convention that tand �,L(x̄; η) := 0 if L = {0}. For simplicity we denote

tand �,L(x̄) := tand �,L(x̄; 0).

It can be derived from Definition 4.6 and construction (4.2) of the contingent cone
that

tand �,L(x̄; η) ≤ 2 sup
u∈L\{0}

x∈(x̄+ηIB)∩�

dist
(

u
‖u‖; T(x;�)

)
(4.19)

provided that X is reflexive. We present more results on the tangential distance for
image sets generated by strictly differentiable mappings in Section 5 and continue
the study of these and related issues in our future research.

Theorem 4.7 (estimates of ε-normals via tangential distance) Let � ⊂ X be a subset
of a Banach space with x̄ ∈ �, and let ε ≥ 0. The following assertions hold:

(i) Given a linear bounded operator A : X → Y between Banach spaces with the
closed range AX ⊂ Y and given x∗ ∈ N̂ε(x̄; �), there is y∗ ∈ Y∗ such that

A∗y∗ ∈ x∗ + γ IB∗ with γ := ε + tand �,ker A(x̄)‖x∗‖. (4.20)
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(ii) Assume that a mapping f : X → Y between Banach spaces is strictly differen-
tiable at x̄, that the subspace ∇ f (x̄)X is closed in Y, and that the restrictive
mapping f : � → f (�) is metrically regular around x̄. Then there is a number
η̄ > 0 such that for any x∗ ∈ N̂ε(x;�) and x ∈ (x̄ + ηIB) ∩ � as 0 < η ≤ η̄ there
exists a perturbation

x̂∗ ∈ x∗ + γ IB∗ with γ := ε + tand �,ker ∇ f (x̄)(x̄)‖x∗‖ (4.21)

satisfying the conditions (∇ f (x̄)∗)−1(̂x∗) �= ∅. In addition, there is c > 0 such that
for any y∗ ∈ (∇ f (x̄)∗)−1(̂x∗) we have the inclusion

y∗ ∈ N̂ν

(
f (x); f (�)

)
(4.22)

with ν := c
(
ε + tand �,ker ∇ f (x̄)(x̄; η)‖x∗‖ + rf (x̄; η)‖y∗‖).

Proof To justify assertion (i), take any x∗ ∈ N̂ε(x̄; �) and, by the definition of ε-
normals, for every σ > 0 there is a neighborhood U of x̄ such that

〈x∗, x − x̄〉 ≤ (ε + σ)‖x − x̄‖ whenever x ∈ U. (4.23)

Further, pick any u ∈ ker A \ {0} and, by Definition 4.18 with L = ker A, find v ∈ U
satisfying the estimate

∥∥∥∥
u

‖u‖ − v − x̄
‖v − x̄‖

∥∥∥∥ < tand �,ker A(x̄) + σ

with the same σ > 0 as in Eq. 4.23. Unifying the latter with Eq. 4.23, we get

〈x∗, u〉 =
(〈

x∗,
u

‖u‖ − v − x̄
‖v − x̄‖

〉
+
〈
x∗,

v − x̄
‖v − x̄‖

〉)
‖u‖

≤
(
‖x∗‖(tand �,ker A(x̄) + σ

) + (ε + σ)
)
‖u‖.

Taking into account that σ > 0 was chosen arbitrarily, this implies that

〈x∗, u〉 ≤ γ ‖u‖ for all u ∈ ker A

with γ defined in Eq. 4.20. The Hahn-Banach theorem allows us to extend x∗|ker A

to a linear functional x̃∗ ∈ X∗ with ‖̃x∗‖ ≤ γ . Denote now x̂∗ := x∗ − x̃∗ and define
y∗ ∈ (AX)∗ by

〈y∗, y〉 = 〈̂x∗, x〉 for some x ∈ A−1(y).

Since x̂∗|ker A = 0, the linear functional y∗ is well defined on AX and, furthermore, it
is bounded on this subspace due to its assumed closedness in Y. Employing again the
Hahn-Banach theorem, we extend y∗ to a linear bounded functional y∗ ∈ Y∗. Finally,
it is easy to check that A∗y∗ = x̂∗ ∈ x∗ + γ IB∗, which gives Eq. 4.20 and thus justifies
assertion (i).

To prove assertion (ii) of the theorem, we first apply the result of assertion (i) with
A = ∇ f (x̄), which allows us to find x̂∗ ∈ X∗ satisfying Eq. 4.21 and (∇ f (x̄)∗)−1(̂x∗) �=
∅. Taking then any y∗ ∈ (∇ f (x̄)∗)−1(̂x∗), we easily have ∇ f (x̄)∗y∗ ∈ N̂ε+γ (x; �).
Finally, assertion (ii) of Theorem 4.5 implies that y∗ ∈ N̂ν( f (x); f (�)) with ν defined
in Eq. 4.22. This completes the proof of (ii) and of the whole theorem. ��
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5 The Limiting Normal Cone to Set Images

The primary goal of this section is to establish relationships between the limiting
normals Eq. 2.2 to sets and to set images (direct and inverse) under strictly differen-
tiable mappings acting in Banach spaces. We also obtain some counterparts (as upper
estimates) of calculus results for limiting normals to direct images of sets under set-
valued mappings.

A natural way to derive the corresponding formulas for limiting normals to set
images under strictly differentiable mappings is to pass to the limit in the “fuzzy”
results of Theorems 4.5 and 4.7 for ε-normals. To proceed carefully in this direction,
we need to designate appropriate properties of the sets, mappings, and spaces under
consideration. The following property of Banach spaces, introduced in [20] in a
different framework and largely discussed in [17, Subsection 1.3.5], plays a significant
role in justifying the limiting procedure.

Definition 5.1 (weak∗-extensibility) Let L be a closed linear subspace of a Banach
space X. We say that L is w∗−extensible in X if every sequence {v∗

k} ⊂ L∗, with

v∗
k

w∗−→ 0 as k → ∞ contains a subsequence {v∗
k j

} such that each v∗
k j

can be extended

to a linear bounded functional x∗
j ∈ X∗ with x∗

j
w∗−→ 0 as j → ∞.

As shown in [17, 20], the w∗-extensibility holds for every closed linear subspace
of Banach spaces from fairly broad classes including all Asplund spaces, weakly
compactly generated spaces (WCG), spaces admitting smooth renorms of any kinds,
etc., but not in general.

Theorem 5.2 (limiting normals to direct images of sets under strictly differentiable
mappings) Let f : X → Y be a mapping between Banach spaces, and let � ⊂ X with
x̄ ∈ �. Assume that f is strictly differentiable at x̄ and that the restricted mapping
f : � → f (�) is metrically regular at this point. Then

N
(
ȳ; f (�)

) ⊂ (∇ f (x̄)∗)−1
(
N(x̄; �)

)
. (5.1)

Furthermore, we have the equalities

N
(
ȳ; f (�)

) = (∇ f (x̄)∗
)−1(

N(x̄;�)
)
, (5.2)

∇ f (x̄)∗N
(
ȳ; f (�)

) = N(x̄; �) (5.3)

provided in addition that f : � → f (�) is metrically regular around x̄ and the
following assumptions hold:

(a) the space ∇ f (x̄)X is closed and w∗-extensible in Y;
(b) tand �,ker ∇ f (x̄)(x̄; η) → 0 as η ↓ 0.

Proof To justify inclusion (5.1), pick y∗ ∈ N(ȳ; f (�)) and, by definition of limiting

normals, find sequences εk ↓ 0, yk
f (�)−−→ ȳ, and y∗

k ∈ N̂εk(yk; f (�)) such that y∗
k

w∗−→ y∗
as k → ∞. The metric regularity assumption on f : � → f (�) at x̄ yields that

dist
(
x̄, f −1(y) ∩ �

) ≤ μ‖y − ȳ‖
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for some μ > 0 and all y ∈ f (�) sufficiently close to the reference point ȳ. This allows
us to find xk ∈ f −1(yk) ∩ �, k ∈ IN, with xk → x̄ as k → ∞. Then assertion (i) of
Theorem 4.5 ensures the existence of a sequence γk ↓ 0 such that

∇ f (x̄)∗y∗
k ∈ N̂γk(xk; �) for large k ∈ IN,

which implies that ∇ f (x̄)∗y∗ ∈ N(x̄; �) by passing to the limit as k → ∞. This gives
Eq. 5.1 and also justifies the inclusion “⊂” in Eq. 5.3.

Let us next prove the opposite inclusions in Eqs. 5.2 and 5.3 under the additional
assumptions made. They surely follow from the fact that for any x∗ ∈ N(x̄; �)

we have

∅ �= (∇ f (x̄)∗
)−1

(x∗) ⊂ N
(
ȳ; f (�)

)
. (5.4)

To justify Eq. 5.4, pick a limiting normal x∗ ∈ N(x̄; �) and find by definition (2.2)

sequences εk ↓ 0, xk
�→ x̄, and x∗

k ∈ N̂εk(xk;�) with x∗
k

w∗→ x∗ as k → ∞. Applying
now, for each k ∈ IN, Theorem 4.7(ii) requiring the metric regularity of f : � →
f (�) around x̄ and then using assumption (b) as well as the boundedness of the
sequence {x∗

k} ⊂ X∗ by the uniform boundedness principle, we find from Eq. 4.15
sequences γk ↓ 0 and {̂x∗

k} ⊂ X∗ such that

x̂∗
k ∈ x∗

k + γk IB∗ and
(∇ f (x̄)∗

)−1(̂
x∗

k

) �= ∅, k ∈ IN. (5.5)

It follows from the first relationship in Eq. 5.5 that x∗
k

w∗→ x∗ as k → ∞. Furthermore,
we get x∗ ∈ ∇ f (x̄)∗Y∗ due the well-known fact that the assumed closedness of
the image subspace ∇ f (x̄)X in Y implies the w∗-closedness of the adjoint image
∇ f (x̄)∗Y∗ in X∗.

Thus (∇ f (x̄)∗)−1(x∗) �= ∅, and it remains to show for Eq. 5.4 that y∗ ∈ N(ȳ; f (�))

whenever y∗ ∈ Y∗ satisfies ∇ f (x̄)∗y∗ = x∗. To proceed, we use both relationships
in Eq. 5.5 and the w∗-extensibility assumption in (b) to derive, as in the proof of
[17, Proposition 1.125] and [20, Proposition 3.7], that there is a sequence {y∗

k} ⊂ Y∗
with ∇ f (x̄)∗y∗

k = x̂∗
k, which contains a subsequence w∗-convergent to y∗; assume with

no loss of generality that the whole sequence converges as k → ∞. Applying again
Theorem 4.7(ii), we get

y∗
k ∈ N̂νk

(
f
(
xk), f (�)

)
with some νk ↓ 0 as k → ∞, (5.6)

where the latter convergence follows from the expression for ν in Eq. 4.16 due to the
strict differentiability of f at x̄, the tangential distance assumption (b) of the theorem,
and the boundedness of {x∗

k} ⊂ X∗. By passing to the limit in Eq. 5.6 as k → ∞, we
conclude that y∗ ∈ N(ȳ; f (�) and thus complete the proof of the theorem. ��

As discussed above, both assumptions in (a) of Theorem 5.2 do not provide serious
limitations. By Definition (4.18) and estimate (4.19), condition (b) of the theorem
signifies that the contingent cone to � around x̄ is close enough to the unit sphere
of the kernel subspace ker ∇ f (x̄). Note also that all the assumptions in (a) and (b)
of Theorem 5.2 are satisfied when the derivative operator ∇ f (x̄) is isomorphic. The
next result implies, in particular, that condition (b) always holds if � is the inverse
image of some set generated by the mapping f under consideration enjoying the
RMR property around x̄. In this way the equality relations in Eqs. 5.2 and 5.3
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in Theorem 5.2 extend the corresponding results of [20, Theorem 3.8] for limiting
normals to inverse images.

Proposition 5.3 (relationship between the tangential distance to inverse images and
the rate of strict differentiability) Let f : X → Y be a mapping between Banach
spaces, let � ⊂ Y, and let � := f −1(�) ⊂ X. Assume that f is strictly differentiable
at x̄ ∈ � and the restrictive mapping f : X → f (X) is metrically regular around this
point. Then there are numbers α > 0 and η̄ > 0 such that for all x ∈ (x̄ + ηIB) ∩ � with
η ∈ (0, η̄] we have the relationship

tand �,ker ∇ f (x̄)(x) ≤ α r f (x̄; η)

1 − α[r f (x̄; η)]2
. (5.7)

between the tangential distance and the rate of strict differentiability. In particular,

tand �,ker ∇ f (x̄)(x̄; η) → 0 as η ↓ 0. (5.8)

Proof It follows directly from the strict differentiability of f at x̄ that Eq. 5.7 implies
Eq. 5.8. To justify Eq. 5.8, take a modulus μ > 0 of the metric regularity of f : X →
f (X) around x̄ and choose η̄ > 0 such that

rf (x̄; η̄) < min
{
1/μ, 1/(2

√
μ)
}
. (5.9)

For any v ∈ ker ∇ f (x̄) with ‖v‖ = 1 and x ∈ (x̄ + ηIB) ∩ � with 0 < η < η̄ we have
∥∥∥∥

f (x + tv) − f (x)

t

∥∥∥∥ ≤ rf (x̄; η) (5.10)

whenever t > 0 is sufficiently small. By the metric regularity of f : X → f (X) around
x̄ with modulus μ, for any small t > 0 find xt ∈ X satisfying

f (xt) = f (x) and ‖x + tv − xt‖ ≤ μ‖ f (x + tv) − f (x)‖.
This implies that xt ∈ � and, by using Eq. 5.10, that

∥∥∥∥v − xt − x
t

∥∥∥∥ =
∥∥∥∥

x + tv − xt

t

∥∥∥∥ ≤ μrf (x̄; η).

Consequently we have the following relationships:

−μr f (x̄; η) ≤ 1 −
∥∥∥∥

xt − x
t

∥∥∥∥ ≤ μr f (x̄; η),

1 − μr f (x̄; η) ≤
∥∥∥∥

xt − x
t

∥∥∥∥ ≤ 1 + μrf (x̄; η),

1

1 + μrf (x̄; η)
≤ t

‖xt − x‖ ≤ 1

1 − μrf (x̄; η)
,

∣∣∣∣1 − t
‖xt − x‖

∣∣∣∣ ≤ 1

1 − μrf (x̄; η)
− 1

1 + μr f (x̄; η)
= 2μr f (x̄; η)

1 − μ2[r f (x̄; η)]2
,
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which yield the further estimates:
∥∥∥∥v − xt − x

‖xt − x‖
∥∥∥∥ =

∥∥∥∥
(

v − xt − x
t

)
· t
‖xt − x‖ +

(
1 − t

‖xt − x‖
)

v

∥∥∥∥

≤ μrf (x̄; η) · 1

1 − μrf (x̄; η)
+ 2μrf (x̄; η)

1 − μ2[rf (x̄; η)]2

= (3 + μrf (x̄; η))μrf (x̄; η)

1 − μ2[r f (x̄; η)]2
≤ 4μr f (x̄; η)

1 − μ2[rf (x̄; η)]2
.

It allows us to finally arrive at the inequality
∥∥∥∥v − xt − x

‖xt − x‖
∥∥∥∥ ≤ α r f (x̄; η)

1 − α[r f (x̄; η)]2
with α := max

{
4μ,μ2} ,

which implies Eq. 5.7 by construction (4.18) and completes the proof of the
proposition. ��

We conclude this section with an upper estimate of the limiting normal cone to
direct set images under set-valued mappings. The results obtained in what follows are
generally independent of the corresponding one from Theorem 5.2 in the common
setting for both theorems; see more discussions below in Remark 5.5.

To formulate the next theorem, we need to recall two useful properties of set-
valued mappings between Banach spaces; see [17, Definition 1.63]. A mapping
F : X →→ Y is said to be inner semicontinuous at (x̄, ȳ) ∈ gph F if for every sequence
xk → x̄ with F(xk) �= ∅ there is a subsequence of yk ∈ F(xk) converging to ȳ as
k → ∞. We say that F is inner semicompact at x̄ if for every sequence xk → x̄ with
F(xk) �= ∅ there is a sequence of yk ∈ F(xk) containing a convergent subsequence.

It is easy to see that the inner semicompactness property of F always holds if
dim Y < ∞ and the mapping F is uniformly bounded around x̄ (or, more generally,
if F is locally compact around x̄ in infinite dimensions), which is not the case for
the inner semicontinuity. On the other hand, the inner semicontinuity for inverse
mappings is implied by the appropriate metric regularity of the mapping in question
at the corresponding point. In particular, it is proved in Theorem 5.2 that the metric
regularity of f : � → f (�) at x̄ ensures the inner semicontinuity of f −1 ∩ � at
(ȳ, x̄) with ȳ := f (x̄), which is a requirement of Theorem 5.4 for general set-valued
mappings.

Having a set �⊂ X, we define its image under a set-valued mapping F : X →→Y by

F(�) :=
⋃
x∈�

F(x).

Theorem 5.4 (limiting normals to set images under set-valued mappings) Let
F : X →→ Y be a closed-graph mapping between Asplund spaces, let � be a closed
subset of X, and let ȳ ∈ F(�). The following assertions hold:

(i) Given x̄ ∈ � with (x̄, ȳ) ∈ gph F, assume that the mapping y →→ F−1(y) ∩ � is
inner semicontinuous at (ȳ, x̄), that either � is SNC at x̄ or F is PSNC at (x̄, ȳ),
and that the qualification condition

D∗
M F(x̄, ȳ)(0) ∩ [ − N(x̄;�)

] = {0} (5.11)
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is satisfied; the latter is automatic together with the PSNC property of F at (x̄, ȳ)

if F is Lipschitz-like around this point. Then we have the inclusion

N
(
ȳ; F(�)

) ⊂ D∗
N F−1(ȳ, x̄)

(
N(x̄; �)

)
. (5.12)

(ii) Assume that the mapping y →→ F−1(y) ∩ � is inner semicompact at ȳ and that
all the other assumptions in (i) hold for every x̄ ∈ F−1(ȳ) ∩ �. Then we have the
inclusion

N
(
ȳ; F(�)

) ⊂
⋃

x̄∈F−1(ȳ)∩�

D∗
N F−1(ȳ, x̄)

(
N(x̄;�)

)
. (5.13)

Proof It is sufficient to justify assertion (i); the reader can check that the proof of
assertion (ii) is similar. To prove Eq. 5.12, pick any y∗ ∈ N(ȳ; F(�)) and find by

definition sequences yk
F(�)−−→ ȳ and y∗

k
w∗−→ y∗ as k → ∞ such that y∗

k ∈ N̂(yk; F(�))

for all k ∈ IN. By the inner semicontinuity of the mapping y →→ F−1(y) ∩ � at (ȳ, x̄)

there is a sequence of xk ∈ F−1(yk) ∩ � such that xk → x̄ as k → ∞. Define the
closed subsets

�1 := gph F and �2 := � × Y. (5.14)

of the space X × Y, which is Asplund as a product of Asplund spaces. It is easy to
see from the structures of �1 and �2 in Eq. 5.14 that

(
0, y∗

k

) ∈ N̂
(
(xk, yk); �1 ∩ �2

)
for all k ∈ IN,

which yields by passing to the limit as k → ∞ that

(0, y∗) ∈ N
(
(x̄, ȳ);�1 ∩ �2

)
. (5.15)

Now we apply to the set intersection in Eq. 5.15 the fundamental intersection
rule for limiting normals in Asplund spaces from [17, Theorem 3.4]. It is not hard
to check that the structures of the sets �1 and �2 in Eq. 5.14 and the mixed
coderivative construction (2.5) ensure the fulfillment of the limiting qualification
condition required in the aforementioned theorem by the assumed qualification
condition Eq. 5.11.

Furthermore, the PSNC condition imposed on F at (x̄, ȳ) in the assumptions of the
theorem means in fact that the set �1 in Eq. 5.14 is PSNC at (x̄, ȳ) with respect to X
while the other set �2 is automatically strongly PSNC at this point (x̄, ȳ) with respect
to Y, which is required in [17, Theorem 3.4]. On the other hand, if � is assumed to be
SNC at x̄, then �2 in Eq. 5.14 is obviously SNC at (x̄, ȳ), which meets the alternative
requirements of [17, Theorem 3.4]. By the latter result we thus have

N
(
(x̄, ȳ); �1 ∩ �2

) ⊂ N
(
(x̄, ȳ); �1

) + N
(
(x̄, ȳ);�2

)

that allows us to represent the pair (0, y∗) in Eq. 5.15 as

(0, y∗) = (−x∗, y∗) + (x∗, 0).

with some (−x∗, y∗) ∈ N((x̄, ȳ); gph F) and x∗ ∈ N(x̄; �). Taking into account de-
finition (2.4) of the normal coderivative for the case of the inverse mapping
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F−1 : Y →→ X, we finally arrive at Eq. 5.12 under the assumptions in (i). To complete
the proof of the theorem, it remains to observe that D∗

M F(x̄, ȳ)(0) = {0} if F is
Lipschitz-like around (x̄, ȳ) by [17, Theorem 4.10] and that we automatically have
the PSNC property at (x̄, ȳ) for such mappings F by [17, Theorem 1.43]. ��

Remark 5.5 (discussions on the results for limiting normals to set images) It is easy
to check the relationship

y∗ ∈ D∗
N F−1(ȳ, x̄)(x∗) ⇐⇒ −x∗ ∈ D∗

N F(x̄, ȳ)(−y∗)

between the normal coderivative of an arbitrary mapping F : X →→ Y at (x̄, ȳ) ∈
gph F and the one for its inverse F−1. Using this relationship and expression (4.14)
for the normal coderivative of single-valued and strictly differentiable mappings,
we conclude that inclusion (5.1) of Theorem 5.2 reduces to Eq. 5.13 in the case of
strict differentiability. Observe that all the assumptions of Theorem 5.4(i) hold under
those needed for Eq. 5.1 in Theorem 5.2 (see the discussion on inner semicontinuity
before the formulation of Theorem 5.4) except the general Banach space setting
of Theorem 5.2 versus the Asplund space setting of Theorem 5.4. Note also that
Theorem 5.2 contains the equality relationships (5.2) and (5.3) under the additional
assumptions imposed therein, which do not have any counterparts in the general
nonsmooth and set-valued setting of Theorem 5.4 even in finite dimensions.

6 Other Normal Cones to Set Images

In this section we obtain some analogs of the results established in Section 4 for
Fréchet normals in the new case of Hölder normals (including proximal ones) to set
images under differentiable mappings between Banach spaces. Similar results are
also derived from those in Section 5 for the convexified normal cone to set images in
Asplund spaces.

Given a set � ⊂ X and a number s ∈ (0, 1], the Hölder s-normal cone to � at
x̄ ∈ � is

N̂s(x̄; �) :=
{

x∗ ∈ X
∣∣∣ ∃ σ ≥ 0, η > 0 such that 〈x∗, x − x̄〉 ≤ σ‖x − x̄‖1+s

whenever x ∈ (x̄ + ηIB) ∩ �
}
.

(6.1)

For s = 1, the set Eq. 6.1 is known as the proximal normal cone to � at x̄. Obviously

N̂s(x̄; �) ⊂ N̂(x̄; �) for all 0 < s ≤ 1. (6.2)

Introducing further the Hölder s-tangent cone to � at x̄ ∈ � by the duality/polarity
correspondence

T̂s(x̄; �) := {
v ∈ X

∣∣ 〈x∗, v〉 ≤ 0 for all x∗ ∈ N̂s(x̄; �)
}
, (6.3)

we observe the relationship between Eq. 6.3 and the contingent cone Eq. 4.2:

clco T(x̄; �) ⊂ T̂s(x̄; �) for each 0 < s ≤ 1,

which follows from inclusion (4.3) by using the polarity in Eq. 6.2.
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Given now a mapping f : X → Y between Banach spaces, we say that f is Hölder
s-differentiable at x̄ with s ∈ (0, 1] if there exist a neighborhood U of x̄, a constant
γ > 0, and a bounded linear operator A : X → Y such that

‖ f (x) − f (x̄) − A(x − x̄)‖
‖x − x̄‖1+s

≤ γ for all x ∈ U \ {x̄}. (6.4)

It is not hard to check that the operator A in Eq. 6.4 is unique if exists; we call it the
Hölder s-derivative of f at x̄ and denote for simplicity by ∇ f (x̄) if no confusion arises.
It is easy to check that Hölder differentiability implies Fréchet differentiability at the
reference point with the same derivative operator.

Observe that the notions of proximal normals and subgradients have been known
from the very beginning of nonsmooth analysis, widely studied and applied, in
particular, to various optimization-related and control problems; see, e.g., the books
[6, 17, 22] and the references therein. Note also that, although the interest to Hölder
s-differentiation and s-subdifferentiation in variational analysis goes back to the
seminal paper [3] for 0 < s < 1, these notions have not been well investigated yet.
We intend to apply the new calculus results obtained below for the Hölder-type
constructions to the study of stability and optimality issues in our future research.

The next theorem gives (independent) Hölder counterparts, whenever s ∈ (0, 1],
of Theorem 4.2 for Fréchet normal to direct images.

Theorem 6.1 (Hölder normals to direct images of sets under differentiable map-
pings) Let f : X → Y be a mapping between Banach spaces, let � be a subset of X
with x̄ ∈ �, and let s ∈ (0, 1]. Assume that f is Hölder s-differentiable at x̄ and that the
restricted mapping f : � → f (�) is metrically regular at this point. Then we have the
equality

N̂s(ȳ; f (�)
) = (∇ f (x̄)∗

)−1(
N̂s(x̄; �)

)
with ȳ := f (x̄). (6.5)

If furthermore the subspace ∇ f (x̄)X is closed in Y and if the kernel condition

ker ∇ f (x̄) ⊂ Ts(x̄; �)

is satisfied, then we also have

∇ f (x̄)∗ N̂s(ȳ; f (�)
) = N̂s(x̄; �). (6.6)

Proof It easily follows from the Fréchet differentiability of x̄ (which is a consequence
of its Hölder s-differentiability) that there are constants � > 0 and η > 0 such that

‖ f (x) − f (x̄)‖ ≤ �‖x − x̄‖ whenever ‖x − x̄‖ ≤ η.

Fix any y∗ ∈ N̂s(ȳ; f (�)) and observe by Eq. 6.1 that there are σ > 0 and η1 > 0 for
which

〈y∗, y − ȳ〉 ≤ σ‖y − ȳ‖1+s whenever y ∈ (ȳ + η1 IB) ∩ f (�).
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Therefore we get for x ∈ � sufficiently close to x̄ that

〈∇ f (x̄)∗(y∗), x − x̄〉 = 〈y∗, ∇ f (x̄)(x − x̄)〉 ≤ 〈y∗, ∇ f (x̄)(x − x̄) + f (x̄) − f (x)〉
+〈y∗, f (x) − f (x̄)〉 ≤ ‖y∗‖γ ‖x − x̄‖1+s + σ�1+s‖x − x̄‖1+s

≤ σ1‖x − x̄‖1+s with σ1 := ‖y∗‖γ + σ�1+s,

where γ >0 is the constant taken from Eq. 6.4. This shows that y∗ ∈
(∇ f (x̄)∗)−1(N̂s(x̄; �)) and thus justifies the inclusion “⊂” in Eq. 6.5.

To prove the opposite inclusion in Eq. 6.5, fix any y∗ ∈ (∇ f (x̄)∗)−1(Ns(x̄;�))

and immediately conclude that ∇ f (x̄)∗y∗ ∈ N̂s(x̄; �). We need to show that y∗ ∈
N̂s(ȳ; f (�)). To proceed, find by definition (6.1) numbers σ > 0 and η > 0 such that

〈∇ f (x̄)∗y∗, x − x̄〉 ≤ σ‖x − x̄‖1+s for all x ∈ (x̄ + ηIB) ∩ � (6.7)

and derive from this the estimate

〈y∗, ∇ f (x̄)(x − x̄)〉 ≤ σ‖x − x̄‖1+s, x ∈ (x̄ + ηIB) ∩ �.

The latter implies by definition (6.4) of Hölder differentiability the existence of γ > 0
with

〈y∗, f (x) − f (x̄)〉 = 〈y∗, f (x) − f (x̄) − ∇ f (x̄)(x − x̄)〉 + 〈y∗,∇ f (x̄)(x − x̄)〉
≤ (γ ‖y∗‖ + σ)‖x − x̄‖1+s, x ∈ (x̄ + ηIB) ∩ �.

Using now the metric regularity of f : � → f (�) at x̄ similarly to the proof of
Theorem 4.2, for any y ∈ f (�) near ȳ we find μ > 0 and xy ∈ f −1(y) ∩ � satisfying
the estimate

‖xy − x̄‖ ≤ μ‖y − ȳ‖ ≤ η,

where η > 0 is taken from Eq. 6.7. Combining all the above allows us to conclude
that

〈y∗, y − ȳ〉 = 〈y∗, f (xy) − f (x̄)〉 ≤ (γ ‖y∗‖ + σ)‖xy − x̄‖1+s

≤ (γ ‖y∗‖ + σ)μ1+s‖y − ȳ‖1+s

whenever y is close to ȳ. This implies that y∗ ∈ N̂s(ȳ, f (�)) and thus completes the
proof of equality (6.5). The justification of the other equality (6.6) under the kernel
condition imposed is similar to the corresponding proof in Theorem 4.2. ��

Similarly to the case of Fréchet normals we derive consequences of Theorem 6.1
for Hölder normals to inverse images of sets in Banach spaces.
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Corollary 6.2 (Hölder normal cones to inverse images) Let f : X → Y be a mapping
between Banach spaces, and let � be a subset of Y such that f is Hölder s-differentiable
at x̄ with s ∈ (0, 1] and that ȳ := f (x̄) ∈ �. The following assertions hold:

(i) Assume that the restricted mapping f : f −1(�) → � ∩ f (X) is metrically regular
at x̄. Then the equality

(∇ f (x̄)∗
)−1

N̂s(x̄; f −1(�)
) = N̂s(ȳ; � ∩ f (X)

)

is fulfilled. Furthermore, we have the equality

N̂s(x̄; f −1(�)
) = ∇ f (x̄)∗ N̂s(ȳ;� ∩ f (X)

)

provided that the mapping f is RMR at x̄.
(ii) Assume that the original mapping f : X → Y is metrically regular at x̄. Then we

have the equalities
(∇ f (x̄)∗

)−1
N̂s(x̄; f −1(�)

) = N̂s(ȳ; �),

N̂s(x̄; f −1(�)
) = ∇ f (x̄)∗ N̂s(ȳ; �).

Proof Assertion (i) is justified similarly to the proof of Corollary 4.4 with the use
of Theorem 6.1 instead of Theorem 4.2. Asserting (ii) follows from (i) by a simple
observation that ȳ ∈ int f (X) if f : X → Y is metrically regular at x̄, and hence the
set f (X) can be removed from the corresponding formulas in (i). ��

Next we consider the so-called convexified normal cone to � ⊂ X at x̄ ∈ � defined
as the norm closure “cl ” in X∗ of the convex hull “co ” of the limiting normal cone
Eq. 2.2 by

N(x̄;�) := clco N(x̄; �). (6.8)

To compare Eq. 6.8 with the Clarke normal cone NC(x̄; �) defined in general Banach
spaces [6], we use the relationship

NC(x̄; �) = cl∗co N(x̄; �) (6.9)

established in [17, Theorem 3.57] provided that X is Asplund and � is locally closed
around x̄, where cl∗ stands for the weak∗ closure in X∗. It follows from Eqs. 6.8,
6.9, and the Mazur weak closure theorem that N(x̄; �) = NC(x̄; �) for closed sets in
reflexive spaces.

Employing now the results of Section 5 on limiting normals to direct and inverse
images of sets, we derive the corresponding results for the convexified normal cone
Eq. 6.8 in general Banach spaces and hence for its Clarke counterpart for locally
closed subsets of reflexive spaces. We start with the following simple proposition.

Proposition 6.3 (convexified normal cone to direct images) Let f : X → Y be a
mapping between Banach spaces, and let � be a nonempty subset of X. Having
x̄ ∈ � with ȳ := f (x̄), assume that f is strictly differentiable at x̄ and that the restricted
mapping f : � → f (�) is metrically regular at x̄. Then we have the inclusion

N
(
ȳ; f (�)

) ⊂ (∇ f (x̄)∗
)−1(

N(x̄; �)
)
, (6.10)
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which holds as equality provided that either ∇ f (x̄) is isomorphic or N(x̄; �) =
N̂(x̄; �).

Proof Using definition (6.8) and inclusion (5.1) of Theorem 5.2, which holds under
the assumptions made, we get

N (ȳ; f (�)) ⊂ clco
[(∇ f (x̄)∗

)−1
(N(x̄;�))

]
⊂ clco

[(∇ f (x̄)∗
)−1

(
N(x̄;�)

)]
. (6.11)

It easy follows from the linearity and continuity of the operator ∇ f (x̄)∗ : Y∗ → X∗
that the set (∇ f (x̄)∗)−1(N(x̄; �)) is closed and convex. Thus Eq. 6.11 implies Eq. 6.10.

The converse inclusion to Eq. 6.10 obviously holds if the operator ∇ f (x̄) : X →
Y is an isomorphism. On the other hand, the assumption N(x̄; �) = N̂(x̄;�) and
equality (4.6) in Theorem 4.2 yield that

(∇ f (x̄)∗
)−1(

N(x̄; �)
) = (∇ f (x̄)∗

)−1(
N̂(x̄; �)

) = N̂
(
ȳ; f (�)

) ⊂ N
(
ȳ; f (�)

)

justifying the equality in Eq. 6.10 and thus completing the proof of the proposition.
��

The next result concerning the convexified normal cone Eq. 6.8 to inverse images
of sets under strictly differentiable mappings is significantly more involved.

Theorem 6.4 (convexified normals to inverse images) Let f : X → Y be a mapping
between Banach spaces, and let � be a subset of Y such that ȳ := f (x̄) ∈ � for some
x̄ ∈ X at which f is strictly differentiable. The following assertions hold:

(i) If ∇ f (x̄) : X → Y is surjective, then

N
(
x̄; f −1(�)

) = ∇ f (x̄)∗N(ȳ; �). (6.12)

(ii) Let X be Asplund, let Y = IRn, and let � be locally closed around ȳ. Then we
have

N
(
x̄; f −1(�)

) ⊂ ∇ f (x̄)∗N(ȳ;�) (6.13)

provided that the qualification condition

ker ∇ f (x̄)∗ ∩ N(ȳ; �) = {0} (6.14)

is satisfied. The equality holds in Eq. 6.13 if in addition N(ȳ; �) = N̂(ȳ; �).

Proof Under the assumptions in (i) we have from [17, Theorem 1.17] that

N
(
x̄; f −1(�)

) = ∇ f (x̄)∗N(ȳ; �) ⊂ ∇ f (x̄)∗N(ȳ; �). (6.15)

The set ∇ f (x̄)∗N(ȳ; �) in Eq. 6.15 is obviously convex. Let us show that it is closed
in the norm topology of X∗ under the imposed surjectivity assumption on ∇ f (x̄).
Indeed, pick any x∗ ∈ cl

[∇ f (x̄)∗N(ȳ; �)
]

and find sequences of y∗
k ∈ N(ȳ; �) and
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x∗
k = ∇ f (x̄)∗y∗

k for k ∈ IN such that x∗
k → x∗ as k → ∞. Taking any (x∗

m, y∗
m) and

(x∗
l , y∗

l ) from the above sequences and using the surjectivity of ∇ f (x̄), we get

‖x∗
m − x∗

l ‖ = ‖∇ f (x̄)∗y∗
m − ∇ f (x̄)∗y∗

l ‖ ≥ μ‖y∗
m − y∗

l ‖
with some constant μ > 0; see [17, Lemma 1.18]. This implies that {y∗

k} is a Cauchy
sequence in the norm topology of Y∗, and hence it converges to an element y∗ ∈ Y∗,
which surely belongs to the cone N(ȳ; �) due to the norm-closedness on the latter
in Y∗. By this and the continuity of ∇ f (x̄)∗ : Y∗ → X∗, we have x∗ = ∇ f (x̄)∗y∗ ∈
N(ȳ; �), which justifies the norm-closedness of the set ∇ f (x̄)∗N(ȳ; �) in X∗. Thus
taking the convex closure of the sets in Eq. 6.15, we arrive at the inclusion “⊂” in
Eq. 6.12. The converse inclusion “⊃” in Eq. 6.12 easily follows from the one

N
(
x̄; f −1(�)

) ⊃ ∇ f (x̄)∗N(ȳ; �)

in Eq. 6.15 by taking the convex closure on both sides therein and using the linearity
and continuity of the operator ∇ f (x̄)∗. This completes the proof of assertion (i) in
the theorem.

To justify assertion (ii), we employ the well-developed calculus of limiting normals
in Asplund spaces [17] that do not require restrictive assumptions of the surjectivity
type as in (i). By [17, Theorem 3.8], which holds under the assumptions imposed in
(ii) for the fulfillment of Eq. 6.13, we get the inclusion

N
(
x̄; f −1(�)

) ⊂ ∇ f (x̄)∗N(ȳ; �)

that implies due to definition (6.8) that

N
(
x̄; f −1(�)

) ⊂ ∇ f (x̄)∗N(ȳ;�). (6.16)

To get Eq. 6.13 from Eq. 6.16, it is sufficient to prove that the (convex) set

� := ∇ f (x̄)∗N(ȳ;�) (6.17)

is closed in the norm topology of X∗. Take a sequence {x∗
k} ⊂ � that converges to

some x∗ ∈ X∗ as k → ∞ and find by Eq. 6.17 a sequence {y∗
k} ⊂ Y∗ such that

x∗
k = ∇ f (x̄)∗y∗

k and y∗
k ∈ N(ȳ; �), k ∈ IN. (6.18)

Let us show that the sequence {y∗
k} in Eq. 6.18 is bounded under the assumed

qualification condition (6.14). If it is not the case, then there is a subsequence of
{y∗

k} such that (without relabeling) ‖y∗
k‖ → ∞ as k → ∞. We have from the equality

in Eq. 6.18 that

x∗
k

‖y∗
k‖

= ∇ f (x̄)∗
(

y∗
k

‖y∗
k‖
)

, k ∈ IN. (6.19)

and can assume due to the finite dimensionality of Y that ỹ∗
k := y∗

k/‖y∗
k‖ → y∗ as k →

∞ for some y∗ with ‖y∗‖ = 1. It follows that y∗ ∈ N(ȳ;�), since N(ȳ; �) is a closed
cone. By passing to the limit in Eq. 6.19 as k → ∞ and using the continuity of the
operator ∇ f (x̄)∗, we get y∗ ∈ ker ∇ f (ȳ)∗ and arrive therefore at a contradiction with
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the qualification condition (6.14). Thus the sequence {y∗
k} is bounded in Y∗ = IRn,

which implies that

x∗ ∈ ∇ f (x̄)∗y∗ ⊂ N(ȳ; �)

by passing to the limit in Eq. 6.18 as k → ∞. This justifies inclusion (6.13). The
converse inclusion to Eq. 6.13 follows under the condition N(ȳ; �) = N̂(ȳ; �) from
the one

N̂
(
x̄; f −1(�)

) ⊃ ∇ f (x̄)∗ N̂(ȳ; �)

established in [17, Theorem 1.14(i)] for mappings f : X → Y between Banach spaces
that are merely Fréchet differentiable at x̄. This completes the proof of the theorem.

��
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