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Abstract In this paper we extend results from Semigroup Theory on existence and
characterization of attractors in order to include multivalued semigroups T(t) defined
by generalized semiflows G . In particular we show that, if G is continuous, possesses
a Lyapunov function, and G has a global attractor A which is maximal compact
invariant, then A = Wu(Z (G )), where Z (G ) is the stationary solutions set and
Wu(Z (G )) is the unstable set of Z (G ). We introduce the ϕ-attractor concept which
does not enjoy any uniformity on time of attraction and we prove, under suitable
conditions, that the global ϕ-attractor ̂N is the set of asymptotic states described by
Z (G ).
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1 Introduction

The lack of uniqueness does not constitute an obstruction to obtaining the existence
of global attractors for differential problems. In fact, a wide class of Cauchy problems
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usually termed as ill-posed enjoy sufficient compactness and dissipativity properties
to prove the existence of a maximal compact invariant set which attracts all the
bounded sets. There are several authors dealing with this issue, among which we
name Ball, [1], Melnik and Valero, [8], and Carvalho and Gentile, [4]. We also
cite [2] where it can be found a good description of the two first works and a
comparison between them. In a very short way, we could say that Melnik and Valero
consider multivalued operators mapping initial data u0 from the phase space X onto
the set of all possible states at a time t, T(t)u0 ⊂ X while Ball looks at solutions
as the fundamental block in his considerations, as we briefly describe below. The
ideas in the third work are deeply connected with both of them, since it deals with
multivalued semigroups constructed by considering all possible solutions starting
from given initial data. The main distinction on the study of the asymptotic behavior
in [4] is that the multivalued semigroup considered there enjoy a strong regularity
property in such way that it eventually becomes a semigroup. This condition seems
to be hard to deal with, but actually it can be easily obtained, by comparison methods,
for a class of problems involving maximal monotone operators with increasing
resolvent and for which the uniqueness is not a trivial question, [3].

In this work we are concerned with multivalued semigroups T(t) defined by
generalized semiflows G , that means, every point ζ ∈ T(t)x, x ∈ X (X a complete
metric space, t ∈ [0, ∞)) is such that ζ = ϕ(t), where ϕ is a solution in G and ϕ(0) = x.
Most definitions from Semigroup Theory can be extended in a very natural way to
the multivalued framework, but some of them accept more than one extension. This
is the case when we consider the existence of a certain time τ after which some
condition must be satisfied, as occurs in the concepts of attraction, absorption and
dissipativity or eventual properties. In Semigroup Theory, this time can be uniformly
chosen on bounded sets or not, and these are the only two possibilities. Here, in this
context, we have to consider the possibility of a time, after which something happens,
being uniform on bounded sets, uniform on points or not uniform in any way. By
uniformity on points we mean that given an arbitrary point x ∈ X, there is a time
τ = τ(x) after which all solutions ϕ ∈ G starting at x enjoy a certain property. This
distinction generates a new group of definitions which does not make sense in single-
valued theory and some of them seem to play a special role in multivalued semigroup
context. In this text we call ϕ-concepts those which are defined without supposing
any uniformity on time, that means, we add the prefix ϕ to the words attraction,
dissipativity, boundedness, etc, in order to indicate that we are not supposing that
the times in such definitions are uniformly chosen in any sense. For example, we
say that a set A ϕ−attracts some subset M ⊂ X if given ε > 0, each solution in G
starting at some point in M, eventually goes into the ε neighbourhood of A, Oε(A),
and remains inside it. One of our main results states that, if a generalized semiflow G
is ϕ-asymptotically compact and possesses a Lyapunov function, then there exists a
minimal closed global ϕ-attractor ̂N for G and ̂N coincides with the set of stationary
solutions in G .

We organize this paper as follows. Section 2 contains the main results in the
literature on the existence of attractors for differential problems without uniqueness
and provides the background information for further discussions. We describe all
relevant definitions and theorems in [1, 2, 8] and [4], and we also add some others
easily extended from [5] and [6]. In Section 3 we obtain some characterizations of the
attractor, as is done in [6] for semigroups, and we prove that, even in the multivalued
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case, the maximal compact invariant global attractor can be described in terms of the
unstable set of the equilibrium states, if there is a Lyapunov function for the system.
In Section 4 we discuss the ϕ-concepts.

2 Multivalued Semigroups - A Theory for Differential Problems without
Uniqueness

In this section we introduce the general framework for studying attractors for
differential problems without uniqueness. Most elements in this preliminary text is
already published in [1, 2, 8] or [4], as we indicate at the beginning of each known
result. We introduce some additional definitions and results which are easily extend
from Classical Semigroup Theory, and we use strongly [7] to support our discussion.

2.1 Definitions, Notations and Preliminary Facts

Let (X, d) be a complete metric space and let P(X), B(X), C(X), K(X), and BC(X)

denote respectively non-empty, non-empty and bounded, non-empty and closed,
non-empty and compact and non-empty bounded and closed subsets of X. For x ∈ X
and A, B ∈ P(X), and ε > 0 we set

d(x, A)
.= infa∈A{d(x, a)};

dist(A, B)
.= supa∈A{d(a, B)} = supa∈A infb∈B{d(a, b)};

dH(A, B)
.= max{dist(A, B), dist(B, A)} :

Oε(A)
.= {z ∈ X; d(z, A) < ε}.

Definition 1 [1] A generalized semiflow G on X is a family of maps ϕ : [0, ∞) → X
satisfying the conditions:

(H1) For each z ∈ X there exists at least one ϕ ∈ G with ϕ(0) = z.
(H2) If ϕ ∈ G and τ � 0, then ϕτ ∈ G , where ϕτ (t) := ϕ(t + τ),∀ t ∈ [0, ∞).

(H3) If ϕ,ψ ∈ G , and ψ(0) = ϕ(t) for some t � 0, then θ ∈ G , where

θ(τ )
.=

{

ϕ(τ) for τ ∈ [0, t]
ψ(τ − t) for τ ∈ (t,∞)

(H4) If {ϕ j}∞j=1 ⊂ G and ϕ j(0) → z, then there exists a subsequence {ϕμ} of {ϕ j} and
ϕ ∈ G with ϕ(0) = z such that ϕμ(t) → ϕ(t) for each t � 0.

Definition 2 We say that G is a continuous generalized semiflow if each ϕ ∈ G is a
continuous map from [0, ∞) on X.

Definition 3 A multivalued semigroup {T(t)}t�0 defined by G is a family of multival-
ued operators T(t) : P(X) → P(X) such that, for each t � 0,

T(t)E .= {ϕ(t); ϕ ∈ G with ϕ(0) ∈ E}.
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It is well known that the family {T(t)}t�0 satisfies

Proposition 1 [2]

(a) {T(t)}t�0 is a semigroup on P(X), i.e., T(0) = IdP(X) and T(t + s) = T(t)T(s)
for all t, s � 0;

(b) T(t) is monotone with respect to the partial order of set inclusion, i.e., E ⊂ F
implies T(t)E ⊂ T(t)F for all t � 0;

(c) T(t)x is compact for each x ∈ X;
(d) If {Kn}n�1 is a sequence of compact subsets of X such that dist(Kn, K) → 0 as

n → ∞ then dist(T(t)Kn, T(t)K) → 0 for each t � 0; and
(e) T(t) : X → K(X) is an upper semicontinuous map and it has closed graph for

each t � 0.

Definition 4 The positive orbit of ϕ ∈ G and E ⊂ X are given by γ +(ϕ)
.= {ϕ(t);

t � 0} and γ +(E)
.= ⋃

t�0 T(t)E. If τ > 0, γ +
τ (ϕ)

.= {ϕ(t); t � τ } and γ +
τ (E)

.=
⋃

t�τ T(t)E.

Definition 5 We say that there exists a complete orbit through x ∈ X if there is a
map ψ :R → X such that, for any s ∈ R, ψ s|R+ ∈ G and ψ(0) = x. In this case, the
complete orbit of ψ is given by

γ (ψ) = Im ψ = {ψ(t), t ∈ R}.

We also say that ψ is a complete orbit through x.

Definition 6 We say that a complete orbit ψ :R → X is stationary if ψ(t) = z, for all
t ∈ R for some z ∈ X. We set

Z (G )
.= {z ∈ X : there exists a complete orbit ψ such that ψ(t) = z ∀ t ∈ R}.

Remark 1 We observe that z ∈ Z (G ) can be called a stationary solution in G once
we have that z ∈ Z (G ) if and only if ∃ φ ∈ G such that φ(t) = z for all t � 0.

When talking about differential equations or inclusions, we also have that z ∈
Z (G ) if and only if z ∈ T(t)z for all t � 0, so we can refer to z as an equilibrium
of T(t).

Remark 2 It follows from (H4) that Z (G ) is a closed set.

Definition 7 We say that a subset A ⊂ X is positively invariant if T(t)A ⊂ A, ∀ t �
0, A is negatively invariant if A ⊂ T(t)A, ∀ t � 0, A is invariant if T(t)A = A, ∀ t �
0, and A is quasi-invariant if for each z ∈ A there exists a complete orbit ψ through
z and ψ(t) ∈ A for all t ∈ R.

Remark 3 Invariant ⇒ quasi-invariant ⇒ negatively invariant.
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Definition 8 If ϕ ∈ G , ψ is a complete orbit and E ⊂ X,

• ω(ϕ)
.= {z ∈ X; ϕ(t j) → z, t j → +∞}.

• α(ψ)
.= {z ∈ X; ψ(t j) → z, t j → −∞}.

• ωB(E)
.= {z ∈ X; ∃ ϕ j ∈ G , {ϕ j(0)} ⊂ E, {ϕ j(0)} ∈ B(X), and there is {t j} ⊂

R
+, t j → +∞ with ϕ j(t j) → z}.

• ω(E)
.= ⋂

t�0 γ +
t (E).

Remark 4 ω(ϕ) = ⋂

t�0 γ +
t (ϕ).

Remark 5 [8] The set ω(E) consists of the limits of all converging sequences {ξn},
where ξn ∈ T(tn)E, tn → +∞. ωB(E) ⊂ ω(E) and ωB(E) = ω(E) if E is bounded.
So we denote ωB(B) = ω(B) if B ∈ B(X).

Definition 9 We say that A ⊂ X attracts a set E ⊂ X if for any ε > 0 there exists τ =
τ(ε, E)�0 such that T(t)E ⊂ Oε(A) for all t�τ , or equivalently, dist(T(t)E, A) → 0
as t → +∞.

Definition 10

(a) The subset A is a global B-attractor if it attracts all bounded subsets of X.

(b) The subset A is a global point attractor if it attracts all points of X.

Definition 11 The generalized semiflow G is eventually bounded if for any B ∈
B(X) there exists τ = τ(B) � 0 such that γ +

τ (B) ∈ B(X).

Definition 12

(a) G is bounded dissipative or B-dissipative if there is a bounded global
B-attractor for G .

(b) G is point dissipative if there is a bounded global point attractor for G .
(c) We say that G is ϕ-dissipative if there is a bounded set B0 such that, for any

ϕ ∈ G , ϕ(t) ∈ B0 for all sufficiently large t.

Remark 6 Bounded dissipative ⇒ point dissipative ⇒ ϕ-dissipative. (ϕ-dissipativity
is called point dissipativity in [1] ).

Definition 13 G is compact if, for any sequence {ϕ j} ⊂ G with {ϕ j(0)} ∈ B(X), there
exists a subsequence {ϕ jk} ⊂ {ϕ j} such that {ϕ jk(t)} is convergent for each t > 0.

Definition 14 G is asymptotically compact if, for any sequence {ϕ j} ⊂ G with
{ϕ j(0)} ∈ B(X), and for any sequence {t j}, t j → +∞, the sequence {ϕ j(t j)} has a
convergent subsequence; (Or equivalently, for any B ∈ B(X), each sequence {ξn},
with ξn ∈ T(tn)B, ∀ n ∈ N, and tn → +∞, contains a convergent subsequence).

Definition 15 G is conditionally asymptotically compact if, for any B ∈ B(X) such
that γ +

τ(B)(B) ∈ B(X) for some τ(B) � 0, each sequence {ξn}, with ξn ∈ T(tn)B, ∀ n ∈
N, and tn → +∞, contains a convergent subsequence. (In [8], this condition is
referred as asymptotically upper semicompact).
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Lemma 1 Let G be asymptotically compact. If B ∈ BC(X) is negatively invariant,
then B is compact.

Proposition 2 [1]

(a) If G is asymptotically compact, then G is eventually bounded.
(b) If G is eventually bounded and compact, then G is asymptotically compact.

Proposition 3 [2] G is asymptotically compact, if and only if G is eventually bounded
and conditionally asymptotically compact.

2.2 Attractors for G

In this section we give conditions on a generalized semiflow G so that ω(B) attracts
B for all B ∈ B(X), and we prove that these conditions imply that

⋃

x∈X ω(x) is the
only minimum closed global point attractor and

⋃

B∈B(X) ω(B) is the only minimum
closed global B-attractor. In order to do this, the following lemma will be essential.

Lemma 2 Let G be a generalized semiflow and let F ∈ C(X). If F attracts a subset
A ∈ P(X), then ωB(A) ⊂ ω(A) ⊂ F. If ω(A) attracts A, then it must be the unique
minimal closed set which attracts A. Also, for any A ∈ P(X) and for any τ � 0, we
have ω(γ +

τ (A)) = ω(A).

Theorem 1

(i) If F ⊂ X is a closed global point attractor, then
⋃

x∈X ω(x) ⊂ F. Particularly, if
⋃

x∈X ω(x) is a global point attractor, then it must be the unique minimal closed
global point attractor ̂M.

(ii) If for each x ∈ X, ω(x) atracts x, then G has the unique minimal closed global
point attractor ̂M and ̂M = ⋃

x∈X ω(x).

Theorem 2

(i) If F ⊂ X is a closed global B-attractor, then
⋃

B∈B(X) ω(B) ⊂ F, in particular, if
⋃

B∈B(X) ω(B) is a global B-attractor, then it must be the unique minimal closed
global B-attractor M.

(ii) If for each B ∈ B(X), ω(B) atracts B, then G has the unique minimal closed
global B-attractor M and

M =
⋃

B∈B(X)

ω(B).

Lemma 3 Let G be a generalized semiflow and K ∈ K(X). If K attracts A ∈ P(X),

then each sequence {ξn}, with ξn ∈ T(tn)A and tn → +∞, contains a subsequence that
converges to some point of K.

The above statements can be proved using the arguments as the analogous results
in univalued case (see [7]). We only observe that in the multivalued context ω-limit



On attractors for multivalued semigroups defined by generalized semiflows 111

sets are not necessarily positively invariant. The next proposition follows Lemma
3.1.1 [5], and can be easily proved by using Ball’s arguments as is done in Lemma 3.4
(i), [1].

Proposition 4 Let G be a generalized semiflow and A ∈ P(X) such that ω(A) is
a non-empty compact set which attracts A. Then ω(A) is quasi-invariant and so
negatively invariant. The same is valid for ωB(A) if ωB(A) is a non-empty compact
set which attracts A.

The next lemma states the essential compactness we need in order to obtain good
conditions on ω-limit sets. Its proof is evident.

Lemma 4 Let G be a generalized semiflow and A ∈ P(X). If each sequence {ξn}, with
ξn ∈ T(tn)A and tn → +∞, contains a convergent subsequence in X, then ω(A) is the
minimal closed non-empty set which attracts A and also, ω(A) is compact and quasi-
invariant.

By Lemmas 3 and 4, we obtain immediately the following two results:

Theorem 3 ω(A) is a non-empty quasi-invariant and compact set which attracts A, if
and only if, each sequence {ξn}, with ξn ∈ T(tn)A and tn → +∞, contains a convergent
subsequence in X.

Theorem 4 Let G be a generalized semiflow and K ∈ K(X). If K attracts A ∈ P(X),

then ω(A) is a non-empty minimal closed set which attracts A, and ω(A) is compact
and quasi-invariant.

Proposition 5 Let G be a generalized semiflow and let A ∈ P(X) be such that
γ +(A) ∈ K(X). Then ω(A) is a non-empty compact set which attracts A and ω(A)

is quasi-invariant.

Proof Let {xn} ⊂ A. By (H1) there is {ϕn} ⊂ G such that ϕn(0) = xn. Consider a
sequence tn → +∞ and the sequence {ϕn(tn)}. Then {ϕn(tn)} has a convergent sub-
sequence ϕnk(tnk) → y ∈ ω(A). Therefore ω(A) 	= ∅. Since ω(A) ⊂ γ +(A) it follows
that ω(A) is compact. Also, we have that ω(A) attracts A. If not, there is ε0 > 0 and
sequences t j → ∞, {ϕ j} ⊂ G with ϕ j(0) ∈ A such that ϕ j(t j) 	∈ Oε0(ω(A)), what is a
contradiction. So, it follows from Proposition 4 that ω(A) is quasi-invariant. ��

Lemma 5 [1] Let G be asymptotically compact.

(i) Let B ∈ B(X). Then ω(B) is non-empty, compact, quasi-invariant, and is the
minimal closed set which attracts B. If T(t0)ω(B) ⊂ B for some t0 � 0, then
ω(B) is invariant.

(ii) If ϕ ∈ G then ω(ϕ) is non-empty, compact, quasi-invariant. Also, we have
limt→+∞ d(ϕ(t), ω(ϕ)) = 0.

(iii) If ψ is a bounded complete orbit then α(ψ) is non-empty, compact, quasi-
invariant, and limt→−∞ d(ψ(t), α(ψ)) = 0.
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Theorem 5 Let G be a conditionally asymptotically compact generalized semiflow
and A ∈ P(X). If there exists τ � 0 such that γ +

τ (A) ∈ B(X), then ω(A) is a non-
empty compact quasi-invariant set and ω(A) is the minimal closed set which attracts A.

Proof Consider an arbitrary sequence {ξn} with ξn ∈ T(tn)A and tn → +∞. We
may choose a subsequence tnk → +∞ satisfying tnk � τ, ∀ k ∈ N. We have that
γ +

τ (γ +
τ (A)) ∈ B(X) and T(tnk)A = T(tnk − τ)T(τ )A, ∀ k ∈ N. Since G is condition-

ally asymptotically compact and ξnk ∈ T(tnk − τ)γ +
τ (A), we obtain that {ξnk} has a

convergent subsequence in X. Then, it follows from Lemma 4 that ω(A) is a non-
empty minimal closed set which attracts A, and ω(A) is compact and quasi-invariant.

��
The following lemma motivates the definition of another compactness property.

Lemma 6 [7] Let {Ln}∞n=1 be a decreasing sequence of sets in a complete metric space
X : L1 ⊃ L2 ⊃ . . . ⊃ Ln ⊃ . . . , satisfying the following condition. For each n ∈ N

there exists a compact set Kn ⊂ X and a number εn > 0 such that

Ln ⊂ Oεn(Kn) and εn → 0 as n → +∞.

Then for every given yn ∈ Ln, ∀ n ∈ N, the sequence {yn}∞n=1 contains a convergent
subsequence.

Definition 16 We say that a generalized semiflow G possesses B-asymptotically
compact property (B-ACP) if for any B ∈ B(X) such that γ +

t1(B)(B) ∈ B(X) for a
certain t1(B) � 0, there is a time t2(B) � t1(B) such that for any t � t2(B), there
exists a compact set K(B, t) ⊂ X and ε(B, t) > 0 satisfying

T(t)B ⊂ Oε(B,t)(K(B, t)) and ε(B, t) → 0 as t → +∞.

By using (H3), Lemmas 6, 4, 2, and with the same arguments, we can extend
Theorem 4.12 in [7] to the multivalued case.

Theorem 6 Let G be a generalized semiflow with B-ACP and A ∈ P(X). If exists
τ � 0 such that γ +

τ (A) ∈ B(X), then ω(A) is a non-empty compact quasi-invariant
set, and it is the minimal closed set which attracts A.

So we have as a consequence of Theorem 1 (ii), Theorem 2 (ii) and Theorem 6 the
following theorem:

Theorem 7 Let G be an eventually bounded generalized semiflow with B-ACP. Then
G has the unique minimal closed global point attractor ̂M and G has the unique
minimal closed global B-attractor M. Also, we have

̂M =
⋃

x∈X

ω(x), M =
⋃

B∈B(X)

ω(B).

Lemma 7 [8] Let B ∈ B(X) a negatively invariant set. If Z is a global B-attractor, then
B ⊂ Z . (So, if A is a global B-attractor, closed, bounded and negatively invariant,
then A is minimal among all closed global B-attractors).
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Some other classes of generalized semiflow inspired in Semigroup Theory are now
introduced and we make a comparison between them.

Definition 17 Let G be a generalized semiflow.

(a) We say that G is of class K ∗ if T(t) : X → P(X) is compact for some t1 > 0,

i.e., for each B ∈ B(X), its image T(t1)B is relatively compact in X.

(b) We say that G is of class B-K if for each B ∈ B(X), there exists t1 = t1(B) � 0
such that T(t)B is relatively compact for each t � t1.

(c) G is called asymptotically smooth if, for any non-empty closed bounded
positively invariant set B ⊂ X, there is a compact set J ⊂ B such that J
attracts B.

(d) We say that G is uniformly compact for t large if for each B ∈ B(X) there exists
a t(B) � 0 such that γ +

t(B)(B) is relatively compact in X.

Theorem 8 Let G be a generalized semiflow, then

(i) G is of class K ∗ ⇒ G is of class B-K ⇒ G is conditionally asymptotically
compact.

(ii) G possesses B-ACP ⇔ G is conditionally asymptotically compact.
(iii) G possesses B-ACP ⇒ G is asymptotically smooth.
(iv) G uniformly compact for t large ⇔ G is eventually bounded and it is of class

B-K .

(v) G is asymptotically compact ⇒ G eventually bounded.
(vi) G compact and eventually bounded ⇒ G is asymptotically compact.

(vii) G is asymptotically compact ⇔ G is conditionally asymptotically compact and
eventually bounded.

Lemma 8 [1] Let G be ϕ-dissipative and eventually bounded. Then there exists a
bounded set B1 such that given any compact K ⊂ X there exists ε = ε(K) > 0, t1 =
t1(K) > 0, such that T(t)Oε(K) ⊂ B1 for all t � t1.

Remark 7 It follows as a corollary of the proof of Lemma 3.5 in [1]: Let G be an
eventually bounded generalized semiflow. If there is a bounded set B0 such that, for
any ϕ ∈ G and ε > 0, ϕ(t) ∈ Oε(B0) for all sufficiently large t then from eventual
boundedness we know that for each δ > 0 there exists τ(B0, δ) � 0 such that B1

.=
γ +

τ(B0,δ)
(Oδ(B0)) ∈ B(X), and moreover for each compact set K ⊂ X, there exists

ε = ε(K, δ) > 0 and t1 = t1(K, δ) � 0 such that T(t)Oε(K) ⊂ B1 for all t � t1.
This result appears in Semigroup Theory [6, 7], and its proof involves the continu-

ity of each operator T(t). Once we admit T(t) to be a multivalued operator it loses the
property of being continuous, but the multivalued semigroup maintains the essential
atraction property.

Lemma 8 says that if G is ϕ-dissipative and eventually bounded, then there exists
a bounded set B1 that absorbs neighbourhoods of compact sets. If moreover G
possesses B-ACP, then there exists a bounded set which absorbs bounded sets. See
next proposition.



114 J. Simsen, C.B. Gentile

Proposition 6 Let G be an eventually bounded generalized semiflow and suppose
that G is ϕ-dissipative. If G possesses B-ACP, or equivalently, if G is conditionally
asymptotically compact, then G possesses a bounded set which absorbs bounded sets.
Therefore, in particular G is B-dissipative.

Proof Let B1 be as Remark 7. Statement: B1 absorbs bounded sets. In fact, as G is
eventually bounded, for each B ∈ B(X) there exists a t(B) � 0 such that γ +

t(B)(B) ∈
B(X). So, by Theorem 6, we obtain that ω(B) is a non-empty compact set which
attracts B. So there exists ε > 0 and t0 � 0 such that T(t)Oε(ω(B)) ⊂ B1 and T(t)B ⊂
Oε(ω(B)) for all t � t0. ��

Theorem 9 [1] Let G be a generalized semiflow. If G has a compact invariant global
B-attractor, then G is ϕ-dissipative and asymptotically compact. Reciprocally, if G
is ϕ-dissipative and asymptotically compact, then G has a compact invariant global
B-attractor A . The global B-attractor A is unique and given by

A =
⋃

B∈B(X)

ω(B) = ωB(B1) = ωB(X),

where B1 ∈ B(X) is as in Lemma 8. Furthermore A is the maximal compact invariant
subset of X, and A is minimal among all closed global B-attractors.

Theorem 10 [8] Let G be a generalized semiflow. If there exists a compact set K ⊂ X
such that it is a global B-attractor, then G has a global B-attractor compact invariant
which is minimal among all closed global B-attractors.

Now we give more equivalent conditions to existence of the maximal compact
invariant global B-attractor.

Theorem 11 Let G be a generalized semiflow. Then the following statements are
equivalent:

(I) G is conditionally asymptotically compact and B-dissipative;
(II) G possesses B-ACP and is B-dissipative;

(III) G is conditionally asymptotically compact, eventually bounded and point
dissipative;

(IV) G possesses B-ACP, is eventually bounded and point dissipative;
(V) G possesses B-ACP, is eventually bounded and ϕ-dissipative;

(VI) G is asymptotically compact and ϕ-dissipative;
(VII) G possesses a minimal non-empty closed global B-attractor which is the

maximal compact invariant subset of X;
(VIII) G possesses a non-empty compact global B-attractor.

Proof It is easy to see that G B-dissipative implies G eventually bounded and
point dissipative; and point dissipative implies ϕ−dissipative. By Theorem 8 (ii) G
possesses B-ACP ⇔ G is conditionally asymptotically compact. Again by Theorem 8
(vii) and (ii) G is asymptotically compact ⇔ G is conditionally asymptotically com-
pact and eventually bounded ⇔ G possesses B-ACP and G is eventually bounded. So
we have (I) ⇔ (I I) ⇒ (I I I) ⇔ (IV) ⇒ (V) ⇔ (V I). By Theorem 9 (V I) ⇔ (V I I).
Trivially (V I I) ⇒ (V I I I). Finally, Lemma 3 guarantees that (V I I I) ⇒ (I). ��
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Remark 8 Let G be asymptotically compact, or equivalently, G possesses B-ACP
and is eventually bounded, then:

(a) G is point dissipative ⇔ ⋃

x∈X ω(x) ∈ B(X).

(b) G is B-dissipative ⇔ ⋃

B∈B(X) ω(B) ∈ B(X).

Remark 9 [7] If for each B ∈ B(X), ω(B) attracts B and ω(B) = ⋃

x∈B ω(x), then
̂M = M.

Theorem 12 Let G be asymptotically compact, or equivalently, G possesses B-ACP
and is eventually bounded. Let ̂M and M be as in Theorem 7. If ̂M ∈ B(X), then for
each δ > 0, M = ω(Oδ( ̂M)). Furthermore, M is the maximal compact invariant subset
of X.

Proof By Remark 7 and Theorem 9, B1
.=γ +

τ( ̂M,δ)
(Oδ( ̂M))∈ B(X), and A

.=ωB(B1)=
⋃

B∈B(X) ω(B) is a compact invariant global B-attractor. Furthermore A is the
maximal compact invariant subset of X, and A is minimal among all closed global
B-attractors. Therefore M = A and we have

M =
⋃

B∈B(X)

ω(B) =
⋃

B∈B(X)

ω(B) = ω(B1) = ω

(

γ +
τ( ̂M,δ)

(Oδ( ̂M))

)

= ω(Oδ( ̂M)).

��

2.3 Eventual Semigroups

There is a class of multivalued semigroups which behaves, for large values of t,
like a single-valued semigroup. This occurs when dealing with problems without
uniqueness of solutions but enjoying strong regularizing properties. This class was
introduced in [4], where the issue is about p-laplacian problems, p > 2. When consid-
ering parabolic problems perturbed by non-globally Lipschitz operators, uniqueness
is a non trivial question but, under reasonable conditions, these problems enjoy
enough regularity and absorption properties to allow uniqueness after some time
has elapsed. Below we briefly describe those ideas putting them in the context of
generalized semiflows.

Definition 18 We say that a generalized semiflow G defines an eventual semigroup
if there exists a semigroup {S(t)}t�0 such that for any B ∈ B(X), there exists τ0 =
τ0(B) > 0 such that, if τ � τ0 and xτ ∈ T(τ )B then for each t � 0, T(t)xτ = S(t)xτ ,

where T(t) is the multivalued semigroup defined by G .

Theorem 13 Let G be a generalized semiflow which defines an eventual semigroup
associated with the semigroup {S(t)}t�0 and let B0 ∈ B(X) be such that γ +

τ1
(B0) =
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⋃

t�τ1
T(t)B0 ∈ B(X) for some τ1 = τ1(B0) � 0. If {S(t)}t�0 is of class K or class

A K or class B-A K or if it possesses B-ACP (for these definitions see [7]), then

(i) ω(B0) is non-empty, compact and invariant by {S(t)}t�0;
(ii) ω(B0) attracts B0;

(iii) ω(B0) is the minimal closed set which attracts B0;

Proof The case where {S(t)}t�0 is of class K was done in Theorem 2.1 in [4] where is
used Theorem 2.1, [6]. For the other cases it is enough to repeat the same arguments
in [4], and the result follows from Theorem 4.13, [7], and Proposition 3.4, [6] for
{S(t)}t�0 of class A K and class B-A K . Theorem 4.12 in [7] is used if {S(t)}t�0

possesses B-ACP. ��

As a consequence we have

Theorem 14 Let G be a B-dissipative generalized semiflow which defines an eventual
semigroup {T(t)}t�0 associated with the semigroup {S(t)}t�0. Suppose that for any B ∈
B(X), ω(B) is an invariant set under {T(t)}t�0. If the semigroup {S(t)}t�0 is of class
K or class A K or class B-A K or if it possesses B-ACP, then G has a maximal
compact invariant global B-attractor.

Remark 10 As a complement of Theorem 8 (iii) we observe that if G defines an
eventual semigroup {T(t)}t�0 associated with an asymptotically smooth semigroup,
then G possesses B-ACP.

3 Characterizations for the Maximal Compact Invariant Global B-attractor

In this section we obtain some characterizations for the maximal compact invariant
global B-atractor. In particular we prove that, even in the multivalued case, this set
can be described in terms of the unstable set of the equilibrium states, if there is a
Lyapunov function for the system. We also describe this atractor as union of bounded
complete orbits (or precompact complete orbits) as it is done in single-valued case.

Theorem 15 Let G be asymptotically compact and ϕ- dissipative. Then the maximal
compact invariant global B-attractor A can be characterized by:

(i) A = ⋃

B∈B(X) ω(B) ;
(ii) A = ωB(X) ;

(iii) A = ωB(B1), where B1 ∈ B(X) is the set in Lemma 8;
(iv) A = ⋃

K∈K(X) ω(K) ;
(v) A is the union of all complete bounded orbits in X;

(vi) A is the union of all complete precompact orbits in X;
(vii) A is the maximal invariant bounded set in X.

Proof For parts (i), (ii) and (iii) see Theorem 9.
(iv): Since A is compact and invariant, ω(A ) = A . So, we have

⋃

K∈K(X)

ω(K) ⊂
⋃

B∈B(X)

ω(B) = A = ω(A ) ⊂
⋃

K∈K(X)

ω(K).



On attractors for multivalued semigroups defined by generalized semiflows 117

Therefore A = ⋃

K∈K(X) ω(K).

(v) and (vi): Since A is invariant, then it is quasi-invariant. Thus, given x ∈ A ,

there exists a complete orbit ψ through x (i. e., ψ(0) = x) such that ψ(t) ∈ A , ∀ t ∈
R. Consider γ (ψ) = Im ψ = {ψ(t), t ∈ R} ⊂ A ∈ B(X). Then γ (ψ) is bounded.
Moreover note that, γ (ψ) is precompact, once γ (ψ) ⊂ A . Therefore we can con-
clude that A is included in the union of all complete bounded orbits in X and A is
included also in the union of all complete precompact orbits in X.

On the other hand, if x ∈ X and ψx is a complete bounded (or precompact) orbit
in X through x, consider γ (ψx) = Im ψx = {ψx(t), t ∈ R}. Since γ (ψx) is negatively
invariant, we have,

γ (ψx) ⊂ γ (ψx) ⊂
⋂

τ�0

γ (ψx) ⊂
⋂

τ�0

γ +
τ (γ (ψx)) = ω(γ (ψx)) ⊂

⋃

B∈B(X)

ω(B) = A .

Therefore,
⋃

x∈X γ (ψx) ⊂ A .
(vii) If D ⊂ X is a bounded and invariant subset of X, then

D ⊂
⋂

t�0

γ +
t (D) = ω(D) ⊂

⋃

B∈B(X)

ω(B) = A .

��

Definition 19 [1] Let G be a generalized semiflow. A map V : X → R is a Lyapunov
function for G if

(i) V is continuous;
(ii) V(ϕ(t)) � V(ϕ(s)) whenever ϕ ∈ G and t � s � 0;

(iii) If V(ψ(t)) = constant for some complete orbit ψ and all t ∈ R, then ψ is
stationary.

Lemma 9 Let G be a generalized semiflow, and x ∈ X such that there exists a complete
orbit ψx through x and a compact set K such that {ψx(t); t � 0} ⊂ K, then α(ψx) is
quasi-invariant.

Proof Let z ∈ α(ψx). Then there is a sequence t j → −∞ (we may suppose with-
out lost of generality that . . . � t2 � t1 � 0) such that ψx(t j) → z. By definition
of complete orbit we have ψ

t j
x ∈ G and ψ

t j
x (0) → z. So by (H4), there is a sub-

sequence, which we do not relabel, and a solution g0 ∈ G with g0(0) = z, such
that ψ

t j
x (t) → g0(t), ∀ t � 0. Clearly g0(t) ∈ α(ψx), ∀ t � 0. Now consider τ j

.= t j −
1 (τ j � 0). Since ψ

t j−1
x (0) = ψx(t j − 1) = ψx(τ j) ∈ K ∈ K(X), we have (after extrac-

tion of a further subsequence) that ψ
t j−1
x (0) = ψx(τ j) → y. By (H4), there is a

subsequence, which we do not relabel, and a solution g1 ∈ G with g1(0) = y such
that ψ

t j−1
x (t) → g1(t), ∀ t � 0. Clearly g1(t) ∈ α(ψx), ∀ t � 0. Note that g1

1 = g0, since
g1

1(t) = g1(t + 1) = lim j→+∞ ψ
t j−1
x (t + 1) = lim j→+∞ ψ

t j
x (t) = g0(t), ∀ t � 0. Proceed-

ing inductively, we find for each r = 1, 2, . . . , a solution gr ∈ G such that g1
r = gr−1

and gr(t) ∈ α(ψx), ∀ t � 0. Given t ∈ R, we define g(t) as the common value of
gr(t + r) for r � −t. Then g is a complete orbit with g(0) = g0(0) = z. In fact, given
s ∈ R and t � 0, we have gs(t) = g(t + s) = gr(t + s + r) = gs+r

r (t), where r .= �−s�
is the minor integer value which is larger or equal to −s. (note that s + r � 0 e
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−(t + s) � −s � r). As gr ∈ G , by (H2), gs+r
r ∈ G . Therefore gs = gs+r

r ∈ G . Thus g
is a complete orbit with g(0) = z and g(t) ∈ α(ψx), ∀ t � 0. Therefore α(ψx) is quasi-
invariant. ��

Lemma 10 Let G be a generalized semiflow and suppose there exists a Lyapunov
function V : X → R for G . Let x ∈ X such that there exists a complete orbit ψx through
x and a compact set K with {ψx(t); t � 0} ⊂ K. Then α(ψx) ⊂ Z (G ).

Proof Let {t j} be a sequence such that t j → −∞ as j → +∞ and . . . t j < . . . < t2 <

t1 � 0. By hypothesis there is a convergent subsequence {ψx(t j� )} ⊂ {ψx(t j)}. By
Definition 16 (ii) we obtain that {V(ψx(t j� ))} is a nondecreasing sequence. In fact,

t j�+1 < t j� then t j� = t j�+1 + r, r > 0. So ψx(t j� ) = ψx(t j�+1 + r) = ψ
t j�+1
x (r) and ψ

t j�+1
x ∈

GB. Then V(ψx(t j� )) = V(ψ
t j�+1
x (r)) � V(ψ

t j�+1
x (0)) = V(ψx(t j�+1)). So we have that

lim
�→+∞ V(ψx(t j� )) = d .= sup{V(ψx(t j� )), � ∈ N},

and this limit does not depend on the chosen sequence {t j}.
Let y ∈ α(ψx). Then y = lim j→+∞ ψx(t j), t j → −∞. So lim�→+∞ V(ψx(t j� )) = d

and lim�→+∞ ψx(t j� ) = y, t j� → −∞. Also, we have lim�→+∞ V(ψx(t j� )) = V(y). By
uniqueness of the limit, V(y) = d. We know from Lemma 9 that α(ψx) is quasi-
invariant. Then there is a complete orbit ˜ψ through y such that ˜ψ(t) ∈ α(ψx), ∀ t ∈ R.

Therefore V(˜ψ(t)) = d = V(y), ∀ t ∈ R, i.e., ˜ψ is a stationary solution and y ∈ Z (G ).

��

Theorem 16 Let G be a continuous generalized semiflow and suppose that there exists
a Lyapunov function V : X → R for G , and G has a maximal compact invariant global
B-attractor A. Then A = Wu(Z (G )) where Wu(Z (G )) is the unstable set of Z (G )

given by {y ∈ X; there is a complete orbit ϕy through y and d(ϕy(−t), Z (G ))
t→+∞−→ 0}.

Proof Let x ∈ A . Since A is invariant there is a complete orbit φx through x
such that φx(t) ∈ A , ∀ t ∈ R. Since A is compact α(φx) ⊂ Z (G ). Also, we have
that φx(−t) → α(φx). In fact, limt→+∞ d(φx(−t), α(φx)) = 0 ⇔ ∀ ε > 0 there is τε � 0
such that φx(−t) ∈ Oε(α(φx))), ∀ t � τε. Suppose, by contradiction, that there is
ε0 > 0 such that for any k ∈ N, there exists tk � k with φx(−tk) /∈ Oε0(α(φx)). Once
{φx(−tk)}∞k=1 ⊂ A and A is compact, we have that {φx(−tk)}∞k=1 has a convergent
subsequence which converges to a point of α(φx)), what is impossible. Therefore
limt→+∞ d(φx(−t), α(φx)) = 0. So x ∈ Wu(Z (G )) and A ⊂ Wu(Z (G )).

On the other hand, let x ∈ Wu(Z (G )). Then there is a complete orbit φx through
x such that φx(−t) → Z (G ). Once Z (G ) ⊂ A and A is a global B-attractor,
given ε0 > 0, there exists τ0 � 0 such that T(t)x ⊂ Oε0(A ) ∈ B(X) and φx(−t) ∈
Oε0(A ), ∀ t � τ0. Since G is continuous γ (φx)

.= {φx(t); t ∈ R} ∈ B(X), and so A
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attracts γ (φx). Once γ (φx) is negatively invariant, given ε > 0, x ∈ Oε(A ). Therefore
x ∈ A and Wu(Z (G )) ⊂ A . ��

4 Global ϕ−attractor

In this section we introduce a new group of definitions which we call “ϕ-concepts",
that means, we add the prefix ϕ to the words attraction, dissipativity, boundedness,
etc, in order to indicate that we are not supposing that the times in such definitions
are uniformly chosen in any sense. One of our main results in this work verifies that,
if a generalized semiflow G is ϕ-asymptotically compact and possesses a Lyapunov
function, then there exists a minimal closed global ϕ-attractor ̂N for G and ̂N
coincides with the set of stationary solutions in G , see Theorem 21.

Definition 20 Let G be a generalized semiflow and A ∈ P(X). We define

ωϕ(A)
.=

⋃

ϕ∈G ,ϕ(0)∈A

ω(ϕ).

Definition 21

(a) We say that A ϕ-attracts a set M ∈ P(X) if for any ε > 0 and ϕ ∈ G with ϕ(0) ∈
M, there exists a t0 = t0(ϕ, ε) � 0 such that ϕ(t) ∈ Oε(A), ∀ t � t0. We say that
A ϕ-attracts x if A ϕ-attracts {x}.

(b) We say that A is a global ϕ-attractor if A ϕ−attracts all points x ∈ X.

(c) We say that G is eventually ϕ-bounded if for any ϕ ∈ G , there exists t0 =
t0(ϕ) � 0 such that γ +

t0 (ϕ) ∈ B(X).

(d) We say that G is ϕ-asymptotically compact if, for any ϕ ∈ G and for any
sequence t j → +∞, the sequence {ϕ(t j)} has a convergent subsequence in X.

(e) We say that G is ϕ-conditionally asymptotically compact if for each ϕ ∈ G
such that γ +

τ0
(ϕ) ∈ B(X) for some τ0 = τ0(ϕ) � 0, each sequence {ϕ(tn)} with

tn → +∞, has a convergent subsequence in X.

Remark 11 We have

(i) G is ϕ-dissipative if and only if, there is a bounded global ϕ-attractor for G .
(ii) B-attraction ⇒ Point attraction ⇒ ϕ-attraction.

(iii) G asymptotically compact ⇒ G is ϕ-asymptotically compact.
(iv) G eventually bounded ⇒ G is eventually ϕ-bounded.
(v) G is ϕ-asymptotically compact ⇔ G is ϕ-conditionally asymptotically compact

and eventually ϕ-bounded.

Lemma 11 Let F ∈ C(X). If F ϕ-attracts A ∈ P(X), then ω(ϕ) ⊂ F, for each ϕ ∈ G
with ϕ(0) ∈ A, so ωϕ(A) ⊂ F. In particular, if ωϕ(A) ϕ-attracts A, then ωϕ(A) will be
the minimal closed set which ϕ-attracts A.

Proof Let ϕ ∈ G with ϕ(0) ∈ A. Since F ϕ-attracts A, given k > 0, there exists tk =
tk(ϕ) � 0 such that ϕ(t) ∈ O1/2k(F), ∀ t � tk. Let z ∈ ω(ϕ). Then z = lim j→+∞ ϕ(t j)
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with t j → +∞. We can extract a subsequence t jk such that t jk � tk, ∀ k ∈ N, and z =
limk→+∞ ϕ(t jk). Then, z ∈ ⋂

k∈N
O1/k(F) = F. Therefore ω(ϕ) ⊂ F and ωϕ(A) ⊂ F.

��

Lemma 12 Let G be a generalized semiflow, A, M ∈ P(X), and x ∈ X. Then the
following statements are equivalent:

1. A ϕ-attracts M;
2. For any ε > 0, and ϕ ∈ G with ϕ(0) ∈ M, there exists a t(ϕ, ε) � 0 such that

γ +
t(ϕ,ε)(ϕ) ⊂ Oε(A);

3. limt→+∞ d(ϕ(t), A) = 0, ∀ ϕ ∈ G with ϕ(0) ∈ M.

4. For any τ � 0, A ϕ-attracts γ +
τ (M).

Lemma 13 Let G be a generalized semiflow. Then for any A 	= ∅ and for any τ � 0,

we have ωϕ(γ +
τ (A)) = ωϕ(A).

Remark 12 The two above Lemmas can be easily proved. We only observe that, for
(4) ⇒ (1) in Lemma 12 it is enough to suppose that A ϕ-attracts γ +

τ (M) for some
τ � 0.

Theorem 17

(i) If F ⊂ X is a closed global ϕ-attractor, then
⋃

x∈X ωϕ(x) ⊂ F. In particular, if
⋃

x∈X ωϕ(x) is a global ϕ-attractor, then it must be the unique minimal closed
global ϕ-attractor ̂N.

(ii) If for each x ∈ X, ωϕ(x) ϕ-attracts x, then G has the unique minimal closed
global ϕ-attractor ̂N and ̂N = ⋃

x∈X ωϕ(x) = ωϕ(X).

Proof

(i) Since F is a closed global ϕ-attractor, it ϕ-attracts each x ∈ X. So, by Lemma 11,
ωϕ(x) ⊂ F, ∀ x ∈ X. Therefore

⋃

x∈X ωϕ(x) ⊂ F.

(ii) Let ξ ∈ X. Since ωϕ(ξ) ϕ-attracts ξ, we have that
⋃

x∈X ωϕ(x) ϕ-attracts ξ.

Therefore
⋃

x∈X ωϕ(x) is a global ϕ-attractor. So, by (i),
⋃

x∈X ωϕ(x) is the
unique minimal closed global ϕ-attractor ̂N. ��

Lemma 14 Let G be a generalized semiflow and K ∈ K(X). If ϕ ∈ G is such that
d(ϕ(t), K) → 0 as t → +∞, then each sequence {ϕ(tn)}, with tn → +∞, contains a
convergent subsequence in X, and the limit belongs to K.

Theorem 18 Let G be a generalized semiflow and A ∈ P(X). If for each ϕ ∈ G with
ϕ(0) ∈ A, every sequence {ϕ(tn)} with tn → +∞ contains a convergent subsequence
in X, then ωϕ(A) is a non-empty set, ϕ-attracts A and ωϕ(A) is quasi-invariant.
The set ωϕ(A) is the minimal closed set which ϕ-attracts A. Moreover, each ω(ϕ)

with ϕ ∈ G and ϕ(0) ∈ A, is a non-empty compact and quasi-invariant set, and
limt→+∞ d(ϕ(t), ω(ϕ)) = 0.

(Compare this result with Lemma 4, and note that we don’t have necessarily ωϕ(A)

compact).
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Proof Let x ∈ A, by (H1), there exists ϕ ∈ G with ϕ(0) = x ∈ A. Choose a sequence
tn → +∞. By hypothesis {ϕ(tn)} contains a convergent subsequence ϕ(tnk) → ξ ∈
ω(ϕ) ⊂ ωϕ(A). Therefore ω(ϕ) 	= ∅ and consequently ωϕ(A) 	= ∅. Let us prove
that ωϕ(A) ϕ-attracts A. Assume, on the contrary, that ωϕ(A) does not ϕ-attracts
A, then there exist ε0 > 0 and ϕ ∈ G with ϕ(0) ∈ A such that for each n ∈ N,
ϕ(tn) 	∈ Oε0(ωϕ(A)) for some tn > n. By hypothesis {ϕ(tn)} contains a convergent
subsequence, ϕ(tnk) → ζ ∈ ω(ϕ) ⊂ ωϕ(A), what is impossible. Therefore, ωϕ(A)

ϕ-attracts A. Moreover, from Lemma 11 we have that ωϕ(A) is the minimal closed
set which ϕ-attracts A.

In order to prove that ω(ϕ), with ϕ ∈ G and ϕ(0) ∈ A, is quasi-invariant we
proceed as it is done in Lemma 3.4, (i), [1], and construct a complete orbit ψ through
z and ψ(t) ∈ ω(ϕ), ∀ t ∈ R. This also implies that ωϕ(A) is quasi-invariant.

Now let {yn}∞n=1 ⊂ ω(ϕ), ϕ(0) ∈ A. Then, for each n ∈ N, there exists tn > n such
that d(ϕ(tn), yn) < 1/n. Since {ϕ(tn)} contains a subsequence converging to some
point ζ ∈ ω(ϕ), {yn} has a subsequence that converges to ζ ∈ ω(ϕ). Therefore ω(ϕ)

is compact. Now we prove that limt→+∞ d(ϕ(t), ω(ϕ)) = 0, for ϕ ∈ G with ϕ(0) ∈ A.

Assume, on the contrary, that it does not happen. Then there exists ε0 > 0 such that
for each n ∈ N d(ϕ(tn), ω(ϕ)) > ε0 for some tn > n. But this contradicts the hypothesis
and the definition of ω(ϕ). ��

As an immediate consequence of the two above results we have

Lemma 15 Let G be a generalized semiflow and let x ∈ X and K ∈ K(X). If for
each ϕ ∈ G with ϕ(0) = x, d(ϕ(t), K) → 0 as t → +∞, then ωϕ(x) is a non-empty
quasi-invariant set which ϕ-attracts x. The set ωϕ(x) is the minimal closed set which
ϕ-attracts x.

Remark 13 Sentences (ii) and (iii) of Lemma 5 remain valid if we only suppose that
G is ϕ-asymptotically compact.

Proposition 7 Let G be a generalized semiflow. If G is ϕ-dissipative, then G is
eventually ϕ-bounded and ωϕ(X) ∈ B(X). On another side, if G is ϕ- asymptotically
compact and ωϕ(X) ∈ B(X), then G is ϕ-dissipative.

Proof If G is ϕ-dissipative then there is B0 ∈ B(X) such that for any ϕ ∈ G
there exists t0(ϕ) � 0 such that ϕ(t) ∈ B0, ∀ t � t0(ϕ). So γ +

t0(ϕ)(ϕ) ⊂ B0 ∈ B(X) and

therefore G is eventually ϕ-bounded. Note that ω(ϕ) = ⋂

t�0 γ +
t (ϕ) ⊂ γ +

t0(ϕ)(ϕ) ⊂ B0.

Then ωϕ(X) = ⋃

x∈X ωϕ(x) = ⋃

ϕ∈G , ϕ(0)∈X ω(ϕ) ⊂ B0 ∈ B(X).

On the other hand, if G is ϕ-asymptotically compact and ωϕ(X) ∈ B(X), then it
follows from Theorem 18, that ωϕ(X) = ⋃

x∈X ωϕ(x) is a bounded global ϕ-attractor.
Therefore G is ϕ-dissipative. ��

Remark 14 Let G be a generalized semiflow, A ∈ P(X), and ϕ ∈ G with ϕ(0) ∈ A.
If γ +(ϕ) ∈ K(X), or if G is a ϕ-conditionally asymptotically compact generalized
semiflow and γ +(ϕ) ∈ B(X), then every sequence {ϕ(tn)} with tn → +∞ contains a
convergent subsequence. If it happens to each ϕ ∈ G with ϕ(0) ∈ A we can apply
Theorem 18.
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Theorem 19 Let G be a generalized semiflow with B-ACP and A ∈ P(X). If there
exists τ � 0 such that γ +

τ (A) ∈ B(X), then ωϕ(A) is a non-empty set, quasi-invariant
and ϕ-attracts A.

Proof Let B .= γ +
τ (A). Then γ +

τ (B) = γ +
2τ (A) ⊂ γ +

τ (A) ∈ B(X). Let ϕ ∈ G with
ϕ(0) ∈ B and consider an arbitrary sequence with t j → +∞. From Lemma 6, we
obtain that {ϕ(t j)} has a convergent subsequence. So, by Theorem 18, ωϕ(B) is
a non-empty set, quasi-invariant and ϕ-attracts B. But, by Lemma 13, ωϕ(A) =
ωϕ(γ +

τ (A)) = ωϕ(B). So ωϕ(A) is a non-empty set, quasi-invariant and ϕ-attracts
B = γ +

τ (A). Then by Lemma 12 (4) ⇒ (1), ωϕ(A) ϕ-attracts A. ��

Theorem 20 If G is a ϕ-asymptotically compact generalized semiflow, then G has the
unique non-empty minimal closed global ϕ-attractor ̂N and

̂N =
⋃

x∈X

ωϕ(x) = ωϕ(X).

Proof Let x ∈ X and let ϕ ∈ G with ϕ(0) = x. Consider an arbitrary sequence t j →
+∞. Since G is ϕ-asymptotically compact, the sequence {ϕ(t j)} has a convergent
subsequence. So, by Theorem 18, ωϕ(x) is a non-empty set, quasi-invariant and
ϕ-attracts x. Thus, by Theorem 17 (ii), G has the unique minimal closed global
ϕ-attractor ̂N and ̂N = ⋃

x∈X ωϕ(x) = ωϕ(X) ⊃ ωϕ(x) 	= ∅. ��

Proposition 8 If G is an asymptotically compact generalized semiflow and ϕ- dissi-
pative, then its minimal closed global ϕ-attractor ̂N = ωϕ(X) can be characterized by
̂N = ωϕ(B1), where B1 ∈ B(X) is the set in the Lemma 8.

Proof Let B1 ∈ B(X) as in the Lemma 8 and let D .= ωϕ(B1). Since G is asymptot-
ically compact, Theorem 18 implies that ωϕ(B1) is a non-empty set, quasi-invariant
and ϕ-attracts B1. We know, by Theorem 20, ̂N = ⋃

x∈X ωϕ(x) is the unique non-
empty minimal closed global ϕ-attractor. It remains to show that ̂N = D. We have
D = ωϕ(B1) ⊂ ⋃

x∈X ωϕ(x) = ̂N.

On the other hand, if y ∈ ⋃

x∈X ωϕ(x), then y ∈ ωϕ(x), for some x ∈ X. Then
y ∈ ω(ϕ), for some ϕ ∈ G with ϕ(0) = x. By Lemma 5, ω(ϕ) is non-empty, com-
pact, quasi-invariant, and limt→+∞ d(ϕ(t), ω(ϕ)) = 0. Then if K .= ω(ϕ) ∈ K(X)

we have from Lemma 8 that there exist ε(K) > 0, t1 = t1(K) > 0, such that
T(t)Oε(K)(K) ⊂ B1 for all t � t1. Let 0 < ε < ε(K). Then there is a t(ϕ, ε) � 0
such that ϕ(t) ∈ Oε(K), ∀ t � t(ϕ, ε). Then ϕt(ϕ,ε)(t) ∈ T(t)Oε(K) ⊂ T(t)Oε(K)(K) ⊂
B1, ∀ t � t1. Since G is asymptotically compact, for any ψ ∈ G with ψ(0) ∈ B1 and
for any sequence t j → +∞, we have that the sequence {ψ(t j)} has a convergent sub-
sequence. Then, by Theorem 18, ωϕ(B1) ϕ-attracts B1. So, there is τ(ϕ, t1, ε) � 0 such
that ϕt1+t(ϕ,ε)(t) ∈ Oε(ωϕ(B1)) ⊂ Oε(D), ∀ t � τ(ϕ, t1, ε). Then γ +

t1+t(ϕ,ε)+τ(ϕ,t1,ε)(ϕ) ⊂
Oε(D). Consider t0

.= t1 + t(ϕ, ε) + τ(ϕ, t1, ε). Then ω(ϕ) = ⋂

t�0 γ +
t (ϕ) ⊂ γ +

t0 (ϕ) ⊂
Oε(D). So y ∈ ω(ϕ) ⊂ ⋂

0<ε<ε(K) Oε(D) = D. Therefore
⋃

x∈X ωϕ(x) ⊂ D. Then
̂N = ⋃

x∈X ωϕ(x) ⊂ D = D. Therefore ̂N = D .= ωϕ(B1). ��

The next two results are the principal results of this section.
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Theorem 21 If G is a ϕ-asymptotically compact generalized semiflow and possesses
a Lyapunov function V: X → R, then its minimal closed global ϕ-attractor ̂N is non-
empty and ̂N = Z (G ).

Proof Let ϕ ∈ G . By Remark 13 we know that ω(ϕ) is non-empty, compact, quasi-
invariant and limt→+∞ d(ϕ(t), ω(ϕ)) = 0.

Let {t j} be such that t j → +∞ as j → +∞ and 0 � t1 < t2 < . . . < t j < . . .. By
Lemma 14, {ϕ(t j)} has a convergent subsequence {ϕ(t j� )} and so {V(ϕ(t j� ))} converges
too. From Definition 16 (ii) we obtain that {V(ϕ(t j� ))} is a nonincreasing sequence,
V(ϕ(t j�+1)) � V(ϕ(t j� )) � . . . � V(ϕ(0)). So {V(ϕ(t j� ))} converges to its infimum,

lim
�→+∞ V(ϕ(t j� )) = c .= inf {V(ϕ(t j� )), � ∈ N}.

and this limit does not depend on the chosen sequence {t j}.
Let y ∈ ω(ϕ). Then y = lim j→+∞ ϕ(t j), t j → +∞. So lim j→+∞ V(ϕ(t j))=V(y)=c.

Since ω(ϕ) is quasi-invariant, then there is a complete orbit ˜ψ through y such
that ˜ψ(t) ∈ ω(ϕ), ∀ t ∈ R and V(˜ψ(t)) = c = V(y), ∀ t ∈ R, then ˜ψ is stationary.
Therefore y ∈ Z (G ) and ω(ϕ) ⊂ Z (G ).

As we have limt→+∞ d(ϕ(t), ω(ϕ)) = 0 and ω(ϕ) ⊂ Z (G ), ∀ ϕ ∈ G , Z (G ) is a
global ϕ-attractor. By Theorem 20, ∅ 	= ̂N ⊂ Z (G ).

On the other hand, if z ∈ Z (G ) then there is a complete orbit ψ with ψ(t) = z,

∀ t ∈ R. Consider ϕ
.= ψ|R+ ∈ G . Since ̂N is a global ϕ-attractor, given ε > 0, there

exists a t0 = t0(ε, ϕ) � 0 such that z = ϕ(t) ∈ Oε(̂N), ∀ t � t0. Then z ∈ ̂N = ̂N.

Therefore Z (G ) ⊂ ̂N. ��

Remark 15 When dealing with a parabolic problem without uniqueness such that
the generalized semiflow associated with it satisfies hypothesis on Theorem 21, we
conclude that the associated elliptic problem has at minimum one solution and the
set of all stationary solutions Z (G ) = ̂N = ωϕ(X).

Theorem 22 If G is an asymptotically compact generalized semiflow, then there exist
the minimal closed global ϕ-attractor ̂N, the minimal closed global point attractor ̂M,
and the minimal closed global B-attractor M and ̂N ⊂ ̂M ⊂ M. If ̂N ∈ B(X), then
for any δ > 0 we have M = ω(Oδ(̂N)), M is the maximal compact invariant subset
of X and ̂N and ̂M are compact sets. Moreover, if G possesses a Lyapunov function

V: X → R, then for any δ > 0, M = ω
(

Oδ(Z (G ))
)

.

Proof Since G is asymptotically compact, by Lemma 5, for each B ∈ B(X), ω(B)

is non-empty, compact, quasi-invariant and attracts B. So, by Theorem 1 (ii) and
Theorem 2 (ii), G has the unique minimal closed global point attractor ̂M and
has the unique minimal closed global B-attractor M and ̂M = ⋃

x∈X ω(x), M =
⋃

B∈B(X) ω(B). Since G asymptotically compact implies G ϕ-asymptotically compact,
by Theorem 20, G has the unique non-empty minimal closed global ϕ-attractor
̂N = ⋃

x∈X ωϕ(x), and ̂N ⊂ ̂M ⊂ M.

If ̂N ∈ B(X), then G is ϕ-dissipative, so if we set B1
.= γ +

τ(̂N,δ)
(Oδ(̂N)) we conclude

by Remark 7, as in Theorem 12, that M = ω(B1) is the maximal compact invariant
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subset of X and M = ω(Oδ(̂N)). Moreover, if G possesses a Lyapunov function, by

Theorem 21, ̂N = Z (G ), so M = ω(Oδ(̂N)) = ω
(

Oδ(Z (G ))
)

. ��
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