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Abstract We continue with the exponentiation analysis of multivalued maps defined
on Banach spaces. In Part I of this work we have explored the Maclaurin expo-
nentiation technique which is based on the use of a suitable power series. Now
we focus the attention on the so-called recursive exponentiation method. Recursive
exponentials are specially useful when it comes to study the reachable set associated
to a differential inclusion of the form ż ∈ F(z). The definition of the recursive
exponential of F : X ⇒ X uses as ingredient the set of trajectories associated to the
discrete time system zk+1 ∈ F(zk). Although we are taking inspiration from a recent
paper by Alvarez et al. [1] on the relation between continuous and discrete time
evolution systems, our analysis and results go far beyond the particular context of
convex processes considered by these authors.
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1. Introduction

1.1. From Maclaurin to Recursive Exponentials

We use the same notation and terminology as in our previous work [5]. In particular,
X refers to a real Banach space equipped with a norm | · |, and BX stands for the
closed unit ball in X. The vector space

L(X) = {A : X → X | A is linear continuous}

is equipped with the operator norm ‖A‖ = sup
|x|=1 |Ax|. The symbols

D(F) = {x ∈ X | F(x) 6= ∅},

gr(F) = {(x, y) ∈ X × X | y ∈ F(x)}

indicate, respectively, the domain and the graph of a multivalued map F : X ⇒ X.
For the sake of completeness, we recall below the concept of Maclaurin

exponentiability.

DEFINITION 1. One says that F : X ⇒ X is Maclaurin exponentiable at x ∈ D(F) if
the limit

[Exp F](x) = lim
n→∞

n∑
p=0

1

p!
F p(x) (1)

exists in the Painlevé–Kuratowski sense and it is a nonempty set. Maclaurin exponen-
tiability of F simply means that (1) exists nonvacuously for every x ∈ D(F).

The theory behind this exponentiation concept is very rich and opens the way
for the discussion of numerous interesting questions. The expression (1) corresponds
of course to the multivalued analogue of the classical Maclaurin series defining the
exponential of a linear continuous operator.

The recursive exponentiation technique has some similarities with the Maclaurin
exponentiation approach, but the spirit is not the same. The motivation behind the
definition of a recursive exponential is the analysis of a discrete time evolution system
of the form {

zk+1 ∈ F(zk) for k = 0, 1, . . .

z0 = x.
(2)

The multivalued iteration model (2) arises in areas of applied mathematics as
diverse as management of renewable resources (Rapaport et al. [17]), modeling of
economic dynamics (Rubinov and Makarov [18], Rubinov and Vladimirov [19]), and
discrete time constrained control problems (Phat [13, 14]).

1.2. Finite Horizon Truncations

Before introducing the recursive exponential of F we pause in our way and present an
intermediate exponentiation concept. The notion of semi-recursive exponentiation is
based on the idea of truncating (2) to a finite horizon. If one stops the evolution of
(2) at a finite time, say after n iterations, then one gets a picture on how the system
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has evolved insofar. In a finite horizon setting, one generates a chain (z0, z1, . . . , zn)

according to {
zk+1 ∈ F(zk) for k ∈ {0, 1, . . . , n − 1}

z0 = x.
(3)

Each chain (z0, z1, . . . , zn) yields a corresponding average
∑n

p=0
1
p!

zp, where the term
1/p! is interpreted as a decay or discount factor. By considering all the possible chains
one gets the set

Sn F(x) =

{ n∑
p=0

1

p!
zp

∣∣∣ (z0, z1, . . . , zn) satisfies (3)
}
.

DEFINITION 2. One says that F : X ⇒ X is semi-recursively exponentiable at x ∈

D(F) if the limit

[exp∗ F](x) = lim
n→∞

Sn F(x) (4)

exists in the Painlevé–Kuratowski sense and it is a nonempty set. Semi-recursive
exponentiability of F means that (4) exists nonvacuously for every x ∈ D(F).

1.3. Infinite Horizon at Once

For distinguishing between the infinite horizon model and the finite horizon counter-
part, we use the term discrete trajectory in the first case and chain in the second one.
For the sake of convenience, we introduce the notation Ez = {zp}p>0 for any sequence
in X, and refer to

MF (x) = {Ez ∈ XN
| {zp}p>0 solves (2)}.

as the set of all discrete trajectories of F emanating from x.
Once an element Ez ∈ MF (x) has been formed, there are three possibilities concern-

ing the behavior of the partial sum
∑n

p=0
1
p!

zp as we let n → ∞. The most favourable

case occurs when the limit
∑

∞

p=0
1
p!

zp exists. The second best situation occurs when
the set of accumulation points

accumn→∞

n∑
p=0

1

p!
zp =

⋂
N>0

cl
{ n∑

p=0

1

p!
zp

∣∣∣ n > N
}

(5)

is nonempty. The worse situation occurs when there is no accumulation point at all
because in such a case no asymptotic information can be drawn from the discrete tra-
jectory Ez. At this point we face a crucial dilemma: Should we take into consideration
the information provided by (5) or should we simply drop all the accumulation points
which are not limit points? Both strategies are perfectly acceptable but, for simplicity
in the analysis, we prefer to adopt the second one.

DEFINITION 3. One says that F : X ⇒ X is recursively exponentiable at x ∈

D(F) if

(1) MF (x) 6= ∅, i.e. there is a discrete trajectory of F emanating from x, and
(2) ∀Ez ∈ MF (x), the limit

∑
∞

p=0
1
p!

zp exists in (X, | · |).
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In such a case, the set

[exp F](x) =


∞∑

p=0

1

p!
zp

∣∣∣ Ez ∈ MF (x)


is called the recursive exponential of F at x. Recursive exponentiability of F simply
means that (1) and (2) hold for every x ∈ D(F).

1.4. Reachable Sets of Convex Processes

Perhaps the best way of motivating the introduction of recursive exponentials is by
bringing the recent work by Alvarez et al. [1] into the discussion. These authors
were concerned with the problem of constructing a smooth function z: [0, 1] → X
that solves the differential inclusion{

ż(t) ∈ F(z(t)) on [0, 1]

z(0) = x,
(6)

whose right-hand side F : X ⇒ X is a strict closed convex process defined on a Hilbert
space.

Recall that a multivalued map F is said to be strict if it is nonempty-valued
everywhere. That F is a closed convex process simply means that gr(F) is a closed
convex cone.

THEOREM 1 (Alvarez et al., 2006). Let X be a Hilbert space and F : X ⇒ X be a
strict closed convex process. Given an arbitrary x ∈ X, consider a discrete trajectory
Ez ∈ MF (x) such that

∑
∞

p=0
1
p!

|zp| < ∞. Then, for all t ∈ [0, 1], the limit

ϕEz(t) =

∞∑
p=0

t p

p!
zp (7)

exists, and ϕEz: [0, 1] → X is a smooth solution to the Cauchy problem (6).

The adjective ‘smooth’ indicates that ϕEz is infinitely often differentiable.
Theorem 1 is a very striking result indeed. What these authors have done is pro-
viding a nice recipe for building a solution to a continuous time system like (6)
by starting from a discrete trajectory of the associated system (2). By an obvious
reason, a function ϕEz(·) as in (7) is called an exponential-type solution to the Cauchy
problem (6).

The link between the collection of exponential-type solutions to (6) and the
recursive exponential of F is clear: If F is recursively exponentiable at x, then

[exp F](x) = {ϕEz(1) | Ez ∈ MF (x)}

can be interpreted as the set of all states that can be reached at time t = 1 by following
an exponential-type solution to (6). In other words, [exp F](x) can be used as lower
estimate for the standard reachable set

Reach(F, x) = {z(1) | z: [0, 1] → X is absolutely continuous and solves (6)}

associated to F and the initial state x.
Theorem 1 relies heavily on the fact that gr(F) is a closed convex cone. However,

the notion of recursive exponentiation goes far beyond this particular setting. One of



Set-Valued Anal (2006) 14: 381–411 385

the goals of this paper is exploring in detail this exponentiability concept and convinc-
ing the reader that recursive exponentials are natural and important mathematical
objects.

From the experience gathered in our previous paper [5], we feel that Maclau-
rin exponentials are usually too large and contain more elements than is reason-
able to expect. The so-called intrinsic Maclaurin exponentials were introduced in
[5, Section 5.3] with the idea of filtering the parasitic information provided by the
usual Maclaurin exponentials. It turned out that intrinsic Maclaurin exponentials
throw away too much information and don’t retain some essential elements that we
would like to keep. Semi-recursive and recursive exponentials are sets of appropriate
size and good candidates for approximating the reachable set.

2. Comparing Recursive and Semi-recursive Exponentials

Our first observation is that [exp F](x) ⊂ [exp∗ F](x) if both exponentials exist. More
often than not, this inclusion happens to be strict. With the help of the next example
one can better understand why recursive and semi-recursive exponentiation are two
different concepts.

EXAMPLE 1. Let C be a closed convex nonempty set in a Hilbert space X. Consider
the multivalued map F : X ⇒ X given by F(x) = x + NC(x), where NC(x) denotes
the normal cone to C at x. In order to compute Sn F(x), take z0 = x ∈ C and generate
z1, . . . , zn according to the iteration rule

z1 ∈ x + NC(x)

z2 ∈ z1 + NC(z1)
...

zn ∈ zn−1 + NC(zn−1).

Notice that z1 ∈ x + NC(x) and, at the same time, z1 ∈ C (because NC(z1) contains
at least one element, namely, the point z2 − z1). Since [x + NC(x)] ∩ C = {x}, one
deduces that z1 = x. Now, by combining z2 ∈ x + NC(x) and z2 ∈ C, one obtains
z2 = x. One can repeat the same argument until getting zn−1 = x. The situation is
somewhat different for the end-state zn. Clearly zn ∈ x + NC(x), but we don’t know
whether zn belongs to C or not. Hence,

Sn F(x) =

n−1∑
p=0

1

p!
x +

1

n!
[x + NC(x)] =

 n∑
p=0

1

p!

 x + NC(x).

By passing to the limit as n → ∞, one arrives at [exp∗ F](x) = ex + NC(x) for all
x ∈ C, with e ≈ 2, 718... denoting the Neperian constant. Let us examine now what
happens when the evolution system{

zk+1 ∈ zk + NC(zk) for k = 0, 1, . . .

z0 = x

runs over an infinite horizon. This time one has zk = x not only for k ∈ {0, · · · , n − 1},
but also for k > n. So, the recursive exponential of F exists and is given by
[exp F](x) = {ex} for all x ∈ C.
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The lesson that we learn from Example 1 is that finite horizon truncations do
have an important impact in the process of exponentiation. More specifically, finite
horizon truncations remove a possible constraint linking the end-state zn with an
hypothetical future state zn+1. Said in other words, in a semi-recursive approach one
keeps memory of the past only until the truncation occurs. After that, one continues
with a Painlevé–Kuratowski limiting process which is ‘memoryless’.

Example 2 is a variant of Example 1 that helps to illustrate the following two
principles:

(1) Recursive exponentiability doesn’t imply semi-recursive exponentiability (obvi-
ously, the second kind of exponentiability doesn’t imply the first one).

(2) If a multivalued map F is semi-recursively exponentiable, it doesn’t follow that
its opposite −F is semi-recursively exponentiable as well.

EXAMPLE 2. We define G as the opposite of the map F given in Example 1,
i.e. G(x) = − [x + NC(x)] for all x ∈ X. In order to simplify some computations,
we ask the closed convex set C to be symmetric, i.e. C = −C. By proceeding as
in Example 1, one can check that G is recursively exponentiable and [exp G](x) =

{e−1x} for all x ∈ C. On the other hand, one can show that

SnG(x) =

 n∑
p=0

(−1)p

p!

 x + (−1)n NC(x) ∀x ∈ C.

Hence,

lim inf
n→∞

SnG(x) = e−1x + NC(x) ∩ (−NC(x)),

lim sup
n→∞

SnG(x) = e−1x + NC(x) ∪ (−NC(x)).

These Painlevé–Kuratowski limits coincide if and only if NC(x) is a linear subspace.
In short, G fails to be semi-recursively exponentiable at any point x ∈ C such that
NC(x) is not a linear subspace. To fix the ideas, consider the interval C = [−1, 1]

in the space X = R and the point x = 1. In this case NC(x) = R+. Observe that the
difference between lim infn→∞ SnG(x) = {e−1x} and lim supn→∞ SnG(x) = R is quite
substantial.

3. Comparing Semi-recursive and Maclaurin Exponentials

Semi-recursive and Maclaurin exponentials coincide for a single-valued map f : X →

X because

Sn f (x) =

n∑
p=0

1

p!
f p(x) ∀n ∈ N, ∀x ∈ X.

Simple examples show that the above equality is not true for a general multivalued
map F : X ⇒ X. From the very definition of Sn F(x), one sees that

Sn F(x) ⊂

n∑
p=0

1

p!
F p(x) ∀n ∈ N, ∀x ∈ X.
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By passing to the lower and upper Painlevé–Kuratowski limits one gets

lim inf
n→∞

Sn F(x) ⊂ lim inf
n→∞

n∑
p=0

1

p!
F p(x),

lim sup
n→∞

Sn F(x) ⊂ lim sup
n→∞

n∑
p=0

1

p!
F p(x),

for every x ∈ X. In particular, one has the inclusion [exp∗ F](x) ⊂ [Exp F](x) if both
exponentials exist. The next example shows that this inclusion may be strict.

EXAMPLE 3. Let � ⊂ X be closed and nonempty. Let P�: X ⇒ X be defined by
P�(x) = argminz∈�|z − x| for all x ∈ X. Let us evaluate the set

Sn P�(x) =

x +

n∑
p=1

1

p!
zp

∣∣∣∣ z1 ∈ P�(x), z2 ∈ P�(z1), . . . , zn ∈ P�(zn−1)

 .

Since z1 ∈ �, it is immediate that z1 = z2 = . . . = zn, and hence

Sn P�(x) =

x +

 n∑
p=1

1

p!

 z1

∣∣∣∣ z1 ∈ P�(x)

 = x +

 n∑
p=1

1

p!

 P�(x).

By letting n → ∞ one gets the semi-recursive exponential

[exp∗ P�](x) = x + (e − 1)P�(x).

On the other hand, as shown in [5, Section 4.1], the Maclaurin exponential of the
projector P� is given by

[Exp P�](x) = x + lim
n→∞

n∑
p=1

1

p!
P�(x).

The inclusion [exp∗ P�](x) ⊂ [Exp P�](x) is strict, for instance, when � = {0, 1} and
x = 1/2. In this case the difference between [exp∗ P�](x) and [Exp P�](x) is quite
dramatic: The semi-recursive exponential is formed by just two elements, while the
Maclaurin exponential is not even countable (cf. Proposition 4 in Section 8).

3.1. A Representation Formula for Sn F

Although the semi-recursive exponential [exp∗ F](x) is quite often strictly contained
in the Maclaurin exponential [Exp F](x), there are special classes of multivalued
maps for which both exponentials coincide. To better understand this issue, a more
careful examination of the expression Sn F(x) is needed.

Observe that Sn F can be viewed as a multivalued map from X to X. One clearly
has S0 F = I , S1 F = I + F, and with a small extra effort one gets

S2 F = I + (I +
1

2!
F) ◦ F.

In the next lemma we derive the general form of Sn F . In order not to obscure
the presentation with excessive mathematical notation, we simply assume that F is
nonempty-valued.
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LEMMA 1. Let F : X ⇒ X be nonempty-valued. Then, for all integer n > 1, the map
Sn F : X ⇒ X admits the representation formula

Sn F(x)=

[
1

0!
I+
[

1

1!
I+
[

1

2!
I+. . .+

[
1

(n − 1)!
I+

1

n!
F
]
◦F
]
◦ F. . .

]
◦F
]

(x) ∀x ∈ X.

(8)

Proof. Let x ∈ X. From the definition of the set Sn F(x), one has

Sn F(x) =


n∑

p=0

1

p!
zp

∣∣∣ (z0, . . . , zn) satisfies (3)


=

⋃
(z0,...,zn−1)


n−1∑

p=0

1

p!
zp

+
1

n!
F(zn−1)


=

⋃
(z0,...,zn−1)


n−2∑

p=0

1

p!
zp

+

[
1

(n − 1)!
I +

1

n!
F
]

(zn−1)

 ,

where both unions are taken with respect to the chains (z0, . . . , zn−1) of length n − 1
emanating from x. By pushing this development a step further, one gets

Sn F(x) =

⋃
(z0,...,zn−2)


n−3∑

p=0

1

p!
zp

+

[
1

(n − 2)!
I +

[
1

(n − 1)!
I +

1

n!
F
]

◦ F
]

(zn−2)

 ,

where the union is taken now with respect to the chains of length n − 2. By repeating
this argument several times, one ends up with the announced representation formula
for Sn F . �

3.2. Positive Distribution Property

We claim that (8) is exactly what we need to know in order to compare the maps Sn F
and

∑n
p=0

1
p!

F p. As we shall see in a moment, this task is not too difficult after all. A
key observation in this respect is that an inclusion of the form[

α0 I + α1 F + . . . + αn−1 Fn−1
]
(F(x)) ⊂ α0 F(x) + α1 F2(x) + . . . + αn−1 Fn(x) (9)

holds for any F : X ⇒ X, regardless of the choice of the reference point x ∈ X, the
integer n > 1, and the scalars α0, . . . , αn−1. An equality in (9) occurs only under
special circumstances.

DEFINITION 4. A multivalued map F : X ⇒ X is called positively distributive if the
equality [

α0 I + α1 F + . . . + αn−1 Fn−1
]
◦ F = α0 F + α1 F2

+ . . . + αn−1 Fn (10)

holds for any integer n > 1 and any n-tuple (α0, . . . , αn−1) of nonnegative reals.
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Most multivalued maps are not positively distributive. Among the few examples
of positively distributive maps one can mention:

any constant operator : F(x) = � for all x ∈ X.

any monotonic dilatation : F = h(| · |)BX with h : R+ → R+ nondecreasing.

F = I + NC with NC denoting the normal map of a convex set C.

F = I − TC with TC denoting the tangent map of a convex set C.

Proving that a monotonic dilatation is positively distributive is not completely
trivial. The details will be seen later in the proof of Proposition 2. The example
involving the normal map NC takes place in the context of a Hilbert space. Proving
that I + NC and I − TC are positively distributive maps is not a trivial matter either.
We just skip entering into the details to avoid excessive space consuming.

Without further ado, we state below the main result concerning positively distrib-
utive maps.

THEOREM 2. Let F : X ⇒ X be nonempty-valued and positively distributive. Then,

(a) Sn F =
∑n

p=0
1
p!

F p for all integer n > 0.
(b) F is semi-recursively exponentiable if and only if F is Maclaurin exponentiable.
(c) Under the equivalent conditions stated in (b), the exponentials exp∗ F and Exp F

coincide.

Proof. In view of the distribution law (10), for every x ∈ X one has[
1

(n − 2)!
I +

[
1

(n − 1)!
I +

1

n!
F
]

◦ F
]

(x) =
1

(n − 2)!
x +

[
1

(n − 1)!
I +

1

n!
F
]

(F(x))

=
1

(n − 2)!
x +

1

(n − 1)!
F(x) +

1

n!
F2(x).

In the same way one gets[
1

(n − 3)!
I +

[
1

(n − 2)!
I +

[
1

(n − 1)!
I +

1

n!
F
]

◦ F
]

◦ F
]

(x)

=
1

(n − 3)!
x +

[
1

(n − 2)!
I +

[
1

(n − 1)!
I +

1

n!
F
]

◦ F
]

(F(x))

=
1

(n − 3)!
x +

[
1

(n − 2)!
I +

1

(n − 1)!
F +

1

n!
F2

]
(F(x))

=
1

(n − 3)!
x +

1

(n − 2)!
F(x) +

1

(n − 1)!
F2(x) +

1

n!
F3(x),

the last two equalities being due to the distribution law (10). By iterating the previous
argument several times and recalling the representation formula (8), one ends up with
the equality Sn F(x) =

∑n
p=0

1
p!

F p(x) for all x ∈ X and n ∈ N. The parts (b) and (c) of
the theorem are direct consequences of the part (a). �

What Theorem 2 essentially says is that for the class of positively distributive
maps, there is no difference between exponentiating in the semi-recursive sense or
exponentiating in the Maclaurin sense.



390 Set-Valued Anal (2006) 14: 381–411

4. Existence of Semi-recursive and Recursive Exponentials

Semi-recursive exponentials are obtained as Painlevé–Kuratowski limits of sets of the
form Sn F(x). A monotonicity assumption like

Sn F(x) ⊂ Sn+1 F(x) ∀n > 1

would secure the existence of the limit [exp∗ F](x). Unfortunately, such a monotonic-
ity assumption is too restrictive and seldom holds in practice.

Anyhow, it is natural to ask whether there is a link between Sn F(x) and Sn+1 F(x)

after all. In order to answer this question, we consider a slight variant of (3) which
consists in fixing both end-points of the chain:

zk+1 ∈ F(zk) for k ∈ {0, 1, . . . , n − 1}

z0 = x,

zn = y.

(11)

If one introduces the set

Sn F(x, y) =


n∑

p=0

1

p!
zp

∣∣∣ (z0, z1, . . . , zn) satisfies (11)

 ,

then one can write the Dynamic Programming Identity

Sn+1 F(x) =

⋃
y∈Fn(x)

[
Sn F(x, y) +

1

(n + 1)!
F(y)

]
. (12)

By using (12), or a direct argument, one can show that

Sn+1 F(x) ⊂ Sn F(x) +
1

(n + 1)!
Fn+1(x). (13)

In the same vein, it is possible to derive the relation

Sn F(x) ⊂ Sn+1 F(x) −
1

(n + 1)!
Fn+1(x). (14)

4.1. Convergence Radius

The inclusions (13) and (14) are at the origin of the next existence result. Theorem 3
concerns not only semi-recursive exponentials, but recursive exponentials as well. A
key ingredient of this theorem is the term

ρF (x) :=

∞∑
p=0

[
1

p!
sup

v∈F p(x)

|v|

]
, (15)

a number which can be seen as a sort of convergence radius for the multivalued
power series

∑
∞

p=0
1
p!

F p(x). General comments on the expression (15) will be given
at several occasions in the sequel.

THEOREM 3. Let F : X ⇒ X be a nonempty-valued map and x ∈ X be a point
such that

ρF (x) < ∞. (16)

Then, F is both semi-recursively and recursively exponentiable at x.
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Proof. Condition (16) implies that each term rp(x) := supv∈F p(x) |v| is finite, and
therefore each set F p(x) is bounded. It follows that {Sn F(x)}n∈N is a sequence of
nonempty bounded sets. In fact,

Sn F(x) ⊂

n∑
p=0

1

p!
F p(x) ⊂

 n∑
p=0

rp(x)

p!

BX ⊂ ρF (x)BX. (17)

The combination of (13) and (14) yields the system

Sn+1 F(x) ⊂ Sn F(x) +
rn+1(x)

(n + 1)!
BX,

Sn F(x) ⊂ Sn+1 F(x) +
rn+1(x)

(n + 1)!
BX,

which in turn produces the estimate∣∣∣dist[u, Sn F(x)] − dist[u, Sn+1 F(x)]

∣∣∣ 6
rn+1(x)

(n + 1)!
∀u ∈ X. (18)

Now, pick up any u ∈ X. By using (18) and applying the triangular inequality in
(R, | · |), one gets

∣∣dist[u, Sn F(x)] − dist[u, SmF(x)]
∣∣ 6

m−1∑
p=n

∣∣dist[u, SpF(x)] − dist[u, Sp+1 F(x)]
∣∣

6
m∑

p=n+1

rp(x)

p!

for all integers m, n with m > n + 1. In view of (16), it follows that {dist[u, Sn F(x)}n∈N
is a Cauchy sequence, that is to say, it is convergent. Since u ∈ X was chosen arbi-
trarily, we conclude that {Sn F(x)}n∈N is Painlevé–Kuratowski convergent. This takes
care of semi-recursive exponentiability. The existence of the recursive exponential
[exp F](x) is simpler to prove. It suffices to observe that

n∑
p=0

|zp|

p!
6

∞∑
p=0

|zp|

p!
6 ρF (x)

for any Ez ∈ MF (x). �

We list below three remarks that help to put Theorem 3 in the right perspective.

Remark 1. Let Ŝn := cl[Sn F(x)]. Under the assumptions of Theorem 3, the con-
vergence of {Ŝn}n∈N occurs not only in the Painlevé–Kuratowski sense, but also in a
stronger sense. To be more precise, consider the space CL (X) of nonempty closed
sets equipped with the Pompeiu–Hausdorff metric

haus[C, D] := sup
u∈X

∣∣dist[u, C] − dist[u, D]
∣∣.

While defined over CL (X), the metric haus[·, ·] is allowed to take values in the ex-
tended positive line [0, ∞]. Since X is complete, the metric space (CL (X), haus[·, ·])
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is complete as well (cf. [3, Theorem 3.2.4]). Observe that by using (18) and applying
the triangular inequality to haus[·, ·], one gets

haus
[
Ŝn, Ŝm

]
6

m−1∑
p=n

haus
[

Ŝp, Ŝp+1

]
6

m∑
p=n+1

rp(x)

p!

for any pair of integers m, n with m > n + 1. Hence, {Ŝn}n∈N is a Cauchy sequence
in (CL (X), haus[·, ·]). The conclusion is that limn→∞ haus[Ŝn, S] = 0 for some non-
empty closed set S ⊂ X.

Remark 2. For a nonempty-valued map F : X ⇒ X, the convergence criterion (16)
clearly implies that

ρF (x) :=

∞∑
p=0

1

p!
dist[0, F p(x)] < ∞.

The latter condition is enough to secure the Maclaurin exponentiability of F at x (cf.
[5, Theorem 1]). In view of (17), one gets the upper estimate [Exp F](x) ⊂ ρF (x)BX.

Remark 3. The convergence criterion (16) implies also a stronger form of Maclau-
rin exponentiability that we call uniform Maclaurin exponentiability. A nonempty-
valued map F : X ⇒ X is said to be uniformly Maclaurin exponentiable at x if the
limit

∑
∞

p=0
1
p!

zp exists in (X, | · |) for any sequence {zp}p>0 such that

zp ∈ F p(x) ∀p > 0. (19)

In such a case, the set

[Exp
•
F](x) =


∞∑

p=0

1

p!
zp

∣∣∣ {zp}p>0 satisfies (19)


is called the uniform Maclaurin exponential of F at x. Notice that [exp F](x) ⊂

[Exp
•
F](x) ⊂ [Exp F](x). The main drawback of this exponentiability concept is that

a trajectory {zp}p>0 satisfying (19) is memoryless, in the sense that zp+1 bears no
relation to the previous state zp. The evolution model (19) is totally blind with respect
to the past. As a consequence, the set [Exp

•
F](x) may be too large and contaminated

with irrelevant information. Needless to say, the usual Maclaurin exponential suffers
from the same defect.

The computation of the convergence radius ρF (x) is not always an easy matter,
specially when the evaluation of the set F p(x) is already a complicated business
by itself. A simple way of ensuring the finite-valuedness of the function ρF (·)

is by imposing some kind of ‘boundedness’ assumption on F . As an immediate
consequence of Theorem 3 one gets:

COROLLARY 1. Consider a map F : X ⇒ X and a nonempty set K ⊂ D(F)

such that

1) F(K) ⊂ K,
2) F(K) is bounded.
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Then, F is semi-recursively and recursively exponentiable at each point in K. In
particular, if F : X ⇒ X is a nonempty-valued map with bounded range F(X), then F
is semi-recursively and recursively exponentiable.

Proof. Take x ∈ K. Under the assumptions of the corollary, every F p(x) is
nonempty and contained in the bounded set F(K ). In particular, the convergence
radius

ρF (x) 6 |x| + (e − 1) sup
v∈F(K)

|v|

is finite. It suffices then to apply Theorem 3 to the restriction of F over K. �

4.2. Strong Affine Growth Hypothesis

Another way of ensuring the finite-valuedness of the function ρF (·) is by imposing a
bound on the growth of F(x) with respect to |x|. A map F : X ⇒ X is said to satisfy
the Strong Affine Growth Hypothesis if{

there are nonnegative constants a and b such that
F(x) ⊂ (a|x| + b) BX for all x ∈ X.

(20)

Such a growth hypothesis appears from time to time in the literature dealing with
differential inclusions. For example, Kloeden and Valero [7] use (20) in connection
with the existence of weak attractors for a certain class of multivalued dynamical
systems.

The class of nonempty-valued maps satisfying the Strong Affine Growth Hypoth-
esis (20) includes

• any affine-like operator x ∈ X ⇒ FA,K(x) := Ax + K
with A∈ L(X) and K ⊂ X bounded,

• any map F : X ⇒ X of the form F(x) := {Ax + b | (A, b) ∈ 4 × K}

with 4 × K bounded in L(X) × X,

• any bounded-valued map F : X ⇒ X admitting a constant L ∈ R+

such that F(x) ⊂ F(y) + L |x − y| BX for all x, y ∈ X.

Of course, the above three examples are not independent. We are listing them in an
order of increasing generality.

In Proposition 1 and the sequel, we use the notation

a⊕
:=

∞∑
p=1

1 + a + . . . + a p−1

p !
=

{ ea
−e

a−1 if a 6= 1,

e if a = 1.

PROPOSITION 1. Suppose that F : X ⇒ X is a nonempty-valued map satisfying the
Strong Affine Growth Hypothesis (20). Then, F is both semi-recursively and recur-
sively exponentiable. Furthermore, F is Maclaurin exponentiable and the Maclaurin
exponential Exp F : X ⇒ X satisfies the strong affine growth condition

[Exp F](x) ⊂
(
ea

|x| + ba⊕
)

BX ∀x ∈ X. (21)

Proof. Take any x ∈ X. Condition (20) yields the upper estimate

F p(x) ⊂
[
a p

|x| + (1 + a + . . . + a p−1)b
]
BX ∀p > 1, (22)
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and therefore

n∑
p=0

1

p!
F p(x) ⊂ x +

 n∑
p=1

a p
|x| + (1 + a + . . . + a p−1) b

p !

BX

⊂ x +
(
(ea

− 1)|x| + ba⊕
)

BX

⊂
(
ea

|x| + ba⊕
)

BX.

By letting n → ∞ one proves the strong affine growth condition (21) for the Maclau-
rin exponential Exp F . The first part of the proposition follows from Theorem 3 and
the fact that ρF (x) 6 ea

|x| + ba⊕ < ∞. �

Remark 4. If one has to deal with a map F taking possibly empty values, then one
can invoke the generalized hypothesis{

there are a set K ⊂ D(F) and nonnegative constants a and b such that
F(K ) ⊂ K and F(x) ⊂ (a|x| + b) BX for all x ∈ K.

(23)

Under (23) the conclusion is that F is semi-recursively and recursively exponentiable
at every point in K. In contrast to Corollary 1, the set F(K ) in (23) doesn’t need to
be bounded.

Remark 5. For a nonempty-valued map F , the assumption (20) implies obviously
the so-called Weak Affine Growth Hypothesis{

there are nonnegative constants a and b such that
dist[0, F(x)] 6 a|x| + b for all x ∈ X,

(24)

which in turn implies the Maclaurin exponentiability of F (cf. [5, Theorem 2]).

The class of nonempty-valued maps satisfying the Strong Affine Growth Hypothe-
sis (20) is stable with respect to scalar multiplication, composition, and addition. Thus,
one can state semi-recursive and recursive counterparts of [5, Corollary 1], namely:

COROLLARY 2. Let F : X ⇒ X be a nonempty-valued map satisfying (20). Then,

(a) For all t ∈ R, tF is recursively exponentiable.
(b) For all integer m > 1, Fm is recursively exponentiable.

More generally, any polynomial expression t0 I + t1 F + . . . + tmFm is recursively ex-
ponentiable. Furthermore, all the conclusions of the corollary hold when the term
‘recursive’ is changed by ‘semi-recursive’.

As a direct consequence of Proposition 1, one gets semi-recursive and recursive
exponentiability results for positively homogeneous maps with finite outer norm.

COROLLARY 3. Let F : X ⇒ X be a nonempty-valued positively homogeneous map
such that

‖F‖out := sup
|x|61

sup
v∈F(x)

|v|
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is finite. Then, F is semi-recursively and recursively exponentiable. Furthermore, F is
Maclaurin exponentiable and the Maclaurin exponential Exp F : X ⇒ X satisfies

[Exp F](x) ⊂ e‖F‖out |x| BX ∀x ∈ X.

Proof. F satisfies the Strong Affine Growth Hypothesis (20) with constants a =

‖F‖out and b = 0. �

4.3. Modulable Maps

We mention now a few additional words on the existence of recursive exponentials.
Boundedness of all discrete trajectories of F emanating from x is, of course, a
sufficient condition for recursive exponentiability of F at x. However, the recursive
exponential may exist even if F admits unbounded discrete trajectories. What is
important in fact is that each discrete trajectory should not grow too fast in norm.

One possible way of controlling the growth of a discrete trajectory, say Ez ∈ MF (x),
is by imposing a bound on |zp| that depends on the previous r terms |zp−1|, . . . , |zp−r |.
This is the idea behind the following definition.

DEFINITION 5. A map F : X ⇒ X is called modulable if there exist an integer r > 1
(called period) and positive constants c0, c1, . . . , cr such that

|ξr | 6 cr |ξr−1| + · · · + c1|ξ0| + c0 (25)

for all (ξ0, ξ1, . . . , ξr ) ∈ Xr+1 such that ξ1 ∈ F(ξ0), ξ2 ∈ F(ξ1), . . . , ξr ∈ F(ξr−1).

Some general comments on Definition 5 are in order.

(1) Modulability with period r = 1 amounts to saying that F satisfies the Strong
Affine Growth Hypothesis (20).

(2) For an ordinary function f : X → X, modulability with period r = 2 corresponds
to a growth condition of the form

| f 2(u)| 6 c2| f (u)| + c1|u| + c0 ∀u ∈ X.

In the case of a multivalued map F : X ⇒ X, one must write of course

|ξ2| 6 c2|ξ1| + c1|ξ0| + c0 (26)

for all (ξ0, ξ1, ξ2) such that ξ1 ∈ F(ξ0) and ξ2 ∈ F(ξ1). A map F satisfying the
modulability condition (26) falls beyond the context of Proposition 1. Contrarily
to the case r = 1, the period r = 2 doesn’t force F to have bounded values.

(3) Modulability with period higher than 2 is also of interest but it becomes more
cumbersome to check in practice.

THEOREM 4. Suppose that F : X ⇒ X is nonempty-valued and modulable. Then, F
is recursively exponentiable.

Proof. Let r denote the period of the modulable map F . The case r = 1 is covered
by Proposition 1, so we assume that r > 2. Take any x ∈ X and Ez ∈ MF (x). The
modulability condition (25) yields

|zp+r | 6 cr |zp+r−1| + . . . + c1 |zp| + c0 ∀p > 0.
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By adding |zp+r−1| + . . . + |zp+1| to each side of the above inequality, one obtains

|zp+r | + |zp+r−1| + . . . + |zp+1| 6 (cr + 1)|zp+r−1| + . . . + (c2 + 1)|zp+1| + c1 |zp| + c0

6 M
(
|zp+r−1| + . . . + |zp|

)
+ c0,

with M := max{cr + 1, . . . , c2 + 1, c1}. Consider now the sequence {σp}p>0 given by
σp :=

∑p+r−1
i=p |zi |. With such a notation, the previous inequality can be rewritten as

σp+1 6 Mσp + c0 ∀p > 0,

from where one gets

σp 6 Mp σ0 + (1 + M + . . . + Mp−1) c0 ∀p > 1.

Since |zp| 6 σp, one arrives at

|zp| 6 Mp (|z0| + . . . + |zr−1|) + (1 + M + . . . + Mp−1) c0 ∀p > 1,

showing in this way that |zp| doesn’t grow too fast while compared to the factorial
of p. More precisely, the decay factor 1/p! forces the convergence of the partial sum∑n

p=0
1
p!

zp. �

The radial function ρF (·) of a nonempty-valued modulable map F is not necessar-
ily finite-valued, so Theorems 3 and 4 are independent results. Notice that Theorem
4 says nothing about semi-recursive exponentiability.

5. Computing Semi-recursive Exponentials

Perhaps the main drawback of semi-recursive exponentials is that their computation
is in general a quite cumbersome task. In Sections 5.1 and 5.2 we present two classes
of maps for which the computation of Sn F(x) can be carried out without too much
troubles. At the same time, we will evaluate [exp∗ F](x) and see if the obtained
expression coincides or not with the Maclaurin exponential.

5.1. Dilatations

Multivalued maps of the form F = 9(·)BX arise in the modeling of differential
inequalities. Observe that the set F(x) = 9(x)BX corresponds to a dilatation of the
unit ball BX, the dilatation factor being the nonnegative number 9(x). Under suitable
assumptions on the function 9, an explicit formula for the Maclaurin exponential of
F was derived in [5, Theorem 3].

We compute now the semi-recursive exponential of a map F having the special
structure

F(x) = h(|x|)BX ∀x ∈ X.

As we shall see next, everything boils down to evaluating an expression of the form

[Exp h](s) :=

∞∑
p=0

1

p!
hp(s),

where hp is understood as the p-fold composition of the function h.
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PROPOSITION 2. Suppose that h: R+ → R+ is a nondecreasing function. Then, the
map F = h(| · |)BX is semi-recursively exponentiable and

[exp∗ F](x) = [Exp F](x) = x +

(
[Exp h](|x|) − |x|

)
BX.

Proof. By setting 9 = h ◦ | · |, one falls within the framework of [5, Theorem 3]. In
the present situation, the function s ∈ R+ 7→ 9max(s) := sup|w|6s 9(w) is just h, and
the Maclaurin exponential of F takes the form

[Exp F](x) = x +

 ∞∑
p=1

1

p!
hp(|x|)

BX = x +

(
[Exp h](|x|) − |x|

)
BX.

On the other hand, we claim that the monotonicity of h implies the positive distribu-
tivity of F . Take n > 1 and (α0, . . . , αn−1) ∈ Rn

+
. Since h is nondecreasing, one has

F2(x) =

⋃
|y|6h(|x|)

h(|y|)BX = h2(|x|)BX ∀x ∈ X.

In a similar way, one gets F p(·) = hp(| · |)BX for all p > 2. Therefore, for all x ∈ X,
one has

[α0 I + α1 F + . . . + αn−1 Fn−1
](F(x)) =

⋃
y∈h(|x|)BX

[
α0 y + α1 F(y) + . . . + αn−1 Fn−1(y)

]

=

⋃
y∈h(|x|)BX

α0 y +

n−1∑
p=1

αphp(|y|)

BX

 .

One gets in this way

[α0 I + α1 F + . . . + αn−1 Fn−1
](F(x)) ⊃ α0 h(|x|)BX, (27)

as well as

[α0 I + α1 F + . . . + αn−1 Fn−1
](F(x)) ⊃

⋃
y∈h(|x|)SX

α0 y +

n−1∑
p=1

αphp(|y|)

BX


⊃ α0h(|x|)SX +

n−1∑
p=1

αphp+1(|x|)

BX, (28)

where SX denotes the unit sphere in X. The combination of (27) and (28) yields

[α0 I + α1 F + . . . + αn−1 Fn−1
](F(x)) ⊃

n−1∑
p=0

αphp+1(|x|)

BX

= α0 F(x) + . . . + αn−1 Fn(x).

We have proven in this way that F is positively distributive. To complete the proof
of the proposition, we just need to invoke Theorem 2. �

Upward monotonicity of h is an essential assumption in Proposition 2. It is
interesting to observe that downward monotonicity of h does not secure the equality
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between semi-recursive and Maclaurin exponentials. Example 4 serves not only to
illustrate this point, but it has also a further merit: It displays a very curious link
between the operation of semi-recursive exponentiation and the Fibonacci sequence
{ fp}p>0 defined recursively by{

fp+2 = fp + fp+1 for p = 0, 1, 2, . . .

f0 = 0, f1 = 1.

A well known property of the Fibonacci sequence is that

rp :=
fp+1

fp
→ φ :=

1 +
√

5

2
≈ 1.618

as p → ∞. The number φ is usually referred to as the Golden Ratio.

EXAMPLE 4. Consider the dilatation (or rather, retraction) F : X ⇒ X given by

F(x) =
1

1 + |x|
BX ∀x ∈ X.

Computing the Maclaurin exponential [Exp F](x) is an easy matter because F p(x) =

BX for every p > 2. One simply gets

[Exp F](x) = x +

(
1

1 + |x|
+ e − 2

)
BX.

On the other hand, F is semi-recursively exponentiable because its range F(X) = BX

is a bounded set (see Corollary 1). After some simplificatory work, one passes from

Sn F(x) =

x +

n∑
p=1

1

p!
zp

∣∣∣∣ |z1| 6
1

1 + |x|
, |z2| 6

1

1 + |z1|
, . . . , |zn| 6

1

1 + |zn−1|


to the expression

Sn F(x) = x +

(
1

1 + |x|
+ γn(|x|)

)
BX,

with

γn(s) :=

n∑
p=2

1

p!

fp + s fp−1

fp+1 + s fp
=

n∑
p=2

1

p!

1 + (rp − 1)s
rp + s

.

One ends up with the semi-recursive exponential

[exp∗ F](x) = x +

(
1

1 + |x|
+ γ (|x|)

)
BX,

with

γ (s) :=

∞∑
p=2

1

p!

1 + (rp − 1)s
rp + s

.

The function γ : R+ → R+ increases from γ (0) ≈ 0.392 to γ (∞) ≈ 0.617 < e − 2.

So, [exp∗ F](x) is strictly included in [Exp F](x). The excess of [Exp F](x) over
[exp∗ F](x) is the largest possible when x = 0, but it becomes smaller as |x| increases.
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5.2. Affine-like Operators

By an affine-like operator one understands a multivalued map FA,K : X ⇒ X of
the form

FA,K(x) = Ax + K,

where A: X → X is a linear continuous operator and K is a nonempty set in X. The
importance of this class of maps has been amply justified in the control literature, so
we don’t need to indulge on this matter.

It has been shown in [5, Proposition 7] that any affine-like operator is Maclaurin
exponentiable. Let us now examine the semi-recursive exponentiability of FA,K. To
do this, we start by working out the general representation formula (8) in this special
setting. Take any x ∈ X and write[

1

(n − 1)!
I +

1

n!
FA,K

]
(x) =

(
1

(n − 1)!
I +

1

n!
A
)

x +
1

n!
K.

It ensues that[
1

(n − 2)!
I +

[
1

(n − 1)!
I +

1

n!
FA,K

]
◦ FA,K

]
(x)

=
1

(n − 2)!
x +

⋃
y∈Ax+K

[
1

(n − 1)!
I +

1

n!
FA,K

]
(y)

=
1

(n − 2)!
x +

⋃
y∈Ax+K

{(
1

(n − 1)!
I +

1

n!
A
)

y +
1

n!
K
}

=

(
1

(n − 2)!
I +

1

(n − 1)!
A+

1

n!
A2

)
x +

(
1

(n − 1)!
I +

1

n!
A
)

K +
1

n!
K.

By iterating this process one sees that (8) takes the form

Sn FA,K(x) =

(
1

0!
I +

1

1!
A+ . . . +

1

n!
An
)

x + 9n(A, K), (29)

with

9n(A, K) :=

(
1

1!
I+

1

2!
A+. . .+

1

n!
An−1

)
K+

(
1

2!
I+. . .+

1

n!
An−2

)
K+. . .+

1

n!
K.

On the other hand, as shown in [5, Section 4.3], one has
n∑

p=0

1

p!
F p

A,K(x) =

(
1

0!
I +

1

1!
A+ . . . +

1

n!
An
)

x + 0n(A, K), (30)

with

0n(A, K) := K +
1

2!
(K + AK) + . . . +

1

n!
(K + AK + . . . + An−1 K)

So, if one wishes to compare [exp∗ FA,K](x) and [Exp FA,K](x), then one must study
the limiting behavior of the sets 9n(A, K) and 0n(A, K) as n → ∞. This is not simple
in general, but there are at least two cases in which the situation is well understood.
These cases are presented in the following two corollaries.
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COROLLARY 4. Let F : X ⇒ X be a constant operator, i.e. there is a nonempty
set K ⊂ X such that F(x) = K for all x ∈ X. Then, F is semi-recursively exponent-
iable and

[exp∗ F](x) = [Exp F](x) = x + lim
n→∞

[
K +

1

2!
K + . . . +

1

n!
K
]

∀x ∈ X.

Proof. By taking A= 0 in (29) and (30), one gets

Sn F(x) =

n∑
p=0

1

p!
F p(x) = x +

[
K +

1

2!
K + . . . +

1

n!
K
]

.

The term between brackets converges in the Painlevé–Kuratowski sense, so it suffices
to let n → ∞. �

COROLLARY 5. Let K ⊂ X be a nonempty closed convex set and A be a nonneg-
ative multiple of the identity operator, say A= a I with a ∈ R+. Then FA,K is semi-
recursively exponentiable and

[exp∗ FA,K](x) = [Exp FA,K](x) = ea x + a⊕K ∀x ∈ X.

Proof. We come back again to formulas (29) and (30). Since the set K is convex
and the coefficient a is nonnegative, we can rearrange terms so as to obtain

Sn FA,K(x)=

n∑
p=0

1

p!
F p(x)=

(
1

0!
+. . .+

an

n!

)
x+

[
1

1!
+

1+a
2!

+. . .+
1+. . .+an−1

n!

]
K.

It is now a matter of passing to the limit as n → ∞. The suggested formula for the
Maclaurin exponential is already given in [5, Proposition 8]. �

Both assumptions in Corollary 5 are essential: If either the coefficient a is negative
or if the set K is not convex, then exp∗ FA,K may be different from Exp FA,K. This fact
is illustrated with the help of the next two examples.

EXAMPLE 5. Let K ⊂ X be a nonempty closed convex set and F : X ⇒ X be given
by F(x) = −x + K for all x ∈ X. Let us rewrite formula (29) with A= −I :

Sn F(x)=

 n∑
p=0

(−1)p

p!

 x+

[
1

1!
+

−1

2!
+. . .+

(−1)n−1

n!

]
K+. . .+

[
1

(n−1)!
+

−1

n!

]
K+

1

n!
K.

Since K is convex and each sum between brackets is positive, we can rearrange terms
and get

Sn F(x) =

 n∑
p=0

(−1)p

p!

 x +

[
1

1!
+

1

2!
(1 + (−1)) + . . . +

1

n!

(
1 + . . . + (−1)n−1

)]
K.

(31)
Observe that for every p ∈ {1, . . . , n − 1}

1 + . . . + (−1)p−1
=

{
0 if p is even,

1 if p is odd,
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so the terms corresponding to even indices in the bracket disappear. By passing to
the Painlevé–Kuratowski limit in (31) one arrives at

[exp∗ F](x) =

 ∞∑
p=0

(−1)p

p!

 x +

 ∞∑
p=0

1

(2p + 1)!

K = e−1x + (sh1)K,

whereas the Maclaurin exponential is given by (cf. [5, Proposition 8])

[Exp F](x) = e−1x + (sh1)K +
ch1

2
(K − K).

One sees that the inclusion [exp∗ F](x) ⊂ [Exp F](x) is strict unless K satisfies the
equation

(sh1)K = (sh1)K +
ch1

2
(K − K).

The above equation holds, for instance, if K is a singleton or if K is a linear subspace,
but it doesn’t hold if K is a convex cone such that K 6= −K. The difference between
[exp∗ F](x) and [Exp F](x) is specially striking if K is a convex cone close to a ray but
K − K is the whole space X.

Before presenting the second example, we state an easy lemma.

LEMMA 2. Let A: X → X be a linear continuous operator and K ⊂ X be a nonempty
bounded set. Then, FA,K is semi-recursively exponentiable.

Proof. FA,K satisfies the Strong Affine Growth Hypothesis (20) with constants
a = ‖A‖ and b = supu∈K |u|. The semi-recursive exponentiability of FA,K is then a
consequence of Proposition 1. �

EXAMPLE 6. Consider the nonconvex set K = {0, 1} and the map F : R ⇒ R given
by F(x) = x + K for all x ∈ R. Formula (29) takes now the form

Sn F(x) =

 n∑
p=0

1

p!

 x +

 n∑
p=1

1

p!

 {0, 1} +

 n∑
p=2

1

p!

 {0, 1} + . . . +
1

n!
{0, 1}.

On the other hand, Section 4.3 in [5] yields

n∑
p=0

1

p!
F p(x) =

 n∑
p=0

1

p!

 x + K +
1

2!
(K + K) + . . . +

1

n!
(K + K + . . . + K)︸ ︷︷ ︸

n terms

=

 n∑
p=0

1

p!

 x + {0, 1} +
1

2!
{0, 1, 2} + . . . +

1

n!
{0, 1, . . . , n}.

To fix the ideas, take for instance x = 0. One sees that Sn F(0) 6=
∑n

p=0
1
p!

F p(0) for
all n > 2. With a bit of care one can check that this inequality persists after passing
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to the limit. Let us consider first the evaluation of [Exp F](0). A simple monotonicity
argument (cf. [5, Lemma 1]) shows that

[ExpF](0) = cl

⋃
n>1

 n∑
p=1

1

p!
F p(0)

 .

Notice that

F(0)={0, 1},

2∑
p=1

1

p!
F p(0)=

{
0,

1

2
, 1,

3

2
, 2

}
,

3∑
p=1

1

p!
F p(0)=

{
0,

1

6
,

2

6
,

3

6
, . . . ,

15

6

}
,

and, in general,

n∑
p=1

1

p!
F p(0) =

1

n!

0, 1, . . . , n!

n−1∑
p=0

1

p!

 .

The elements of the above set form a regular subdivision of the interval
[
0,
∑n−1

p=0
1
p!

]
,

the step of the subdivision being 1/n!. It follows that

[ExpF](0) =

0,

∞∑
p=0

1

p!

 = [0, e].

Even if K = {0, 1} is formed by just two elements, the Maclaurin exponential of F
at 0 is a set which has positive Lebesgue measure! This observation leads us to think
that Maclaurin exponentiation is a concept that doesn’t discriminate well enough the
very nature of the original data. Let us see now what happens with the semi-recursive
exponential [exp∗ F](0), a limit which exists in view of Lemma 2. We now get a set
which has null Lebesgue measure! To check this, we proceed as follows. From (13)
we know already that

Sn+1 F(0) ⊂ Sn F(0) +
1

(n + 1)!
Fn+1(0).

But

Fn+1(0) = K + K + . . . + K︸ ︷︷ ︸
n+1 terms

= {0, 1, . . . , n + 1} ⊂ [0, n + 1].

Thus,

Sn+1 F(0) ⊂ Sn F(0) +
1

(n + 1)!
[0, n + 1] = Sn F(0) +

[
0,

1

n!

]
.

So, for every m > n + 1, one can write

SmF(0) ⊂ Sn F(0) +

[
0,

m−1∑
p=n

1

p!

]
⊂ Sn F(0) +

[
0,

∞∑
p=n

1

p!

]
. (32)

Notice that the set on the rightmost side of (32) is closed. Taking the Painlevé–
Kuratowski limit as m → ∞, one gets

[exp∗ F](0) ⊂ Sn F(0) +

[
0,

∞∑
p=n

1

p!

]
=

⋃
z∈Sn F(0)

{
z +

[
0,

∞∑
p=n

1

p!

]}
. (33)
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Due to its special structure, the set Sn F(0) is finite and its cardinal is majorized by 2n.
Denoting by λ the Lebesgue measure on R, we then infer from (33) that

λ
(
[exp∗ F](0)

)
6 card(Sn F(0)).

(
∞∑

p=n

1

p!

)
6 2n

(
∞∑

p=n

1

p!

)
∀n > 1.

But, as shown in the proof of Proposition 4 (Section 8), one has limn→∞

2n
(∑

∞

p=n
1
p!

)
= 0. So, one gets λ

(
[exp∗ F](0)

)
= 0 as claimed. Summarizing, this

example shows not only that [exp∗ F](0) is strictly included in [Exp F](0), but also
that there is substantial difference between both exponentials.

6. Recursive Exponentiability of Bundles

This section deals with the recursive exponentiability of bundles of linear continuous
operators. By this expression we mean a mutivalued map F : X ⇒ X of the form

F(x) = {Ax : A∈ 4} ∀x ∈ X,

with 4 denoting a nonempty subset in L(X).
Bundles arise in a natural way in the modeling of continuous and discrete time

evolution processes. We mention the references [4, 6, 8–12, 15, 16] for more informa-
tion on these mathematical objects and for discovering some of their applications. Of
course, this list of references is by no means exhaustive.

Recursive exponentials of bundles are better understood if one introduces first a
suitable concept of ‘exponential mixture’ for the family 4.

DEFINITION 6. The geometric exponential mixture of 4 ⊂ L (X) is the setM(4) ⊂

L(X) defined by

Q ∈M(4) ⇐⇒ Q = I + lim
n→∞

n∑
p=1

1

p!
Ap ◦ · · · ◦ A2 ◦ A1

for some sequence {Ap}p>1 in 4, (34)

where the limit (34) takes place in the space (L (X), ‖ · ‖).

The term ‘geometric’ in Definition 6 doesn’t have a special meaning. It is used
mainly for distinguishing M(4) from the exponential mixture in the sense of Amri
and Seeger [2], the latter being a concept adapted to forward exponentiation.

THEOREM 5. Let F : X ⇒ X be the bundle associated to a nonempty bounded set
4 ⊂ L(X). Then, F is recursively exponentiable and exp F is the bundle associated to
M(4), i.e.

[exp F](x) = {Qx | Q ∈M(4)} ∀x ∈ X.

Furthermore, one has the estimates

(a) dist[0, (exp F)(x)] 6 dist[0,M(4)] |x|.

(b) [exp F](x) ⊂ emod(4)
|x|BL(X) with mod(4) := supA∈4 ‖A‖.
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Proof. Take x ∈ X. The recursive exponentiability of F at x follows from Propo-
sition 1 and the boundedness of 4. In order to prove the inclusion

{Qx | Q ∈M(4)} ⊂ [exp F](x),

take y = Qx with Q ∈M(4). If one represents Q as in (34), then

y =

I + lim
n→∞

n∑
p=1

1

p!
Ap ◦ · · · ◦ A2 ◦ A1

 x

= x + lim
n→∞

 n∑
p=1

1

p!
Ap ◦ · · · ◦ A2 ◦ A1x


= lim

n→∞

n∑
p=0

1

p!
zp,

with z0 = x and zp = Ap ◦ · · · ◦ A2 ◦ A1x for every p > 1. Since {zp}p>0 is a discrete
trajectory of F emanating from x, the limit y belongs to [exp F](x). Conversely, take
an arbitrary y ∈ [exp F](x) and represent it in the form y = limn→∞

∑n
p=0

1
p!

zp, with
z0 = x and zp+1 ∈ F(zp) for every p > 0. Given the specific structure of F , for each
integer p > 1 there is an operator Ap ∈ 4 such that zp+1 = Apzp. Hence,

zp = Ap ◦ · · · ◦ A2 ◦ A1x ∀p > 1.

We now use the fact that 4 is bounded, i.e. mod(4) < ∞. Since the space (L(X), ‖ · ‖)

is complete and

n∑
p=1

1

p!
‖Ap ◦ · · · ◦ A2 ◦ A1‖ 6

n∑
p=1

[mod(4)]p

p!
6 emod(4)

− 1

for all n > 1, we deduce that

Qn := I +

n∑
p=1

1

p!
Ap ◦ · · · ◦ A2 ◦ A1

converges to some Q ∈M(4). So,

y = lim
n→∞

n∑
p=0

1

p!
zp = lim

n→∞
(Qnx) =

(
lim

n→∞
Qn

)
x = Qx,

as we wanted to prove. �

COROLLARY 6. Let F : X ⇒ X be the bundle associated to a nonempty bounded set
4 ⊂ L(X). Then, for all t ∈ R, the map t F is recursively exponentiable and

[
exp(tF)

]
(x) =


I +

∞∑
p=1

t p

p!
Ap ◦ · · · ◦ A2 ◦ A1

 x
∣∣∣ {Ap}p>1 in 4

 ∀x ∈ X.

Proof. This result is a direct application of Theorem 5 and the fact that t F is the
bundle associated to the bounded set t 4 := {t A | A∈ 4}. �
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Computing geometric exponential mixtures is not always an easy task. For getting
a better grasp of the meaning ofM(4), let us try to identify some particular elements
in this set. First of all, it should be clear that

eA
∈M(4) ∀A∈ 4.

To see this, take in (34) the sequence {Ap}p>1 given Ap = A for every p > 1. Instead
of considering a constant sequence, one can also alternate between two or more
elements taken from 4.

EXAMPLE 7. Suppose that 4 ⊂ L(Rd) contains in particular the linear maps (or
matrices) B and C. If one chooses

Ap =

{
B if p is odd,

C if p is even,
(35)

then one produces the limit

Q = I + B +
1

2!
CB +

1

3!
BCB +

1

4!
CBCB + · · ·

After a short rearrangement, one arrives at

Q =

[
I +

1

2!
(CB) +

1

4!
(CB)2

+ · · ·

]
+ B

[
I +

1

3!
(CB) +

1

5!
(CB)2

+ · · ·

]
.

Notice that if CB is symmetric and positive definite, then CB admits an invertible
square root

√
CB and

Q = ch(
√

CB) + B
[√

CB
]−1

sh(
√

CB).

More elaborate limits are obtained by considering a sequence {Ap}p>1 whose alter-
nation pattern is not as simple as in (35).

7. More on Infinitesimal Generator Formulas

Recall that any linear continuous operator A: X → X admits the ‘infinitesimal gen-
erator’ representation

Ax = lim
t→0+

et Ax − x
t

∀x ∈ X,

where the limit is taken in the Banach space (L(X), ‖ · ‖). The above formula admits
an interesting extension to a multivalued setting if exponentiation is understood in
the Maclaurin sense. As shown in [5, Theorem 4], only a very mild assumption is
needed in order to obtain

lim
t→0+

UF (t)(x) − x
t

= cl[F(x)], (36)

where the limit is taken in the Painlevé–Kuratowski sense and UF (t)(x) :=

[Exp(t F)](x). The next proposition shows that, with the same assumption as in
[5, Theorem 4], it is possible to write the multivalued infinitesimal generator formula
(36) for recursive and semi-recursive exponentials as well.
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PROPOSITION 3. Consider a nonempty-valued map F : X ⇒ X satisfying the follow-
ing regularity requirement at the origin:

lim
w→0

sup
y∈F(w)

|y| = 0. (37)

Let x ∈ X be a point such that F(x) is bounded. Then,

(a) there exists t∗ > 0 such that, for every t ∈]0, t∗[ , the map tF is both semi-
recursively and recursively exponentiable at x.

(b) the multivalued infinitesimal generator formula (36) holds whatever the sense of
exponentiation is taken, be it semi-recursive or recursive.

Proof. Take a real M > 0 such that F(x) ⊂ M BX. As can be seen from the proof
of Theorem 4 in [5], under the assumption (37) it is possible to find a positive real t∗
such that

(t F)p(x) ⊂ M BX ∀p > 1, ∀t ∈]0, t∗[. (38)

The upper estimate (38) leads immediately to the convergence criterion

ρ t F (x) :=

∞∑
p=0

[
1

p!
sup

v∈(t F)p(x)

|v|

]
6 |x| + (e − 1)M < ∞.

So, Theorem 3 takes care of the part (a). In order to prove (b), recall that the
multivalued infinitesimal generator formula holds for Maclaurin exponentials. Since

[exp(t F)](x) ⊂ [exp∗(t F)](x) ⊂ [Exp(t F)](x),

we just need to check that

F(x) ⊂ lim inf
t→0+

[exp(t F)](x) − x
t

.

Take any sequence {tk}k∈N converging to 0+. We must show that

F(x) ⊂ lim inf
k→∞

1(tk), (39)

where 1(t) := t−1
{
[exp(t F )](x) − x

}
. Pick up any y ∈ F(x). Consider, for each k ∈

N, the sequence {zk,p}p>0 defined recursively by
zk,p+1 ∈ tkF(zk,p) for p = 1, 2, . . .

zk,1 = tk y
zk,0 = x.

Such a choice of zk,1 is crucial. For k large enough, the map tkF is recursively
exponentiable at x and

x + tky +

∞∑
p=2

1

p!
zk,p ∈ [exp(tkF )](x).

Thus, y + wk ∈ 1(tk), with

wk :=
1

tk

∞∑
p=2

1

p!
zk,p ∈

1

tk

∞∑
p=2

1

p!
(tkF )p(x).
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To complete the proof of (39), it remains to show that wk → 0 as k → ∞. This part is
a bit delicate since one must rely on a result that is sharper than (38). By examining
again the proof of Theorem 4 in [5], one sees that

1

t

∞∑
p=2

1

p!
(t F )p(x) ⊂ ρ(t)BX,

with ρ(t) → 0 as t → 0+. It is posssible, in fact, to derive an explicit formula for the
function ρ(·) but there is no need to elaborate on this detail. It is enough to observe
that |wk| 6 ρ(tk), and therefore {wk}k∈N → 0 as desired. �

Remark 6. The conclusions (a) and (b) in Proposition 3 are also valid for uniform
Maclaurin exponentials. The multivalued infinitesimal generator formula (36) holds
for any exponential UF (t)(x) that is sandwiched between the recursive exponential
[exp(t F)](x) and the Maclaurin exponential [Exp(t F)](x). The two sides of the
sandwich can be seen as two extremal concepts of exponentiation.

8. Exponentiation and Cantor-like Sets

We end this work with a few remarks on the structure of Maclaurin and semi-
recursive exponentials in a very special setting. We want to convince the reader that
both exponentials can have a very fancy form, even if F is a constant map on R given,
for instance, by

F(x) = {0, 1} ∀x ∈ R. (40)

This map F is positively distributive, and therefore the exponentials Exp F and
exp∗ F coincide. In fact,

[Exp F](x) − x = [exp∗ F](x) − x =

∞∑
p=1

1

p!
{0, 1},

where the Painlevé–Kuratowski limit on the right-hand side is a set lying between
{0, e − 1} and [0, e − 1]. This set deserves a closer examination.

We will examine, more generally, a Painlevé–Kuratowski limit of the form∑
∞

p=1 µp {0, 1}, with {µp}p>1 being a sequence of positive scalars such that
∑

∞

p=1
µp < ∞.

LEMMA 3. Let µ = {µp}p>1 be a sequence of positive scalars such that

∀n > 1,

∞∑
p=n+1

µp < µn. (41)

Then,
∑

∞

p=1 µp{0, 1} is a noncountable set.

Proof. We introduce the function 8µ: {0, 1}
N

→ R defined by 8µ(y) =
∑

∞

p=1

µp yp. We claim that 8µ is an increasing function when the set {0, 1}
N is endowed with

the lexicographic order �. Consider y = {yp}p>1 ∈ {0, 1}
N and v = {vp}p>1 ∈ {0, 1}

N
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with y � v and y 6= v. Define p0 = min{p ∈ N | yp 6= vp}. We then have yp0 = 0 and
vp0 = 1, so that

8µ(v) − 8µ(y) = µp0 +

∞∑
p=p0+1

µp (vp − yp).

Taking into account the assumption (41), one has∣∣∣∣∣∣
∞∑

p=p0+1

µp (vp − yp)

∣∣∣∣∣∣ 6
∞∑

p=p0+1

µp < µp0 .

We infer that 8µ(v) − 8µ(y) > 0, ending the proof of our claim. Now, since {8µ(y)

|y ∈ {0, 1}
N
} is included in

∑
∞

p=1 µp{0, 1} and 8µ is a one-to-one function, one can
write

card

 ∞∑
p=1

µp{0, 1}

 > card
(
{0, 1}

N
)

= 2ℵ0 .

This completes the proof of the lemma. �

We now prove that the Lebesgue measure of the set
∑

∞

p=1 µp{0, 1} is equal to zero
if the sequence µ = {µp}p>1 is chosen in a suitable way.

LEMMA 4. Let µ = {µp}p>1 be a sequence of positive scalars such that

lim
n→∞

2n
∞∑

p=n+1

µp = 0. (42)

Then, the set
∑

∞

p=1 µp{0, 1} has null Lebesgue measure.

Proof. Denote by λ the Lebesgue measure on R and write

En =

∞∑
p=n+1

µp{0, 1}, ∀n > 0.

Observe that the set E0 =
∑

∞

p=1 µp{0, 1} can be decomposed as E0 = E1 ∪ (µ1 + E1).
We deduce by using a recurrence argument that for every n > 1,

E0=En

⋃ ⋃
16i6n

µi + En

⋃ ⋃
16i< j6n

µi + µ j + En

. . .
⋃

(µ1 + µ2 + . . . + µn + En).

(43)

Since En ⊂

[
0,
∑

∞

p=n+1 µp

]
, we infer from (43) that E0 is included in the union of 2n

intervals, each of them having a length less than or equal to
∑

∞

p=n+1 µp. We deduce
that

∀n > 1, λ(E0) 6 2n
∞∑

p=n+1

µp.

The assumption (42) leads then to the desired conclusion. �



Set-Valued Anal (2006) 14: 381–411 409

We now combine Lemmas 3 and 4 in order to get the following result:

PROPOSITION 4. The set
∑

∞

p=1
1
p !

{0, 1} is noncountable and has null Lebesgue
measure.

Proof. For the noncountability result, it suffices to check that

∀n > 1,

∞∑
p=n+1

1

p!
<

1

n!
.

This inequality can be shown as follows

∞∑
p=n+1

1

p!
=

1

(n + 1)!

[
1 +

1

n + 2
+

1

(n + 2)(n + 3)
+ . . .

]

6
1

(n + 1)!

∞∑
p=0

1

(n + 2)p
=

1

(n + 1)!

n + 2

n + 1
<

1

n!
.

As a by-product one gets

lim
n→∞

2n
∞∑

p=n+1

1

p!
6 lim

n→∞

2n

n!
= 0,

which is what we need for obtaining the second part of the proposition. �

Proposition 4 is telling us that the operation of Maclaurin exponentiation of a
gentle operator like (40) leads to an exponential which is noncountable and with null
Lebesgue measure.

Remark 7. A similar result as in Proposition 4 can be obtained for the limit∑
∞

p=1
1

a p {0, 1} with a ∈]2, ∞[. The case a = 3 leads to the well known properties of
the triadic Cantor set. The case a = 2 does not fall into this category of examples. For
this border case, both assumptions (41) and (42) fail.

9. Conclusions

The classical Maclaurin series defining the exponential of a linear continuous opera-
tor A: X → X makes sense also in the case of a multivalued map F : X ⇒ X. Although
the Maclaurin exponentiation approach seems natural, it is not necessarily the most
clever way of handling exponentiability issues in a multivalued context.

The chief advantage of Maclaurin exponentials is that they do exist under very
mild assumptions on the map F . Unfortunately, Maclaurin exponentials are sets
which are usually too large and this is a major problem.

Recursive exponentials are sets of smaller size and reflect better the intuitive idea
that we have about the exponentiation operation. Semi-recursive exponentiation is
somehow a compromise between Maclaurin and recursive exponentiation.
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Table I Existence and boundedness results.

Assumption on
nonempty-valued
map F

Maclaurin Semi-recursive Recursive

ρF (·) finite-valued Existence and
boundedness

Existence and
boundedness

Existence and
boundedness

ρF (·) finite-valued Existence, may not be
bounded

May not exist May not exist

Modulability Existence, may not be
bounded

Unclear Existence, may not
be bounded

In Table I we summarize the situation concerning existential issues. We also
indicate whether the corresponding exponential is bounded or not. The expression
‘may not be bounded’ means that we have found an example showing that unbound-
edness is possible. Similarly, the expression ‘may not exist’ means that nonexistence
is possible. The only unclear item is the semi-recursive exponentiability of modulable
maps.
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