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Abstract Calmness of multifunctions is a well-studied concept of generalized con-
tinuity in which single-valued selections from the image sets of the multifunction
exhibit a restricted type of local Lipschitz continuity where the base point is fixed
as one point of comparison. Generalized continuity properties of multifunctions like
calmness can be applied to convergence analysis when the multifunction appro-
priately represents the iterates generated by some algorithm. Since it involves an
essentially linear relationship between input and output, calmness gives essentially
linear convergence results when it is applied directly to convergence analysis. We
introduce a new continuity concept called ‘supercalmness’ where arbitrarily small
calmness constants can be obtained near the base point, which leads to essentially
superlinear convergence results. We also explore partial supercalmness and use
a well-known generalized derivative to characterize both when a multifunction
is supercalm and when it is partially supercalm. To illustrate the value of such
characterizations, we explore in detail a new example of a general primal sequential
quadratic programming method for nonlinear programming and obtain verifiable
conditions to ensure convergence at a superlinear rate.
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1. Introduction

A (single-valued) mapping x: P → X between normed linear spacesP andX is called
calm at p̄ if there is a constant L > 0 and a neighborhood P ⊆ P of p̄ such that the
function satisfies

‖x(p) − x( p̄)‖ 6 L‖p − p̄‖ ∀ p ∈ P. (1)

This property is evidently a restricted kind of local Lipschitz continuity where the
base point p̄ is fixed as one point of comparison. The term ‘calmness’ was originally
used in [2] to describe this property for the optimal value function associated
with an optimization problem, and it has since become a relatively well-established
terminology to describe this property for more general mappings (see [19] in the case
when the normed linear spaces are finite-dimensional). We say that a multifunction
(i.e. set-valued mapping) S: P →→ X is calm at p̄ for x̄ if there exist neighborhoods
P ⊆ P of p̄ and X ⊆ X of x̄ together with a constant L > 0 such that any local
selection x(p) ∈ S(p) ∩ X satisfies

‖x(p) − x̄‖ 6 L‖p − p̄‖ ∀ p ∈ P. (2)

A global version of this property was first introduced for multifunctions in [17] where
it was called ‘Lipschitz continuity at p̄’. Notice that one consequence of calmness at p̄
for x̄ is that x̄ is a locally isolated element of the image set S( p̄) since x( p̄) = x̄ for all
local selections. A more general concept without this local isolation was introduced
by Robinson [16] and called the ‘upper Lipschitzian’ property (the same property was
later labeled ‘calmness at p̄’ in [19]). The exact same terminology as ours was used
in [5] to denote almost the same property but without the local isolation inherent in
our version, and our version essentially appears in that paper as the “strong metric
subregularity of S−1 at x̄ for p̄”. Moreover, it was shown in [5] that without local
isolation, this property is not as useful for stability analysis, which consequently gives
motivation for our definition of calmness. Our version of calmness was also studied in
[13] where it was called ‘selection calmness’ as well as in other places under different
labels: In [12] it was called ‘local upper Lipschitz continuity’; in [9] it was called
‘local Lipschitz upper semicontinuity’; in [3] it was called ‘upper Lipschitz continuity
at a point’; in [1] the calmness property was called ‘semistability’ in the context of
variational inequalities and in [7, 14], and [15] it was called ‘stability’ when it was
present with the additional property of nonempty local image sets S(p) ∩ X.

Like most generalized continuity properties for multifunctions, calmness is useful
for convergence analysis. For example, if the sequence of iterates xk → x̄ generated
by an algorithm can be represented via the inclusions xk+1 ∈ S(xk) in terms of a
multifunction S: X →→ X that is calm at x̄ for x̄, then eventually we have the bound
‖xk+1 − x̄‖ 6 L‖xk − x̄‖. Evidently, this implies the bound

R := lim
k→∞

‖xk+1 − x̄‖

‖xk − x̄‖
6 L (3)

indicating a linear convergence rate of R as long as L ∈ [0, 1). A superlinear con-
vergence rate corresponds to R = 0, which can be ensured in the same way by the
calmness of S if the calmness constant L can be assumed to be arbitrarily small
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by shrinking the neighborhood of x̄ if necessary. Accordingly, we define a (single-
valued) mapping x: P → X between normed linear spaces P and X to be supercalm
at p̄ if for every constant L > 0 there is a neighborhood P ⊆ P of p̄ such that the
function satisfies (1), and just as in the case of calmness, we extend this notion to
multifunctions: We define a multifunction S: P →→ X to be supercalm at p̄ for x̄ if for
every constant L > 0 there exist neighborhoods P ⊆ P of p̄ and X ⊆ X of x̄ such that
any local selection x(p) ∈ S(p) ∩ X satisfies (2). Evidently, supercalmness gives the
arbitrarily small constants L in (3) which ensures a superlinear convergence rate for
the algorithm defined by xk+1 ∈ S(xk).

Another related concept that we develop here is ‘partial supercalmness’ for mul-
tifunctions whose domain variables can be split into two categories. A multifunction
S: P ×Q →→ X is said to be partially supercalm with respect to p at ( p̄, q̄) for x̄ if for
every constant Lp > 0 there exists a constant Lq > 0 and neighborhoods P ⊆ P of
p̄, Q ⊆ Q of q̄, and X ⊆ X of x̄ such that any local selection x(p, q) ∈ S(p, q) ∩ X
satisfies

‖x(p, q) − x̄‖ 6 Lp ‖p − p̄‖ + Lq ‖q − q̄‖ ∀ (p, q) ∈ P × Q. (4)

Notice that partial supercalmness with respect to p essentially entails supercalmness
with respect to p and calmness with respect to q. The connection between partial
supercalmness and convergence analysis is not as direct as in the cases of calmness
and supercalmness, so we devote Section 2 to showing that partial supercalmness
is actually the key property for ensuring a superlinear convergence rate for a new
example of a general primal sequential quadratic programming method for nonlinear
programming.

Having established that the supercalmness and partial supercalmness properties
are useful for convergence analysis, we turn our attention in Section 3 to developing
verifiable conditions for these properties. We need to do this because both of these
properties might be difficult to verify directly since, among other issues, there might
be an infinite number of local selections to check. This problem of direct verification
is typical with generalized continuity properties and so alternate characterizations of
other generalized continuity properties have already been developed. For instance,
a characterization of multifunction calmness was given in [12] using a computable
generalized derivative. In Section 3 we develop and prove similar characterizations
for both multifunction supercalmness and partial supercalmness, and we apply
our characterization of partial supercalmness to our primal sequential quadratic
programming method to obtain verifiable conditions ensuring convergence at a
superlinear rate.

2. Convergence of a Primal SQP Method via Partial Supercalmness

To illustrate how the partial supercalmness property is useful for convergence
analysis, we present a generalization of the famous SQP method for solving nonlinear
programs of the form

min f0(x) over x ∈ X :=
{

x ∈ lRn with fi (x) 6 0 for i ∈ I, and fi (x) = 0 for i ∈ E
}
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for smooth functions fi : lRn
→ lR and index sets I and E together containing m

indices. Notice that if we define the set K ⊆ lRm by

K :=
{
z ∈ lRm with zi 6 0 for i ∈ I and zi = 0 for i ∈ E

}
,

then we can rewrite the nonlinear program in the equivalent (unconstrained) form

min f0(x) + δK
(
g(x)

)
over x ∈ lRn

in terms of the ‘indicator function’

δK(z) :=

{
0 if z ∈ K
∞ otherwise

and the constraint mapping

g(x) :=
(

f1(x), f2(x), . . . , fm(x)
)
.

One key component of our generalization of the SQP method is a family of smooth
functions gu: lRn

→ lR satisfying the following assumption: The mappings (u, x) 7→

gu(x), (u, x) 7→ ∇gu(x), and (u, x) 7→ ∇
2gu(x) are all continuous on some neighbor-

hood U × X ⊆ lRm
× lRn of a target parameter–primal pair (ū, x̄).

The Primal SQP Method: Given a current iterate xk and parameter uk, choose the
next iterate xk+1 = x′ by solving the (unconstrained) approximation problem

min f0(xk)+∇ f0(xk)[x′
−xk]+1/2[x′

−xk]
T

· ∇
2
(

f0 + gu
)
(xk)[x′

−xk] over x′
∈ L(xk)

(5)

for the linearized constraint set

L(x) := {x′
∈ lRn

|∇g(x)[x′
− x] + g(x) ∈ K }.

The standard choice for the functions gu is

gu = u · g with
(
u · g

)
(x) := uT

· g(x) (6)

where the parameters u act as multipliers that are updated by adding the multiplier
associated with the solution x′ to the approximation problem. Many other interesting
possibilities for the gu are possible in our formulation. For instance, we could instead
use functions of the form gu(x) := u ‖g(x)‖2 for u ∈ [0, ∞) which act as penalty
functions in the case when all the constraints are equations (i.e. I = ∅). Our primal
SQP method not only allows more general functions gu than is standard, but also
allows more general parameter updating. The latter flexibility motivates the primal
in the label for our method, since only an update on the primal iterates x is specified.

Our convergence theorem for the primal SQP method relies on the famous
Mangasarian–Fromovitz constraint qualification at x̄:

The set of multipliers Ỹ :=
{

ỹ∈ NK
(
g(x̄)

)
with ∇ f0(x̄)+∇g(x̄)T

· ỹ=0
}

is bounded,

(7)

where the notation NK
(
g(x̄)

)
indicates the cone of normal vectors to the set K at g(x̄).

In the statement of our convergence theorem, we will also use the following notation
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to denote the set of vectors obtained by products of the transposed Jacobian ∇g(x)T

with vectors from the normal cone:

∇g(x)T
· NK

(
∇g(x)[x′

− x] + g(x)
)

:=
{
∇g(x)T

· y
∣∣y ∈ NK

(
∇g(x)[x′

− x] + g(x)
)}

.

PROPOSITION 2.1 (superlinear convergence of the primal SQP method). Under the
Mangasarian–Fromovitz constraint qualification at x̄, if the multifunction

S(x, q) :=

{
x′

∈ lRn

∣∣∣∣q ∈
∇

2
(

f0 + gū
)
(x)[x′

− x̄] + ∇gū(x̄) − ∇gū(x)

+∇g(x)T
· NK

(
∇g(x)[x′

− x] + g(x)
) }

(8)

is partially supercalm with respect to x at (x̄, q̄) for x̄ (where q̄ := −∇ f0(x̄)), then
there exists a neighborhood X ⊆ lRn of x̄ such that any sequence of iterates {xk} ⊆ X
generated by the primal SQP method for a parameter sequence uk → ū converges to x̄
at a superlinear rate.

Proof. We choose any L ∈ [0, 1), set Lx := L/8, and apply the partial supercalm-
ness assumption to obtain Lq > 0. We recall the neighborhood U × X of (ū, x̄) from
the continuity assumptions on the gu and shrink X if necessary to be contained in the
two neighborhoods of x̄ assured in this case by the partial supercalmness assumption
(one neighborhood from the domain and one from the range). We shrink X further
if necessary to ensure that the images of −∇ f0(x) for all x ∈ X are contained in the
neighborhood Q of q̄ assured by partial supercalmness.

Throughout the proof, we use x′ to denote a typical new iterate xk+1 ∈ X generated
by the primal SQP method from the current parameter–primal pair denoted by
(u, x) ∈ U × X. Any such x′ must satisfy the following necessary condition for op-
timality associated with the minimization problem (5) with (u, x) in place of (uk, xk):

− ∇ f0(x) − ∇
2 f0(x)[x′

− x] ∈ ∂nu,x(x′) (9)

in terms of the set of subgradients ∂nu,x(x′) at x′ associated with the function nu,x

defined by

nu,x(x′) := 1/2[x′
− x]

T
· ∇

2gu(x)[x′
− x] + δK

(
∇g(x)[x′

− x] + g(x)
)

From [19, Example 10.8], we know that under the Mangasarian–Fromovitz constraint
qualification the subgradients of nu,x are given by

∂nu,x(x′) = ∇
2gu(x)[x′

− x] + ∇g(x)T
· NK

(
∇g(x)[x′

− x] + g(x)
)

in which case the necessary condition (9) becomes

−∇ f0(x)−∇
2 f0(x)[x′

−x] ∈ ∇
2gu(x)[x′

−x]+∇g(x)T
·NK

(
∇g(x)[x′

−x]+g(x)
)
,
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which is the same as

−∇ f0(x)−∇
2
(

f0+gu
)
(x)[x̄−x]+∇

2
(
gū−gu

)
(x)[x′

− x̄]+∇gū(x̄)−∇gū(x)∈ Sx(x′)

(10)
for the (x-parameterized) family of multifunctions Sx: lRn

→→ lRn defined by

Sx(x′) :=∇
2
(

f0+gū
)
(x)[x′

− x̄]+∇gū(x̄)−∇gū(x)+∇g(x)T
·NK

(
∇g(x)[x′

−x]+g(x)
)

Since the multifunction S defined in (8) satisfies

S(x, q) =
{

x′
∈ lRn

∣∣ q ∈ Sx(x′)
}
,

its assumed partial supercalmness and the inclusion (10) implies the following series
of bounds:

‖x′
− x̄‖ 6 Lx ‖x − x̄‖ + Lq ‖∇ f0(x̄) − ∇ f0(x) − ∇

2 f0(x)[x̄ − x]‖

+Lq ‖ − ∇
2gu(x)[x̄ − x] + ∇

2
(
gū − gu

)
(x)[x′

− x̄] + ∇gū(x̄) − ∇gū(x)‖

6 Lx ‖x − x̄‖ + Lq ‖∇ f0(x̄) − ∇ f0(x) − ∇
2 f0(x)[x̄ − x]‖

+Lq ‖∇gu(x̄) − ∇gu(x) − ∇
2gu(x)[x̄ − x]‖

+Lq ‖∇
2
(
gū − gu

)
(x)‖ ‖[x′

− x̄]‖

+Lq ‖∇
(
gū − gu

)
(x̄) − ∇

(
gū − gu

)
(x)‖ (11)

From the continuity assumption on (u, x) 7→ ∇
2gu(x) we know that we can shrink

U × X if necessary to have

Lq ‖∇
2
(
gū − gu

)
(x)‖ 6 1/2 for all u ∈ U and x ∈ X (12)

so that the bounds (11) imply the bound

‖x′
− x̄‖ 6 L/4 ‖x − x̄‖ + 2 Lq ‖∇ f0(x̄) − ∇ f0(x) − ∇

2 f0(x)[x̄ − x]‖

+2 Lq ‖∇gu(x̄) − ∇gu(x) − ∇
2gu(x)[x̄ − x]‖

+2 Lq ‖∇
(
gū − gu

)
(x̄) − ∇

(
gū − gu

)
(x)‖ (13)

where we have also applied the identity Lx := L/8.
Since f0 is smooth, we know the linear Taylor approximation of ∇ f0 at x satisfies

‖∇ f0(x̄) − ∇ f0(x) − ∇
2 f0(x)[x̄ − x]‖ 6 ε1‖x − x̄‖

2 for all u ∈ U and x ∈ X (14)

for some constant ε1 > 0. The continuity assumptions on (u, x) 7→ ∇gu(x) and
(u, x) 7→ ∇

2gu(x) ensure uniform linear Taylor approximations of ∇gu at x for some
constant ε2 > 0:

‖∇gu(x̄) − ∇gu(x) − ∇
2gu(x)[x̄ − x]‖ 6 ε2‖x − x̄‖

2 for all u ∈ U and x ∈ X (15)

as well as the uniform calmness of ∇
(
gū − gu

)
at x̄:

‖∇
(
gū − gu

)
(x) − ∇

(
gū − gu

)
(x̄)‖ 6 L/4 ‖x − x̄‖ for all u ∈ U and x ∈ X (16)
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where the constant L/4 can be assumed by shrinking U if necessary. Applying
the combination of the bounds (13)–(16) with β := 2 Lq (ε1 + ε2), we get the first
inequality in the series

‖xk+1 − x̄‖ 6 L/2 ‖xk − x̄‖ + β ‖xk − x̄‖
2

= (L/2 + β ‖xk − x̄‖) ‖xk − x̄‖

6 L‖xk − x̄‖ (17)

where the last inequality follows since β ‖xk − x̄‖ can be made less than L/2 by
shrinking X if necessary. The resulting X is the neighborhood stipulated in the
statement of the theorem.

Since the sequence of parameters uk is assumed to converge to ū, we know that
eventually they satisfy uk ∈ U so the final inequality in (17) eventually applies to our
sequence of iterates {xk}. Since L was chosen in [0, 1), this implies that xk → x̄ as
claimed. To prove the superlinear convergence rate, we notice that any L̃ ∈ [0, 1)

produces, by the same argument above, a corresponding neighborhood Ũ × X̃ ⊆ U ×

X of (ū, x̄) for which the analog of (17) holds. As a result we have the bound

‖xk+1 − x̄‖

‖xk − x̄‖
6 L̃ (18)

as long as uk ∈ Ũ and xk+1, xk ∈ X̃. Since uk → ū and we have already estab-
lished that xk → x̄, we conclude that the bound (18) eventually holds for our
sequence of iterates {xk}. The superlinear convergence rate follows sinceL̃ ∈ [0, 1) is
arbitrary. �

Remarks. At first glance, the result of Proposition 2.1 might seem underwhelming
since it is well known that the usual SQP method exhibits quadratic convergence.
However, there is an important distinction here between the usual SQP method
and the primal SQP method defined by (5) and covered by Proposition 2.1. For
one, the usual SQP method always uses the standard choice of functions gu = u · g
in (6). Moreover, the usual SQP method involves simultaneous iteration of the
parameter–primal pairs (u, x), whereas the primal SQP method iterates the primal
variables x only, while allowing completely general updating of the parameters u. Of
course, one option for updating the parameters in the primal SQP method would be
to follow the update proscribed by the parameter–primal pair iteration process from
the usual SQP method, which would essentially reproduce the usual SQP method.

One advantage of the extra structure demanded in the usual SQP method is
that there are optimality conditions of a much simpler form than (9). The analysis
of these conditions leads to the well known quadratic convergence result, but this
result relates only to the distances ‖(u, x) − (ū, x̄)‖ between parameter–primal pairs
(u, x) and a parameter-primal target pair (ū, x̄), and not, for example, to the distance
‖x − x̄‖ between primal iterates alone x and the target x̄. In fact even for the usual
SQP method, superlinear convergence is all that can typically be guaranteed for the
primal iterates alone (see e.g. [6, Inequality 12.4.16]), so Proposition 2.1 reproduces
the usual primal convergence result for the usual SQP method.
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A generalized Newton method in [4] was applied to the optimality condition
associated with a generalized SQP method to show quadratic convergence under
some circumstances. However, the generalized Newton method from [4] only covers
optimality conditions whose set-valued components depend only on x′ (like those
that result from the usual SQP method). Therefore, the results in [4] do not apply
to our primal SQP method since its optimality condition (9) includes a set-valued
component

∇g(x)T
· NK

(
∇g(x)[x′

− x] + g(x)
)

that clearly depends on both x and x′.

3. Derivative Characterizations of Supercalmness

In [12], a characterization of multifunction calmness was given in terms of the
‘outer graphical derivative’ associated with the multifunction. For any multifunction
S: P →→ X , the outer graphical derivative of S at p̄ for x̄ is the multifunction DS( p̄|x̄):

P →→ X defined by

DS( p̄|x̄)(p) := {x: ∃pk → p, tk ↓0, and xk → x with p̄ + tk pk ∈ S(x̄ + tk xk)} .

THEOREM 3.1 [12, Proposition 4.1]. For any multifunction S: P →→ lRn with P a
normed linear space, the following are equivalent:

(a) The inclusion x ∈ DS( p̄|x̄)(0) implies that x = 0.
(b) The multifunction S is calm at p̄ for x̄.

Remarks. This result was first proved in [18, Theorem 4.1] under an assumption
of ‘proto-differentiability’ of S. The same result was then proved without the proto-
differentiability assumption in [12, Proposition 4.1] (using the proof of the implication
(a) ⇒ (b) from [8, Proposition 2.1]) where the stipulation that x̄ ∈ S( p̄) was assumed
throughout since outer graphical derivatives there are defined (as they are usually,
see [19]) only at p̄ for x̄ ∈ S( p̄). Notice that if x̄ /∈ S( p̄) and the graph of S is closed
near ( p̄, x̄), then the outer graphical derivative image-set DS( p̄|x̄)(p) is empty for
any p, and S is trivially calm at p̄ for x̄.

We can characterize our new property of multifunction supercalmness in a similar
way with the outer graphical derivative, but only for multifunctions between finite-
dimensional spaces.

THEOREM 3.2 (supercalmness characterization). For any multifunction S :

lRd
→→ lRn, the following are equivalent:

(a) For all p ∈ lRd, the inclusion x ∈ DS( p̄|x̄)(p) implies that x = 0.
(b) The multifunction S is supercalm at p̄ for x̄.
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Proof. To show (a)⇒(b), we assume that (b) does not hold. This means that there
exists a constant L > 0 and sequences x̃k → x̄ and p̃k → p̄ satisfying x̃k ∈ S( p̃k) and

‖x̃k − x̄‖ > L‖ p̃k − p̄‖.

From this, we immediately conclude the bound

1

L
>

‖ p̃k − p̄‖

tk
(19)

in terms of tk := ‖x̃k − x̄‖. If we further define

pk :=
p̃k − p̄

tk
and xk :=

x̃k − x̄
tk

,

then the fact that x̃k ∈ S( p̃k) translates into

x̄ + tk xk ∈ S( p̄ + tk pk).

From the definition of tk and the bound (19), we conclude that (passing to subse-
quences if necessary) xk → x with ‖x‖ = 1 and that pk → p for some p ∈ lRd. It
follows from the definition of the outer graphical derivative that x ∈ DS( p̄|x̄)(0) with
x 6= 0, which contradicts (a).

Assuming (b), we consider any x ∈ DS( p̄|x̄)(p). This means there are sequences
xk → x, pk → p, and tk ↓0 satisfying x̄ + tk xk ∈ S( p̄ + tk pk). By the supercalmness
assumption, we know that for any L > 0, we eventually have the bound ‖xk‖ 6
L‖pk‖, which in the limit implies that ‖x‖ 6 L‖p‖. Since this bound holds for any
L > 0, we conclude that x = 0. �

Remark. Notice that condition (a) of Theorem 3.2 is clearly stronger than condi-
tion (a) of the calmness characterization Theorem 3.1 where the same outer graphical
derivative multifunction is only presumed to be zero at p = 0.

Notice too that this result could be extended to multifunctions from a more general
normed linear space P if the outer graphical derivative was modified to use all
sequences pk weak∗ converging to p.

We can also characterize the partial supercalmness property with a condition on
an outer graphical derivative.

THEOREM 3.3 (partial supercalmness characterization). For any multifunction
S: lRd

×Q →→ lRn with Q a normed linear space, the following are equivalent:

(a) For all p ∈ lRd, the inclusion x ∈ DS( p̄, q̄|x̄)(p, 0) implies that x = 0.
(b) The multifunction S is partially supercalm with respect to p at ( p̄, q̄) for x̄.

Proof. To show (a)⇒(b), we assume that (b) does not hold. This means that
there exists a constant Lp > 0 and sequences Lq,k → ∞, x̃k → x̄, p̃k → p̄, and q̃k → q̄
satisfying x̃k ∈ S( p̃k, q̃k) and

‖x̃k − x̄‖ > Lp‖ p̃k − p̄‖ + Lq,k‖q̃k − q̄‖.
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From this, we immediately conclude the pair of inequalities

‖x̃k − x̄‖ > Lp ‖ p̃k − p̄‖ and ‖x̃k − x̄‖ > Lq,k ‖q̃k − q̄‖

which, with tk := ‖x̃k − x̄‖, implies the corresponding pair of inequalities

1

Lp
>

‖ p̃k − p̄‖

tk
and

1

Lq,k
>

‖q̃k − q̄‖

tk
(20)

If we define

pk :=
p̃k − p̄

tk
qk :=

q̃k − q̄
tk

and xk :=
x̃k − x̄

tk

then the inclusion x̃k ∈ S( p̃k, q̃k) translates into

x̄ + tk xk ∈ S( p̄ + tk pk, q̄ + tk qk).

Moreover, from the definition of tk and the bounds (20), we conclude that (passing
to subsequences if necessary) xk → x with ‖x‖ = 1, pk → p for some p ∈ lRd, and
qk → 0. It follows from the definition of the outer graphical derivative that x ∈

DS( p̄, q̄|x̄)(p, 0) with x 6= 0, which contradicts (a).
Assuming (b), we consider any x ∈ DS( p̄, q̄|x̄)(p, 0). This means there are se-

quences xk → x, pk → p, and qk → 0 satisfying x̄ + tk xk ∈ S( p̄ + tk pk, q̄ + tk qk).
From the partial supercalmness assumption, we know that for any Lp > 0 there exists
an Lq > 0 such that we eventually have the bound ‖xk‖ 6 Lp ‖pk‖ + Lq ‖qk‖, which
in the limit implies that ‖x‖ 6 Lp ‖p‖. Since Lp > 0 is arbitrary, we conclude that
x = 0. �

Remark. Note that Theorem 3.3 essentially covers both Theorems 3.2 and 3.1. For
Theorem 3.2, we just extend the multifunction to have trivial dependence on q ∈ Q,
and for Theorem 3.1 we consider the multifunction as depending on q ∈ Q in place
of p ∈ P .

3.1. Convergence of the Primal SQP Method Revisited

The key assumption in Proposition 2.1 giving superlinear convergence of the primal
SQP method was the partial supercalmness at (x̄, q̄) for x̄ of the multifunction S
defined in (8) as

S(x, q) :=

{
x′

∈ lRn

∣∣∣∣q ∈
∇

2
(

f0 + gū
)
(x)[x′

− x̄] + ∇gū(x̄) − ∇gū(x)

+∇g(x)T
· NK

(
∇g(x)[x′

− x] + g(x)
) }

.

With Theorem 3.3 in hand, we can establish verifiable conditions to ensure this partial
supercalmness as soon as we compute the appropriate outer graphical derivative.

First, notice that the outer graphical derivative of S at (x̄, q̄) for x̄ is empty-valued
unless x̄ ∈ S(x̄, q̄), in which case we can apply [10, Theorem 4.1] to get the formula

DS(x̄, q̄|x̄)(x, q) = {x′
|q ∈ ∇

2
(

f0 + gū
)
(x̄)[x′

] − ∇
2gū(x̄)[x] + DM(x̄, x̄|q̄)(x, x′)}

(21)
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in terms of the multifunction M: lR2n
→→ lRn defined by

M(x, x′) := ∇g(x)T
· NK

(
∇g(x)[x′

− x] + g(x)
)
.

Now we use the formula from [11, Theorem 3.2] for the outer graphical deriv-
ative of multifunctions like M, with x playing the role of w, x′ playing the
role of x, and the mapping G from [11] defined by G(x, w) :=

(
∇ f1(w)[x − w] +

f1(w), . . . ,∇ fm(w)[x − w] + fm(w)
)
. In this case, [11, Theorem 3.2] gives that the set

DM(x̄, x̄|q̄)(x, x′) is empty unless x′ is in the critical cone

X ′
:=

{
x′

∈ lRn

∣∣∣∣∇ fi (x̄)[x′
] 6 0 for i ∈ I with fi (x̄) = 0

∇ fi (x̄)[x′
] = 0 for i ∈ E ∪ {0}

}
and that if x′

∈ X ′, the set DM(x̄, x̄|q̄)(x, x′) consists of all the points

∇
2
(
ỹ · g

)
(x̄)[x] + ∇

(
y′

· g
)
(x̄) + y′

0∇ f0(x̄)

generated by choices of y′

0 ∈ lR, y′ in the set

Y ′(x′) :=
{

y′
∈ NK

(
g(x̄)

)
with y′

i∇ fi (x̄)[x′
] = 0

}
and ỹ ∈ Ymax(x, x′), where Ymax(x, x′) is the set of vectors ỹ ∈ lRm maximizing the
function

ỹ 7→
〈
x, ∇2

(
ỹ · g

)
(x̄)[2 x′

− x]
〉

over the set of multipliers Ỹ defined in (7). Plugging all of this into the formula (21)
for the outer graphical derivative of S gives

DS(x̄, q̄|x̄)(x, q)=

x′
∈ X ′

∣∣∣∣∣∣∣∣q∈

∇
2
(

f0+gū
)
(x̄)[x′

]

+
⋃

Ỹ∈max(x,x′)

(
∇

2
(
ỹ·g

)
(x̄)−∇

2gū(x̄)
)
[x]

+
⋃

y′∈Y ′(x′) ∇
(
y′

·g
)
(x̄)+

⋃
y′

0∈lR y′

0∇ f0(x̄)

 , (22)

which is the formula we need to state and prove the corollary to Theorem 3.3 that
applies in this case.

COROLLARY 3.1. Assume the following:

• The second-order condition

0 ∈ ∇
2
(

f0 + gū
)
(x̄)[x′

]+

⋃
y′∈Y ′(x′)

∇
(
y′

· g
)
(x̄)+

⋃
y′

0∈lR

y′

0∇ f0(x̄) for x′
∈ X ′

⇒ x′
= 0.

(23)
• The strict Mangasarian–Fromovitz constraint qualification at x̄:

The set of multipliers from (7) is a singleton Ỹ = {ỹ}.

• The function gū satisfies

∇
2gū(x̄) = ∇

2
(
ỹ · g

)
(x̄). (24)
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Then there exists a neighborhood X ⊆ lRn of x̄ such that any sequence of iterates
{xk} ⊆ X generated by the primal SQP method for a parameter sequence uk → ū
converges to x̄ at a superlinear rate.

Proof. Using formula (22) for the outer graphical derivative and the assumptions
that Ỹ = {ỹ} (which implies that Ymax(x, x′) = {ỹ}) and (24), we see that the image set
DS(x̄, q̄|x̄)(x, 0) satisfies

DS(x̄, q̄|x̄)(x, 0)=

x′
∈X ′

∣∣∣∣∣∣0∈∇
2
(

f0+gū
)
(x̄)[x′

]+

⋃
y′∈Y ′(x′)

∇
(
y′

·g
)
(x̄)+

⋃
y′

0∈lR

y′

0∇ f0(x̄)

 ,

so that the second-order condition (23) implies condition (a) from Theorem 3.3 in
this case. The result then follows from Theorem 3.3 and Proposition 2.1. �

Remark. After multiplying the inclusion defining the second-order condition (23)
on both sides by x′ and noting the definitions of the sets Y ′(x′) and X ′, we see that
(23) is implied by the condition〈

x′, ∇2
(

f0 + gū
)
(x̄)[x′

]
〉
= 0 for x′

∈ X ′
⇒ x′

= 0

which is ensured by the positive-definiteness on the critical cone X ′ of the Hessian
of the Lagrangian x 7→ f0(x) + gū(x). For the standard choice (6) of gū = ū · g, such
positive-definiteness is a standard second-order sufficient condition for optimality.

Note that condition (24) identifies the families of functions gu by a condition
involving only the single representative gū corresponding to the target parameter.
Moreover, only the Hessian at x̄ of this representative needs to match the Hessian of
ỹ · g at x̄ in order to get convergence at a superlinear rate. In particular, the standard
choice (6) of gū = ū · g trivially satisfies (24) with the target parameter ū equal to
the multiplier ỹ. Even in this standard case, Corollary 3.1 provides new insight since
general multipliers uk are allowed and since the second-order condition (23) is weaker
than the standard second-order condition.
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