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Abstract This paper deals with a general formalism which consists in approximating
a point in a nonempty set S, in a real Hilbert space H, by a sequence (xn) ⊂ H such
that xn+1 := T n(xn + θn(xn − xn−1)), where (θn) ⊂ [0, 1), x0 x1 are in H and (Tn)n>0

is a sequence included in a certain class of self-mappings on H, such that every
fixed point set of Tn contains S. This iteration method is inspired by an implicit
discretization of the second order ‘heavy ball with friction’ dynamical system. Under
suitable conditions on the parameters and the operators (Tn), we prove that this
scheme generates a sequence which converges weakly to an element of S. In particu-
lar, by appropriate choices of (Tn), this algorithm works for approximating common
fixed points of infinite countable families of a wide class of operators which includes
α-averaged quasi-nonexpansive mappings for α ∈ (0, 1).

Mathematics Subject Classifications (2000) 47H09 · 47H10 · 65J15.

Key words nonexpansive mapping · quasi-nonexpansive mapping · common fixed
point · convex optimization · subgradient projection · heavy ball dynamical system.

1. Introduction

Throughout, H is a real Hilbert space endowed with inner product 〈., .〉 and induced
norm | . |. For any mapping T : H → H, we denote by Fix(T ) the set of fixed points
of T, that is Fix(T ) := {x ∈ H | Tx = x}. It is well known that Fix(T ) is a closed
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convex set of H when T is a quasi-nonexpansive operator (see for instance [18]). Let
Fα be the class of self-mappings on H defined for α ∈ (0, 1] by

Fα :=

{
T : H → H | 〈x − Tx, x − q〉 >

1

2α
|x − Tx|

2, ∀(x, q) ∈ H × Fix(T )
}

.

It is worth noting that, for α ∈ (0, 1], the set of α-averaged quasi-nonexpansive
mappings on H is included in Fα (see Remark 2.2). In particular, the following
interesting results hold: (1) F 1

2
contains all 1

2 -averaged quasi-nonexpansive mappings
also called firmly quasi-nonexpansive mappings, which attracts great attention and
includes subgradient projection (see [3, 18–20]); (2) Fα contains all α-averaged non-
expansive mappings for α ∈ (0, 1], so that the set of firmly nonexpansive mappings is
included in F 1

2
; (3) F1 contains the set of quasi-nonexpansive mappings, namely the

set of 1-averaged (or 0-attracting) quasi-nonexpansive mappings. In this paper, we
are interested in finding common fixed points of infinitely many operators included
in the previously defined class of mappings. To this end, in a more general frame, we
examine the following iteration method[

xn+1 := Tnvn, vn = xn + θn(xn − xn−1), for all n > 1,
x0, x1 ∈ H, (θn) ⊂ [0, 1),

(1.1)

where the operators (Tn) relatively to S, a nonempty subset of H, satisfy:

(C1) : (Tn)n>0 ⊂ Fα, where α ∈ (0, 1).

(C2) : ∀n > 0, S ⊂ Fix(Tn).

(C3) : ∀(ξn) ⊂ H, ∀ξ ∈ H,

ξ is a weak cluster point of (ξn) and ξn − Tnξn → 0 strongly ⇒ ξ ∈ S.

More precisely, we will focus our attention on finding sufficient conditions on the
parameter (θn) so that the sequence (xn) converges weakly to a point in S. Observe
that the condition (C3) can be regarded as a sort of demi-closedness of the sequence
(Tn). It reduces to the classical demi-closedness property when Tn is a constant
sequence. Given a demi-closed mapping T in Fα for some α ∈ (0, 1), it is then
immediate that the conditions (C1–C3) are satisfied, for instance, with Tn = T and
S = Fix(T ). Clearly, by appropriate choices of the operators (Tn), the considered
formalism covers some numerical approaches to solving monotone inclusion and
fixed point problems, e.g.:

(1) Let us mention the inertial proximal algorithm (IPA) studied by Alvarez and
Attouch [1] (see also Jules and Maingé [11], Moudafi and Elisabeth [13]), for
computing zeroes of a maximal monotone set-valued mapping A: H → P(H).
Alvarez and Attouch’s paper is covered by our formalism with S = A−1(0) and
Tn = J A

λn
, where (λn) ⊂ (λ, +∞) (for some positive λ) and J A

λn
:= (I + λn A)−1

is the resolvent of A of parameter λn (see Brezis [4] for details on resolvents).
Indeed, in this special case, it is obvious that (C1) is satisfied with α =

1
2 , (C2)

holds since Fix(J A
λn

) = A−1(0) and (C3) is deduced from the fact that the graph
of a maximal monotone mapping is weakly strongly closed (see, for instance,
[4]).

(2) Consider the common fixed point problem related to an infinite countable
family (Ti)i>0 ⊂ Fα (where α ∈ (0, 1)) such that Fix(Ti) 6= ∅ for all i > 0, that
is:

find x̃ ∈ H such that Tix̃ = x̃, ∀i > 0. (1.2)
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In view of solving (1.2), we propose the following algorithm:

xn+1 :=

∑
i>0

wi,nTi (xn + θn(xn − xn−1)) , for all n > 1, (1.3)

where (θn) ⊂ (0, 1) and (wi,n) ⊂ [0,+∞) are real numbers such that:

(1) ∀n > 0,
∑

i>0 wi,n = 1;
(2) ∀i > 0, (wi,n)n>0 is bounded away from zero for n large enough (that is:

∀i > 0, ∃Ni ∈ IN and ∃wi > 0 such that ∀n > Ni, wi,n > wi).

The operator
∑

i>0 wi,nTi makes sense (see Lemma 4.1) and using (1.3) for
solving (1.2) is covered by our formalism with Tn =

∑
i>0 wi,nTi and S =

⋂
i>0 Fix(Ti),

provided that each operator Ti is demi-closed. Indeed, we will prove in this setting
that the conditions (C1–C3) are satisfied. As an interesting special case of (1.3), we
also consider the following process:

xn+1 =

(
n∑

k=1

γk

)−1 n∑
i=1

γiTi(xn + θn(xn − xn−1)), ∀n > 1, (1.4)

where (θn) ⊂ (0, 1), (γn) ⊂ (0, +∞) and
∑

n>0 γn < +∞.
Recall that the standard proximal point algorithm (PPA) comes from an implicit

discretization of the first order steepest descent method, while IPA (see [1]) is a
discrete version of a second order dissipative dynamical system. This latter system
is usually called ‘heavy ball with friction’ and may be exploited in certain situations
in order to accelerate the convergence of the trajectories (see [1, 15]). Numerical
simulations are presented in [11], comparing the behavior of PPA, IPA and the
gradient method. It turns out that the introduction of the term θn and the two
iterates xn−1, xn considerably improves the speed of convergence for IPA. This can
be explained since the vector xn − xn−1 is acting as an impulsion term and since θn

is acting as a speed regulator. Then it seems natural to consider the case when the
resolvent in (IPA) is replaced by a more general self-mapping in view of constructing
fast and stable algorithms for fixed points problems.

Let us mention that, in the framework of Hilbert or Banach spaces, there are
already several iteration processes for finding fixed points or common fixed points
of self-mappings, e.g.: (1) the method of successive approximations and its regu-
larized variants for nonexpansive mappings (see Browder [5], Halpern [10], Lions
[12], Wittman [17], Bauschke [2]); (2) the Ishikawa iterates for two nonexpansive
mappings (see Cirik et al. [9]); (3) the hybrid steepest descent method for certain
quasi-nonexpansive operators called quasi-shrinking mappings (see Yamada and
Ogura [18]). Most of them are cyclic-like algorithms for finding common fixed points
of many finitely operators. Even though interesting strong convergence results are
obtained for some of these algorithms, the proposed method (1.1) can be regarded as
a procedure of speeding up their convergence properties.

Note also that when (Ti)i>0 ⊂ Fα , where α ∈ (0, 1], our problem (1.2) is supposed
to be solved by any process for finding fixed points of a given mapping in Fα .
Indeed, if we denote T :=

∑
i>0 wiTi, where (wi)i>0 ⊂ (0, +∞) and

∑
i>0 wi = 1,

then T belongs to Fα and Fix(T ) = ∩i>0Fix(Ti) (see Lemma 4.1). In the special
case when (Ti)i>0 is a family of nonexpansive mappings (hence (Ti)i>0 ⊂ F1), it
is easily checked that the above operator T is additionally nonexpansive, so that
the considered problem (1.2) can be solved by any existing algorithm for finding
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fixed points of a given nonexpansive mapping. Nevertheless this strategy does not
seem really realistic from the numerical point of view, because of the infinite sum.
To the best of our knowledge, the most significant attempt to solve the proposed
problem is due to Combettes [6]. This author suggested a Mann-like iteration process
with variable blocks which is applicable to infinite countable families of firmly
nonexpansive mappings.

The purpose of our work is to prove that the sequence (xn) generated by the
formalism (1.1) – (C1)–(C3) weakly converges to a common fixed point of the op-
erators (Tn) under suitable conditions on the parameter (θn). As a direct application,
we provide by (1.3) and (1.4) iterative processes of practical interest for solving the
common fixed point problem (1.2). The proposed methods are also complementary
to the known ones since the techniques used are completely different.

2. Preliminaries

For the convenience of the reader, we recall some definitions related to nonexpansive
and quasi-nonexpansive mappings:

• A mapping T : H → H is called nonexpansive if |Tx − Ty| 6 |x − y| for all x,

y ∈ H. In particular, T is said to be α-averaged nonexpansive (where α ∈ [0, 1)) if
there exists a nonexpansive mapping N : H → H such that T = (1 − α)I + αN;
firmly nonexpansive if 〈Tx − Ty, x − y〉 > |Tx − Ty|

2 for all x, y in H. A firmly
nonexpansive mapping is alternatively characterized as 1

2 -averaged nonexpansive
mapping.

• A mapping T : H → H is called quasi-nonexpansive if |Tx − q| 6 |x − q| for all
(x, q) ∈ H × Fix(T ). In particular, a mapping T : H → H is called α-averaged
quasi-nonexpansive (where α ∈ [0, 1)) if there exists a quasi-nonexpansive map-
ping N : H → H such that T = (1 − α)I + αN.

• A mapping T : H → H is called δ-attracting quasi-nonexpansive (δ > 0) if
|x − q|

2
− |Tx − q|

2 > δ|x − Tx|
2 for all (x, q) ∈ H × Fix(T ).

• A self-mapping T : D → D (where D ⊂ H) satisfies the demi-closedness prin-
ciple means that if (xn) converges weakly to q ∈ D and (xn − Txn) converges
strongly to 0, then q is a fixed point of T. When D is a closed convex set in H, it
is well known that any nonexpansive mapping T : D → D is demi-closed on D.

REMARK 2.1. It is easily seen that a δ-attracting quasi-nonexpansive mapping
(for δ > 0) satisfies

〈x − Tx, x − q〉 >
1

2
(δ + 1)|x − Tx|

2, for all (x, q) ∈ H × Fix(T ). (2.1)

Indeed, for (x, q) ∈ H × Fix(T) we obviously have

|x − q|
2 > |Tx − q|

2
+ δ|x − Tx|

2

= |Tx − x|
2
+ |x − q|

2
+ 2〈Tx − x, x − q〉 + δ|x − Tx|

2,

which yields (2.1).

REMARK 2.2. For α ∈ (0, 1], a mapping T : H → H is α-averaged quasi-
nonexpansive if and only if T is 1−α

α
-attracting quasi-nonexpansive (see [18],
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Proposition 1). By Remark 2.1, it is easily deduced that all α-averaged quasi-
nonexpansive mappings are included in Fα when α ∈ (0, 1].

We also recall the well-known Opial lemma which provides a criterion for weak
convergence that does not require the knowledge of the limit point.

LEMMA 2.1 ([14]). Let H be a Hilbert space and {xn} a sequence such that there exists
a nonempty set S ⊂ H verifying:

• For every q ∈ S, lim
n→+∞

|xn − q| exists.

• Every weak limit point of {xn} belongs to S.

Then, there exists x̄ ∈ S such that {xn} converges weakly to x̄ in H.

3. Asymptotic Convergence of the Method

In this section we establish a weak convergence result of (xn) generated by (1.1) under
the conditions (C1)–(C3).

The following two lemmas are needed to state our convergence result.

LEMMA 3.1. For any q ∈ H and any sequences (xn) ⊂ H, (θn) ⊂ IR, we have

〈vn − xn+1, vn − q〉 = −φn+1 + φn + θn (φn − φn−1)

+
1

2
|xn+1 − vn|

2
+

1

2

(
θn + θ2

n

)
|xn − xn−1|

2,

where φ j :=
1
2 |x j − q|

2, v j := x j + θ j(x j − x j−1).

Proof. Thanks to the relation vn = xn + θn(xn − xn−1), we obtain

〈vn − xn+1, vn − q〉 = 〈xn − xn+1 + θn(xn − xn−1), xn − q + θn(xn − xn−1)〉

= − 〈xn+1 − xn, xn+1 − q〉 + |xn − xn+1|
2

+ θn〈xn − xn+1, xn − xn−1〉

+ θn〈xn − xn−1, xn − q〉

+ θ2
n |xn − xn−1|

2.

Moreover, for any a, b ∈ H, it is easily checked that

〈a, b〉 = −
1

2
|a − b |

2
+

1

2
|a|

2
+

1

2
|b |

2. (3.1)

Consequently, we get

〈vn − xn+1, vn − q〉 = −

(
−φn + φn+1 +

1

2
|xn+1 − xn|

2

)
+ |xn+1 − xn|

2

+ θn〈xn − xn+1, xn − xn−1〉

+ θn

(
−φn−1 + φn +

1

2
|xn − xn−1|

2

)
+ θ2

n |xn − xn−1|
2,
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namely

〈vn − xn+1, vn − q〉 = −φn+1 + φn

+
1

2
|xn+1 − xn|

2
+ θn〈xn − xn+1, xn − xn−1〉

+ θn (φn − φn−1) +

(
θn

2
+ θ2

n

)
|xn − xn−1|

2. (3.2)

By the definition of vn, we also have

|vn − xn+1|
2

= |xn − xn+1 + θn(xn − xn−1)|
2

= |xn − xn+1|
2
+ θ2

n |xn − xn−1|
2

+ 2θn〈xn − xn+1, xn − xn−1〉, (3.3)

or equivalently

1

2
|xn+1 − xn|

2
+ θn〈xn − xn+1, xn − xn−1〉

=
1

2

(
|xn+1 − vn|

2
− θ2

n |xn − xn−1|
2
)
. (3.4)

From (3.2) and (3.4), we then obtain the desired result �

THEOREM 3.2. Let (Tn) and S 6= ∅ satisfy the conditions (C1)–(C3), let (θn) ⊂ IR+

verify

(H1): ∃θ ∈ [0, 1) such that ∀n > 0, θn ∈ [0, θ],

and let (xn) ⊂ H be a sequence such that

xn+1 := Tn(xn + θn(xn − xn−1)), ∀n > 1.

If the following condition holds∑
n>1

θn|xn − xn−1|
2 < ∞, (3.5)

then there exists x̄ in S such that xn ⇀ x̄ weakly in H as n → ∞.

Proof. Taking q ∈ S, by (C2) we have q ∈ Fix(Tn) for all n > 0, which by (C1) (that
is (Tn)n>0 ⊂ Fα) leads to

1

2α
|vn − Tnvn|

2 6 〈vn − Tnvn, vn − q〉,

where vn := xn + θn(xn − xn−1), or equivalently

1

2α
|vn − xn+1|

2 6 〈vn − xn+1, vn − q〉,

because xn+1 = Tnvn, which by Lemma 3.1 yields

1

2α
|vn − xn+1|

2 6 −φn+1 + φn + θn (φn − φn−1)

+
1

2
|xn+1 − vn|

2
+

1

2

(
θn + θ2

n

)
|xn − xn−1|

2.
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Therefore, setting η :=
1
2 ( 1

α
− 1) (hence η > 0, since α ∈ (0, 1)), we get

φn+1 − φn − θn(φn − φn−1) 6 −η|xn+1 − vn|
2

+
1

2
(θn + θ2

n )|xn − xn−1|
2. (3.6)

Moreover, from (3.3) and using Young’s inequality we obtain

|xn+1 − vn|
2 > (1 − θn)|xn − xn+1|

2
+ (θ2

n − θn)|xn − xn−1|
2
;

by (3.6) and setting d j := |x j − x j−1|
2, we deduce

φn+1 − φn − θn(φn − φn−1) 6 −η(1 − θn)dn+1

+

(
η(θn − θ2

n ) +
1

2
(θn + θ2

n )

)
dn.

Regarding the right-hand side of this last inequality, since (θn) ⊂ [0, 1] it is easily seen
that (

η(1 − θn) +
1

2
(1 + θn)

)
6 µ,

where µ := 2 max{
1
2 , η}, which yields

φn+1 − φn − θn (φn − φn−1) 6 −η(1 − θn)dn+1 + µθndn. (3.7)

The rest of the proof follows a same process as in [1] and can be divided into two
parts:

(1) We prove that lim
n→∞

φn exists. Set un := φn − φn−1, δn := µθn|xn − xn−1|
2 and

define [t]+ := max{t, 0} (for any t ∈ IR). By (H1) (hence (θn) ⊂ [0, θ]) and by
(3.7), we easily obtain [un+1]+ 6 θ [un]+ + δn. Furthermore, a simple calculation
gives [un+1]+ 6 θn

[u1]+ +
∑n−1

j=0 θ jδn− j, hence by (3.5) and since θ ∈ [0, 1) we
deduce ∑

n>0

[un+1]+ 6
1

1 − θ

[u1]+ +

∑
n>1

δn

 < ∞.

Consequently the sequence defined by wn := φn −

n∑
j=1

[u j]+ is bounded from

below and also satisfies

wn+1 = φn+1 − [un+1]+ −

n∑
j=1

[u j]+ 6 wn.

It turns out that (wn) is nonincreasing, hence (wn) is convergent as well as (φn),
which proves that lim

n→∞
|xn − q| exists for any q ∈ S, so that (xn) is a bounded

sequence.
(2) Let us prove that any weak cluster point of (xn) is in S. Let (xnk ) be a sub-

sequence of (xn) that converges weakly to a point x̃ in H. By (3.7), since (θn) ⊂

[0, θ ] we obviously have

η(1 − θ)dn+1 6 φn − φn+1 + θn(φn − φn−1) + µθndn

6 φn − φn+1 + θ [un]+ + µθndn,
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hence

η(1 − θ)
∑
n>1

dn+1 6 φ1 + θ
∑
n>1

[un]+ + µ
∑
n>1

θndn < ∞,

so that lim
n→∞

|xn+1 − xn| = 0 (since η(1 − θ) > 0). Recalling that xn+1 = Tnvn and

vn = xn + θn(xn − xn−1), we get

|Tnvn − vn| = |xn+1 − vn| = |(xn+1 − xn) − θn(xn − xn−1)|,

so that limn→∞ |Tnvn − vn| = 0. It is also immediate that (vnk) converges weakly
to x̃. Invoking the condition (C3), we conclude that x̃ belongs to S.

As a straightforward consequence, Opial’s lemma ensures the desired result. �

THEOREM 3.3. Under the assumptions of Theorem 3.2 with (H1) replaced by

(H2): ∃θ ∈ [0, c), where c :=

1
2 ( 1

α
− 1)

1
2 ( 1

α
− 1) + max{1, ( 1

α
− 1)}

, such that (θn) ⊂ [0, θ]

and (θn) is nondecreasing,

we have ∑
n>1

|xn − xn−1|
2 < ∞, (3.8)

hence there exists x̄ in S such that xn ⇀ x̄ weakly in H as n → ∞.

Proof. By (H2) (hence (θn) is nondecreasing) and by (3.7), we obtain

φn+1 − φn − (θnφn − θn−1φn−1) 6 −η(1 − θn+1)dn+1 + µθndn

= −µθn+1dn+1 + µθndn − (η − (η + µ)θn+1)dn+1, (3.9)

where η :=
1
2

(
1
α

− 1
)

and µ := max{1, 2η} (so that η > 0, µ > 1). Let θ ∈ [0, c), where

c :=
η

η + µ
, and set 0n :=φn−θn−1φn−1+µθndn. Again with (H2) (hence (θn) ⊂ [0, θ])

and by (3.9), we obtain

0n+1 − 0n 6 −γ dn+1, (3.10)

where γ := (η − (η + λ)θ) (hence γ > 0). As a consequence, (0n) is nonincreasing,
so that

φn − θφn−1 6 0n 6 01, (3.11)

which entails

φn 6 θnφ0 +
01

1 − θ
. (3.12)

Again with (3.10), we get γ
∑n

k=1 dk+1 6 01 − 0n+1; by (3.11) we also have −0n 6 θφn

for all n > 0, hence γ
∑n

k=1 dk+1 6 01 + θφn, which by (3.12) and since θ ∈ [0, 1) leads
to γ

∑
k>1 dk+1 6 01 + θφ0 +

01
1−θ

. Consequently, we get (3.8), which by Theorem 3.2
ends the proof. �
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4. Application to Common Fixed Point Problems

In this section, we prove that (1.3) works for approximating a solution of the common
fixed point problem (1.2).

LEMMA 4.1. Let (Ti)i>0 ⊂ Fα for some α ∈ (0, 1] be such that
⋂

i>0 Fix(Ti) 6= ∅ and
let (wi)i>0 ⊂ [0,+∞) be satisfying

∑
i>0 wi = 1. Then the following results hold:

(1)
∑

i>0 wiTi is a well-defined mapping on H .
(2) Fix(

∑
i>0 wiTi) =

⋂
i∈I Fix(Ti), where I := {i > 0 | wi 6= 0}.

(3)
∑

i>0 wiTi belongs to Fα .

Proof. Let us prove (1). Set S :=
⋂

i>0 Fix(Ti) 6= ∅ and let (x, q) ∈ H × S, so that
q ∈ Fix(Ti) for all i > 0. Assuming that each Ti belongs to Fα , we then have 1

2α
|x −

Tix|
2 6 〈x − Tix, x − q〉, hence |x − Tix| 6 2α|x − q|. Consequently, we obviously get

|Tix| 6 2α|x − q| + |x|, which entails
∑

i>0 |wiTi(x)| 6 2α|x − q| + |x|, provided that∑
i>0 wi = 1. It follows that

∑
i>0 wiTi(x) makes sense, that is (1).

In order to prove (2), we set T :=
∑

i>0 wiTi. It is clear that S ⊂ Fix(T ), so that
Fix(T ) 6= ∅. Let q ∈ Fix(T ) and let p ∈ S. It is easily seen that

∑
i>0 wi(q − Tiq) = 0,

because
∑

i>0 wi = 1. Consequently, since (Ti)i>0 ⊂ Fα and since p belongs to each
Fix(Ti), we have

0 =

∑
i>0

wi〈q − Tiq, q − p〉 >
1

2α

∑
i>0

wi|q − Tiq|
2.

We then obtain q − Tiq = 0 for each i ∈ I, which leads to Fix(T ) ⊂ ∩i∈IFix(Ti), while
the converse is obvious. Hence Fix(T ) = ∩i∈IFix(Ti), which proves (2).

Let us prove (3). For any (x, q) ∈ H × Fix(T ), we easily observe that

〈x − T x, x − q〉 =

〈
x −

∑
i>0

wiTix, x − q

〉
=

∑
i>0

wi〈x − Tix, x − q〉,

hence, as (Ti)i>0 ⊂ Fα , we obtain

〈x − T x, x − q〉 >
1

2α

∑
i>0

wi|x − Tix|
2. (4.1)

Moreover, we obviously have |x − T x| = |
∑

i>0 wi(x − Tix)| 6
∑

i>0 wi|x − Tix|,
which by the fact that

∑
i>0 wi = 1 and thanks to Young’s inequality leads to

|x − T x|
2 6

∑
i>0

wi

∑
i>0

wi|x − Tix|
2

 =

∑
i>0

wi|x − Tix|
2.

By joining this last inequality to (4.1), we get 〈x − T x, x − q〉 > 1
2α

|x − T x|
2, so that

T ∈ Fα , which completes the proof. �

THEOREM 4.2. Let (Ti)i>0 ⊂ Fα , where α ∈ (0, 1), be such that
⋂

i>0 Fix(Ti) 6= ∅

and suppose each Ti is demi-closed. Let (xn) ⊂ H be a sequence such that

xn+1 :=

∑
i>0

wi,nTi (xn + θn(xn − xn−1)) , for all n > 1,
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where (θn) ⊂ [0, 1] and (wi,n) ⊂ [0,+∞) are real numbers such that:

(1) ∀n > 0,
∑

i>0 wi,n = 1;
(2) for all i > 0, (wi,n)n>0 is bounded away from zero for n large enough (that is:

∀i > 0, ∃Ni ∈ IN and ∃wi > 0 such that ∀n > Ni, wi,n > wi).

Assume, in addition, one of the following conditions is satisfied:

(H1): (θn) ⊂ [0, θ) for some θ ∈ [0, 1) and
∑

θn|xn − xn−1|
2 < ∞.

(H2): ∃θ ∈ [0, c), where c :=

1
2

(
1
α

− 1
)

1
2

(
1
α

− 1
)
+ max

{
1,
(

1
α

− 1
)} , such that (θn) ⊂ [0, θ]

and (θn) is nondecreasing.

Then there exists x̄ in
⋂

i>0 Fix(Ti) such that xn ⇀ x̄ weakly in H as n → ∞.

Proof. This result is a straightforward consequence of Theorems 3.2 and 3.3. It is
just sufficient to prove that the conditions (C1–C3) hold with Tn =

∑
i>0 wi,nTi and

S =
⋂

i>0 Fix(Ti). From Lemma 4.1, we obviously have (Tn) ⊂ Fα , so that (C1) holds.
Again with Lemma 4.1, we obtain Fix(Tn) =

⋂
i∈In

Fix(Ti) for all n > 0, where In :=

{i > 0 | wi,n 6= 0}. Noting that S ⊂
⋂

i∈In
Fix(Ti), we deduce that S ⊂ Fix(Tn), that is

(C2). It just remains to prove that (C3) is true. Let (ξn) ⊂ H be such that limn→0 |ξn −

Tnξn| = 0 and let ξ be a weak-cluster point of (ξn), namely there exists a subsequence
(ξnk) such that ξnk ⇀ ξ weakly as k → ∞. Clearly, (ξnk)k>0 is a bounded sequence
(thanks to the weak convergence) and limk→0 |ξnk − Tnkξnk | = 0. Moreover, by taking
into account the fact that each Tn belongs to Fα , we easily have

〈ξn − Tnξn, ξn − q〉 =

∑
i>0

wi,n〈ξn − Tiξn, ξn − q〉 >
1

2α

∑
i>0

wi,n|ξn − Tiξn|
2.

In particular, for all k > 0, we obtain

〈ξnk − Tnkξnk , ξnk − q〉 >
1

2α

∑
i>0

wnk,i|ξnk − Tiξnk |
2.

Consequently, by the boundedness of (ξnk), we easily deduce that

lim
k→+∞

∑
i>0

wnk,i|ξnk − Tiξnk |
2

= 0,

hence, for all i > 0, we obtain limk→+∞ wnk,i|ξnk − Tiξnk |
2

= 0, which by (2) leads to
limk→+∞ |ξnk − Tiξnk | = 0. Assuming that each Ti is demi-closed and by the weak
convergence of (ξnk) to ξ , we conclude that ξ = Tiξ (for all i > 0), so that ξ ∈ S. It
follows that (C3) is satisfied, which completes the proof. �

COROLLARY 4.3. Let (Ti)i>0 ⊂ Fα , where α ∈ (0, 1), be such that
⋂

i>0 Fix(Ti) 6= ∅

and suppose each Ti is demi-closed. Let (xn) ⊂ H be a sequence such that

xn+1 =

(
n∑

k=1

γk

)−1 n∑
i=1

γiTi(xn + θn(xn − xn−1)), ∀n > 1,

where (θn) ⊂ [0, 1] and where (γn) ⊂ (0, +∞) satisfies∑
k>1

γk < ∞. (4.2)
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Assume, in addition, one of the following conditions is satisfied:

(H1): (θn) ⊂ [0, θ) for some θ ∈ [0, 1) and
∑

n>1 θn|xn − xn−1|
2 < ∞.

(H2): ∃θ ∈ [0, c), where c :=

1
2

(
1
α
−1

)
1
2

(
1
α
−1

)
+max

{
1,

(
1
α
−1

)} , such that (θn) ⊂ [0, θ] and

(θn) is nondecreasing.

Then (xn) converges weakly to a point in
⋂

i>0 Fix(Ti).

Proof. It is clear that scheme (1.4) is the special case of (1.3) when wi,n =
γi∑n

k=1 γk
for 1 6 i 6 n and wi,n = 0 for i > n + 1, so that

∑
i>0 wi,n = 1. For all i > 0 and large

enough n, we also have wi,n >
γi∑

k>1 γk
> 0, provided that (4.2) holds. Then Theorem

4.2 guarantees the weak convergence result of (xn). �

COROLLARY 4.4. Let (Ti)i>0 be an infinite countable family of firmly nonexpansive
mappings defined on H and such that

⋂
i>0 Fix(Ti) 6= ∅. Let (xn) ⊂ H be a sequence

such that

xn+1 =

(
n∑

k=1

γk

)−1 n∑
i=1

γiTi(xn + θn(xn − xn−1)), ∀n > 1,

where (θn) ⊂ [0, 1] and where (γn) ⊂ (0, +∞) satisfies∑
k>1

γk < ∞.

Assume, in addition, one of the following conditions is satisfied:

(H1): (θn) ⊂ [0, θ) for some θ ∈ [0, 1) and
∑

n>1 θn|xn − xn−1|
2 < ∞.

(H2’): ∃θ ∈

[
0,

1

3

)
, such that (θn) ⊂ [0, θ] and (θn) is nondecreasing.

Then (xn) converges weakly to a point in
⋂

i>0 Fix(Ti).

Proof. This result is deduced from Corollary 4.3 since (Ti)i>0 are assumed to be
nonexpansive mappings, hence demi-closed, and included in F 1

2
. �

REMARK 4.1. Remind that F1 contains the set of quasi-nonexpansive mappings on
H, namely 1-averaged quasi-nonexpansive operators. As F1 stands as a limit case
of the sets Fα (where α ∈ (0, 1)), this view may reveal to be an interesting way for
extending the convergence results of this paper to more general operators.

In view of applications of (1.3) and (1.4), we recall that the subgradient projection
occurs for instance in signal and image processing [7, 8, 20] as a low computational
approximation of the convex projection, when this latter projection is difficult to com-
pute. Recently, a successive approximation scheme was developed for finding fixed
points of certain quasi-nonexpansive mappings [3, 19] with successful applications to
image recovery problem [8]. Let us make the following remark on the subgradient
projection.
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REMARK 4.2 (See [3, 16, 18]). Suppose that a continuous convex function 8: H →

IR satisfies lev60 := {x ∈ H | 8(x) 6 0} 6= ∅. Let 8′
: H → H be a selection of the

Fenchel subdifferential of 8, ∂8: H → 2H , in the sense that 8′(x) ∈ ∂8(x) for all
x ∈ H. Then a mapping T(8): H → H defined by

∀x ∈ H, T(8)(x) :=

 x −
8(x)

|8′(x)|2
8′(x) if 8(x) > 0,

x if 8(x) 6 0,

is called a subgradient projection relative to 8. Moreover, T(8) is a firmly quasi-
nonexpansive mapping such that Fix(T(8)) = lev60. If, in addition, the subdifferential
(as a set valued-mapping) ∂8: H → 2H is bounded (that is if it maps bounded sets to
bounded sets) then T(8) satisfies the demi-closedness principle on H.

It turns out that Theorem 4.2 and Corollary 4.3 provide an alternative tool for
approximating fixed points of a subgradient, but also common fixed points of finitely
or infinitely many subgradient projections.

Acknowledgement The author wishes to thank the referee for many valuable suggestions to
improve the writing of this manuscript.
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