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Abstract The Filippov–Ważewski relaxation theorem describes when the set of
solutions to a differential inclusion is dense in the set of solutions to the relaxed
(convexified) differential inclusion. This paper establishes relaxation results for a
broad range of hybrid systems which combine differential inclusions, difference
inclusions, and constraints on the continuous and discrete motions induced by these
inclusions. The relaxation results are used to deduce continuous dependence on
initial conditions of the sets of solutions to hybrid systems.
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1 Introduction

The Filippov–Ważewski relaxation theorem describes when solutions to a differen-
tial inclusion

ż(t) ∈ F(z(t)) for almost all t ∈ [0, T], (1)

form a dense subset, in the uniform metric, of the set of solutions to a relaxed
differential inclusion

ż(t) ∈ con F(z(t)) for almost all t ∈ [0, T]. (2)

In Eq. 2, con F(z) stands for the closed convex hull of F(z), and the key assumption
of the relaxation result is that F be Lipschitz continuous (in the sense of set-valued
mappings). The goal of this paper is to extend the relaxation result to the setting of
hybrid inclusions.

Hybrid inclusions are a convenient framework for modeling and analysis of
hybrid dynamical systems. Such systems combine continuous evolution (flow) of their
states with discontinuous evolution (jumps), and are abundant in applications. In
particular, they result from applying hybrid feedback to (nonhybrid) control systems,
as required by the pursuit of robustness of feedback to measurement error; see, for
example, [11, 21, 27, 28, 32].

Following [15, 16], we work with hybrid inclusions that can be symbolically
written as

H :
⎧
⎨

⎩

ẋ ∈ F(x) x ∈ C

x+ ∈ G(x) x ∈ D
. (3)

That is, the state x can flow according to the flow map F when it is in the flow set C,
and it can also jump according to the jump map G from the jump set D. A precise
definition of a solution to H is stated in Section 2. We note that closely related models
of hybrid inclusions or “hybrid automata” can be found, for example, in [4, 6, 7, 12,
25]. See also Section 7.

By a relaxed hybrid inclusion we understand

Hcon :
⎧
⎨

⎩

ẋ ∈ con F(x) x ∈ C

x+ ∈ G(x) x ∈ D
. (4)

That is, the relaxed hybrid inclusion Hcon is obtained from the original H by
convexification of the flow map F.1 We are interested in describing when solutions
to H are dense in the set of solutions to Hcon, with respect to graphical distance. Such

1Convexification of F represents the consideration of generalized solutions to the differential inclu-
sion a la Krasovskii; see [24]. Such generalized solutions reflect the effect of vanishing perturbations
on the inclusion, and as such, agree with generalized solutions a la Hermes; see [18] and [17].
Corresponding notions of generalized solutions to difference equations or inclusions do not lead
to convexification of the right-hand side, and thus, convexification of G is not considered; see [23]
(the same comments apply to generalized solutions for hybrid systems; see [30]).
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a distance notion measures the distance between solutions of hybrid systems as the
distance between their graphs, appears as a natural and appropriate notion to use for
hybrid systems (see [15, 16, 25, 30] for some of its applications), and is closely related
to Skorokhod topology applied to solutions to hybrid systems (as used, for example,
by [7, 12]). In particular, solutions to two hybrid systems can be close to one another,
in the graphical distance, even if their domains are not the same; this is particularly
important in the hybrid setting (see Example 4.9).

One of the motivations for the pursuit of hybrid relaxation results is the analysis
of stability properties for hybrid systems, including hybrid systems resulting from
application of hybrid feedback algorithms to (classical) nonlinear control systems.
For example, the classical Filippov–Ważewski relaxation theorem was the key com-
ponent in deriving Lyapunov equivalent characterizations of input-to-state stability
(see [33, Theorem 1]), a concept that has proven valuable in studying robustness of
asymptotic stability in nonlinear control systems (see [31] and references therein).
Studying this concept in the hybrid setting yields a natural motivation for hybrid
relaxation results.

Obviously, a hybrid relaxation theorem will require the flow map F to be
Lipschitz continuous. However, this will be far from sufficient: the geometry of the
flow and jump sets, viability properties of the flow set under the flow map, and
(semi)continuity of the jump map G will all be relevant. In particular, conditions
involving the flow map and tangent cones to the flow set and the jump set will be
required (similar conditions have been used in the analysis of capture basins and
periodic solutions to hybrid systems in [4, 5]).

A special case of the hybrid system (3) and its relaxed version (4) is the constrained
differential inclusion ẋ ∈ F(x), x ∈ C and its relaxed version ẋ ∈ con F(x), x ∈ C.
Sufficient conditions for relaxation in such a case do exist in the literature; see [14]
and the references therein. The conditions in [14] exclude the existence of points on
the boundary of C at which F(x) is outward pointing. As such points often exist in
hybrid systems, we propose conditions for hybrid relaxation that in the special case
of constrained inclusions yield an alternative to the conditions of [14].

The relaxation theorem will also lead to results on continuous dependence of the
solution sets to hybrid inclusions on initial conditions (these are new even for the case
of the flow and the jump maps being functions). Mild assumptions on the regularity
of the data of H ensure that, for the relaxed hybrid inclusion Hcon, this dependence
is outer (or upper) semicontinuous: the limit of a graphically convergent sequence of
solutions to Hcon is a solution to Hcon; see [16] (the said mild assumptions are in part
motivated by accounting for the effects of measurement error in a general hybrid
control system; see [30]). The relaxation results, thanks to the fact that solutions to
H are solutions to Hcon, will imply under stronger assumptions that each solution to
Hcon with initial point ξ can be approximated by a solution to Hcon from any initial
point close enough to ξ . This is exactly inner (or lower) semicontinuous dependence
of solution sets to Hcon on initial conditions, which, combined with the generically
present outer semicontinuous dependence, leads to continuous dependence. Related
results on continuous dependence appeared, under quite restrictive conditions, in
[1, 25, 34], and, in a setting more related to the current one, in [7] (still, [7] excluded
multiple jumps at an instant and the flows were unconstrained).

A preliminary report on the results of this paper appeared as a conference
note [8].
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2 Preliminaries

2.1 Hybrid Systems

Following [16], we now make the concept of a solution to the hybrid inclusion H in
Eq. 3 precise (similar concepts of a solution, and the use of generalized time domains,
can be also found, for example, in [4, 6, 12]). A subset S ⊂ R�0 × N is a compact
hybrid time domain if S = ⋃J−1

j=0

([t j, t j+1], j
)

for some finite sequence of times 0 =
t0 � t1 � t2 ... � tJ (here, R�0 = [0, ∞) and N = {0, 1, 2, . . . }). The set S is a hybrid
time domain if for all (T, J) ∈ S, S ∩ ([0, T] × {0, 1, ...J}) is a compact hybrid time
domain; equivalently, if S is a union of a finite or infinite sequence of intervals
[t j, t j+1] × { j}, with the last interval, if it exists, possibly of the form [t j, T) with T finite
or T = +∞. For any hybrid time domain S, supt S = sup{t | ∃ j with (t, j) ∈ S}, sup j S =
sup{ j | ∃t with (t, j) ∈ S}, sup S = (supt S, sup j S), and length S = supt S + sup j S. For a
compact hybrid time domain, the suprema are in fact maxima.

A function x : S → R
n is a hybrid arc if S is a hybrid time domain and t �→ x(t, j)

is locally absolutely continuous for each j ∈ N. Given a hybrid arc x, we will write
dom x for the domain of x.

As suggested by Eq. 3, the data of the hybrid inclusion includes the flow map
F, the flow set C, the jump map G, the jump set D, and will also include the state
space O. Technical assumptions on the data will be given when needed; the general
assumptions, in force throughout the paper, are as follows.

Standing Assumption

• The set O ⊂ R
n is open;

• The sets C and D are subsets of O;
• F : O →→ R

n is a set-valued mapping with nonempty and compact values;
• G : O →→ R

n is a set-valued mapping.

A hybrid arc x : dom x → O is a solution to the hybrid system H if x(0, 0) ∈
C ∪ D and:

(S1) For all j ∈ N and almost all t such that (t, j ) ∈ dom x,

x(t, j ) ∈ C, ẋ(t, j ) ∈ F(x(t, j )); (5)

(S2) For all (t, j) ∈ dom x such that (t, j + 1) ∈ dom x,

x(t, j ) ∈ D, x(t, j + 1) ∈ G(x(t, j )). (6)

A solution is called compact if its graph is compact (equivalently, if its domain is
compact) and complete if its domain is unbounded.

2.2 Graph Distance

Given a closed unit ball B ⊂ R
k in some norm and two sets S1, S2 ⊂ R

k, the
Pompeiu–Hausdorff distance between S1 and S2 is

d(S1, S2) = inf {η � 0 | S1 ⊂ S2 + ηB, S2 ⊂ S1 + ηB} .

If, given a sequence of sets Si, we have d(Si, S) → 0 as i → ∞ for some set S,
then the sets Si converge to S (for sequential definitions of set convergence, see
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[29, Chapter 4]). The converse is not true, unless all Si’s and S are contained in
some bounded set; see [29, Example 4.13]. Given two (set-valued or not) mappings
M1, M2 : R

l →→ R
m, the graphical distance between M1 and M2 is

dgph(M1, M2) = d(gph M1, gph M2),

where d(·, ·) is the Pompeiu–Hausdorff distance in R
l × R

m.
We will be particularly interested in set-valued mappings from R

2 to R
n (hybrid

arcs can be understood in that way). For convenience, we will consider B ⊂ R
n+2

given by IB1 × IB1 × IBn, where IB1 and IBn are Euclidean balls in R and R
n

(we will usually skip the superscript, and write IB for the Euclidean ball in the
appropriate, from the context, space). In other words, B is the unit ball in the
norm max{|α|, |β|, ‖γ ‖} for α, β ∈ R, γ ∈ R

n. Here and in what follows, ‖ · ‖ is
the Euclidean norm in the appropriate space (usually R

n).
Consider the condition

|t − s| � ε, ‖x(t, j) − y(s, j )‖ � ε. (7)

Given two hybrid arcs x: dom x → R
n, y: dom y → R

n and ε < 1, dgph(x, y) � ε if
and only if

• For each (t, j ) ∈ dom x there exists (s, j ) ∈ dom y such that Eq. 7 holds, and
• For each (s, j ) ∈ dom y there exists (t, j ) ∈ dom x such that Eq. 7 holds.

(If ε � 1 is considered, dgph(x, y) � ε translates to inequalities involving x(t, j ) and
y(s, j ′) with j �= j ′; in contrast to the inequality in Eq. 7.)

2.3 Filippov–Ważewski Theorem

The version of the Filippov–Ważewski relaxation theorem given below is a direct
combination of [13, Theorem 1] and [3, Chapter 2, Section 4, Theorem 2] (cf. [13,
Theorem 3]). A set-valued mapping �: R

n →→ R
n is locally Lipschitz continuous if

for each x ∈ R
n there exists a neighborhood U of x and a constant L > 0 such that

for each x′, x′′ ∈ U , �(x′) ⊂ �(x′′) + L‖x′ − x′′‖IB.

Theorem 2.1 Let � : R
n →→ R

n be locally Lipschitz continuous and have nonempty
and compact values. For any absolutely continuous z: [0, T] → R

n such that ż(t) ∈
con �(z(t)) for almost all t ∈ [0, T] and any ε > 0 there exists δ > 0 such that, for any
y0 ∈ z(0) + δIB, there exists an absolutely continuous y: [0, T] → R

n such that y(0) =
y0, ẏ(t) ∈ �(y(t)) and ‖z(t) − y(t)‖ � ε for almost all t ∈ [0, T].

The conclusion of the theorem could in fact be termed “strong relaxation”, to
underline that appropriate solutions to the inclusion ẏ(t) ∈ �(y(t)) exist from all
initial points sufficiently close to z(0), rather than just from some initial point. Such
distinction will become particularly important in the hybrid setting.

To see how the conclusions of Theorem 2.1 fail in absence of local Lipschitz
continuity of �, it is enough to consider the case of � : R → R being a function
given by �(z) = √|z|. Local Lipschitz continuity is, in general, necessary even if the
conclusions of the theorem above are weakened to say that for any ε there exists
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y: [0, T] → R
n such that ẏ(t) ∈ �(y(t)) and ‖z(t) − y(t)‖ � ε for almost all t ∈ [0, T],

without restricting the initial value y(0). An example to this effect was given by [26];
see also the example in [3, Chapter 2, Section 4].

3 General Hybrid Relaxation Results

We begin by describing some possible failures of relaxation for the case of hybrid
systems. These are due to the relationship between the flow map F, the flow set C,
and the jump set D rather than the lack of regularity in F or in the jump map G. Of
course, continuity of G has bearing on relaxation; this is addressed in some detail in
Remarks 3.5 and 6.5.

(a) The presence of the constraint z ∈ C during flows may prohibit the very
existence of any solutions to ż ∈ F(z) even if solutions to the relaxed inclusion
ż ∈ con F(z) satisfying the constraint do exist. For example, in R let C = {0},
F(ξ) = {−1, 1} for all ξ ∈ R. The relaxed inclusion ż ∈ con F(z) has a unique
constant solution that remains in C but this solution does not satisfy ż ∈ F(z).
It can also happen that solutions to the inclusion ż ∈ F(z) exist and remain in C
but only on time intervals far shorter than the solutions to the relaxed inclusion.

(b) Solutions to the relaxed inclusion ẋ ∈ con F(x) can graze D, making a jump
possible, even when all nearby solutions to ẋ ∈ F(x) flow by D. For example, in
R

3, let

C = R
3, D = {

ξ ∈ R
3 | ξ1 � 1, ξ2 � 0

}
, F(ξ) = (

1, ξ 2
3 , {−1, 1}) ,

with (0, 0, 0) ∈ G(1, 0, 0) and otherwise arbitrary G. For the initial condition
ξ 0 = (0, 0, 0), the relaxed hybrid system in Eq. 4 has a “periodic” solution that
flows from ξ 0 to (1, 0, 0), jumps back to ξ 0, flows again to (1, 0, 0), etc. Any solu-
tion to the non-relaxed system (3) is strictly increasing in the second coordinate
during flow. Thus, only solutions x with x2(0, 0) < 0 can satisfy x2(t, 0) ∈ D for
some t > 0. If such a solution then jumps, x2(t, 1) = 0, consequently x2(t ′, 1) > 0
for all t ′ > t, and the solution never intersects D again. In short, solutions to
Eq. 4 jump at most once, and in particular, no solutions to Eq. 3 are close (in
the graphical distance) to the mentioned periodic solution to the relaxed system
(4).

(c) Solutions to the relaxed inclusion ẋ ∈ con F(x) hit the boundary of C, cannot
flow further while remaining in C, but also hit D and lead to a solution to the
relaxed hybrid system in Eq. 4 that then jumps, even when nearby solutions
to ẋ ∈ F(x) also flow out of C but do not hit D. For example, alter the system
in (b) above to have C = {ξ ∈ R

3 | ξ1 � 1}. The “periodic” solution to Eq. 4
mentioned in (b) still exists, while all solutions to Eq. 3 cease to exist in time
about 1 without ever jumping, or in time about 2 after jumping once.

Related examples can be found in [8] (see also Examples 5.3 and 5.4 for failures of
“infinite time horizon” relaxation).

We will say that a hybrid arc x initially flows if for some ε > 0, [0, ε] × {0} ⊂ dom x,
and initially jumps if (1, 0) ∈ dom x.
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Definition 3.1 Given x0 ∈ C ∪ D, strong relaxation for initially flowing (respectively,
initially jumping) solutions from x0 relative to C (respectively, relative to D) is
possible if

for any compact solution x: dom x → R
n to Hcon with x(0, 0) = x0 that initially

flows (respectively, that initially jumps) and for any ε > 0, there exists δ > 0 such
that for any y0 ∈ (x(0, 0) + δIB) ∩ C (respectively, for any y0 ∈ (x(0, 0) + δIB) ∩
D) there exist a hybrid arc y: dom y → R

n with compact dom y and y(0, 0) = y0

that is a solution to H and dgph(x, y) � ε, and moreover, if x(T, J ) ∈ D, where
(T, J ) = max dom x, then y(τ, J ) ∈ D, where (τ, J ) = max dom y.

A natural example of systems where the strong relaxation for initially flowing or
initially jumping solutions is possible provided by systems in which the flow dynamics
governed by a nonconvex inclusion are in a sense separated from the dynamics and
jump maps governing the jumps (for such systems, one could abandon graphical
distance and rely on uniform distance, as the hybrid domains of a solution to Hcon

and of a “nearby” solution to H turn out the same, and rely on the Filippov–
Ważewski result, Theorem 2.1 to deduce relaxation. An illustration of when the
domains are necessarily different and the uniform distance is not adequate will be
given in Example 4.9). Such hybrid systems arise in hybrid modeling of so-called
switching systems. We give some details in the following example.

Example 3.2 Let O1 ∈ R
n1 , O2 ∈ R

n2 be open sets; q̂ be a positive integer; Q =
{1, 2, . . . , q̂}; let Fq : O1 →→ R

n1 , q ∈ Q, and F0 : O2 →→ R
n2 be set-valued mappings

with nonempty and compact values, with the values of F0 also being convex; Cy, Dy

be subsets of O2; and finally, G0 : O2 →→ R
n2 be a set-valued mapping. Consider a

hybrid system
⎧
⎨

⎩

ẋ ∈ Fq(x), ẏ ∈ F0(y), y ∈ Cy

q+ ∈ Q, y+ = G0(y), y ∈ Dy
(8)

on the state space O1 × O2 × R and with the variable (x, y, q). The “discrete”
variable q remains constant during flows, the variable x remains constant during
jumps, and the variable determining the times of jumps, y, may change during both
flows and jumps.

Such a system can be cast in the form Eq. 3. Indeed, one considers the flow map
(Fq(x), F0(y), 0), the flow set O × Cy × Q, the jump map (x, G0(y), Q), and the jump
set O × Dy × Q.

Suppose that, for each q ∈ Q, continuous time relaxation is possible for ẋ ∈ Fq(x)

(in the sense that the conclusions of Theorem 2.1 hold), as is guaranteed if Fq is
locally Lipschitz. It is straightforward to verify that strong relaxation for initially
flowing (respectively, initially jumping) solutions relative to C (respectively, relative
to D) is possible, for any initial point.

A special case of Eq. 8 is provided by the system
⎧
⎨

⎩

ẋ ∈ Fq(x), τ̇ = 1, τ ∈ Cτ

q+ ∈ Q, τ+ = 0, τ ∈ Dτ
(9)
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where the variable is the triple (x, τ, q) and τ is a real-valued “timer” variable. With
Cτ = [0, T] and Dτ = {T} for some T > 0, the solutions to this hybrid system with
τ(0, 0) = 0 correspond to switching between vector fields Fq every T units of time.
When Cτ = [0,∞) and Dτ = [T, ∞), the times in between switches are at least T.
Such a case is sometimes referred to as “dwell-time switching with dwell-time T”; see,
for example, [19] for details on these, and other kinds of “switching signals”. Strong
relaxation for initially flowing (respectively, initially jumping) solutions relative to
C (respectively, relative to D) is then possible for Eq. 9 as long as, for each q ∈ Q,
continuous time relaxation is possible for ẋ ∈ Fq(x), in the sense of Theorem 2.1
(further special cases of Eq. 8, with a slightly more involved “timer” dynamics, also
model average dwell-time and reverse average dwell-time switching signals; see [20].
The conclusion about relaxation still applies to those cases).

The same conclusion can be made for Eq. 8 if additional state constraints are
present, that is, the following system is considered:

⎧
⎨

⎩

ẋ ∈ Fq(x), ẏ ∈ F0(y), x ∈ Cx
q, y ∈ Cy

q+ ∈ Q, y+ = G0(y), y ∈ Dy

and for each q ∈ Q, the map Fq and the set Cq meet the sufficient conditions for
continuous-time relaxation with constraints as given in [14], a simple version of which
is stated in [14, Lemma 4.1].

Now, we state a hybrid relaxation result that involves assumptions on the continu-
ity of the jump map G and on some general properties of solutions of the differential
inclusion given by the flow map F, constrained by the flow set C, and having a “target
set” D. Later, sufficient conditions for the said general properties of F, C, and D will
be given in terms of F and the tangent cones to C and D.

The following two differential inclusions will play a role in the analysis: the relaxed
constrained inclusion

ż(t) ∈ con F(z(t)), z(t) ∈ C for almost all t ∈ [0, T], (10)

and the constrained inclusion

ẏ(t) ∈ F(y(t)), y(t) ∈ C for almost all t ∈ [0, τ ]. (11)

Also, the following property of certain mappings will be used: a set-valued mapping
�: O →→ R

n is inner semicontinuous relative to D if for any x ∈ D, any sequence
xi → x with xi ∈ D, and any y ∈ �(x) there exist yi ∈ �(xi) such that y = lim yi.

Assumption 3.3 The hybrid system H satisfies the hybrid relaxation conditions, i.e.,

(a) The mappings G∩C, G∩D, G\ : O →→ R
n defined at each ξ ∈ O by

G∩C(ξ)=G(ξ)∩C, G∩D(ξ)=G(ξ)∩D, G\(ξ)=G(ξ)∩[
O \ (C∪D)

]
(12)

are inner semicontinuous relative to D;
(b) Continuous-time strong relaxation with constraints and a target is possible,

that is, for any absolutely continuous z: [0, T] → R
n that is a solution to the

relaxed constrained inclusion (10) and any ε > 0, there exists δ > 0 such that for
any y0 ∈ (z(0) + δIB) ∩ C there exists an absolutely continuous y: [0, τ ] → R

n
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with y(0)= y0 that is a solution to the constrained inclusion (11) such that
dgph(z, y) � ε, and if additionally z(T) ∈ D then also y(τ ) ∈ D.

The term “strong relaxation” in Assumption 3.3 (b) is used to differentiate that
assumption from what could be termed “weak relaxation”, which, for any z: [0, T] →
R

n that is a solution to Eq. 10 and any ε > 0, would call for the existence of
y: [0, τ ] → R

n that is a solution to Eq. 11 such that dgph(z, y) � ε, and if additionally
z(T) ∈ D then also y(τ ) ∈ D.

Theorem 3.4 Suppose that the hybrid system H satisfies the hybrid relaxation con-
ditions. Then, for any x0 ∈ C ∪ D, strong relaxation for initially flowing (respectively,
initially jumping) solutions from x0 relative to C (respectively, relative to D) is possible
(in the sense of Definition 3.1).

Proof The proof will be an induction on the number of jumps for x. Let J =
max j dom x. If J = 0 (so no jumps) and x initially flows then the conclusion of the
theorem reduces to assumption (b) [in the special case of J = 0 and x not initially
flowing, x is a trivial hybrid arc (i.e., dom x = (0, 0)) and the conclusions of the
theorem are satisfied with ε = δ and by considering trivial arcs y with dom y = (0, 0)

and given by y(0, 0) = y0]. Now take any J � 1 and suppose that the conclusion of
the theorem is valid for all hybrid arcs x′(·, ·) with compact domains and such that
max j dom x′ = J − 1. Pick ε > 0 small enough so that rge x + εIB ⊂ O, and let M be
a bound on F on

(
rge x + εIB

) ∩ C. Let

dom x =
J⋃

j=0

[
t j, t j+1

] × { j }.

Suppose first that tJ = tJ+1. If x(tJ, J ) ∈ C (respectively, x(tJ, J ) ∈ D or x(tJ, J ) �∈
C ∪ D), then by inner semicontinuity of G∩C (respectively, of G∩D or G\), we have
the existence of δ1 ∈ (0, ε) such that for all z ∈ x(tJ, J − 1) + δ1 IB there exists z′ ∈
G∩C(z) (respectively, z′ ∈ G∩D(z) or z′ ∈ G\(z)) such that z′ ∈ x(tJ, J ) + εIB. Now
let x′ be a truncation of x to dom x′ = ⋃J−1

j=0 [t j, t j+1] × { j }. Of course, x′ is a solution to
Hcon, and x′(tJ, J − 1) ∈ D. Pick δ2 ∈ (0, δ1/(1 + 2M)). By the inductive assumption,
there exists δ > 0, and for any y0 ∈ (x(0, 0) + δIB) ∩ (C ∪ D) a hybrid arc y′, with
compact dom y′ and with y′(0, 0) = y0, that is a solution to H, such that

dgph(x′, y′) � δ2,

and such that y′(t′J, J − 1) ∈ D, where (t′J, J − 1) = max dom y′. We need to argue
that y′(t′J, J − 1) ∈ x(tJ, J − 1) + δ1 IB. As dgph(x′, y′) � δ2, there exists (t, J − 1) ∈
dom x′ with |t′J − t| � δ2, ‖y′(t′J, J − 1) − x′(t, J − 1)‖ � δ2. Then

‖y′(t′J, J − 1) − x′(tJ, J − 1)‖
� ‖y′(t′J, J − 1) − x′(t, J − 1)‖ + ‖x′(t, J − 1) − x′(TJ, J − 1)‖
� δ2 + M|t − tJ | � δ2 + M

(|t − t′J | + |t′J − tJ |
)

� δ2(1 + 2M),
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where we have used the fact that |t′J − tJ | � δ2 (this holds as (t′J, J − 1), (tJ, J − 1)

are the “endpoints” of domains of y′ and x′). So, y′(t′J, J − 1) ∈ x(tJ, J − 1) + δ1 IB,
and since y′(t′J, J − 1) ∈ D, we have the existence of some z′ ∈ G∩C(y′(t′J, J − 1))

(respectively, z′ ∈ G∩D(y′(t′J, J − 1))) such that z′ ∈ x(tJ, J ) + εIB. Now, consider a
hybrid arc y: dom y → R

n with dom y = dom y′ ∪ (t′J, J ) given by

y(t, j ) =
{

y′(t, j ) for (t, j ) ∈ dom y′,
z′ for (t, j ) = (t′J, J ).

As dgph(x′, y′) � δ2 � ε, |t′J − tJ | � δ2 � ε, ‖z′ − x(tJ, J )‖ � ε, we get dgph(x, y) � ε.
Now suppose that tJ < tJ+1. In particular, x(tJ, J ) ∈ C. By assumption (b) we have

the existence of δ3 ∈ (0, ε/2) such that, for all z0 ∈ (x(tJ, J ) + δ3 IB) ∩ C, there exists
an absolutely continuous z: [0, τ ] → R

n solving Eq. 11 and such that dgph(z, xJ) �
ε/2, where xJ : [0, tJ+1 − tJ] → R

n is given by xJ(t) = x(tJ + t, J ). Moreover, if
x(tJ+1, J ) ∈ D, we can have z(τ ) ∈ D. By inner semicontinuity of G∩C, we have
the existence of δ1 ∈ (0, δ3) such that for all z ∈ x(tJ, J − 1) + δ1 IB there exists z0 ∈
G∩C(z) such that z0 ∈ (x(tJ, J ) + δ3 IB) ∩ C. Now let x′ be as in the paragraph above,
with the current δ1 pick δ2 ∈ (0, δ1/(1 + 2M)), and using the inductive assumption,
pick δ > 0 and y′ also according to the description in the paragraph above. Consider
a hybrid arc y: dom y → R

n with dom y = dom y′ ∪ ([t′J, t′J + τ ], J ) given by

y(t, j ) =
{

y′(t, j ) for (t, j ) ∈ dom y′,
z(t − t′J) for (t, j) ∈ [t′J, t′J + τ ] × {J}.

As dgph(x′, y′) � δ2 � ε/2, |t′J − tJ | � δ2 � ε/2, and dgph(z, xJ) � ε/2, we have
dgph(x, y) � ε. ��

Remark 3.5 While it is not true that (a) and (b) are necessary for the conclusions
of Theorem 3.4 to hold, they are close to being necessary. More precisely, G∩D

and G\ must be inner semicontinuous at each ξ ∈ D, while G∩C need not be inner
semicontinuous at ξ ∈ D if G∩C(ξ) ⊂ C ∪ D and no solutions to Eq. 10 exist from
any point ξ ′ ∈ G∩C(ξ).

Definition 3.6 Given x0 ∈ C ∪ D, strong relaxation for all solutions from x0 is
possible if

(SR) For any compact x: dom x → R
n with x(0, 0) = x0 that is a solution to Hcon

and for any ε > 0, there exists δ > 0 such that for any y0 ∈ (x0 + δIB) ∩ (C ∪
D) there exist a hybrid arc y: dom y → R

n with compact dom y and y(0, 0) =
y0 that is a solution to H and dgph(x, y) � ε, and moreover, if x(T, J ) ∈ D,
where (T, J ) = max dom x, then y(τ, J ) ∈ D, where (τ, J ) = max dom y.

In contrast to Definition 3.1, the definition above calls for the existence of y
from any initial point y0, independently of whether such y0 is in C or in D, and
independently of whether x flows first or jumps first.

Corollary 3.7 Under the assumptions of Theorem 3.4, for any

x0 ∈ (C \ D) ∪ (D \ C) ∪ (int C ∩ int D),

strong relaxation for (all) solutions from x0 is possible.
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4 “Viability Conditions” for Hybrid Relaxation

Now, we give assumptions on the data of the hybrid system H that will imply the
hybrid relaxation conditions of Assumption 3.3. Throughout this section, we pose
the following conditions, which strengthen the standing assumption:

Assumption 4.1

(A1) C, D ⊂ O are relatively closed in O;
(A2) F : O →→ R

n is outer semicontinuous and locally bounded relative to C and
has nonempty values on C.

The mapping F is outer semicontinuous relative to C if for any x ∈ C, any sequence
xi → x with xi ∈ C, and any convergent yi ∈ F(xi) with lim yi = y, we have y ∈ F(x).
It is locally bounded relative to C if for any x ∈ C there exists a relative neighborhood
X ⊂ C of x such that F(X) is bounded.

Some further background material is needed. Given a set S ⊂ R
n and ξ ∈ S, TS(ξ)

will denote the tangent cone to S at ξ , that is the set of all vectors w ∈ R
n such that

w = lim
i→∞

ξi − ξ

τi

where ξi ∈ S, ξi → ξ , and τi ↘ 0 (this cone is sometimes called the contingent cone,
or the Bouligand tangent cone). Also, MS(ξ) will denote the Dubovitskii–Miliutin
tangent cone to S at ξ , that is, the set

MS(ξ) = R
n \ TRn\S(ξ).

For an alternate definition, see [2, Definition 4.3.1].
The result below summarizes some basic viability and invariance results. More

specifically, (a) is [2, Proposition 3.4.1], (b) is [2, Proposition 3.4.2], (c) immediately
follows from the definition [2, Definition 4.3.1] of Mint D(z0) and [2, Corollary 5.3.2].

Theorem 4.2 Let � : R
n →→ R

n be an outer semicontinuous, locally bounded mapping
with nonempty and convex values. Let S be a closed set. Consider the differential
inclusion

ż(t) ∈ �(z(t)) (13)

(a) If z: [0, T] → R
n is a solution to Eq. 13 and z(t) ∈ S for all t ∈ [0, T], then

�(z(0)) ∩ TS(z(0)) �= ∅.

(b) Given z0 ∈ S, if, for all ξ in some neighborhood of z0,

�(ξ) ∩ TS(ξ) �= ∅,

then there exists T > 0 and a solution z: [0, T] → R
n to Eq. 13 with z(0) = z0.

(c) If int S �= ∅, z0 ∈ ∂S, � is locally Lipschitz continuous, and

�(z0) ∩ Mint S(z0) �= ∅,

then there exists T > 0 and a solution z: [0, T] → R
n to Eq. 13 such that z(t) ∈

int S for all t ∈ (0, T].
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Theorem 4.5 will relate the assumptions below to Assumption 3.3, part (b) about
continuous-time strong relaxation with constraints and a target.

Assumption 4.3

(1) F is locally Lipschitz continuous on a neighborhood of C;
(2) For all ξ ∈ ∂C ∩ O with con F(ξ) ∩ TC(ξ) �= ∅, we have

− con F(ξ) ⊂ MO\C(ξ)

and there exists r1 > 0 such that

con F(z) ⊂ Mint C(z) ∀z ∈ ∂C ∩ (ξ + r1 IB);
(3) For all ξ ∈ int C ∩ ∂ D we have

con F(ξ) ∩ Mint D(ξ) �= ∅;
(4) For all ξ ∈∂C∩∂ D∩O with con F(ξ)∩TC(ξ)=∅, there exists r2 > 0 such that

∂C ∩ (ξ + r2 IB) ⊂ D.

The three examples of failure of relaxation in hybrid systems, given at the
beginning of the current section, correspond precisely to conditions (2), (3), and
(4) above. That is, the example (a) violates condition (2) (while (3) and (4) can
be satisfied by adding D = R); (b) violates condition (3) (while (2) and (4) were
satisfied); and similarly, (c) violates (4). This does not mean though that Assumption
4.3 is necessary for Theorem 4.5 below.

Lemma 4.4 Let z: [0, T] → R
n be a solution to Eq. 10. If (2) of Assumption 4.3 holds,

then z(t) ∈ int C for all t ∈ (0, T), and if z(T) ∈ ∂C, then con F(z(T)) ∩ TC(z(T)) = ∅.

Proof Suppose that z(τ ) ∈ ∂C for some τ ∈ (0, T). Then con F(z(τ )) ∩ TC(z(τ )) �=
∅, by (a) of Theorem 4.2. Let y: [0, τ ] → R be given by y(s) = z(τ − s). Then y(0) =
z(τ ) while, by (2), ẏ(0) ∈ − con F(y(0)) ⊂ MO\C(y(0)). By (c) of Theorem 4.2, for
some s > 0, y(t) ∈ O \ C for all t ∈ (0, s). This contradicts z(t) ∈ C for all t ∈ [0, T].

��

Theorem 4.5 If (1) and (2) of Assumption 4.3 hold, then for each solution x: [0, T] →
R

n of Eq. 10 and each ε > 0 there exists δ > 0 such that for all y0 ∈ (x(0) + δIB) ∩ C
there exists a solution y: [0, τ ] → R

n to Eq. 11 with y(0) = y0 and dgph(x, y) � ε. If
additionally (3) and (4) hold, and x(T) ∈ D, then y can be chosen so that also y(τ ) ∈
D. In particular, Assumption 4.3 implies Assumption 3.3 (b).

Proof Pick any absolutely continuous x: [0, T] → R
n solving Eq. 10 and any ε > 0.

If T = 0, then one can just take x = y (and these are just “trivial” arcs on the interval
[0, 0]). From now on, suppose T > 0.

Let ε1 ∈ (0, ε) be such that F is defined on rge x + ε1 IB, and on that set, F is
Lipschitz continuous with constant K and bounded by M.
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Pick ε2, ε3 ∈ (0, ε1) so that

ε2 + Mε3 � ε1, 2ε3 < T, and

if x(0) ∈ ∂C then ε2 + Mε3 � r1 while x([ε3, T − ε3]) + ε2 IB ⊂ int C;
if x(0) ∈ int C then x([0, T − ε3]) + ε2 IB ⊂ int C. (14)

Above, r1 is associated with x(0) ∈ ∂C as in assumption (2). The Filippov–Ważewski
theorem now says that there exists δ ∈ (0, ε2) such that, for all y0 ∈ x(0) + δIB, there
exists y: [0, T − ε3] → R

n satisfying ẏ(t) ∈ F(y(t)) for almost all t ∈ [0, T − ε3] and
‖x(t) − y(t)‖ � ε2 for all t ∈ [0, T − ε3]. If x(0) ∈ int C, then Eq. 14 implies that
y(t) ∈ C for all t ∈ [0, T − ε3]. This is also true if x(0) ∈ ∂C, but for all t ∈ [ε3, T − ε3].
In the latter case, for t ∈ [0, ε3] we have y(t) ∈ x0 + ε2 IB + ε3 MIB ⊂ x0 + r1 IB. This is
sufficient to guarantee that if y(0) ∈ C, then y(t) ∈ C for t ∈ [0, ε3]; c.f. [2, Theorem
4.3.6]. Consequently, for any y0 ∈ (x0 + δIB) ∩ C there exists y: [0, T − ε3] → R

n

satisfying ẏ(t) ∈ F(y(t)) for almost all t ∈ [0, T − ε3], y(t) ∈ C and ‖x(t) − y(t)‖ �
ε2 � ε for all t ∈ [0, T − ε3]. Thus, for any such y, and for any t ∈ [T − ε3, T],
we have

‖x(t) − y(T − ε3)‖ � ‖x(t) − x(T − ε3)‖ + ‖x(T − ε3) − y(T − ε3)‖
� Mε3 + ε2 � ε1 � ε,

and t − (T − ε3) � ε3 � ε. So, for any such y we have dgph(x, y) � ε. This completes
the proof of the case of x(T) �∈ D.

Now suppose that x, as assumed above, also has x(T) ∈ D. If x(T) ∈ int D, then
we can pick ε2, ε3 ∈ (0, ε1) as in Eq. 14 so that additionally, x(T − ε3) + ε2 IB ⊂ D.
Then y, obtained as above, satisfy y(T − ε3) ∈ D.

Now suppose that x(T) ∈ ∂ D and x(T) ∈ int C. Let xe : [0, Te], Te > T, be any
absolutely continuous arc such that

rge xe ⊂ rge x + ε1 IB, ẋe(t) ∈ F(xe(t)) for t ∈ [0, Te],

x(t) = xe(t) for t ∈ [0, T], (15)

and furthermore, such that xe(t) ∈ int D for all t ∈ (T, Te] (this is possible thanks
to assumption (3) and by recalling Theorem 4.2 (c)) and xe(t) ∈ int C for all t ∈
[T, Te]. Then also xe(t) ∈ int C for all t ∈ (0, Te]. Thus, we can pick T1 ∈ (T, Te],
ε2, ε3 ∈ (0, ε1) as in Eq. 14, and ε4 ∈ (0, ε2) so that T1 − ε3 � T, xe([T − ε3, T1]) +
ε2 IB ⊂ int C, and x(T1) + ε4 IB ⊂ int D. The Filippov–Ważewski theorem implies that
there exists δ ∈ (0, ε4) such that, for all y0 ∈ x(0) + δIB, there exists y: [0, T1] → R

n

satisfying ẏ(t) ∈ F(y(t)) for almost all t ∈ [0, T1] and ‖x(t) − y(t)‖ � ε4 for all t ∈
[0, T1]. As in the discussion of the case of x(T) �∈ D we can now conclude that if
y0 ∈ (x(0) + δIB) ∩ C, then the corresponding y satisfies y(t) ∈ C for all t ∈ [0, T1].
Obviously, y(T1) ∈ D. It remains to argue that dgph(x, y) � ε. For each t ∈ [0, T], we
have ‖x(t) − y(t)‖ � ε4 � ε. For t ∈ (T, T1], we have

‖y(t) − x(T)‖ � ‖y(t) − y(T)‖ + ‖y(T) − x(T)‖
� M|T1 − T| + ε4 � Mε3 + ε2 � ε.

This completes the argument.



746 C. Cai et al.

Finally, suppose x(T) ∈ ∂ D ∩ ∂C ∩ O. Again, let xe : [0, Te], Te > T, be any ab-
solutely continuous arc such that Eq. 15 holds. For some (arbitrarily small) t > 0,
xe(T + t) �∈ C (thanks to Lemma 4.4 and Theorem 4.2 (a)). Thus, we can pick
T1 ∈ (T, Te], ε2, ε3 ∈ (0, ε1) as in Eq. 14, and ε4 ∈ (0, ε2) so that T1 − T � ε3, ε2 +
Mε3 � r2 and (xe(T1) + ε4 IB) ∩ C = ∅. Here, r2 is associated with x(T) ∈ ∂C ∩ ∂ D
through assumption (4). The Filippov–Ważewski theorem, and the discussion above,
implies that there exists δ ∈ (0, ε4) such that, for all y0 ∈ (x(0) + δIB) ∩ C, there exists
y: [0, T1] → R

n satisfying ẏ(t) ∈ F(y(t)) for almost all t ∈ [0, T1], ‖x(t) − y(t)‖ � ε4

for all t ∈ [0, T1], and y(t) ∈ C for all t ∈ [0, T − ε3], in fact y(t) ∈ int C for all t ∈
(0, T − ε3]. On the other hand, y(T1) ∈ xe(T1) + ε4 IB, so y(T1) �∈ C. For each y under
discussion, let Ty be the minimum of times t � T − ε3 such that y(t) ∈ ∂C. It must be
that Ty ∈ (T − ε3, T1). Then

‖y(Ty) − x(T)‖ � ‖y(Ty) − y(T)‖ + ‖y(T) − x(T)‖
� Mε3 + ε4 � Mε3 + ε2 � r2.

So y(Ty) ∈ ∂C ∩ (x(T) + r1 IB) ⊂ D. It remains to argue that, if we let y′ be the
truncation of y from [0, T1] to [0, Ty], then dgph(x, y′) � ε. For each t ∈ [0, T − ε3],
we have t ∈ [0, Ty] and ‖x(t) − y′(t)‖ � ε4 � ε. For t ∈ [T − ε3, T], we have t − (T −
ε3) � ε and

‖x(t) − y′(T − ε3)‖ � ‖x(t) − x(T − ε3)‖ + ‖x(T − ε3) − y′(T − ε3)‖
� Mε3 + ε2 � ε1 � ε.

So, for any t ∈ [0, T] we can find s ∈ [0, Ty] with |t − s| � ε and ‖x(t) − y′(s)‖ � ε.
Similarly, for any t ∈ (T − ε3, Ty], we have

‖y′(t) − x(T)‖ � ‖y′(t) − y(T)‖ + ‖y(T) − x(T)‖
� Mε3 + ε4 � Mε3 + ε2 � ε,

and |t − T| � ε3 � ε. So, for any t ∈ [0, Ty] there is s ∈ [0, T] with |t − s| � ε and
‖x(t) − y′(s)‖ � ε. This completes the proof. ��

Corollary 4.6 Assume that the mappings G∩C, G∩D, G\ : O → R
n are inner semicon-

tinuous relative to D and that Assumption 4.3 holds. Then for any

x0 ∈ (C \ D) ∪ (D \ C) ∪ (int C ∩ int D),

strong relaxation is possible for solutions from x0 (in the sense of Definition 3.6).
Strong relaxation is also possible for solutions from any x0 if additionally

(a) x0 ∈ ∂C ∩ int D and additionally TC(x0) ∩ con F(x0) = ∅;
(b) x0 ∈ int C ∩ ∂ D, or more generally, if x0 ∈ C ∩ ∂ D and con F(x0) ∩ Mint D(x0) �=

∅ and there exists r3 > 0 such that (x0 + r3 IB) ∩ D ⊂ C;
(c) x0 ∈ ∂C ∩ ∂ D, int C ∩ int D = ∅, and con F(x0) ∩ TC(x0) = ∅.

Proof The first conclusion just summarizes Theorem 3.4, Theorem 4.5, and
Corollary 3.7.

For (a), the tangent cone solution implies that solutions x to Hcon with x(0, 0) = x0

that initially flow do not exist. For the solutions that initially jump, we know that local
relaxation at x0 is possible, as x0 ∈ int D and thanks to Theorem 3.4 and Theorem 4.5.
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For (b), given a solution that initially flows, the conclusion comes from (x0 +
r3 IB) ∩ (C ∪ D) = (x0 + r3 IB) ∩ C, Theorem 3.4 and Theorem 4.5. Let x be a compact
solution to Hcon with x(0, 0) = x0 that initially jumps and pick ε > 0. Let δ1 > 0 be
such that for all y0 ∈ (x0 + δ1 IB) ∩ D there exists a solution xy0 to H with xy0(0, 0) =
y0 and such that dgph(x, xy0) < ε/2; the existence of such δ1 follows from Theorem
3.4 and Theorem 4.5. Since (x0 + r3 IB) ∩ D ⊂ C, one has Mint D(x0) ⊂ TC(x0), which
combined with con F(x0) ∩ Mint D(x0) �= ∅ yields con F(x0) ∩ TC(x0) �= ∅. Let r1 > 0
come from (2) of Assumption (4.3), and let ε1 ∈ (0, min{ε/4, r1/2}. Let T ∈ (0, ε/2)

and z: [0, T] → R
n be a solution to ż(t) ∈ con F(z(t)) with z(0) = x0 and such that

z(T) + ε2 ∈ int D for some ε2 ∈ (0, ε1) while ‖x0 − z(t)‖ � ε1 for all t ∈ [0, T] [such
solution exists by Theorem 4.2 (c)]. By the Filippov–Ważewski theorem, there exists
δ2 > 0 such that for all y0 ∈ (x0 + δ2 IB) ∩ C there exists a solution zy0 : [0, T] →
R

n to ży0(t) ∈ F(zy0(t)) such that ‖z(t) − zy0(t)‖ � ε2 for t ∈ [0, T]. In particular,
‖x0 − zy0(t)‖ � ε/2 for all t ∈ [0, T], which implies, by (2) of Assumption (4.3), that
zy0(t) ∈ C for all t ∈ [0, T]. Now, given any y0 ∈ (x0 + δ2 IB) ∩ C, we can consider
a solution to H given by y(t, 0) = zy0(t) for t ∈ [0, T], y(T + t, j ) = xy0(t, j ) for all
(t, j ) ∈ dom xy0 . For such y we have dgph(x, y) � ε. Letting δ = min{δ1, δ2} finishes
the argument.

In case (c), there are no initially flowing solutions from x0, and also by (4) of
Assumption (4.3), ∂C ∩ (x + r2 IB) ⊂ D. It now suffices to show that from each point
in C \ D sufficiently close to x0, there exists a solution to ż ∈ F(z) that then enters
O \ C in small amount of time, and so, crosses ∂C (at a point that is also in D). This
comes from applying the Filippov–Ważewski relaxation theorem to a solution to ż ∈
con F(z) from x0, which, by con F(x0) ⊂ MO\C(x0), enters O \ C instantly. Details of
the argument are similar to what has been done in (b). ��

Example 4.7 For the system in Eq. 9, as discussed in Example 3.2, and when Cτ =
[0, T] and Dτ = {T} or Cτ = [0, ∞) and Dτ = [T, ∞), strong relaxation, for all
solutions, is possible from any x0. Indeed, the assumptions of Corollary 4.6, including
conditions (a), (b), and (c) are satisfied.

Remark 4.8 In several special cases, some of the tangent cone conditions (2), (3), or
(4) of Assumption 4.3, are automatically satisfied.

(a) Suppose that C = O. Then (2) and (4) are satisfied, as ∂C ∩ O = ∅.
(b) Suppose that D = ∂C ∩ O (the case of C = O is not interesting in such situa-

tion). Then (3) is satisfied as int C ∩ ∂ D = ∅ and (4) is satisfied as ∂C ∩ O = D.
(c) Suppose C ∪ D = O and int C ∩ int D = ∅ (in light of the former, the latter

means that C ∩ D = ∂C ∩ O = ∂ D ∩ O). Then (3) and (4) are satisfied, as
int C ∩ ∂ D = ∅.

(d) Suppose that ∂C ∩ ∂ D = ∅. Then (4) is satisfied.

Also, a simple sufficient condition for (2) is that

() For all x ∈ ∂C ∩ O, con F(x) ∩ TC(x) = ∅,

which, in light of Theorem 4.2 (a) and (b), is equivalent to no solutions to ż ∈
con F(z) from ∂C ∩ O remaining in C for (any small) positive time.
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Combining (b) of Corollary 4.6 and the case (a) of Remark 4.8 implies that
when C = O, if the conditions on G, as in (a) of Assumption 3.3, hold, and if
con F(x) ∩ Mint D(x) �= ∅ for all x ∈ ∂ D ∩ O, then strong relaxation is possible for
solutions from all initial points. Also, for the case of either (b) or (c) of Remark
4.8, the said conditions on G and () of Remark 4.8 are enough to guarantee strong
relaxation from all initial points. Example 4.9 below illustrates this. We note though
that if D = ∂ D ∩ O ⊂ int C, then Assumption 4.3 is never satisfied. Indeed, (3) is
never true, as int D = ∅.2

Example 4.9 On O = R
2 × (−1, 1), consider a hybrid system with

C = {ξ ∈ O | ξ2 � ξ1 − 1}, F(ξ) = (
1, ξ 2

3 , {−1, 1}) , D = ∂C ∩ O, G(ξ) = (0, 0, 0).

This falls under case (b) of Remark 4.8. Moreover, the condition () of Remark 4.8
is satisfied: for each ξ ∈ ∂C ∩ O,

con F(ξ) = (
1, ξ 2

3 , [−1, 1]) , TC(ξ) = {
v ∈ R

3 | v2 � v1
}
,

and so con F(ξ) ∩ TC(ξ) = ∅ as long as ξ 2
2 < 1. In light of Corollary 4.6 and Remark

4.8, strong relaxation is possible from any initial point in C.
For illustration purposes, consider a compact solution to Eq. 4 from x0 = (0, 0, 0)

given by

x(t, j) = (t − j, 0, 0) for (t, j ) ∈ dom x =
T−1⋃

j=0

[ j, j + 1] × { j }

for some integer T � 1. Pick ε ∈ (0, 1) and take y0 = x0. Let ε′ = ε/
√

3 and find an
arc z3 : [0, 1 + ε′/T] → R so that z3(0) = 0, ż3(t) ∈ {−1, 1} and z2

3(t) � ε′/(T + ε′)
for all t ∈ [0, 1 + ε′/T]. Set z2(t) = ∫ t

0 z2
3(s) ds, note that z2(t) � ε′/T for all t ∈

[0, 1 + ε′/T], and let τ ∈ (1, 1 + ε′/T] be the smallest number such that z2(τ ) =
τ − 1. Finally, set z1(t) = t for all t ∈ [0, τ ] and note that z2(τ ) = z1(τ ) − 1, and so
(z1, z2, z3)(τ ) ∈ D. Consider

y(t, j ) = (z1, z2, z3)(t − jτ) for (t, j ) ∈ dom y =
T−1⋃

j=0

[ jτ, ( j + 1)τ ] × { j }.

Then y is a solution to Eq. 3, y(0, 0) = y0, and dgph(z, y) � ε. To see the latter fact,
take any (t, j ) ∈ dom x, note that (tτ, j ) ∈ dom y and |t − tτ | � T|1 − τ | � ε′ < ε,
and that furthermore

‖x(t, j ) − y(tτ, j )‖ � ‖(t − j, 0, 0) − (t − jτ, z2(t − jτ), z3(t − jτ)) ‖
�

√

( j(τ − 1))2 + (ε′/T)2 + (ε′/(T + ε′))2

�
√

ε′2 + (ε′/T)2 + (ε′/(T + ε′))2

� ε′√3 = ε.

2 D = ∂ D ∩ O ⊂ int C subsumes the case of the jump set being an n − 1 dimensional manifold and
C = O = R

n, as studied in [7]. In such a case, the transversality condition used in [7] combined with
the Filippov–Ważewski theorem show that (b) of Assumption 3.3 is in fact satisfied.
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Note that, given x as above and T > 1, it is impossible to find y with dom y =
dom x, even if the choice of y(0, 0) is free (it is possible for the case of T = 1). In
particular, it is then impossible to find y with dom y = dom x and dgph(x, y) � ε. This
illustrates that is impossible, in general, to find a relaxed solution with the same time
domain as the original one.

5 Application to Stability Analysis

As an example of an application of the relaxation results to stability theory, we
show that uniform global asymptotic stability of a compact set for Eq. 3 implies
that property for Eq. 4, in fact with the same convergence rate. Like in the case of
continuous-time systems [33], this result can be used to generate converse Lyapunov
theorems for input-to-state stability (ISS) in hybrid systems [9]. This is because a
simple small-gain argument converts the ISS property for a hybrid system with inputs
into asymptotic stability for an autonomous hybrid system with a set-valued (not
necessarily convex-valued) flow map. When this asymptotic stability also implies
asymptotic stability for the corresponding relaxed hybrid system, recent converse
Lyapunov theorems [10] generate smooth Lyapunov functions that verify ISS for the
original hybrid system with inputs.

Let A ⊂ O be a compact set. A function ω: O → R�0 is a proper indicator of
A with respect to O if it is continuous, ω(ξ) = 0 if and only if ξ ∈ A and, given
a sequence of points ξi ∈ O, ω(ξi) → ∞ if |ξi| → ∞ or if ξi converge to a point
on the boundary of O. An example of a proper indicator, for the case of O = R

n,
is the distance from A. A function β : R�0 × R�0 → R�0 is a KL function if it is
continuous, r �→ β(r, s) is 0 at 0 and nondecreasing, s �→ β(r, s) is nonincreasing and
converges to 0 as s → ∞. The set A is uniformly globally asymptotically stable for
Eq. 3 if there exist a proper indicator ω of A with respect to O and a KL function β

such that

ω(x(t, j )) � β (ω(x(0, 0)), t + j ) for all (t, j ) ∈ dom x (16)

for every solution x to Eq. 3.

Proposition 5.1 Let ω be a proper indicator of a compact set A ⊂ O with respect to
O and β be a KL function. Suppose that Eq. 16 holds for every solution x to Eq. 3.
If strong relaxation for initially flowing (respectively, initially jumping) solutions from
each x0 ∈ C′ ∪ D′ is possible relative to C′ (respectively, relative to D′) for the hybrid
system

H′ :
⎧
⎨

⎩

ẋ ∈ F ′(x) x ∈ C′

x+ ∈ G′(x) x ∈ D′
(17)

with the data O′ = O \ A, C′ = C \ A, D′ = D \ A, F ′ = F
∣
∣
O\A, G′ = G

∣
∣
O\A, then

Eq. 16 holds for every solution x to Eq. 4.

Proof Suppose that, to the contrary, there exists a solution x to Eq. 4 and (t, j ) ∈
dom x such that ω(x(t, j )) > β (ω(x(0, 0)), t + j ). If x(s, k) �∈ A for all (s, k) ∈ dom x
with s + k � t + j, let x′ = x and (t′, j ′) = (t, j ). In the opposite case, let (T, J ) ∈
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dom x be the “last” of all those (s, k) ∈ dom x, s + k � t + j, such that x(s, k) ∈ A.
Note that since ω(x(t, j )) > 0, we have T + J < t + j. As x(T, J ) ∈ A and Eq. 16,
G(x(T, J )) ∩ O ⊂ A. By the definition of (T, J ), it must be then the case that for all
small enough δ > 0, (T + δ, J ) ∈ dom x. Fix γ > 0 so that t + j − T − J − γ > 0 and
pick such δ ∈ (0, γ ) small enough so that

ω(x(t, j )) > β (ω(x(T + δ, J )), t + j − T − J − γ ) ,

which is possible as ω(x(T, J )) = 0, δ �→ ω(x(T + δ, J )) is continuous, and by the
properties of KL functions. Then, also by the property of β as a KL function,

ω(x(t, j )) > β (ω(x(T + δ, J )), t + j − T − J − δ) .

Now, let x′(s, k) = x(s − T − δ, k − J ) and (t′, j ′) = (t − T − δ, j − J ).
We have constructed a solution x′ to

H′ con :
⎧
⎨

⎩

ẋ ∈ con F ′(x) x ∈ C′

x+ ∈ G′(x) x ∈ D′

such that ω(x′(t′, j ′)) > β
(
ω(x′(0, 0)), t′ + j ′) for some (t′, j ′) ∈ dom x′. By continu-

ity of ω and β, there exists ε > 0 such that ω(ξ) > β
(
ω(x′(0, 0)), t + j ′) whenever

‖ξ − x′(t′, j ′)‖ < ε, |t − t′| < ε. The assumption about relaxation, applied with y0 =
x′(0, 0) and the ε just mentioned, immediately leads to a solution to Eq. 17, and hence
to a solution to Eq. 3, that contradicts Eq. 16. ��

Sufficient conditions for strong relaxation for initially flowing (respectively, ini-
tially jumping) solutions to Eq. 17 from x0 to be possible relative to C′ (respectively,
relative to D′) can be given. For example, in light of Theorem 3.4 and Assumption
3.3, it is enough that:

(a’) The mappings G(ξ) ∩ (C \ A), G(ξ) ∩ (D \ A), G(ξ) ∩ [
O \ (A ∪ C ∪ D)

]
be

inner semicontinuous relative to D \ A;
(b’) Continuous-time strong relaxation with constraints and a target is possible,

with C \ A, D \ A replacing C, D in (b) of Assumption 3.3.

In turn, viability conditions of Assumption 4.3 only need to be verified with O
replaced by O \ A, in order to guarantee (b’) above. More generally, we have the
following “local” corollary of Theorem 4.5:

Corollary 5.2 Let x: [0, T] → R
n be a compact solution to Eq. 10 and U ⊂ O an

open set such that rge x ⊂ U. If F is locally Lipschitz continuous on U and (2) of
Assumption 4.3 holds with O replaced by U then for each ε > 0 there exists δ > 0 such
that for all y0 ∈ (x(0) + δIB) ∩ C there exists a solution y: [0, τ ] → R

n to Eq. 11 with
y(0) = y0 and dgph(x, y) � ε. If additionally (3) and (4) hold with O replaced by U in
(4), and x(T) ∈ D, then y can be chosen so that also y(τ ) ∈ D.

We now note that non-uniform global asymptotic stability of Eq. 3 fails to imply
global asymptotic stability of Eq. 4, even if strong relaxation is possible.

Example 5.3 On O = R
3, let A be the singleton (7, 7, 7) and consider

C = {ξ | ξ1 + ξ2 � 1, ξ2 � 0}, D = O \ C, F(ξ) = (1 − ξ1, ξ
2
3 , {−1, 1}), G(ξ) = A.
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Then A is stable for both Eqs. 3 and 4: solutions from a (sufficiently small) neighbor-
hood of A stay in that neighborhood, in fact they reach A in one jump. For Eq. 3, A
is also attractive: all solutions converge to A, in fact in finite time (the convergence is
not uniform though; for example, solutions from (0, 0, 0) can take an arbitrarily large
amount of time to flow to D, and hence, an arbitrarily large amount of “hybrid time”
to reach A). For Eq. 4, A is not attractive: the constant hybrid arc x(t, 0) = (1, 0, 0),
t ∈ R�0, is a solution to Eq. 4 and does not converge to A. It can be verified directly
that relaxation, in the sense of Definition 3.1, is possible, even though the viability
conditions in Assumption 4.3 fail.

That global asymptotic stability of Eq. 3 fails to imply global asymptotic stability
of Eq. 4 can be attributed to the failure of relaxation on the infinite (hybrid) time
horizon. Note that in Example 5.3, the hybrid arc x(t, 0) = (1, 0, 0), t ∈ R�0, is a
solution to Eq. 4 but there are no solutions to Eq. 3, from (1, 0, 0) or otherwise, that
remain close to x for all t ∈ R�0 (such relaxation is possible for purely continuous-
time unconstrained systems; see [22]). An even simpler example, one for which the
viability conditions in Assumption 4.3 hold and where relaxation on infinite (hybrid)
time fails can be given.

Example 5.4 On O = R
2 consider

C = D = O, F(ξ) = ({−1, 1}, ξ1 + ξ 2
2

)
, G(ξ) = (0, 0).

The hybrid arc x(0, 0) = (7, 7), x(1, t) = (0, 0) for t ∈ R�0 is a solution to Eq. 4 (it
initially jumps and then only flows). Any solution to Eq. 3 that jumps has to jump to
(0, 0). If it only flows afterwards, its first coordinate grows (faster than exponentially)
to ∞. Thus, the graph of such a solution is not close to the graph of x.

We note though that for a continuous-time system on R
2 given by F above, [22,

Theorem 1] guarantees that, given any ε > 0, there does exist a solution to ẋ ∈ F(x)

with ‖x(t)‖ < ε. However, that result does not guarantee that x(0) = (0, 0); in fact,
meeting this initial condition is impossible for the system under discussion (cf. the
example in Section 4 of [22]).

6 Continuous Dependence

Throughout this section, we pose Assumption 4.1 and

Assumption 6.1

(A3) G: O →→ R
n is outer semicontinuous and locally bounded relative to D, has

nonempty values on D, and G(x) ⊂ O for all x ∈ D.

We will say that

• The solution sets to H depend outer-semicontinuously on initial conditions at x0 if
for each ε > 0, M > 0 there exists δ > 0 such that, for any y0 ∈ x0 + δIB and any
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solution y to H with y(0, 0) = y0 and length dom y � M there exists a solution x
to H with x(0, 0) = x0 and

dgph(x, y) � ε;
• The solution sets to H depend inner-semicontinuously on initial conditions at x0 if

for each ε > 0, M > 0 there exists δ > 0 such that, for any y0 ∈ x0 + δIB and any
solution x to H with x(0, 0) = x0 and length dom x � M there exists a solution y
to H with y(0, 0) = y0 and

dgph(x, y) � ε;
• The solution sets to H depend continuously on initial conditions at x0 if they

depend both outer and inner-semicontinuously.

The solution sets to H depend outer-semicontinuously, inner-semicontinuously, and
continuously relative to C ∪ D if only y0 ∈ C ∪ D are considered.

Note that the difference between what we called strong local relaxation and inner-
semicontinuity is the uniformity in the latter: that δ works for all solutions from x0

rather than for each solution we have a δ.

Proposition 6.2 Suppose that strong relaxation for solutions from x0 is possible and
that all solutions to Hcon from x0 that are not complete are bounded. Then solution
sets to Hcon and the solution sets to H depend continuously on initial conditions at x0,
relative to C ∪ D.

Proof Outer semicontinuity for Hcon was shown in [16, Corollary 4.8]. The needed
“local eventual boundedness assumption” is guaranteed here by the assumption of
boundedness of the maximal and not complete solutions (that this is sufficient follows
from the last two lines of the proof of [16, Theorem 4.6]).

We now claim that for each ε > 0, M > 0 there exists δ > 0 such that, for any y0 ∈
x0 + δIB and any solution x to Hcon with x(0, 0) = x0 and length dom x � M there
exists a solution y to H with y(0, 0) = y0 and dgph(x, x) � ε. This gives uniformity
in relaxation, and entails the inner semicontinuity for both H and Hcon. If the
claim was false, then for some ε > 0, M > 0 there is a sequence xi : dom xi → R

n

of solutions to Hcon with xi(0, 0) = x0, | dom xi| � M, a sequence of points y0,i → x0

for which all solutions y: dom y → R
n to H with y(0, 0) = y0,i satisfy dgph(xi, y) > ε.

Again by the proof of [16, Theorem 4.6], the sequence of xi’s is bounded and a
graphically convergent subsequence (which we do not relabel) can be picked (see
[16, Theorem 4.4]), the limit x of which is a solution to Hcon with compact dom x
satisfying length dom x � M. We have dgph(xi, x) → 0, and

ε < dgph(xi, y) � dgph(xi, x) + dgph(x, y),

which holds for all solutions y: dom y → R
n to H with y(0, 0) = y0,i. This contradicts

strong relaxation at x0.
Finally, the outer semicontinuity for Hcon and strong relaxation for solutions from

x0 combine to yield outer semicontinuity for H. ��

Recall that Corollaries 3.7 and 4.6 gave sufficient conditions for the strong
relaxation for solutions from x0 to be possible.
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Example 6.3 A ball bouncing on the floor, with h denoting its height and v its
velocity, can be modeled as the hybrid system, on R

2, given by
⎧
⎨

⎩

ḣ = v, v̇ = −g h � 0, (h, v) �= (0, 0)

ḣ = v, v̇ ∈ [−g, 0] (h, v) = (0, 0)

h+ = h, v+ = −γ v h = 0, v � 0
. (18)

Above, g is the acceleration due to gravity, and γ ∈ (0, 1) represents dissipation of
energy at each bounce.3

The dependence of solutions to Eq. 18 on initial conditions is not continuous at
the point h = 0, v = 0. Indeed, the inner semicontinuity fails: there exists a flowing-
only solution h(t, 0) = 0, v(t, 0) = 0 for t ∈ R�0 from that initial point, while for
initial conditions approaching the origin, the solutions experience infinitely many
jumps in less and less time (they are Zeno solutions), and are not graphically close
to the mentioned flowing-only solution (however, outer semicontinuity is present,
as the Zeno solutions converge to the instantaneous Zeno solution from the origin:
h(0, j ) = 0, v(0, j ) = 0 for j ∈ N).

However, solutions to Eq. 18 depend continuously on initial conditions at any
other initial point (with h � 0). To see this, one can first consider Eq. 18 on
the state space O = R

2 \ {0} and note that all solutions to the original system
except those from the origin are still solutions to the new system (the state h =
0, v = 0 is not reachable from any initial condition besides h = 0, v = 0 itself).
Then, conditions of Corollary 4.6, including Assumption 4.3 can be verified. For
example, (2) of Assumption 4.3 needs to be checked at points (h, v) = x such that
x ∈ ∂C ∩ O and F(x) ∩ TC(x) �= ∅, i.e., at points where h = 0 and v > 0 (TC(x) =
R�0 × R for all x ∈ ∂C ∩ O = {x | h = 0, v �= 0} while F(x) = (v,−g)). One then
has −F(x) ⊂ MO\C(x) = (−∞, 0) × R and for all nearby points in ∂C, F(x) ⊂
Mint C(x) = (0,∞) × R. Hence (2) of Assumption 4.3 is satisfied. Condition (3) of
Assumption 4.3 is met vacuously, (4) is easy to check (at points where h = 0, v < 0),
and as for such points, F(x) ∩ TC(x) = ∅, condition (c) of Corollary 4.6 is met.
Consequently, by Corollary 4.6, strong relaxation is possible at each initial point,
and Proposition 6.2 yields continuous dependence.

We note that essentially the same argument as in the proof of Proposition 6.2
shows a certain “uniformity in inner semicontinuity”, which is a counterpart to
“uniformity in outer semicontinuity” as in [16, Corollary 4.8]. More specifically, one
obtains:

Corollary 6.4 Let K ⊂ O be a compact set such that for each x0 ∈ K, strong relaxation
is possible for solutions from x0 and such that all not complete solutions to Hcon

from x0 are bounded. Then, for any ε > 0 and M > 0, there exists δ > 0 such that,
for any x0 ∈ K, any y0 ∈ x0 + δIB and any solution x to Hcon with x(0, 0) = x0 and
length dom x � M there exists a solution y to H with y(0, 0) = y0 and dgph(x, x) � ε.

While the solution sets to H depend continuously on initial conditions at x0 as
in Proposition 6.2, these sets need not be closed under graphical convergence of

3The inclusion v̇ ∈ [−g, 0] is used to allow for the natural constant flowing solution from h = 0, v = 0
while preserving outer semicontinuity and convex-valuedness of the flow map.
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solutions. That is, the limit of a graphically convergent sequence of solutions xi to
H, with xi(0, 0) → x0, need not be a solution to H. It will be a solution to Hcon, as
more generally, the limit of a graphically convergent sequence of solutions xi to Hcon,
with xi(0, 0) → x0, is a solution to Hcon; see [16, Theorem 4.4].

We conclude the section by revisiting Assumption 3.3 (a) in presence of
Assumption 4.1.

Remark 6.5 The outer semicontinuity of G implies outer semicontinuity of G∩C and
G∩D defined in Eq. 12. Indeed, this follows from C, D being relatively closed in O,
and the fact that G(ξ) ⊂ O for all ξ ∈ D.

Inner semicontinuity of G does not imply inner semicontinuity of G∩C or G∩D

(for example, inner semicontinuity of G∩C fails at ξ ∈ int D if G(ξ) ∩ C �= ∅ but
G(ξ ′) ∩ C = ∅ for some ξ ′ arbitrarily close to ξ). The reverse implication, that inner
semicontinuity of G∩C, G∩D implies that of G, will be true if one has G(ξ) ⊂ C ∪ D
for all ξ ∈ D, as then G(ξ) = G∩C(ξ) ∪ G∩D(ξ).

As we already noted, G∩C, G∩D are outer semicontinuous, so (a) of Assumption
3.3 means that G∩C and G∩D are actually continuous (as set-valued mappings)
relative to D. This continuity does not mean that G∩C(ξ) �= ∅ for all ξ ∈ D, similarly,
it may be that G∩D(ξ) = ∅ for some ξ ∈ D.

Given any connected subset S of D, it must be the case that either G∩C(ξ) �= ∅ for
all ξ ∈ S, or G∩C(ξ) = ∅ for all ξ ∈ S. Similarly for G∩D.

In the special case of G(ξ) ⊂ C \ D for all ξ ∈ D, G∩D is empty-valued, hence
inner semicontinuous relative to D. Also then, G∩C = G on D, so (a) of Assumption
3.3 is equivalent to continuity of G on D.

7 Special Case: Systems with Logic Variables

Let Q ⊂ Z
nd be a set, and for each q ∈ Q let Oq ⊂ R

nc be an open set, let Cq, Dq ⊂
Oq, and let Fq : Oq →→ R

nc , Gq : Oq →→ R
nc × R

nd be (set-valued) mappings. Consider
the hybrid system given by

Hq :

⎧
⎪⎨

⎪⎩

ξ̇ ∈ Fq(ξ) ξ ∈ Cq
[
ξ+
q+

]

∈ Gq(ξ) ξ ∈ Dq

. (19)

In particular, during flow, the so called “discrete variable” or “mode” q remains
constant (i.e., q̇ = 0). Such a system can be thought of as a special case of Eq. 3,
by considering the variable x = (ξ, q), any open O ⊂ R

nc × R
nd such that O ∩ R

nc ×
Z

nd = ⋃
q∈Q Oq × {q}, the sets

C =
⋃

q∈Q

Cq × {q}, D =
⋃

q∈Q

Dq × {q}, (20)

and the mappings F : O →→ R
nc × R

nd , G: O →→ R
nc × R

nd given by

F(ξ, q) = Fq(ξ) × {0}, G(ξ, q) = Gq(ξ).
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Such reformulation is what makes possible translating relaxation results, Theorems
3.4 and 4.5, to the system in Eq.19 and its relaxed version:

Hcon
q :

⎧
⎪⎨

⎪⎩

ξ̇ ∈ con Fq(ξ) ξ ∈ Cq
[
ξ+
q+

]

∈ Gq(ξ) ξ ∈ Dq

(21)

Given two hybrid arcs x = (ξ, q) : dom x → R
nc × R

nd , y = (η, r) : dom y →
R

nc × R
nd their graphical distance will be dgph(x, y) = d(gph x, gph y), where d is the

Pompeiu–Hausdorff distance in R
2 × R

nc × R
nd × R defined with the ball

B = IB1 × IB1 × IBnc × IBnd

that corresponds to the norm max{|α|, |β|, ‖γ ‖, ‖δ‖} where α, β ∈ R, γ ∈ R
nc , δ ∈ R

nd .
Consider the condition

|t − s| � ε, ‖ξ(t, j ) − η(s, j )‖ � ε, q(t, j ) = r(s, j ). (22)

Given two hybrid arcs x = (ξ, q), y = (η, r) and ε < 1, dgph(x, y) � ε if and only if

• For each (t, j ) ∈ dom x there exists (s, j ) ∈ dom y such that Eq. 22 holds, and
• For each (s, j ) ∈ dom y there exists (t, j ) ∈ dom x such that Eq. 22 holds.

In the current setting, Theorem 3.4 reduces to the following.

Corollary 7.1 Suppose that for each q ∈ Q,

(a) The mappings G∩C
q , G∩D

q , G\
q : Oq →→ R

nc × R
nd defined by

G∩C
q (x) = Gq(x) ∩ C, G∩D

q (x) = Gq(x) ∩ D, G\
q(x) = Gq(x) ∩ [

O \ (C ∪ D)
]

with C and D as in Eq. 20 are inner semicontinuous relative to Dq;
(b) Assumption 3.3 (b) holds with Fq, Cq, Dq replacing F, C, D, respectively.

Then, for any ξ0 ∈ Cq0 ∪ Dq0 , strong relaxation for initially flowing (respectively,
initially jumping) solutions from (ξ0, q0) relative to Cq0 (respectively, relative to Dq0 ) is
possible, that is: for any compact solution x = (ξ, q) : dom x → R

nc × R
nd to Hcon

q with
ξ(0, 0) = ξ0, q(0, 0) = q0 that initially flows (respectively, that initially jumps) and for
any ε > 0, there exists δ > 0 such that for any η0 ∈ (ξ(0, 0) + δIB) ∩ Cq0 (respectively,
for any η0 ∈ (x(0, 0) + δIB) ∩ Dq0 ) there exist a hybrid arc y = (η, r) : dom y → R

nc ×
R

nd with compact dom y and η(0, 0) = η0, r(0, 0) = q0 that is a solution to Hq and
dgph(x, y) � ε, and moreover, if ξ(T, J ) ∈ Dq(T,J ), where (T, J ) = max dom x, then
η(τ, J ) ∈ Dr(τ,J ), where (τ, J ) = max dom y.

Since during flows for hybrid systems in Eqs. 19, 21 the variable q remains
constant, the conditions in Assumption 4.3 that are sufficient for (b) of Assumption
3.3 can be applied to Eqs. 19, 21 in each q separately. Thus, if, for each q ∈ Q, the
sets Cq, Dq and the mapping Fq satisfy Assumption 4.3 (with Cq, Dq, Fq replacing C,
D, F), (b) of Corollary 7.1 is satisfied.
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