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Abstract The paper studies the existence of solutions and necessary conditions
of optimality for a general minimization problem with constraints. Although we
focus mainly on the case where the cost functional is locally Lipschitz, a general
Palais–Smale condition is proposed and some of its properties are studied. Appli-
cations to an optimal control problem and a Lagrange multiplier rule are also given.
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1. Introduction

The paper deals with the following general minimization problem with constraints:

(P) inf
v∈S

8(v).

Here, 8 : X → R ∪ {+∞} is a function on a Banach space X and S is an arbitrary
nonempty subset of X. We suppose that S ∩ dom(8) 6= ∅, where the notation dom(8)

stands for the effective domain of 8, that is

dom(8) = {x ∈ X : 8(x) < +∞}.

First, we discuss the existence of solutions to problem (P). Precisely, we give an
existence result making use of a new type of Palais–Smale condition formulated
in terms of the tangent cone to the set S and of the contingent derivative for the
function 8. As a particular case, one recovers the global minimization result for
a locally Lipschitz functional satisfying the Palais–Smale condition in the sense of
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Chang (cf. [8]). Then, by means of the notion of generalized gradient (see Clarke [9]),
we obtain necessary conditions of optimality for problem (P) in the case where the
cost functional 8 is locally Lipschitz. A specific feature of our optimality conditions
consists in the fact that the set of constraints S is basically involved through its
tangent cone. In addition, the co-state variable provided by the given necessary
conditions makes use essentially of the imposed tangency hypothesis. Finally, we
present two applications of the necessary conditions of optimality that demonstrate
the generality of our results. The first application concerns the minimization of
a locally Lipschitz functional subject to a boundary value problem for semilinear
elliptic equations depending on a parameter that runs in a function space. If this
parameter is a control variable, the result can be interpreted as a maximum principle
for the stated optimal control problem. The second application of the abstract result
concerning the necessary conditions of optimality shows that the Lagrange multiplier
rule fits into this setting. In particular, the Lagrange multiplier rule for locally
Lipschitz functionals is derived. We also present a simple relation of this new type
of Palais–Smale condition of the cost functional 8 on the set of constraints S with the
classical coercivity property of 8 on S.

The approach relies on various methods including Ekeland’s variational principle,
Palais–Smale condition, tangency, generalized subdifferential calculus, orthogonality
relations, Nemytskii operators, semilinear elliptic equations. In this respect it is worth
to mention that a related work has been developed in [2–4] in the context of nonlinear
mathematical programming problems. Here, the basic idea is represented by a kind
of linearizing for the set of constraints S which allows to handle S locally by taking
advantage of a continuous linear operator related to the tangent cone. This treatment
has a unifying effect and can be applied to different problems in the optimization
theory.

The rest of the paper is organized as follows. Section 2 is devoted to the exis-
tence of solutions to problem (P). A relation between the Palais–Smale condition
introduced in Section 2 and the coercivity of 8 is established in Section 3. Section 4
presents our necessary conditions of optimality. Section 5 contains an example in
solving an optimal control problem subject to a semilinear elliptic equation. Section 6
deals with an application to the Lagrange multiplier rule. We note that part of our
presentation here has been described in the Proceedings paper [14].

2. Existence of Solutions

In the following we make use of the notion of tangent vector to the set S at a given
point v ∈ S. Precisely, the tangent cone Tv S to S at v ∈ S (Tv S is sometimes called the
contingent cone to S at v) is defined as

Tv S =

{
w ∈ X : lim inf

t↓0

1

t
d(v + tw, S) = 0

}
, (2.1)

where the notation d(·, S) stands for the distance function to the subset S in X. It is
well-known that Tv S is a closed cone in X. If S is a convex subset of X, then for every
v ∈ S a very convenient description for Tv S holds:

Tv S = cl

(⋃
t>0

1

t
(S − v)

)
,
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where cl means the strong closure of a set in X. For further information on the tangent
cone we refer to [5], Chapter 6.

Another useful tool in our approach is the contingent derivative 8D(u; v) of a
function 8 : X → R ∪ {+∞} at a point u ∈ dom(8) in any direction v ∈ X which is
defined by

8D(u; v) = lim sup
t↓0

w→0

1

t
(8(u + t (v + w)) − 8(u)). (2.2)

The following example points out a significant particular case.

EXAMPLE 2.1. If the function 8 : X → R ∪ {+∞} is locally Lipschitz at a point u ∈

X then one has

8D(u; v) = 8o(u; v), ∀v ∈ X,

where 8o means the generalized directional derivative in the sense of Clarke
(cf. [9]), i.e.,

8o(u; v) = lim sup
t↓0

x→u

1

t
(8(x + tv) − 8(x)). (2.3)

This is clearly seen due to the locally Lipschitz property of 8 near u because then we
may write

lim sup
t↓0

w→0

1

t
(8(u + t (v + w)) − 8(u))

= lim sup
t↓0

w→0

1

t
(8(u + tw + tv) − 8(u + tw)) + lim

t↓0
w→0

1

t
(8(u + tw) − 8(u))

= lim sup
t↓0

x→u

1

t
(8(x + tv) − 8(x)).

We now introduce a new type of Palais–Smale condition for nonsmooth function-
als involving the tangent cone and contingent derivative.

DEFINITION 2.2. The functional 8 : X → R ∪ {+∞} is said to satisfy the
Palais–Smale condition (for short, (PS)) at the level c (c ∈ R) on the subset S of X
if every sequence (un) ⊂ S such that

8(un) → c (2.4)

and

8D(un; v) > −εn‖v‖, ∀v ∈ Tun S, (2.5)

for a sequence εn → 0+, contains a strongly convergent subsequence in X.

Note that in our existence result below (Theorem 2.4), we only need the (PS)
condition at the level c = infS 8. The next example establishes that the (PS) condition
in Definition 2.2 reduces to the usual Palais–Smale condition in the case of locally
Lipschitz functionals.
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EXAMPLE 2.3. If 8 : X → R ∪ {+∞} is locally Lipschitz and S = X, then Definition
2.2 becomes as follows: Every sequence (un) in X such that (2.4) holds and

λ(un) := inf
z∈∂8(un)

‖z‖ → 0 as n → ∞

possesses a strongly convergent subsequence. This equivalence follows readily from
Definition 2.2, Example 2.1 and the definition of generalized gradient

∂8(un) =
{
z ∈ X ∗

: 〈z, v〉 6 8o(un; v), ∀v ∈ X
}
.

We present our existence result in solving problem (P).

THEOREM 2.4. Let S be a closed subset of X and 8 : X → R ∪ {+∞} a function such
that S ∩ dom(8) 6= ∅. Assume that 8|S is lower semicontinuous and bounded from
below, and 8 satisfies the (PS)-condition in Definition 2.2 on S at the level c = infS 8.
Then problem (P) has at least a solution u ∈ S which is a critical point of 8 on S in the
following sense

8D(u; v) > 0, ∀v ∈ TuS. (2.6)

Proof. Applying Ekeland’s variational principle (cf. [11] or Section 3 below) to the
function 8|S yields a sequence (un) ⊂ S such that (2.4) and

8(y) > 8(un) − 1/n‖y − un‖, ∀y ∈ S. (2.7)

hold. Fix any v ∈ Tun S. By (2.1) there exist sequences tk → 0+ in R and wk → 0 in X
as k → ∞ such that un + tk(v + wk) ∈ S for all k. Plugging in (2.7) gives

1

tk
(8(un + tk(v + wk)) − 8(un)) > −1/n‖v + wk‖.

Letting k → ∞ shows that

lim inf
k→∞

1

tk
(8(un + tk(v + wk)) − 8(un)) > −1/n‖v‖, ∀v ∈ Tun S.

It turns out that (2.5) is verified with εn = 1/n. Therefore the (PS) condition as
formulated in Definition 2.2 provides a relabelled subsequence satisfying un → u in
X. Moreover, we have that u ∈ S because S is closed. Taking into account that 8 is
lower semicontinuous on S, we conclude 8(u) = infS 8.

In order to check (2.6), let v ∈ TuS. By (2.1) there exist sequences tk → 0+ in R
and wk → 0 in X as k → ∞ such that u + tk(v + wk) ∈ S for all k. Since 8(u + tk(v +

wk)) > 8(u) we readily obtain (2.6) that completes the proof. �

We illustrate the applicability of Theorem 2.4 by deriving the existence result of
Chang [8], Theorem 3.5.

COROLLARY 2.5. Assume that 8 : X → R is a locally Lipschitz function on a
Banach space X, 8 is bounded from below and satisfies the Palais–Smale condition
in the sense of Chang in [8]. Then there exists u ∈ X such that 8(u) = infX 8 and u is a
critical point of 8, i.e., it solves the inclusion problem

0 ∈ ∂8(u),

where ∂8(u) stands for the generalized gradient of 8 at u.
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Proof. By Example 2.3 we know that the (PS) condition in the sense of Definition
2.2 is fulfilled with S = X. Then it is straightforward to deduce the result by applying
Theorem 2.4. �

3. A Property of the Generalized Palais–Smale Condition

We prove here a simple relation between the (PS) condition just introduced and
the classical coercivity condition of 8 on S. First, let us recall the definition of the
coercivity of a functional on a set.

DEFINITION 3.1. 8 is said to be coercive on S if and only if 8(u) → +∞ as ‖u‖ →

+∞, u ∈ S.

We also recall the following version of Ekeland’s variational principle (cf. [11]):

THEOREM 3.2. Let (X, d) be a complete metric space and 8 : X → R ∪ {+∞} be a
lower semicontinuous functional such that infu∈X 8(u) ∈ R. Let ε > 0 and let u ∈ X be
such that

8(u) 6 inf
X

8 + ε.

Then, for every λ > 0, there exists v ∈ X such that

(i) 8(v) 6 8(u)

(ii) d(u, v) 6 λ−1

(iii) 8(w) > 8(v) − λεd(w, v), ∀w ∈ X \ {v}.

We are now ready to state and prove the following result:

THEOREM 3.3. Let S be a closed and unbounded subset of X. Assume 8 is lower
semicontinuous, bounded below on S and satisfies the (PS) condition (at any level)
on S. Then 8 is coercive on S.

Proof. Assume by contradiction that 8 is not coercive on S, that is

c0 := lim inf
‖u‖→∞

u∈S

8(u) ∈ R

(note that 8 is bounded below on S). Therefore, for each n ∈ N, there exists un ∈ S
such that

8(un) 6 c0 +
1

n
and

‖un‖ > 2n.

Let c1 = infS 8. Since S is clearly a complete metric space with d(u, v) = ‖u − v‖, by
choosing ε = c0 − c1 + n−1(> 0) and λ = n−1 in Theorem 3.2, we see that there exists
vn ∈ S such that

(i) 8(vn) 6 8(un) 6 c0 + n−1

(ii) ‖un − vn‖ 6 n
(iii) 8(w) > 8(vn) − n−1(c0 − c1 + n−1)‖w − un‖, ∀w ∈ S.

(3.1)



418 Set-Valued Anal (2006) 14: 413–424

From (ii) and the choice of un, we have that

‖vn‖ > ‖un‖ − ‖un − vn‖ > ‖un‖ − n > n. (3.2)

Let us show that

8D(vn; v) > −εn‖v‖, ∀v ∈ Tvn S, (3.3)

for some sequence (εn) converging to 0+. In fact, let v ∈ Tvn S. From the definition
of the tangent cone in (2.1), there exist sequences (tk) ⊂ (0, +∞) and (wk) ⊂ X such
that tk → 0, wk → 0, and sk := vn + tk(v + wk) ∈ S, ∀k ∈ N. From (3.1)(iii) with w =

sk ∈ S, we have

8(sk) − 8(vn) > −n−1(c0 − c1 + n−1)‖sk − vn‖

= −n−1(c0 − c1 + n−1)tk‖v + wk‖, ∀k ∈ N. (3.4)

From the definition (2.2) and (3.4), one gets

8D(vn; v) = lim sup
t↓0

w→0

1

t
[8(vn + t (v + w)) − 8(vn)]

> lim sup
k→∞

1

tk
[8(vn + tk(v + wk)) − 8(vn)]

> lim sup
k→∞

[
−n−1(c0 − c1 + n−1)‖v + wk‖

]
= −n−1

(
c0 − c1 + n−1

)
‖v‖.

Therefore, (3.3) holds with εn = n−1(c0 − c1 + n−1) → 0+ as n → ∞. Since ‖vn‖ →

∞ as seen from (3.2), we have lim inf 8(vn) > c0. By (3.1)(i), this gives

lim
n→∞

8(vn) = c0. (3.5)

Since 8 satisfies the (PS) condition at level c0, it follows from (3.3) and (3.5) that there
exists a convergent subsequence (vnk) of (vn), which contradicts (3.2) and completes
our proof. �

Remark 3.4. (a) As used in the proof, we need the (PS) condition for 8 on S only
at level c0 for Theorem 3.3 to hold.

(b) Relations such as that presented in Theorem 3.3 were initiated and studied for
smooth functionals in [7, 10, 15, 22] and have been extended later to other kinds of
functionals in, e.g., [12, 13, 16, 17, 23].

As noted above, in the particular case where S = X and 8 is locally Lipschitz, the
definition above of the generalized (PS) condition reduces to the classical condition
for locally Lipschitz functionals. Hence, Theorem 3.3 is a generalization of the
corresponding property for locally Lipschitz functionals, as proved in [23].

We discuss a situation where S is not the whole space and the tangent cones are
essentially taken into account.

COROLLARY 3.5. Let S be a closed and unbounded C1 submanifold of the Banach
space X. Assume 8 is lower semicontinuous, bounded below on S and satisfies (at any
level) on S the following condition of (PS) type: If (un) is a sequence such that (un) ⊂ S,
8(un) → c for some real number c, and

8D(un; v) > −εn‖v‖, ∀v ∈ Tun S,
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for a sequence εn → 0+, where Tun S is the tangent space to S at un in the sense of
manifolds, then (un) contains a strongly convergent subsequence in X. Then 8 is
coercive on S.

Proof. The conclusion follows from Theorem 3.3 provided we show that

Tv S = Tv S, ∀v ∈ S. (3.6)

Fix v ∈ S. Since S is a C1 submanifold of X there exists a C1 diffeomorphism ϕ of an
open neighborhood U of v in X onto an open subset ϕ(U) of X = X1 × X2 such that
ϕ(U ∩ S ) = ϕ(U) ∩ (X1 × {0}). Denoting by ϕ′(v) the (Fréchet) differential of ϕ at v,
relation (3.6) is equivalent to

ϕ′(v)(Tv S) = X1 × {0}. (3.7)

In order to justify (3.7) let w ∈ Tv S. The definition of the tangent cone in (2.1) ensures
that there exist sequences (tk) ⊂ (0, +∞) and (wk) ⊂ X such that tk → 0, wk → 0, and
v + tk(w + wk) ∈ U ∩ S, ∀k ∈ N. This leads to

1

tk
(ϕ(v + tk(w + wk)) − ϕ(v)) ∈ X1 × {0},

so thanks to the mean value theorem we find

ϕ′(v + θktk(w + wk))w ∈ X1 × {0},

for some number θk ∈ (0, 1). Then the continuity of ϕ′ implies ϕ′(v)w ∈ X1 × {0}.
Conversely, let y ∈ X1 × {0}. Corresponding to a sequence tk → 0+, we introduce

wk =
1

tk
[ϕ−1(ϕ(v) + tky) − v] − ϕ′(v)−1 y

for all sufficiently large k. Using that ϕ−1 is continuously differentiable, it follows
that wk → 0 in X as k → ∞. Moreover, we note that v + tk(ϕ′(v)−1 y + wk) ∈ U ∩ S
which guarantees ϕ′(v)−1 y ∈ TyS. Thus it is seen that (3.7) holds true. This completes
the proof. �

4. Necessary Conditions of Optimality

From now on we assume that the function 8 : X → R in problem (P) is locally
Lipschitz on a Banach space X and S is an arbitrary nonempty subset of X. We
formulate the following condition on the set S:
(H ) For every v ∈ S, there exists a (possibly unbounded) linear operator

Av : D(Av) ⊂ X → Yv ,

where Yv is a Banach space, such that the domain D(Av) of Av is dense in X, Av is a
closed operator (i.e., its graph is closed in X × Yv), and

the range R(Av) is closed in Yv . (4.1)

Moreover, the null space N(Av) of Av satisfies

N(Av) ⊂ Tv S, (4.2)

where Tv S stands for the tangent cone to S at v as introduced in (2.1).
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THEOREM 4.1. Under hypothesis (H ), if u ∈ S is a solution of problem (P) (at least
locally), then the following necessary condition of optimality holds: There exists an
element p ∈ D(A∗

u) such that

A∗

u(p) ∈ ∂8(u),

where A∗
u : D(A∗

u) ⊂ Y∗
u → X∗ is the adjoint operator of Au and ∂8(u) denotes the

generalized gradient of 8 at u.
Proof. Fix any z ∈ N(Au). It follows from (4.2) that

z ∈ TuS. (4.3)

Taking into account (2.1), we deduce from (4.3) that there exist sequences tn → 0+ in
R and xn → 0 in X such that

u + tn(z + xn) ∈ S, ∀n.

Using the optimality of u ∈ S, we obtain

8(u + tn(z + xn)) > 8(u), ∀n,

that leads to

lim inf
n→∞

1

tn
[8(u + tn(z + xn)) − 8(u)] > 0. (4.4)

In particular, according to (2.3), inequality (4.4) implies that

8o(u; z) > 0, ∀z ∈ N(Au). (4.5)

On the basis of (4.5), we may apply the Hahn–Banach theorem to obtain the existence
of some ξ ∈ X∗ with the properties

〈ξ, z〉X∗,X = 0, ∀z ∈ N(Au), (4.6)

and

〈ξ, y〉X∗,X 6 8o(u; y), ∀y ∈ X. (4.7)

We see from (4.7) that

ξ ∈ ∂8(u), (4.8)

while (4.6) ensures that

ξ ∈ [N(Au)]
⊥. (4.9)

Since [N(Au)]
⊥

= R(A∗
u) (see for example [6]), in view of (4.1), relation (4.9) reads

ξ ∈ R(A∗
u) = R(A∗

u), (4.10)

(note that because R(Au) = R(Au), we also have R(A∗
u) = R(A∗

u), see again [6]).
Combining relations (4.8) and (4.10), we arrive at the desired conclusion. �

Remark 4.2. (a). By Theorem 4.1, we have the system

u ∈ S,

A∗
u(p) ∈ ∂8(u)
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formed by two relations with two unknowns u and p which eventually enables
one to determine the optimal solution u.

(b). We consider here the problem with the functional 8 being locally Lipschitz,
which is a good and convenient model for our calculations. However, it could be
possible to study such problem with other types of functionals and subdifferentials
(see, e.g., [9, 18, 19, 21]).

5. An Example

For an example of the general result in Theorem 3.1, let us consider the problem of
minimizing the functional 8(v, w) subject to the following conditions expressed as a
Dirichlet problem:

(v, w) ∈
[
H 2(�) ∩ H 1

0(�)
]
× L2(�)

−1v = f (x, v) + w in �

v = 0 on ∂�.

Interpreting the parameter w as a control variable, this is in fact an optimal control
problem. Here, 8 is a locally Lipschitz functional defined on X = L2(�) × L2(�),
f : � × R → R is a Carathéodory function with f (·, 0) ∈ L2(�). Moreover, the
partial derivative ∂ f

∂v
(x, v) exists for a.e. x ∈ �, all v ∈ R with ∂ f

∂v
being a bounded

Carathéodory function, that is,∣∣∣∣∂ f
∂v

(x, v)

∣∣∣∣ 6 c, for a.e. x ∈ �, all v ∈ R, (5.1)

for some constant c > 0. Notice that the considered problem is of the general form
(P) in Section 1 with

S = {(v, w) ∈ X : −1v = f (x, v) + w in � and v = 0 on ∂�} .

Let us prove that under the above conditions, hypothesis (H) holds. Specifically,
for any (v, w) ∈ S, let

Y(v,w) = L2(�) × L2(�),

and let

A(v,w) :
[
H 2(�) ∩ H 1

0(�)
]
× L2(�) → L2(�) × L2(�)

be given by

A(v,w)(z, q) =

(
−1z −

∂ f
∂v

(·, v)z, q
)

whenever (z, q) ∈
[
H 2(�) ∩ H 1

0(�)
]
× L2(�). From (5.1) and the classical results of

Agmon–Douglis–Nirenberg in [1] on linear elliptic operators, we see that the range
of the operator

z 7→ −1z −
∂ f
∂v

(·, v)z
(
∈ L2(�)

)
is closed in L2(�) (cf., e.g., [20], Theorem 8.41). It follows immediately that the range
R(A(v,w)) of A(v,w) is closed in L2(�) × L2(�). Condition (4.1) is thus verified.
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In order to check (4.2), let (z, 0) ∈ N(A(v,w)). Since

− 1v = f (x, v) + w in � (5.2)

and

− 1z −
∂ f
∂v

(·, v)z = 0 in �, (5.3)

by multiplying (5.3) by t > 0 and adding with (5.2), we obtain

− 1(v + tz) = f (x, v + tz) + w + tq(t), (5.4)

where

q(t) = −
1

t

[
f (·, v + tz) − f (·, v) − t

∂ f
∂v

(·, v)z
]

, ∀t > 0.

Assumption (5.1) guarantees that

q(t) → 0 in L2(�) as t → 0+.

Consequently, setting

p(t) = (0, q(t)) ∈ L2(�) × L2(�),

we see from (5.4) that condition (4.2) is fulfilled since

(v, w) + t[(z, 0) + p(t)] = (v, w) + t[(z, 0) + (0, q(t))] ∈ S, ∀t > 0.

We have checked all assumptions of Theorem 4.1. According to that theorem, if
8 has a local minimum at (v, w) then there exists a pair (p1, p2) ∈ L2(�) × L2(�)

such that

p1 ∈ H 2(�) ∩ H 1
0(�),

and (
−1p1 −

∂ f
∂v

(·, v)p1, p2

)
∈ ∂8(v, w),

(p2 is not significant for our purpose).

Remark 5.1. If the constant c in (5.1) is smaller than the first eigenvalue λ1 of
−1 on H 1

0(�), then the range of A(v,w) is in fact the whole space L2(�) × L2(�).
In this case we observe that the auxiliary variable p1 can be explicitly determined.
Consequently, the necessary condition of optimality can be expressed only in terms
of the local solution (v, w).

6. Application to Lagrange Multiplier Rule

Assume now that the subset S in problem (P) is given by

S =

⋃
j∈J

G−1
j (0).

Here, for each j ∈ J , G j : X → Yj is a C1 mapping with Yj being a Banach space and
0 a regular value of G j , i.e., the differential G ′

j (x) : X → Yj is surjective and N[G ′

j (x)]
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has a topological complement whenever G j (x) = 0. Moreover, assume that the sets
G−1

j (0) ( j ∈ J ) are mutually disjoint, that is,

G−1
i (0) ∩ G−1

j (0) = ∅ if i 6= j.

We check that hypothesis (H ) is satisfied. In fact, for any v ∈ S, there is a unique
j ∈ J such that v ∈ G−1

j (0). Let Yv = Yj and Av = G ′

j (v). Then we have R(Av) = Yv

so (4.1) is verified. Moreover, we know that

N(Av) = N
[
G ′

j |(v)
]

= Tv

[
G−1

j (0)
]

= Tv S,

because G−1
j (0) is a C1-submanifold of X, which implies (4.2). Consequently, The-

orem 4.1 can be applied, ensuring the existence of p ∈ Y ∗

j with the property that
whenever u ∈ S is a solution of (P) with u ∈ G−1

j (0) then[
G ′

j (u)
]∗

(p) ∈ ∂8(u). (6.1)

In the particular case where J is a singleton, i.e.,

S = G−1(0),

and G is a mapping from X to R (also 0 is a regular value of G), then (6.1) becomes

λG ′(u) ∈ ∂8(u),

for some λ ∈ R. This is the classical Lagrange multiplier rule for locally Lipschitz
functionals.
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