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Abstract This paper deals with the differential inclusion of sweeping process associ-
ated, on an interval /, with the normal cone to a moving set C(¢). Under a Lipschitzian
variation of the set-valued mapping C(-) and under the prox-regularity assumption
of C(¢), it is shown that one can regularize the sweeping process to obtain a family of
classical differential equations whose solutions exist on a fixed appropriate interval
and converge to the solution of the sweeping process on this interval. The general
case where C(f) moves in an absolutely continuous way is reduced to the previous
one to obtain the existence and uniqueness of solution on all the interval [.

Keywords Moreau’s sweeping process - Normal cone - Differential inclusion -
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Mathematics Subject Classifications (2000) Primary 34A60 - 49J52 -
Secondary 49J24 . 49J53

1 Introduction

The paper deals with the differential inclusion

u(t) € —Ncg (u(t))
(£) {u(To) =a e C(Ty).

where [Ty, T] is a fixed interval with 0 < Ty < T, C(¥) is a closed subset of a Hilbert
space H for each t € [Ty, T], and u(Ty) = a is the initial condition. Here N¢)(-)
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320 L. Thibault

denotes (see the next section) the Mordukhovich or basic normal cone to the closed
set C(t), see the book [22] by Mordukhovich. Throughout, we will consider only the
concept of absolutely continuous solutions. So a solution of (E) will be an absolutely
continuous mapping u(-) from [Ty, T] into H such that u(Ty) = a, u(t) € C(¢) for all
te [Ty, T, and it(t) € —N¢)(u(t)) for almost all ¢ € [Ty, T]. It is classical for the
existence of absolutely continuous solutions to assume that the closed set C(f) moves
in an absolutely continuous way (see Eq. 2.8, in the next section, for the definition).
With this absolute continuity assumption for C(-), it is easy to see that u(r) € C() for
all t € [Ty, T1 whenever this inclusion holds almost everywhere and hence, in partic-
ular, when the first inclusion in (E) holds. As formulated the differential inclusion
(E) has been introduced and thoroughly studied in the 70s by Moreau [23-25] under
the assumption that all the sets C(¢) are convex. The name of Sweeping process has
been used in [23, 25]. Under a general closedness property (with respect to (¢, x)) of
the Clarke normal cone, the existence of solutions for (E) is proved in [30] in the
finite dimensional setting with the Clarke normal cone in place of the Mordukhovich
normal cone. Recently, again in the finite dimensional setting and with the Clarke
normal cone, the authors in [2, 11, 29] showed that the differential inclusion (E) (with
the Clarke normal cone) has always at least a solution provided that C(f) moves in
an absolutely continuous way. The mechanical motivation and interpretation of (E)
can be found in [25, 26]. The differential inclusion (E) or some of its variants also
appear in modelizations in several other fields as resource allocation mechanisms in
economics (see, e.g., [14, 18]), complementarity systems (see [5]), dissipative systems
in electrical circuits (see [19]), crowd motion modelization (see [21]), etc. See also
[7-9] for other contributions.

In the papers [4, 11, 15, 16], existence (and uniqueness) results for (E) have been
established in Hilbert space and when the closed sets C(f) are merely prox-regular
(see the next section for the definition) by proving the convergence of the Moreau
catching-up algorithm in such a case. The prox-regularity concept is known to play a
crucial role in the generalized interpretation or study of: curvature (see [17]), geo-
desics (see [6]), second order analysis of non differentiable functions (see [28]),
behavior of some classes of nonsmooth functions (see [1] and the references therein),
evolution equations associated with subdifferentials of functions (see, e.g., [20]), etc.
The catching-up algorithm in [25] is constructed with a discretization (¢;) of time and
taking up = a and u(t;1) := proj (., (). The well-posedness of such an algorithm in
the convex case is clear. In [4, 15] it is proved that, under the prox-regularity of C(¢),
appropriate choices of #; make that the algorithm is still well-posed. The existence
of a solution in those two papers is based on the convergence of that algorithm. In
the present paper the approach is different. In the convex case (and more generally
for differential inclusions associated with maximal monotone operators) it is known
that one can regularize (see [23]) the normal cone of the convex set C(¢) (i.e., the
subdifferential of its indicator function) to obtain a usual differential equation

1 (1) = —(1/2) Vg, (1)

R(E
(RED w,(To)) =a

whose solution u; (-) on [Ty, T] (recall that deC(f)(') is Lipschitzian on some appro-
priate bounded sets) verifies that the family u, (-) converges uniformly on [T}, 7] to
a solution of (E). One of the interests of such a process is that the solution of (FE)
is realized as the limit of solutions of appropriate classical differential equations and
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hence the machinery of classical differential equations can be used in the study of
various questions about the solution. Our aim is to show that, when the set C(¢) is
p-prox-regular and moves in a Lipschizian way with y as Lipschitz modulus, there
exists some 6 > 0 (independent of A) such that the regularized differential equation
(R(E)) is well-posed on [Ty, Ty + 0] with a unique solution u; (-) on [Ty, Ty + 0] and
that the family (u;(-)), still converges uniformly on [Ty, Ty + 6] (when A | 0) to a
solution of (E) on [Ty, Ty + 6]. The existence and uniqueness of solution of (E) is
then derived on all the interval [Ty, T] under the weaker assumption of absolute
continuity of C(-).

2 Preliminaries and Statement of the Main Result

Our main result in the paper concerns the sweeping process associated with prox-
regular sets. Throughout H will be a real Hilbert space. As we will see below, the
prox-regularity of a set is strongly connected with some properties of the normal
cone associated with this set.

One among the normal cone notions that we will use in this paper is the one
related to the Fréchet subdifferential. Let f: H — R U {+o00} be a lower semicon-
tinuous (Isc, for short) function and let x € H be a point where f(x) is finite. One
says that a vector ¢ € H is a Fréchet subgradient of f at x when for any real number
& > 0 there exists some real number n > 0 such that

(¢, ¥ —x) < f(X) = f(x) +¢llx’' — x| forall X' € B(x,n), (2.1)

where B(x, n) denotes the open ball centered at x with radius n. The set of all Fréchet
subgradients of f at x, denoted by F) f(x), is called the Fréchet subdifferential of f at
x. If f(x) is not finite, one puts 5f(x) ={.

The Fréchet subdifferential enjoys only fuzzy calculus rules (see, e.g., [22]). A
limiting process is hence needed for a robust rich calculus. A vector ¢ € H (see [22])
is a basic (or limiting) subgradient of f at x (with f(x) < 4+o00) when there are a
sequence (x,, f(x,)), converging strongly in H x R to (x, f(x)) and a sequence (£,),
converging weakly to ¢ with ¢, € F) f(x,). As above the set of all basic subgradients of
f at x is called the Mordukhovich or basic subdifferential of f at x and it is denoted
by df(x). For the exact statements of the calculus rules of the basic subdifferential
in Hilbert space (and more general infinite dimensional spaces) and for several
applications in variational analysis, optimal control theory, economics etc., we refer
the reader to the book [22] by Mordukhovich.

When f is the indicator function s of a closed subset S C H, that is, ¥g(x) = 0 if
x € Sand Y¥s(x) = +00 otherwise, the Frégpet subdifferential of g at x is the Fréchet
normal cone to S at x and one denotes N(S, x). Translating Eq. 2.1 we see that a
vector ¢ is then in N(S, x) when for any positive number ¢ there is a positive number
n such that

(¢, X —x) <eg||x' —x|| forallx' € SN B(x, n). (2.2)

Also, ]V(S, x) =@ whenx ¢ S.

In the same way, a basic subgradient of v gives a basic normal vector to S. So,
a vector ¢ € H belongs to the Mordukhovich or basic normal cone N(S, x) when
there exist a sequence (x,), converging strongly to x with x,, € S and a sequence (),
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converging weakly to ¢ with ¢, € IV(S, X,). One also has N(S,x) =@ when x ¢ S.
Sometimes it may be convenient to write Ng(x) in place of N(S, x).

Let p €]0, +o00]. Extending slightly the finite dimensional definition of positively
reached sets of Federer (see [17]), the closed set S is (uniformly) p-prox-regular (see
[27]) when any point x in the open p-enlargement of

U,(S) ={ue H:ds(u) < p}

has a unique nearest point proj s(x) in S and the mapping proj s is continuous over
Us(p). Here ds(x), also denoted by d(x, S), is the distance from the point x to the set
S. In [27] the expression of prox-regularity is used since it is proved there that the
corresponding local property is equivalent to the concept of prox-regularity of the
indicator function s, concept introduced for functions by Poliquin and Rockafellar
(see [28]). In fact the paper [27] was motivated by a geometrical characterization, for
a closed set of a Hilbert space, of the prox-regularity near a point of the indicator
function of the set. A first characterization in terms of the normal cone (see [27]) is

that for any nonzero vector ¢ € Ng(x) one has x € Projg(x + H%Hg), where Projg(y) is
the set (eventually empty) of all nearest points of y in S. Translating this in the fact

that forall x’ € §
P 2
xX—|x+—
( ||<:||§>

2

o s

Iqf
we see that this is equivalent to
/ ”; ” / 2 /
(¢, x —x) < 2—||x — x| forallx' € S. (2.3)
P
The latter inequality, in particular, implies that
(€' =t x—x) =~ —x|? (24)

for all ¢ € Ng(x) and ¢’ € Ng(x') with ||| < p and ||| < p. In fact, in [27] it is
proved that Eq. 2.4 characterizes the p-prox-regularity. So, in the particular case
where p = 400, we obtain the monotonicity of the normal cone to S and hence by
[13] one recovers the fact that the p-prox-regularity of the closed set S with p = co
corresponds to its convexity. It is also shown in [27] that the p-prox-regularity of S is
equivalent to

the continuous differentiability over U, (S)
{ of the square distance function dzs(-) to S. (25)
Further (see, [10, 12, 27])
V ((1/2)d5) (x) = x — proj s(x) for any x € U,(S) (2.6)
and for any positive number § < p and x, x’ € Us(S) one has
lIproj s(x) — proj s(x)|| < flx = X1 2.7)

p—95
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Another characterization of the p-prox-regularity that we will need in the third
section is the following one due to M. Bounkhel and L. Thibault.

Proposition 2.1 [4, Theorem 3.1] The closed set S is p-prox-regular if and only if for
all x € U,(S) and all { € dds(x) one has

(¢.x' —x) < X" = xII? + ds(x') — ds(x)

= p—ds(x)

forall X' € H with ds(x') < p.

For other properties of p-prox-regular sets, we refer to [6, 10, 12, 17, 27]. We
emphasize, for example, that for prox-regular sets all the normal cones coincide:
Proximal, Fréchet, Mordukhovich, and Clarke normal cones.

Let now Ty, T be two nonnegative real numbers with 7y, < 7 and, for each
t e [Ty, T], let C(¢) be a closed p-prox-regular set in H. One says that the closed
C(¢) moves in an absolutely continuous way with ¢ € [Ty, 7] when there exists an
absolutely continuous function v(-) from [Ty, 7] into R such that for all x € H

ld(x, C(®)) — d(x, C(s))| < [v(t) — v(s)| (2.8)

foralls,t € [Ty, T).
We can now state the main result of the paper.

Theorem 2.1 Assume that the closed sets C(t) are p-prox-regular and move in an
absolutely continuous way, that is, Eq. 2.8 holds with an absolutely continuous
function v(-) over [Ty, T].

(a) Ifthe function v(-) is Lipschitzian with a Lipschitz modulus y, then there exists a
positive constant 0, depending only on y and p, (in fact any 6 < min{%, T — Ty}
is appropriate) such that for any A > 0 the regularized differential equation

{L'lx (1) = —(1/20)Vdg, (. (1))
w,(To) = a

is well defined on [Ty, Ty + 6] and has a unique solution u,; (-) on [Ty, Ty + 0]
with ||, (0)|| < y. Further the family (u,(-)), converges uniformly on [Ty, Ty +
01, when A | 0, to a solution u(-) of (E) over the interval [Ty, Ty + 0].
Dividing [Ty, T] in a finite number of intervals with length less or equal than 0
yields the existence of a unique solution u(-) of (E) over [Ty, T]. Further ||ii(?)|| <
y foralmost all t € [Ty, T).

(b) Ifv() is merely absolutely continuous, then a change of time variable reduces the
problem to (a) and gives a unique solution u(-) of (E); the mapping u(-) further
verifies |i(®)|| < [0(t)| for almost all t € [Ty, T).

The proof of the theorem will be established in the next section through a series
of lemmas. The support function of the set C(f) which plays a crucial role in the
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development of the regularization process of [23] is useless in our framework since
the set C(¢) is not assumed to be convex.

3 Proof of the Theorem

We start the proof of Theorem 2.1 with the following lemma.

Lemma 3.1 Let z: [Ty, T] - H be an absolutely continuous mapping and let
g(t) :=d(z(®), C@)) forallt € [Ty, T). Assume that d(z(t), C(t)) < p forallt € [Ty, T].
Then fora.e. t € [Ty, T]

8(0g(n) < (2(0), z(1) — proj ¢y (2(1)) + gD v (D)].

Proof Put ¢(t, x) := (1/2)d*(x, C(t)) for all t € [Ty, T] and all x € H. The function g
is absolutely continuous because, by Eq. 2.8,

18(1) — g < [12(0) = 2 + [v(®) — v(s)]

foralls,t € [Ty, T]. Fixany ¢ €]7, T[ such that g, v, and z are derivable at t. Observe
that, according to Egs. 2.5 and 2.6, the function ¢(#, -) is continuously differentiable
around z(¢) and that

Vag(t, 2(1)) = z(t) — Proj ¢ (z(1)). (3.1)
Write for s €]0, T — ¢[ small enough
(1/25) [g(t +5)* — g®)°]
= (1/9)[p(t +5, 2t + ) — @(t, z(t + )]+ (/)@ z(t +5)) — @(t, 2(1)]
S (1/Dld(z(t +5), Ct+9) +d(zt +5), CO)] - (1/s)|v(t +5) —v@®)| +
+ (1/9)e, z(t + 5)) — @, 2(0O)]. (3.2)

As z is derivable at ¢, there exists £(s) 7 0 such that
N

z(t+5) = z(t) + sz(t) + se(s)
and this yields

/)t z(t+5) — @(t, z(1))]
< (/) z() +sz(0) — o, z(D)] +
+ (1/2)Nle®) | [d(z(t) + s2(t) + se(s)), C()) + d(z(t) + sz(t), C(®)].

Putting this inequality and Eq. 3.2 together we obtain
(1/25)[g(t +5)* — g(1)°]

< (1/Dld(z(t +5), Ct +5)) +d(z(t +5), C(O]-

(/) +5) —vO] + (/)@ 2(1) + 52(0) — (L, 2(1)] + n(s)
@Springer



Regularization of nonconvex sweeping process in Hilbert space 325

for some n(s) 7 0. Taking s | O, it follows that

&g < g (] + (Vap(t, 2(1), 2(D)

and the proof is complete according to Eq. 3.1. O

Fix any positive real number 6 < T — T, such that for every measurable sub-
set A C [Ty, T] with meas(A) < 0 one has fA [0(s)| ds < p/3. Observe that for any
x € B(a, p/3) and any ¢ € [Ty, Ty + 6] we have

t
d(x, C(t)) < d(a, C(To)) + llx —all + [ [9(s)|ds < 2p/3. (33)
Ty
Then, according to Eq. 2.5, for any ¢ € [Ty, T + 6] the mapping x — f(t, x) :=
V(l/2)d2c<t) (x) is well defined on B(a, p/3) and by Eq. 2.6

ft, x) =x —proj e (x).

Further, for any x;, x, € B(a, p/3) we have, by Eq. 3.3, the inequalities
d(x;, C(t)) <2p/3 < p

fori =1, 2, and hence taking § = 2p/3, the inequality (2.7) yields

lproj ¢ (x1) — proj e (x|l < (p/ (o — ) lIx1 — x2ll = 3[Ix1 — x2|.

Therefore, the mapping f(¢, -) is Lipschitzian over the ball B(a, p/3).

On the other hand, for any x € B(a, p/3), we claim that the mapping f(-, x) is
Bochner integrable on [Ty, Ty + 6]. If H is separable, the argument is straightforward
because the continuity of the function ¢ — d(x, C(¢)) (see Eq. 2.8) easily yields the
weak measurability of the bounded mapping f(-, x) and hence, under the separability
of H, the Bochner measurability and integrability of f(x,-). In fact, even if H
is separable or not, one can (see [3]) prove more, say f(x,-) is continuous on
[To, To + A].

Fix now any real number A > 0 and consider the differential equation over
[To, To + 6[x B(a, p/3)

o | u@ = —(1/20)VdZ , (u(t
A

The results just obtained above ensure us that this differential equation has a
(unique) solution u,(-) defined on its maximal interval of existence [Ty, T;[C
[To, To + 0L

The following lemma provides an upper bound for the derivative in ¢ of the
distance function from u, (¢) to C(t).

Lemma 3.2 Put g, (t) := du,(t), C(t)) for any t € [Ty, T;[. Then g, is locally ab-
solutely continuous on [Ty, T,[ and

&) < 0] — (1/Mgu(n) a.e.t € [T, Th .
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326 L. Thibault

Further, forallt € [Ty, T,[

t
50 < [ Jis)e ds.
Ty

Proof As d(u, (1), C(t)) < 2p/3 for any t € [Ty, T;[ by Eq. 3.3, we may take z(¢) =
u; (t) in Lemma 3.1. So using (E}), we obtain (with ¢(t, x) = (1/2)d?(x, C(t))) for
almost all t € [Ty, T,[

.08 < OO+ (Vap(t, u, (1), ;. (1)
= g O] — (/M Va9(t, u, ())]*
= g OO — (1/0)(8.(1))
because
Voo (t, un ()| = llua(®) — proj e ur (@)l = g ().
Fix any ¢ €]Ty, T,[ where g,(¢), 0(f), and 1, (¢) exist. The latter inequality entails
0 < POl -A/MNg@) ifg @) >0

and the inequality still holds if g; (f) = 0 because in this case the derivability of g,
at t ensures that g, (f) = 0. Indeed since g; > 0 and lin%(l /8)g:.(t + 5) exists, we have
5=

simultaneously lif{)l(l/s)gx(t +s) > 0 and lig(l/s)gA(t +5) < 0 and hence g, (¢) = 0.

So the first inequality of the lemma is proved. The second one is a consequence of
the first one and of the Gronwall inequality. O

The third lemma establishes an upper bound of the norm of the derivative of the
solution u, (-) of (EY).

Lemma 3.3 For almostallt € [Ty, T,[ one has

t
i () = (1/0)g. () < (1/1)e™7 . |9 (s)|e*/* ds

and hence
t
i Ol < (1/3) /T 16(s)] ds. (34)

If in addition the function ¥(-) is in LP([Ty, T]), with p €]1, co], then for almost all
t € [Ty, Tl

li @l < A/0 (0 /q) 101, (3.5)
where 1/p+1/q = 1.
Proof Writing

&.(0) = d(u, (1), C@®) = [lu,.(t) — proj ¢ (wa ()|l
@ Springer
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and observing, by (E7}) and Eq. 2.6, that for almost all ¢ € [Ty, T5[
My (1) = —(1/2) Vg, (i, (6) = — (1) — proj cq (ux (1)),
we obtain

[ D11 = (/M) . () — proj e (U ()1l = (1/2)8:.(0).

Taking the inequality of Lemma 3.2 into account, we get the first inequality of the
lemma. To see the second inequality, it suffices to write, for a.e t € [Ty, T} [, according
to the first one

t
lin (1) < (1/2)e"" / 5(s)le”/™ ds
To

t t
< (A /nye Pl /T ()l ds = (1/3) fT 10(s)] ds.

Assume now that v € L?([0, T]). Like above, write for a.e. t € [Ty, T;[

t 1/q
i1l < (1/2)e o]l U et/ ds]
To

= (/M o, [Ofq) e —etTm]
< A/ .

[}

The inequality (3.4) tells us that the mapping u; (-) is Lipschitzian on [Ty, T;[ with
a same Lipschitz modulus (1/ fTY; |0(s)| ds) on all [Ty, T,[. So (T), being finite), the
limit u; (T5) := lim u, () exists in H and the extended mapping u; (-) is Lipschitzian

on [Ty, T;] and ”uA(TA) —al < p/3.

To have a Lipschitz modulus of u; (-) independent of A, the inequality (3.5) leads
us to assume that v(-) is Lipschitzian with a constant modulus y on all [T, T], i.e.,
lo@®| < y for a.e. t € [Ty, T], to get that u, (-) is also Lipschitzian on [Ty, T;] with
y as a Lipschitz modulus. Under this assumption, we may suppose that the above
positive number 6 also verifies y6 < p/3. Then for u,(T;) := hm u; (f) obtained
above we have R

lua(T5) — all = lux(T5) — w(To)ll < y(To. — To) < p/3 (3.6)

and hence u; (.) (extended at T3) is a Lipschitzian solution over the closed interval
[Ty, T;]. Further T, = T, + 6 since otherwise Eq. 3.6 would allow us to extend u, (-)
on the right of 7; in a solution to the differential equation (E%) with the range of
the extension of u; () included in B(a, p/3), which would be in contradiction with the
maximality of the interval [Ty, T;[.

Our analysis establishes that, for any real number A > 0, the differential equation
relative now to the closed interval [Ty, T + 0] and denoted by

u(t) = (1/2A)Vd (u(®))
(Ey) { W(Ty) = a co
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328 L. Thibault

has a unique Lipschitzian solution u; () on all the closed interval [T, Ty + 0] with
w, ([To, To + 0]) C B(a, p/3).

Lemma 3.4 Assume that v(-) is Lipschitzian with modulus y on [Ty, T] and put a :=
4y? and B := 6y /p. Then for all positive numbers ©, u < p/(2y) one has

t
lleer (D) —u, (D] < a(X + M)/T exp(B(t —s))ds
forallt € [Ty, Ty + 0].

Proof Fix two any positive numbers A and p. Observe first that for any ¢ € [T, T +
0], according to Eq. 3.3, d(u,(t), C(t)) < 2p/3 since u; () € B(a, p/3). Further we
know by Eq. 2.7 that for any x;, x, with d(x;, C(¢)) < 2p/3 we have

lproj ¢ (x1) — Proj i (x2) | < 3lx1 — xaf|. (3.7)
Recalling (see Eq. 2.6) that
(1/2)Vd2C(,) (x) = x — proj cn(x) ford(x, C(¥)) < p (3.8)

and observing, according to Eq. 3.5 with p = oo and g = 1, that [|it; (1)|| < y, we see
by (E;) thatfora.e.t e [Ty, Ty + 0]

—(p/y)i,(t) € New (proj e (ua(8)) and || (o/y)in (D] < p.

So according to Eq. 2.4, for a.e. t € [Ty, Ty + 6]

(=11, () + 11, (1), PTOj (1) (U (1)) — PrOj () (U (1))
> —(y/p)Iproj ¢ (. (1) — Proj cq (u,. (0)|1>.

As, by (E,) and Eq. 3.8,
Proj o (Ui () = u; (1) — Ais (1),
the last inequality above and Eq. 3.7 entail for a.e. t € [Ty, Ty + 6]
(=il (6) + 11, (1), w3, (0) = M (1) — w, (1) + i, (0) = =By /) llur (1) — w, (O
and hence for 8 := 6y /p

2. (1) — 1, (1), u; (1) — uy, (D)
< Bl (® = wuu O + 2(. (1) — i, (0, My (1) — pit, ().

Putting « := 4y? and using the Lipschitz property with modulus y of u; (-) we obtain
fora.e.t € [Ty, Ty + 0]

d/dr(lux (1) — u, 1) < @A+ ) + Bllur(®) — u, (O] (3.9)
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Regularization of nonconvex sweeping process in Hilbert space 329

The Gronwall inequality allows us to conclude that for all t € [Ty, Ty + 6]

s, (1) = uu (O < 2 (h + M)/T exp(B(t —s)) ds
because u; (To) — u,(To) = 0. O

Observe now that Proposition 2.1 yields that, for a closed p-prox-regular subset
S of H, there exists some constant o > 0 such that for any x, x’ € Ug(2p/3) and any
¢ € dds(x)

(€. ¥ —x) <ds(x) — ds(x) + ol|lx' — x|°. (3.10)

Lemma 3.5 The family (u,(-)), converges uniformly on [Ty, To + 6] to a solution of
the differential inclusion

—u(t) € N (u(t))
u(Toy) =a

over the interval [Ty, Ty + 0].
Proof Lemma 3.4 ensures that the family (u,(-)), (for A | 0) verifies the Cauchy
property with respect to the norm of uniform convergence on the space C([Ty, Ty +
01, H) of continuous mappings from [Ty, Ty + 0] into H. This family then converges
uniformly on [T}, Ty + 6] to a continuous mapping u(-) when A | 0.

Now observe that if S is a p-prox-regular subset of H then for x € Ug(2p/3)

and & = (1/2)Vd§()Q with & # 0, we necessarily have dg(x) # 0 (since for x € S we
obviously have 0 € 9 ((1/ 2)d§) (x)) and hence

1 1
vVd = V(d> = —§&.
s 2./ d%(x) WO gw*

For such &, the inequality (3.10) yields for all x' € Us(2p/3)
(€, X' —x) < ds(x)ds(x') — d5(x) + ods0) ¥ — x|*

and the latter inequality still holds if & = 0 because in such a case dg(x) = 0.
Then for a.e. t € [Ty, Ty + 0] we have for all x' € H with d¢)(x') < 2p/3

(=i (), X' — up(0)) < (1/W)d e W () dew (X)) — dee @ () + o l1x — u(0))1]
and hence
(=i (), X' — () < yldee (X)) — dee @ (D) + o llx' — w01, (3.11)

since (1/A)dc)(u (1)) = |l ()]l < y, according to Lemma 3.3.

By the inequality ||, (¢)| < y for a.e. t € [Ty, Ty + 0], choose a sequence A, | 0
such that the sequence (i;,(-)), converges weakly in L%{([To, Ty + 0]) to some
mapping w(-). For each y € H, writing for Tp <s <t < Ty + 0

t
u, (1) — uy, (s) = / i, (1) dr,
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we see that

To+6

(U, (1) — 1, (5), ¥) = / (i, (0). (D)) dl.

Ty

which easily yields

t
u(t) —u(s) = / w(t) dr,

that is, «(-) is absolute continuous and i1(-) = w(-) a.e..
Further, by Mazur Lemma, some sequence of convex combinations of the form

m(n)

<kz rk’nukk) (with rr, > 0 and Z;”:(Z) rian = 1) converges strongly in L3,([To, Ty +
=n n

0]) to u(-). Extracting a subsequence if necessary, we may suppose that the above

sequence of convex combinations converges a.e. to i(-), that is, pointwise on some set

A C [Ty, Ty + 6] such that [Ty, Ty + 0]\ A has Lebesgue measure 0. Fix any t € A

and any x’ € H with d¢()(x') < 2p/3. We observe that

m(n) m(n)

D il (0, u(@) — w3, ()| <y > reallu@) = u, @]

k=n k=n

and hence

m(n)

D P i, (0), u(®) = 3, () — 0 (3.12)
k=n

m(n)
since it is easily seen that Y ry,|lu(f) — uy, ()| —> 0 because ||u(t) — u,, ()| —> 0
k= n— 00 n— 00
m(n) !
and Y r¢, = 1. The convergence (3.12) and the equality
k=n

m(n)

Z rk,n (L‘t)uk (t)7 x/ - u)»k (t)>

k=n

m(n) m(n)
= < 2 Tkalty, (1), X' — M(f)> + 2 Trn (i, (0, u(t) — uy, (1)

k=n k=n
give
m(n)

D rknli, (0, X' =, () —> (D), X' — u()). (3.13)
k=n

n— 00

Writing by Eq. 3.11

m(n)

D renl—i, (0, X' — 13, (1)

k=n
m(n) m(n)
<y |:dC(z) &) = Y rendew @, (0) + 0 Y reallx —w, (tﬂ :
k=n k=n
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and passing to the limit with n — oo we obtain through Eq. 3.13
(—it(0), X' — u(0)) < ylde () — dew @) + ollx’ — u@®|’]. (3.14)

Recalling (see Lemma 3.3) that dcq) (us (1)) = Mia (1) | < Ly we see that deg) (us, () —
O whenn — oo and hence d¢) (u(t)) = 0, thatis, u(f) € C(¢). Taking any x’ € C(¢) (i.e.
dcq(x') = 0) in Eq. 3.14 we see that

(—u(t), X' —u@)) < yo|x' —u@®|?
which gives
—ii(t) € N () © New (@)).

Finally the uniform convergence of (i), to u implies u(7Ty) = a. The proof of the
lemma is then complete. O

The existence result over all the interval [T, 7] can be obtained through the
existence of the truncated interval above under the Lipschitzian behavior of the
variation function v(-).

Lemma 3.6 Assume that the moving set C(t) moves in a Lipschitzian way over the
interval [Ty, T, that is, the above function v(-) is Lipschitzian with some constant
y 2 0 as a Lipschitz modulus over [Ty, T). Then the differential inclusion (E) has
a unique solution over all the interval [Ty, T1.

Proof The uniqueness has been already discussed and proved in [15]. Fix an integer
k € N such that (T — Ty)/k < p/(3y). Without loss of generality we may then take
for the positive real number 6 that has been fixed above with 6 < p/(3y) the
real number (T — Ty)/k, i.e., 0 = (T — Ty)/k. Put T; = Ty +i0 fori=0,1,--- , k.
Lemma 3.5 provides a Lipschitzian solution u; (with y as Lipschitz modulus) on the
interval [Ty, T;] of the differential inclusion

—u(t) € N (u(t))
u(Ty) = a.

As u (T)) € C(T)) we may apply again Lemma 3.5 with 7 in place of T, and with
u1(Ty) as initial condition to obtain a Lipschitzian solution (with y as Lipschitz
modulus) over the second closed interval [T, T»] for the differential inclusion

{ —u(t) € Nepy ()
u(Ty) = u (Th).

We may proceed in this way up to the last closed interval [Tk_;, Tk]. Defining the
mapping u(-) on all the interval [Ty, T] by putting u(¢) := u;(¢) for any ¢t € [T;_;, T}],
withi =1, .-, k, itis easily seen that u(-) provides a Lipschitzian (with y as Lipschitz
modulus) solution over [T, 7] of the differential inclusion (E). O

The last step is the reduction of the absolutely continuous case to the Lipschitzian
one. So, we suppose now that the function v(-) is absolutely continuous on [T}, T].
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332 L. Thibault

Put w() = f;o |[0(r)| dr for each t € [Ty, T]. The function w(-) is non negative,
w(Ty) =0,andforall x e Hand t,t, € [Ty, Tl witht; < 1,

15}

ld(x, C(2)) —d(x, C(t1)| < / o) dr = w(t) — w(t). (3.15)
151

We follow now the method of reduction of Moreau [23]. Observe that Eq. 3.15 entails

that when w(t;) = w(t;) we have C(t;) = C(t,). This allows us to define a set-valued

mapping D : [0, w(Ty)] = H by putting

D(s)=C@) forw(@) =s
and Eq. 3.15 gives for all x € H and sy, s, € [0, w(T)] with s; = w(#;)
ld(x, D(s2)) —d(x, D(s1))| = |d(x, C(12)) — d(x, C(t1))]
< (w(t) —w(t)] = |s2 —sil,

that is, the closed p-prox-regular set D(s) moves in a Lipschitzian way with 1 as
Lipschitz modulus. Lemma 3.6 says that the differential inclusion

2(s) € =Np(s(2(s))
(In) { 20)=a
has a Lipschitzian solution z(-) on [0, w(7)] with 1 as Lipschitz modulus. Put u(¢) :=
z(w(t)) forallt € [Ty, T]. As

u(ty) —u(t) = / [0(r) |z (w(r) dr

41

forall¢), t, € [Ty, T] with t; < 1,, it is easily seen through (/p) and the cone property
of Np(+) that u(-) is a solution of (E) on [T}, T] and that [[&z(¢)| < |0(?)| for a.e.
te[Ty, T].

This completes the proof of Theorem 2.1.

References

1. Aussel, D., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related
concepts. Trans. Amer. Math. Soc. 4, 1275-1301 (2005)

2. Benabdellah, H.: Existence of solutions to the nonconvex sweeping process. J. Differential
Equations 164, 286-295 (2000)

3. Bernard, F., Thibault, L., Zlateva, N.: Prox-regular sets and epigraphs in uniformly convex
Banach spaces: normal regularity and other properties (to appear)

4. Bounkhel, M., Thibault, L.: Nonconvex sweeping process and prox-regularity in Hilbert space. J.
Nonlinear Convex Anal. 6, 359-374 (2001)

5. Brogliato, B., Daniliidis, A., Lemaréchal, C., Acary, V.: On the equivalence between comple-
mentarity systems, projected systems and differential inclusions. Syst. Control. Lett. 6, 45-51
(2005)

6. Canino, A.: p-Convex sets and geodesics. J. Differential Equations 75, 118-157 (1988)

7. Castaing, C.: Version aléatoire du probleme de rafle par un convexe, Séminiare d’Analyse
Convexe de Montpellier, Exposé 1 (1974)

8. Castaing, C., Duc Ha, T.X., Valadier, M.: Evolution equations governed by the sweeping process.
Set-Valued Anal. 1, 109-139 (1993)

9. Castaing, C., Valadier, M.: Convex analysis and measurable multifunctions. Lecture Notes in
Mathematics, vol. 580. Springer Berlin (1977)

@ Springer



Regularization of nonconvex sweeping process in Hilbert space 333

10.

11.

12.

13.

14.

15.

16.

17.
18.

19.

20.

21.
22.

23.

24.

25.

26.

217.

28.

29.

30.

Clarke, F.H., Stern, R.J., Wolenski, P.R.: Proximal smoothness and the lower C? property. J.
Convex Anal. 2, 117-144 (1995)

Colombo, G., Goncharov, V.V.: The sweeping process without convexity. Set-Valued Anal. 7,
357-374 (1999)

Colombo, G., Goncharov, V.V.: Variational inequalities and regularity properties of closed sets
in Hilbert spaces. J. Convex Anal. 8, 197-221 (2001)

Correa, R., Jofre, A., Thibault, L.: Subdifferential monotonicity as characterization of convexity.
Numer. Funct. Anal. Optim. 15, 531-536 (1994)

Cornet, B.: Existence of slow solutions for a class of differential inclusions. J. Math. Anal. Appl.
96, 130-147 (1983)

Edmond, J.F., Thibault, L.: Relaxation of an optimal control problem involving a perturbed
sweeping process. Math. Programming 104, 347-373 (2005)

Edmond, J.F., Thibault, L.: BV solutions of nonconvex sweeping process differential inclusions
with perturbation. J. Differential Equations 226, 135-179 (2006)

Federer, H.: Curvature measures. Trans. Amer. Math. Soc. 93, 418-491 (1959)

Henry, C.: An existence theorem for a class of differential equations with multivalued right-hand
side. J. Math. Anal. Appl. 41, 179-186 (1973)

Lozano, R., Brogliato, B., Egeland, O., Maschke, B.M.: Dissipative Systems Analysis and Con-
trol. Springer London, CCE Series (2000)

Marcellin, S., Thibault, L.: Evolution problems associated with primal lower nice functions. J.
Convex Anal. 13, 385-421 (2006)

Maury, B., Venel, J.: Un modéle de mouvement de foule. ESAIM Proc. 18, 143-152 (2007)
Mordukhovich, B.S.: Variational analysis and generalized differentiation I and II. Comprehen-
sive Studies in Mathematics, vol. 330 and 331. Springer (2005)

Moreau, J.J.: Rafle par un convexe variable I, Séminaire d’Analyse Convexe de Montpellier,
Exposé 15 (1971)

Moreau, J.J.: Rafle par un convexe variable II, Séminaire d’Analyse Convexe de Montpellier,
Exposé 3 (1972)

Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space.
J. Differential Equations 26, 347-374 (1977)

Monteiro Marques, M.D.P.: Differential Inclusions in Nonsmooth Mechanical Problems, Shocks
and Dry Friction. Birkhauser (1993)

Poliquin, R.A., Rockafellar, R.T., Thibault, L.: Local differentiability of distance functions.
Trans. Amer. Math. Soc. 352, 5231-5249 (2000)

Rockafellar, R.T., Wets, R.J.B.: Variational Analysis. Comprehensive Studies in Mathematics,
vol. 317. Springer (1998)

Thibault, L.: Sweeping process with regular and nonregular sets. J. Differential Equations 193,
1-26 (2003)

Valadier, M.: Quelques problemes d’entrainement unilatéral en dimension finie, Séminaire
d’Analyse Convexe de Montpellier, Exposé 17 (1992)

@ Springer



	Regularization of Nonconvex Sweeping Process in Hilbert Space
	Abstract
	Introduction
	Preliminaries and Statement of the Main Result
	Proof of the Theorem
	References




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


