
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:26435–26461
https://doi.org/10.1007/s11227-024-06449-3

GMS: an efficient fully homomorphic encryption scheme 
for secure outsourced matrix multiplication

Jianxin Gao1 · Ying Gao1,2

Accepted: 11 August 2024 / Published online: 26 August 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2024

Abstract
Fully homomorphic encryption (FHE) is capable of handling sensitive encrypted 
data in untrusted computing environments. The efficient application of FHE schemes 
in secure outsourced computation can effectively address security and privacy con-
cerns. This paper presents a novel fully homomorphic encryption scheme called 
GMS, based on the n-secret learning with errors (LWE) assumption. By utilizing 
block matrix and decomposition technology, GMS achieves shorter encryption and 
decryption times and smaller ciphertext sizes compared to existing FHE schemes. 
For secure outsourced matrix multiplication A

m×n ⋅ Bn×l with arbitrary dimensions, 
GMS only requires O(max{m, n, l}) rotations and one homomorphic multiplication. 
Compared to the state-of-the-art methods, our approach stands out by achieving 
a significant reduction in the number of rotations by a factor of O(logmax{n, l}) , 
along with a decrease in the number of homomorphic multiplications by a factor of 
n and O(min{m, n, l}) . The experimental results demonstrate that GMS shows supe-
rior performance for secure outsourced matrix multiplication of any dimension. For 
example, when encrypting a 64 × 64-dimensional matrix, the size of the ciphertext 
is only 1.27 MB. The encryption and decryption process takes approximately 0.2 s. 
For matrix multiplication A64×64 ⋅ B64×64 , the runtime of our method is 39.98  s, 
achieving a speedup of up to 5X and 2X.
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1  Introduction

Cloud computing technology provides clients with instant access to shared storage 
and computing resources, reducing investment and IT system maintenance costs. 
The rapid development of cloud computing has led to the widespread use of cloud 
outsourcing. This allows clients with limited computing resources to delegate inten-
sive and complex computing tasks to high-performance cloud servers. However, the 
rapid development of cloud computing still faces several challenges:

(1)	 Data privacy: Data outsourced by clients to cloud servers is typically confiden-
tial, such as medical or trade secret information. It is important to ensure that 
this data is kept secure and protected from unauthorized access. The shared 
characteristics of cloud servers can potentially expose private data, making it 
difficult to ensure privacy during outsourced computation.

(2)	 Efficiency: Outsourced computation currently employs privacy protection tech-
nology to ensure the confidentiality of data. Incorporating privacy protection 
directly, however, can result in significant costs. Therefore, clients require an 
efficient process for outsourced computational tasks while still ensuring privacy.

Privacy protection technologies, such as fully homomorphic encryption (FHE), 
secure multi-party computing (MPC) [1], and disguise-based techniques [2], are 
commonly used to ensure data privacy in secure outsourced computation. It is 
important to note that while these technologies provide enhanced privacy, they may 
also impact performance. Secure multi-party computing is a general framework for 
such tasks, but it can result in high communication overhead and require multiple 
rounds of interaction between the client and the cloud server. The process of secure 
outsourced computation based on MPC may not be very efficient. The disguise-
based technique utilizes the unique properties of matrices to create a specialized 
protocol for secure matrix multiplication. However, the representation of security 
symbols in various protocols is not standardized, which can potentially lead to infor-
mation leakage. The flaw in the current disguise-based secure outsourced computa-
tion poses a significant threat to data privacy. However, achieving composability has 
not been possible with this technique. On the other hand, secure outsourced compu-
tation based on FHE is non-interactive and incurs a very low communication cost 
for uploading and downloading. Furthermore, secure outsourced computation based 
on FHE relies on encryption and decryption techniques from cryptography. This 
approach ensures data privacy, prevents information disclosure, and enables data 
composability. As a result, secure outsourced computation based on fully homomor-
phic encryption technology offers significant advantages and is widely used.

Most scholars focus on secure outsourced computation for matrix multiplica-
tion. Matrix multiplication is a widely used operation in scientific and engineering 
fields, such as statistical analysis, image processing, and machine learning. It can 
solve many practical problems. For instance, the training and prediction process of 
deep learning models can be simplified to a series of fundamental matrix operations. 
Additionally, an image can be represented and stored as a matrix based on its pixel 
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characteristics, and the image processing process can be transformed into a matrix 
operation process. Efficient and secure outsourced computation for matrix multi-
plication is crucial for secure computation applications. However, the current fully 
homomorphic encryption scheme used to secure outsourced matrix multiplication 
has limitations. It usually involves a packaging process [3–5] that matches the data 
type of the plaintext. Additionally, it is restricted to applications involving binary 
matrices [6]. These limitations present challenges. Therefore, designing and imple-
menting an efficient and secure outsourced matrix multiplication based on fully 
homomorphic encryption technology has become an important research problem.

1.1 � Related work

Currently, secure outsourced matrix multiplication based on fully homomorphic 
encryption is typically implemented using existing schemes. This section provides 
an introduction to fully homomorphic encryption techniques, as well as a discussion 
of the advantages and limitations of current research on secure outsourced matrix 
multiplication using fully homomorphic encryption.

1.1.1 � Fully homomorphic encryption

Fully homomorphic encryption allows computations on the ciphertext without 
requiring knowledge of the private key, making it an important tool for privacy 
protection. Most existing fully homomorphic encryption schemes are based on the 
AGCD assumption [7], the LWE assumption [8] and the NTRU assumption [9]. 
Fully homomorphic encryption based on the AGCD assumption revolves around 
integer encryption. This is considered to be the first generation of fully homomor-
phic encryption. It is easy to understand but requires a large public key and has low 
efficiency. The NTRU assumption is a non-standard assumption, and many research-
ers have questioned its security. The work of L ́opeze-Alt et  al. [9] has received 
considerable criticism in recent years. Fully homomorphic encryption based on 
the NTRU assumption is primarily used in application scenarios with low secu-
rity requirements. A significant number of existing fully homomorphic encryption 
schemes are based on the learning with errors (LWE) assumption, first proposed by 
Regev in 2009 [8]. In 2010, Regev elaborated on the hardness of the LWE prob-
lem, which can be reduced to a worst-case hard problem [10]. Since there is cur-
rently no effective quantum solution algorithm for the LWE assumption, the encryp-
tion scheme based on the LWE assumption is considered to be resistant to quantum 
attacks. For example, the second generation of fully homomorphic encryption BGV 
[11], the third generation of fully homomorphic encryption GSW [12], and the 
fourth generation of fully homomorphic encryption CKKS [13], among others, are 
all based on the LWE assumption. The following discussion primarily focuses on 
the fully homomorphic encryption scheme based on the LWE assumption.

The second generation of the fully homomorphic encryption scheme BGV 
[11] operates on the integer polynomial ring. It cleverly utilizes modulus switch-
ing and key switching to achieve ciphertext refreshing, opening up new avenues 
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for research in fully homomorphic encryption. Examples of other fully homo-
morphic encryption schemes include TFHE [14] and CKKS [13]. However, 
BGV has higher parameter requirements, necessitating a larger module and stor-
age space. The fourth generation of the fully homomorphic encryption scheme 
CKKS [13] is a significant improvement over BGV [11]. It introduces an encod-
ing and decoding process that allows the plaintext space to be expanded into 
a complex vector space. This enhancement allows the scheme to support float-
ing-point arithmetic. The third generation of the fully homomorphic encryp-
tion scheme GSW [12] is ingenious. It exploits the properties of the eigenval-
ues and eigenvectors of the matrix and uses matrix decomposition to control 
noise expansion. As a result, the matrix decomposition technique has found 
widespread applications. These applications, which include schemes such as [6, 
15–18], are often referred to as GSW-like schemes. These schemes primarily 
involve fully homomorphic encryption for matrices. HAO [6] is the first homo-
morphic encryption scheme for matrix that effectively controls ciphertext expan-
sion. However, it can only encrypt plaintext for square matrices with elements in 
{0, 1}, which has limitations. GGH [17] is a proposed scheme based on HAO [6]. 
GGH [17] can encrypt square matrices without the restriction of {0, 1}, offering 
greater efficiency and versatility. However, since matrix multiplication does not 
satisfy the commutative property, the encryption process also requires the pri-
vate key, essentially making it a form of symmetric encryption. It is necessary 
to introduce the encryption of fundamental matrices as public keys to convert it 
into an asymmetric encryption scheme. Subsequently, Pereira also proposed a 
GSW-like scheme [18], which can encrypt vectors and matrices and modify the 
base matrix decomposition. This scheme demonstrates relatively high efficiency. 
However, it still requires the introduction of n2 base matrix encryption as public 
keys to achieve asymmetric encryption.

It can be seen that the existing fully homomorphic encryption schemes can-
not be easily and directly applied to secure outsourced matrix multiplication. 
For BGV [11], TFHE [14], CKKS [13], and other fully homomorphic encryp-
tion schemes over the integer polynomial ring, the plaintext is typically repre-
sented in polynomial form. Implementing secure outsourced matrix multipli-
cation requires packaging the matrix according to the plaintext format. There 
will undoubtedly be additional overhead. For GGH [17] and other fully homo-
morphic encryption schemes for matrices, they are inherently symmetric. This 
means that there are private keys involved in the encryption process that cannot 
be disclosed. To achieve secure matrix multiplication, it is necessary to intro-
duce several basic matrix encryptions as public keys. However, this approach 
naturally leads to larger key sizes and storage requirements, which reduces effi-
ciency. Therefore, if the fully homomorphic encryption scheme for matrices is 
asymmetric, then FHE-based secure outsourced matrix multiplication can elimi-
nate the need for packaging different data types or introducing the encrypted 
matrix result as a public key. This can potentially lead to increased efficiency.
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1.1.2 � FHE‑based secure outsourced matrix multiplication

Most of the existing secure outsourced matrix multiplication methods are based on 
fully homomorphic encryption and disguise-based technology, each of which has its 
own advantages. However, there are still several shortcomings in these approaches. 
We classify them according to the technology used. Table  1 presents the follow-
ing details about the scheme: whether it supports arbitrary matrices, whether it is 
composable, the number of ciphertexts corresponding to a matrix ( #Ciphertext), the 
number of homomorphic multiplications in secure outsourced matrix multiplication 
( #Multiplication), and the security level of the scheme. See Table 1 for more details, 
where n presents the dimension of matrix.

It is clear from Table 1 that the current disguise-based secure outsourced matrix 
multiplication generally has a low level of security. Even the only security measure 
that achieves CPA security [2] carries the risk of information leakage due to the use 
of security symbols. Performing secure outsourced matrix multiplication using fully 
homomorphic encryption is clearly the superior option. Then, we will introduce 
secure outsourced matrix multiplication based on fully homomorphic encryption in 
detail. In addition, we will review the existing work based on its utilization of the 
fully homomorphic encryption scheme.

The concept of secure outsourced matrix multiplication based on fully homomor-
phic encryption originates from the secure matrix–vector multiplication proposed 
by Halevi et al. [22]. The implementation process of secure outsourced matrix mul-
tiplication based on fully homomorphic encryption is introduced in detail in [3, 25, 
26] and other literature, making it a gradually emerging research topic. The specific 
process of secure outsourced matrix multiplication based on fully homomorphic 
encryption can be described by Fig.  1. Users P1 and P2 have matrices A and B, , 
respectively, and do not want anyone to know about them. User P3 needs to obtain 

Table 1   Properties of each method

Technique Method Arbitrary Composability #Ciphertext #Multi-
plication

Security

Disguise-based Atallah et al. [19] N N – – Non-CPA
Lei et al. [20] Y N – – Non-CPA
Fu et al. [21] N N – – Non-CPA
Zhao et al. [2] N N – – CPA

FHE-based Halevi et al. [22] N Y n n CPA
Lu et al. [23] Y Y n n2 CPA
Wang et al. [24] Y Y n n2 CPA
Duong et al. [3] N N 1 1 CPA
Lu et al. [25] Y N 1 1 CPA
Hiromasa et al. [6] N Y 1 1 CPA
Jiang et al. [26] N Y 1 n CPA
Huang et al. [4] Y Y 1 n CPA
Zhu et al. [5] Y Y 1 n CPA
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the product A ⋅ B without knowing the matrices A and B. This can be achieved by 
implementing fully homomorphic encryption.

•	 Users P1 and P2 encrypt their respective matrices and upload the encrypted 
ciphertext to the cloud server.

•	 The cloud server performs homomorphic multiplication on the ciphertext as 
required and sends the result to user P3.

•	 User P3 receives the result and decrypts it to obtain A ⋅ B.

Only [6] extended the existing fully homomorphic encryption scheme to achieve 
secure matrix multiplication. Hirmasa et  al. [6] developed a GSW-like homomor-
phic encryption scheme for matrices. In this scheme, each matrix only requires 
one ciphertext to represent it, and each secure matrix multiplication corresponds 
to a homomorphic multiplication. The computational and storage overhead of this 
method is smaller, but it only applies to the case of a binary square matrix, specifi-
cally An×n ⋅ Bn×n, where each component is either 0 or 1. There are limits to its prac-
tical application.

Halevi et  al. [22] used the BGV fully homomorphic encryption to introduce 
the first secure matrix–vector multiplication, represented as w = An×n ⋅ v, where v 
and w are vectors, and An×n is a matrix. However, its efficiency is not high because 
each matrix requires n ciphertexts to represent it, and a secure matrix multiplica-
tion requires n2 homomorphic multiplication operations. Lu et  al. [23] and Wang 
et al. [24] used the BGV scheme to extend secure matrix–vector multiplication to 
secure matrix–matrix multiplication based on row order and column order, respec-
tively. However, a matrix still requires n ciphertexts to represent it, and a secure 
matrix multiplication corresponds to n2 homomorphic multiplication operations; 
therefore, the efficiency is still not high. Duong et al. [3] and Lu et al. [25] combined 

Fig. 1   FHE-based secure outsourced matrix multiplication
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matrix coding with the BGV scheme. In this approach, only one ciphertext is needed 
to represent a matrix, which reduces the storage cost. However, a disadvantage is 
that the result of secure multiplication does not match the encrypted format of the 
matrix. Therefore, the result obtained can only be decoded and output; it cannot be 
used for the next multiplication. This limitation hinders its practicality in terms of 
composability. Jiang et  al. [26] combined the coding technique with CKKS/BGV 
fully homomorphic encryption, enabling each matrix to be represented by a single 
ciphertext. A secure matrix multiplication corresponds to only one homomorphic 
multiplication operation. The square matrix multiplication can be extended to a spe-
cial form of matrix multiplication, namely Am×n ⋅ Bn×n, where m ≤ n. Huang et al. 
[4] and Zhu et al. [5] are new studies that propose a secure outsourced matrix multi-
plication scheme for rectangular matrices, i.e., Am×n ⋅ Bn×l, which has a wider range 
of applications. Huang’s work [4] can be accomplished by utilizing the CKKS/BGV 
scheme. Zhu et  al. [5] have made further improvements building on the work of 
Huang et  al. [4], which reduces the number of rotation operations and homomor-
phic multiplications using a novel approach. Their research aims to minimize matrix 
multiplication time by using the BGV scheme supported by the HElib library, which 
is distinguished by achieving a significant reduction in the number of rotations by a 
factor of O(logmax{n, l}), as well as a decrease in the number of homomorphic mul-
tiplications by a factor of O(n∕min{m, n, l}). However, the method still requires n 
homomorphic multiplications for each secure matrix multiplication, and the matrix 
must be converted into polynomials through encoding. This introduces additional 
overhead.

To summarize, supporting BGV, CKKS, and other fully homomorphic encryp-
tion schemes for polynomials requires encoding and packaging, which inevitably 
leads to additional overhead. Additionally, there is no efficient fully homomorphic 
encryption scheme directly available for arbitrary matrices. Therefore, designing an 
efficient fully homomorphic encryption scheme for arbitrary matrices can reduce 
the necessity for extra processing steps, like encoding and packaging. This would 
simplify the representation of a matrix with only one ciphertext, enable secure 
outsourced matrix multiplication using just one homomorphic multiplication, and 
ensure that the ciphertext possesses desirable properties, such as composability. Our 
focus is on designing efficient fully homomorphic encryption for arbitrary matrices. 
These improvements will undoubtedly enhance the efficiency of secure outsourced 
matrix multiplication based on this scheme.

1.2 � Technical details and our contribution

We start by explaining the symbols and their meanings. We denote matrices using 
bold capital letters. For a positive integer q, the set ℤq is defined as {0, 1,… , q − 1}. 
It is evident that ℤq forms a ring under addition and multiplication modulo q. The 
integer operation ⌊z⌉ is used to find the integer closest to z that satisfies 
⌊z⌉ ∈

�
z −

1

2
, z +

1

2

�
. The specific formula for the modular operation is 
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z mod q = z − q
⌊
z

q

⌉
. For a matrix Y =

(
yij
)
, where yij is the component in the ith 

row and jth column of the matrix Y, the modulo operation can be expressed as 
Y mod q =

(
yij mod q

)
, which calculates the modulus of each component of the 

matrix. The general overview and core techniques of our scheme are shown in 
Fig. 2.

We construct a fully homomorphic encryption scheme for matrices based on 
the n-secret LWE assumption and name it GMS. The n-secret LWE assumption 
can be expressed as B =

(
AS1 + E

)
mod q. Here, A ∈ ℤn×m

q
, B ∈ ℤn×n

q
, and 

E ∈ ℤn×n
q

. Each component of E is sampled from a discrete Gaussian distribution 
(error distribution) � . To simplify the notation, we introduce several block matri-

ces: D = (�B|A) ∈ ℤn×(n+m)
q

, V =
(
In|On×m

)
∈ ℤn×(n+m)

q
, S =

(
�In
−tS1

)
∈ ℤ(n+m)×n

q
, 

and T =

(
In
−T1

)
∈ ℤ(n+m)×n

q
, where �, � and t = �� are all small integers. Note 

that S1 and T1 are smaller matrices with a reduced matrix norm. We utilize the 
non-unique inverse property of the block matrix V to illustrate the asymmetry of 
the scheme. This implies that disclosing the matrix V does not jeopardize the 
security of the scheme. The matrix decomposition function G−1(⋅), which follows a 
sub-Gaussian distribution, is introduced in the scheme to reduce the matrix norm 
and effectively control the increase of noise. The encryption process is defined as 
C = (GTMV + RD) mod q, where the gadget matrix G is commonly used for 
matrix decomposition, such as G = g⊗ In+m. The decryption process is defined as 
M =

(
G−1

(�V)CS mod q
)
mod t, which involves a private key S that satisfies 

DS = tE and VS = �In, simplifying the decryption process. Matrix decomposition 
is also introduced in homomorphic operations to reduce noise amplification. 

Fig. 2   Technical overview diagram
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Homomorphic addition is defined as Cadd =
(
C1 + C2

)
mod q, and homomorphic 

multiplication is defined as Cmul = G−1
(
C1

)
C2 mod q. Additionally, for homomor-

phic multiplication, the rotation operation of ciphertext matrices is introduced to 
further enhance the efficiency of homomorphic multiplication. In addition, modu-
lus switching and key switching techniques are defined to facilitate the process of 
refreshing the ciphertext and the increase in noise can be effectively controlled.

Due to the block matrix and decomposition technology utilized in the scheme 
design, GMS can achieve a smaller ciphertext size and lower noise expansion, 
resulting in shorter encryption, decryption, and evaluation times compared to 
existing FHE schemes. GMS can be extended directly to achieve secure out-
sourced matrix multiplication for arbitrary matrices by populating the matrix. 
Since GMS is an asymmetric encryption method for matrices, secure matrix 
multiplication using GMS can be implemented without the need for additional 
packaging or encoding. This simplifies the process and enhances efficiency.

On this basis, we are considering implementing secure outsourced matrix 
multiplication using GMS. We will analyze the efficiency and performance of 
the scheme from two perspectives: theoretical analysis and simulation experi-
ments. The theoretical analysis primarily compared the time complexity of 
our scheme with existing works, while the simulation experiment tested the 
efficiency and performance of the scheme using C++. Specifically, we used 
the HElib library [22] in C++ to implement the scheme. We then ran the pro-
gram on a personal laptop equipped with an 11th generation Intel(R) Core(TM) 
i5-11260  H CPU running at a frequency of 2.60GHz. Encryption and decryp-
tion time, ciphertext size, and homomorphic multiplication time were tested. In 
addition, we implemented the security outsourced matrix multiplication using 
GMS and replicated the last two tasks [4, 5], analyzing the time taken for matrix 
multiplication. Compared to existing methods [4, 5], our scheme reduces the 
number of homomorphic multiplications required for a matrix multiplication 
from n to 1. We extend the square matrix multiplication to include rectangular 
matrix multiplication. From the perspective of time complexity, for the matrix 
multiplication Am×n ⋅ Bn×l of arbitrary dimensions, our approach only requires 
O(max{m, n, l}) rotations, whereas [4] requires O(n logmax{n, l}) rotations. The 
experimental results also demonstrate the superiority of our method.

2 � Preliminaries

All matrices in this paper are defined over ℤq, and the symbol ‖⋅‖ is consistently 
used to represent the maximum norm of a matrix. The norm ‖Y‖ refers to the 
maximum norm of the matrix Y, which is defined as ‖Y‖ = maxi,j{�yi,j�}. Here, yij 
represents the component of the matrix Y at the ith row and jth column position. 
The addition norm and multiplication norm of the matrices Y and W satisfy 
the following inequalities: ‖Y +W‖ ≤ ‖Y‖ + ‖W‖ and ‖Y ⋅W‖ ≤ n‖Y‖ ⋅ ‖W‖ . 
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Here, n represents the number of columns in matrix Y, which is also equal to the 
number of rows in matrix W.

2.1 � Distributions

This section focuses on the distributions required in our scheme: discrete Gauss-
ian distributions and sub-Gaussian distributions. The error distribution in the LWE 
assumption follows a discrete Gaussian distribution, while the matrix decomposition 
follows a sub-Gaussian distribution. We will also cover gadget matrix and matrix 
decomposition in detail.

2.1.1 � Discrete Gaussian distribution

The discrete Gaussian distribution on ℤ is introduced. This distribution is used to 
sample the private key in our scheme.

Definition 2.1  [27] Let c be the center and � be the parameter of the Gaussian func-

tion over ℤ, which is defined as ��,c(x) = e
−

|x−c|2
2�2 , where 𝜎, c > 0. Additionally, let 

��,c(ℤ) =
∑∞

i=−∞
��,c(i) be the discrete integral over ℤ. Define D�(X = x) =

��,c(x)

��,c(ℤ)
 as 

a discrete Gaussian distribution with the expectation for c and the standard deviation 
of �.

If c = 0, we denote this special distribution as � . We use the notation x ← � to 
indicate drawing x from the distribution � . Similarly, for a set X we use the notation 
x ← X to indicate drawing x uniformly at random from X.

2.1.2 � Sub‑Gaussian distribution

The sub-Gaussian distribution is introduced. This distribution is used for matrix 
decomposition.

Definition 2.2  [28] A variable X ∈ ℝ is considered sub-Gaussian, for all t ∈ ℝ, it 
satisfies E

[
exp(2�tX)

]
≤ exp

(
�s2t2

)
. In this case, X follows a sub-Gaussian distribu-

tion with parameter s.

Sub-Gaussian random variables have the following two properties that can be 
easily obtained from the definition of sub-Gaussian random variables:

•	 Homogeneity: If the sub-Gaussian random variable X has parameter s,  then cX 
is sub-Gaussian with parameter cs.

•	 Pythagorean additivity: For two sub-Gaussian random variables X1 and X2 (that 
is independent from X1 ) with parameter s1 and s2, respectively, X1 + X2 is sub-
Gaussian with parameter 

√
s2
1
+ s2

2
.
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The above statement can be expanded to include vectors. A random vector x is sub-
Gaussian with parameter s,  if for all real unit vectors u, their marginal ⟨u, x⟩ is sub-
Gaussian with parameter s. It is evident from the definition that the concatenation of 
sub-Gaussian variables or vectors, each with a parameter s and independent of the 
previous one, is also sub-Gaussian with parameter s. The homogeneity and Pythago-
rean additivity also hold due to the linearity of vectors. It is known that the Euclid-
ean norm of a sub-Gaussian random vector has the following upper bound.

Lemma 2.1  [28] Let x ∈ ℝn be a random vector that has independent sub-Gaussian 
coordinates with parameter s. Then there exists a universal constant C such that 
Pr
�
‖x‖ > C ⋅ s

√
n
�
≤ 2−Ω(n).

Next, we introduce the matrix decomposition that follows the sub-Gaussian 
distribution. This technique is widely used in fully homomorphic encryption and 
has a positive impact on controlling noise growth. Let q be a positive integer, 
q ≥ b ≥ 2. Set a = ⌈logb q⌉ and define a column vector g =

(
1, b, b2,… , ba−1

)T
. 

Define the gadget matrix G = Im ⊗ g ∈ ℤM×m, where Im is the m × m dimen-
sional identity matrix, M = m ⋅ a, ⊗ denotes the tensor product. G−1(⋅) represents 
the basis b decomposition of each component of the element ⋅, and is a flattening 
process applied to the matrix. So, for a matrix Y, its decomposition is unique, and 
G−1(Y) ⋅G = Y, with the condition that ‖Y‖. Meanwhile, [28] has shown that the 
matrix decomposition function G−1(⋅) follows a sub-Gaussian distribution with argu-
ments O(1).

Lemma 2.2  [28] There is a randomized, efficiently computable function G−1 ∶ 
ℤn

q
→ ℤn⋅⌈log q⌉ such that for any a ∈ ℤn

q
, x ← G−1(a) is sub-Gaussian with param-

eter O(1) and a = Gx mod q.

2.2 � Learning with errors

The learning with errors (LWE) assumption, originally proposed by Regev [8], has 
two common versions: the search version and the decision version. These versions 
are mutually reducible and equally secure. The security analysis of our scheme 
includes the decision LWE (DLWE) assumption, and the specific definitions of 
DLWE and security reduction are described below.

Definition 2.3  (DLWE) [8] For a security parameter �, let n = n(�) be an integer 
dimension, let q = q(�) ≥ 2 be an integer modulus, and let � = �(�) be an error dis-
tribution over ℤ. DLWEn,q,� is the problem to distinguish the following two distribu-
tions: In the first distribution, a tuple 

(
ai, bi

)
 is sampled from uniform over ℤn

q
× ℤq; 

In the second distribution, s ← ℤn
q
 and then a tuple 

(
ai, bi

)
 is sampled by sampling 
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ai ← ℤn
q
, ei ← � , and setting bi = ⟨ai, s⟩ + ei mod q. The DLWEn,q,� assumption is 

that DLWEn,q,� is infeasible.

Recall that GapSVP� is the promise problem to distinguish between the case in 
which the lattice has a vector shorter than r ∈ ℚ, and the case in which all the lattice 
vectors are greater than � ⋅ r. SIVP� is the problem to find the set of short linearly 
independent vectors in a lattice. DLWEn,q,� has reductions to the standard lattice 
assumptions as follows. These reductions take � to be a discrete Gaussian distribu-
tion Dℤ,�q (that is centered around 0 and has parameter �q for some 𝛼 < 1).

Corollary 2.1  [8] Let q = q(n) ∈ ℕ be a power of primes q = pr or a product of dis-
tinct prime numbers q =

∏
i qi ( qi = poly(n) for all i), and let � ≥

√
n

q
. If there exists 

an efficient algorithm that solves (average-case) DLWEn,q,Dℤ,�q
,

•	 there exists an efficient quantum algorithm that can solve GapSVP
Õ
(

n

𝛼

) and 

SIVP
Õ
(

n

𝛼

) in the worst-case for any n-dimensional lattices.

•	 if in addition we have q ≥ Õ
(
2

n

2

)
, there exists an efficient classical algorithm 

that can solve GapSVP
Õ
(

n

𝛼

) in the worst-case for any n-dimensional lattices.

On this basis, one can select n secret vectors s to create the matrix S ∈ ℤm×n
q

, 
which leads to the definition of the n-secret LWE assumption.

Definition 2.4  (n-secret LWE) [17] For a security parameter �, let n = n(�) and 
m = m(�) be integer dimension, let q = q(�) ≥ 2 be an integer modulus, and let 
� = �(�) be an error distribution over ℤ. n-LWEn,m,q,� is the problem to dis-
tinguish the following two distributions: In the first distribution, a tuple (A,B) is 
sampled from uniform over ℤn×m

q
× ℤn×n

q
; In the second distribution, S ← ℤm×n

q
 

and then a tuple (A,B) is sampled by sampling A ← ℤn×m
q

, E ← �n×n, and set-
ting B = (AS + E) mod q. The n-LWEn,m,q,� assumption is that n-LWEn,m,q,� is 
infeasible.

The security of our scheme is based on the n-secret LWE assumption, and we 
describe our construction of fully homomorphic encryption in detail below.

3 � Fully homomorphic encryption scheme for matrix

This section mainly introduces the fully homomorphic encryption scheme for matri-
ces, provides a detailed proof of its decryption correctness, homomorphic proper-
ties, and noise analysis. Furthermore, we utilize modulus switching and key switch-
ing technologies in our scheme to refresh the ciphertext and achieve noise reduction. 
Finally, we also provide a security analysis of our scheme.
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3.1 � Our scheme—GMS

Let � be the security parameter. The plaintext space M is the set of n × n-dimen-
sional matrix, where each component of the matrix is an element in the set 
{−t,−(t − 1),… ,−1, 0, 1,… , t − 1, t}. This means that the norm of M is less than 
or equal to t,  denoted as ‖M‖ ≤ t. where t is a positive integer. Let q be a large 
integer, q ≫ t, a = ⌈logb q⌉, N = na, and M = ma. We also have integer values for 
�, �, and � that satisfy �� = t, 𝛼 < 𝛽 and � and � are invertible modulo q,  satisfy-
ing �−1 mod q = �, which means that �� mod q = 1.

•	 KeyGen(1�, pk, sk) ∶ Randomly and uniformly choose an n × m-dimensional 
matrix A ← ℤn×m

t
. Randomly and secretly choose two m × n-dimensional 

matrix S1, S2 ← ℤm×n
q

, where each component is in the set {−1, 0, 1}. The error 
matrix E ← ℤn×n

q
, and each component of E follows the error distribution � . 

Compute B =
(
AS1 + E

)
mod q, and let D = (�B|A) ∈ ℤn×(n+m)

q
, 

T1 = �
(
S1 + S2

)
∈ ℤm×n

q
. Set V =

(
In|On×m

)
∈ ℤn×(n+m)

q
, 

S =

(
�In
−tS1

)
∈ ℤ(n+m)×n

q
, T =

(
In
−T1

)
∈ ℤ(n+m)×n

q
, Then we have 

DS = tE, VS = �In, DT = �
(
E − AS2

)
, VT = In. The secret key sk = S, the 

public key pk = (T,V,D).

•	 Encrypt(pk,M) ∶ Given the plaintext M ∈ M, randomly and uniformly 
choose an (N +M) × n-dimensional matrix R, each component of R is an ele-
ment in the set {−1, 0, 1}, i.e., R ← {−1, 0, 1}(N+M)×n. Output the ciphertext 
C = (GTMV + RD) mod q, where G = In+m ⊗ g is a gadget matrix.

•	 Decrypt(sk,C) ∶ Output M� =
(
G−1(�V)CS mod q

)
mod t.

•	 Eval-Add(pk,C1,C2) : Given ciphertexts C1 and C2, output 
Cadd =

(
C1 + C2

)
mod q.

•	 Eval-Mult(pk,C1,C2) : Given ciphertexts C1 and C2, output 
Cmult = G−1

(
C1

)
C2 mod q.

•	 Refresh(C, ksk, q1, q2) : Given ciphertext C and modulus q1 > q2, run 
C�

← ModSwitch(C), where C′ is encrypted under the same key with C for a 
different modulus q2. Then run Cε

← KeySwt(C�, ksk), where Cε is encrypted 
under a different key (pk�, sk�) for the same modulus with C′.

3.2 � Correctness of decryption

In this section, we mainly verify the correctness of decryption. For C, which is 
the encryption of M, consider the decryption process of C ∶
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It is easy to see that decrypting the ciphertext C yields the plaintext M. In other 
words, the decryption is correct.

3.3 � Homomorphic properties

In this section, we first define the operations of homomorphic addition and homo-
morphic multiplication in our scheme. We then proceed to verify their homomor-
phic properties.

•	 Homomorphic addition: Cadd =
(
C1 + C2

)
mod q.

 Decrypt Cadd, the specific decryption process is as follows: 

 Easy to know, Cadd corresponds to the encryption of the plaintext M1 +M2.

•	 Homomorphic multiplication Cmult = G−1
(
C1

)
C2 mod q.

 Decrypt Cmult, the specific decryption process is as follows: 

 Easy to know, Cmult corresponds to the encryption of the plaintext M1M2.

(1)

Decrypt(sk,C) =
(
G−1(�V)CS mod q

)
mod t

=
(
G−1(�V)(GTMV + RD)S mod q

)
mod t

=
((
�VTMVS + G−1(�V)RDS

)
mod q

)
mod t

=
(
��M + tG−1(�V)RE mod q

)
mod t

=
(
M + tG−1(�V)RE

)
mod t

= M.

(2)
Cadd =

(
C1 + C2

)
mod q

=
(
GTM1V + R1D

)
+
(
GTM2V + R2D

)
mod q

=
(
GT

(
M1 +M2

)
V +

(
R1 + R2

)
D
)
mod q.

(3)

Decrypt
(

sk,Cadd
)

=
(

G−1(�V)CaddS mod q
)

mod t
=

((

�VT
(

M1 +M2
)

VS + G−1(�V)
(

R1 + R2
)

DS
)

mod q
)

mod t
=

((

��
(

M1 +M2
)

+ tG−1(�V)
(

R1 + R2
)

E
)

mod q
)

mod t
=

((

M1 +M2
)

+ tG−1(�V)
(

R1 + R2
)

E
)

mod t
= M1 +M2.

(4)

Cmult = G−1
(
C1

)
C2 mod q

= G−1
(
C1

)(
GTM2V + R2D

)
mod q

=
((
GTM1V + R1D

)
TM2V + G−1

(
C1

)
R2D

)
mod q

=
(
GT

(
M1M2

)
V + �R1

(
E − AS2

)
M2V + G−1

(
C1

)
R2D

)
mod q.

(5)

Decrypt
(

sk,Cmult
)

=
(

G−1(�V)CmultS mod q
)

mod t
=

((

��M1M2 + ��G−1(�V)R1
(

E − AS2
)

M2 + tG−1(�V)G−1(C1
)

R2E
)

mod q
)

mod t
=

(

M1M2 + tG−1(�V)R1
(

E − AS2
)

M2 + tG−1(�V)G−1(C1
)

R2E
)

mod t
= M1M2.
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On this basis, we can further optimize the process of homomorphic multiplication. 
G−1

(
C1

)
 is a (N +M) × (N +M)-dimensional matrix, C2 is a (N +M) × (n + m)

-dimensional matrix, which can be expressed as

Rotate these two matrices by their diagonal elements to obtain the matrices A and B. 
The specific rotation operation is as follows.

Then use the (N +M)-dimensional column vector ai (1 ≤ i ≤ N +M) to repre-
sent each column element of the matrix A , and use the (N +M)-dimensional row 
vector bT

j
(1 ≤ j ≤ N +M) to represent each row element of the matrix B, that is, 

A =
(
a1, a2,… , aN+M

)
, B =

(
bT
1
, bT

2
,… , bT

N+M

)T
. Let the (N +M) × (n + m)-dimen-

sional matrix Ai (1 ≤ i ≤ N +M) and Bj (1 ≤ j ≤ N +M) be pressed as follows:

So the homomorphic multiplication process can be transformed into

where ⊙ represents the element-wise multiplication of the matrix, Rotate(A, 0,−i) 
indicates rotating each element of the matrix A by i positions to the left, and 
Rotate(B, 1,−i) indicates rotating each element of the matrix B by i positions 

(6)

G−1
�
C1

�
=

⎛
⎜⎜⎜⎝

a11 a12 ⋯ a1,N+M
a21 a22 ⋯ a2,N+M
⋮ ⋮ ⋮ ⋮

aN+M,1 aN+M,2 ⋯ aN+M,N+M

⎞
⎟⎟⎟⎠
,C2 =

⎛
⎜⎜⎜⎝

b11 b12 ⋯ b1,n+m
b21 b22 ⋯ b2,n+m
⋮ ⋮ ⋮ ⋮

bN+M,1 bN+M,2 ⋯ bN+M,n+m

⎞
⎟⎟⎟⎠
.

(7)A =Rotate
�
G−1

�
C1

��
=

⎛
⎜⎜⎜⎝

a11 a12 ⋯ a1,N+M−1 a1,N+M
a22 a23 ⋯ a2,N+M a21
⋮ ⋮ ⋮ ⋮ ⋮

aN+M,N+M aN+M,1 ⋯ aN+M,N+M−2 aN+M,N+M−1

⎞
⎟⎟⎟⎠
,

(8)B =Rotate
�
C2

�
=

⎛
⎜⎜⎜⎜⎝

b11 b22 ⋯ bn+m,n+m
b21 b32 ⋯ bn+m+1,n+m
⋮ ⋮ ⋮ ⋮

bN+M−1,1 bN+M,2 ⋯ bn+m−2,n+m
bN+M,1 b12 ⋯ bn+m−1,n+m

⎞
⎟⎟⎟⎟⎠
.

(9)

A1 =
(
a1, a2,… , an+m

)
,A2 =

(
a2, a3,… , an+m+1

)
,A3 =

(
a3, a4,… , an+m+2

)
,

… ,AN+M−1 =
(
aN+M−1, aN+M ,… , an+m−2

)
,AN+M =

(
aN+M , a1,… , an+m−1

)
.

(10)

B1 =
(
bT
1
, bT

2
,… , bT

N+M−1
, bT

N+M

)T
,B2 =

(
bT
2
, bT

3
,… , bT

N+M
, bT

1

)T
,B3 =

(
bT
3
, bT

4
,… , bT

1
, bT

2

)T
,

… ,BN+M =
(
bT
N+M

, bT
1
,… , bT

N+M−2
, bT

N+M−1

)T
.

(11)G−1
(
C1

)
⋅ C2 =

N+M∑
i=1

Ai ⊙ Bi =

N+M∑
i=1

Rotate(A, 0,−i)⊙ Rotate(B, 1,−i),



26450	 J. Gao, Y. Gao 

upwards. This can convert one ciphertext matrix multiplication into O(n) rotations 
and O(n) constant multiplications, which is more efficient.

3.4 � Noise analysis

The noise in the scheme arises from the modular operation during the decryption 
process. let

•	 Initial noise: ‖N(C)‖ = ��tG−1(�V)RE�� ≤ t(N +M)n��G−1(�V)��‖R‖‖E‖ ≤

t(N +M)nb‖E‖.
•	 Additional noise: ��N(Cadd)

�� = ��N(C1)
�� + ��N(C2)

�� ≤ 2t(N +M)nb‖E‖.
•	 Multiplication noise: 

In summary, both initial noise and additional noise can be expressed as O
(
n2tbae

)
, 

while multiplication noise can be expressed as O
(
n3t2b2a2e

)
, where e represents the 

maximum value of the norm of error matrix E, i.e., ‖E‖ ≤ e. Therefore, the upper 
bound N of noise can be expressed as N = O

(
n3t2b2a2e

)
, and the parameter selec-

tion of the scheme is closely related to N and needs to satisfy |N| < q

2
.

3.5 � Ciphertext refreshing

According to the previous sections, it is evident that the accuracy of our scheme 
primarily relies on the modular operation modt. Specifically, the noise component 
should be ≤ q

2
. Based on the aforementioned analysis of noise, the maximum limit 

of noise can be achieved by selecting appropriate parameters. In order to enhance 
the efficiency of secure matrix multiplication and reduce the inclusion of redundant 
items in the operation, we introduce a ciphertext refreshing program in this section.

Similar to the ciphertext refreshing technique used in BGV [11], modulus switch-
ing technology is employed to convert the ciphertext from a large modulus to a 
small modulus. Subsequently, key switching technology is applied to change the 
ciphertext under different keys. This entire refreshing process transforms the cipher-
text into another ciphertext under a different key and a smaller modulus, while still 
representing the same plaintext. The newly introduced modulus switching and key 
switching technologies are described below.

(12)N(C) = G−1(�V)CS mod q −M = tG−1(�V)RE.

(13)

��N(Cmul)
�� =

���tG−1(�V)
�
R1

�
E − AS2

�
M2 + G−1

�
C1

�
R2E

����
≤ t(N +M)��G−1(�V)��

����R1

�
E − AS2

�
M2

��� +
���G−1

�
C1

�
R2E

���
�

≤ t(N +M)b
�
n2��R1

����E − AS2
����M2

�� + (N +M)n
���G−1

�
C1

������R2
��‖E‖

�

≤ t(N +M)b
�
n2t

�‖E‖ + m‖A‖��S2��
�
+ (N +M)nb‖E‖�

≤ t(N +M)b
��
n2 + m

�
t + (N +M)nb

�‖E‖.
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3.5.1 � Modulus switching

Similar to the existing modulus switching technology, we need to define a mapping 
from a large modulus to a small modulus in order to implement the modulus switch-
ing process ModSwitch. The specific steps are as follows:

•	 Define a mapping from a large modulus q1 to a small modulus q2 : For any integer 
a,  [a]q1→q2

=

⌊
q2

q1
a
⌋
+ r, where r ∈ {0, 1}.

•	 For the ciphertext C =
(
cij
)
, 1 ≤ i ≤ N +M, 1 ≤ j ≤ n + m, the modulus map-

ping of each component can be defined as a pair. The specific definition of modu-
lus switching is ModSwitch(C) =

(
[cij]q1→q2

)
.

Let C� = ModSwitch(C) =
(
[cij]q1→q2

)
, then C� ≈

q2

q1
C, the noise also becomes the 

original q2
q1
. Modulus switching, denoted as ModSwitch, has the effect of reducing 

noise. The ciphertext C, which is encrypted using the modulo q1, is transformed into 
a new ciphertext C′ using a different modulo q2. In this case, it represents the same 
plaintext M, but the noise is reduced by approximately q2

q1
.

3.5.2 � Key switching

Similar to the existing key switching, our program also consists of two steps: first, 
generating a key switching key ksk,  and then using this ksk to publicly implement 
the ciphertext conversion. Our goal is to convert a ciphertext matrix C determined 
by the key 

(
pk1, sk1

)
 to a ciphertext matrix C′ determined by the key 

(
pk2, sk2

)
.

•	 KeySwtGen(pk1, pk2, sk1, sk2) ∶ Define one key pair is pk1 =
(
T1,V,D1

)
, 

sk1 = S(1) and another key pair is pk2 =
(
T2,V,D2

)
, sk2 = S(2). The process of 

generating a key switching key is as follows: 

1.	 Define g =
(
1, b, b2,… , ba−1

)T
, and G = Im+n ⊗ g ∈ ℤ(M+N)×(m+n).

2.	 Randomly and uniformly choose a matrix W ← {−1, 0, 1}(N+M)×n.

3.	 Output key switching key ksk =
(
G +WD1

)
S(1)V ∈ ℤ(N+M)×n

q
.

•	 KeySwt(C1, ksk) ∶ Given a ciphertext C ∈ ℤq and a key switching key 
ksk ∈ ℤ(N+M)×(n+m)

q
, define Y = GT2G

−1(�V)G−1(C) ∈ ℤ(N+M)×(N+M)
q

, and output 
C� = Y ⋅ ksk mod q ∈ ℤq.

3.5.3 � Correctness of modulus switching and key switching

The correctness of modulus switching is relatively easy and will not be verified in 
detail here. The main consideration is the correctness of key switching technology. 
First, calculate
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We know that the ciphertext C′ is the encryption of plaintext M. Its noise is 
t
(
G−1(�V)RE1V +GT2G

−1(�V)G−1(C)WE1V
)
, which is still a multiple of t,   and 

it has the same form as the noise. This noise, which can be eliminated by subsequent 
operations using modulo t,   can be decrypted correctly. Therefore, the ciphertext 
C′ can be decrypted correctly, and the homomorphic evaluation can be performed 
accurately.

3.6 � Security analysis

Here, we prove the following theorem, which asserts the security of our scheme.

Theorem 3.1  Assuming DLWE (Definition 2.3) and n-secret LWE (Definition 2.4), 
the security of our scheme only depends on n-secret LWE assumption, and the fully 
homomorphic encryption scheme we constructed satisfies IND-CPA security [29].

Proof  To prove the security, we need to prove the indistinguishability of the follow-
ing two distributions.

Distribution D1 ∶ D1 = {C ← (GTMV + RD) mod q|pk = (T,V,D), sk = S}.

Distribution D2 ∶ D2 =

{
C ← ℤ(N+M)×(n+m)

q
|pk = (T,V,D), sk = S

}
.

We can see that D1 and D2 represent the adversary’s views when the plaintext M 
is encrypted and randomly chosen, respectively. From the keyGen process, we have 
D = (�B|A). Therefore, to demonstrate that the distributions D1 and D2 are compu-
tationally indistinguishable, we need to establish that the following two distributions 
are computationally indistinguishable:

Distribution D
�

1
∶ D

�

1
={C ← (GTMV+R(�B|A)) mod q|B = (AS + E) mod q}.

D
�

1
= {C ← (GTMV + R(�B|A)) mod q|B = (AS + E) mod q}.

Distribution D
�

2
∶ D

�

2
=

{
C ← ℤ(N+M)×(n+m)

q

}
.

From the above discussion, it suffices to prove Lemma 3.1 in the following to 
complete the proof of Theorem 3.1.

Lemma 3.1  Distributions D
′

1
 and D

′

2
 are computationally indistinguishable under 

the hardness assumption of DLWE and n-secret LWE.

Proof  We prove the lemma via the following hybrids.
G0 ∶ This is same as D

′

1
.

G1 ∶ In this hybrid, the challenger computes C as C = (GTMV + R(�B|A)) mod q, 
where B =

(
b1,… , bn

)
, and bi =

(
Asi + ei

)
mod q, where each component of A is 

(14)

C� = Y ⋅ ksk mod q

= GT2G
−1(�V)G−1(C)

(
G +WD1

)
S(1)V mod q

= GT2G
−1(�V)CS(1)V +GT2G

−1(�V)G−1(C)WD1S(1)V mod q

= GT2

(
��M + tG−1(�V)RE1

)
V + tGT2G

−1(�V)G−1(C)WE1V mod q

= GT2MV + t
(
G−1(�V)RE1V +GT2G

−1(�V)G−1(C)WE1V
)
.
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selected from a random uniform distribution, and each component of ei is selected 
from an error distribution � .

G2 ∶ The challenger computes C = (GTMV + U) mod q, where 
U ← ℤ(N+M)×(n+m)

q
.

G3 ∶ In this hybrid, the challenger randomly and uniformly selects 
C ← ℤ(N+M)×(n+m)

q
.

It is easy to see that the distribution of G3 is the same as the distribution D
′

2
 . We 

prove the indistinguishability of the distribution in the following way.
First, prove that G0 ≡ G1. Since only the selection method of B is different in G0 

and G1 , it is easy to see that B = (AS + E) mod q represents the standard DLWE 
assumption. bi =

(
Asi + ei

)
mod q represents the spliced form of the n secret vec-

tors si , ensuring the equivalence of G0 and G1.

Then prove that G1 ≈c G2 due to DLWE. Since only the second half of the ran-
dom selection in G1 and G2 is different, we know that the DLWE distribution and the 
uniform random distribution are computationally indistinguishable. In other words, 
{(B,A)} and ℤ(N+M)×(n+m)

q
 are computationally indistinguishable. By the definition 

of the cipher, R ← {−1, 0, 1}(N+M)×(n+m), so the distributions of R(�B,A) and U are 
computationally indistinguishable. Therefore, the distributions of G1 and G2 are com-
putationally indistinguishable under the standard DLWE assumption.

Next, it is proven that G2 ≈s G3. Since the public keys T and V are both pub-
lic, and G is the gadget matrix, GTMV can be treated as a constant. Therefore, 
(GTMV + U) mod q and C ← ℤ(N+M)×(n+m)

q
 are statistically indistinguishable, 

where U ← ℤ(N+M)×(n+m)
q

. means that the distributions of G2 and G3 are statistically 
indistinguishable.

Combined with the above analysis, it is easy to see that the distributions of G0 and 
G3 are computationally indistinguishable.

In summary, the distributions D
′

1
 and D

′

2
 are computationally indistinguishable, 

implying that the distributions D1 and D2 are also computationally indistinguish-
able. This implies that our scheme is IND-CPA if the n-secret LWE problem is 
computationally hard.

Thus, if the IND-CPA security of the underlying fully homomorphic encryp-
tion scheme can be guaranteed, it implies that the ciphertexts of any two mes-
sages are computationally indistinguishable. Since all computations in the public 
cloud are performed on encrypted data, the cloud cannot access any information 
from the encrypted data. Therefore, we can ensure the confidentiality of the data 
when using semi-honest servers for secure outsourced computation.

4 � Secure matrix multiplication based on GMS

Since our scheme GMS is an asymmetric encryption scheme for matrices, the 
secure matrix multiplication procedure can be easily implemented. GMS can 
achieve rectangular matrix multiplication Am×n ⋅ Bn×l by padding with zeros. 
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This can be elaborated upon by considering the following three cases: (1) 
max{m, n, l} = m; (2) max{m, n, l} = n; (3) max{m, n, l} = l. The padding opera-
tion is as follows. 

(1)	 If max{m, n, l} = m, then first fill the matrices A and B into a square matrix, that 

is, A
�

m×m
=
(
Am×n Om×(m−n)

)
, B

�

m×m
=

(
Bn×l On×(m−l)

O(m−n)×l O(m−n)×(m−l)

)
. We have 

 So Enc
(
A ⋅ B O

)
 can be obtained by passing Enc

(
A O

)
 and Enc

(
B O

O O

)
 

through the homomorphic multiplication operation, where Enc represents the 
encryption algorithm of our scheme.
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through the homomorphic multiplication operation, where Enc represents the 
encryption algorithm of our scheme.
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through the homomorphic multiplication operation, where Enc represents the 
encryption algorithm of our scheme.

Therefore, secure outsourced matrix multiplication based on GMS for rectangular 
matrices requires the user to fill the matrix before encryption. Subsequently, the 
filled square matrix is encrypted and uploaded to the cloud server. The recipient can 
then download it from the cloud. The results obtained are decrypted on the server, 
and then, the first m rows and the first l columns of the matrix are extracted based on 
the desired dimensions. Therefore, our solution can be applied to secure outsourced 
matrix multiplication of any dimension, i.e., Am×n ⋅ Bn×l.

Next, we will focus on the simulation experiment, which will be presented in 
detail in three parts: parameter selection, theoretical comparison, and simulation 
experiment. Our simulation experiment first implemented the fully homomorphic 
encryption scheme we constructed and then proceeded to implement secure out-
sourced matrix multiplication. The experiment was based on the HElib library [22] 
in C++, running on a personal laptop with a 2.60GHz CPU configuration of the 
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11th generation Intel(R) Core(TM) i5–11260 H. Finally, a detailed analysis and con-
clusions were provided based on the data obtained from the simulation experiment.

4.1 � Parameter selection

As shown in Sect. 3.6, our system assumes that the client is honest and that the only 
threat comes from a curious server. Note that our scheme GMS has been proven 
to be indistinguishable under the chosen plaintext attack model (IND-CPA). This 
means that the ciphertexts of two messages are computationally indistinguishable. 
Since the server does not have access to the secret key and can only see the cipher-
texts during the secure matrix multiplication, it does not learn anything from the 
ciphertexts. Thus, it is safe to conclude that our secure outsourced matrix multiplica-
tion scheme is secure against a curious server in the IND-CPA model.

Therefore, the choice of parameters can be determined based on the fully homo-
morphic encryption scheme that we have designed. The security parameter setting 
assumed by the DLWE assumption generally requires a security level of either 128 
bits or 256 bits. To ensure the comparability of experimental data, we set the secu-
rity parameter � = 128. This means that the modulus q is a positive integer with a 
length of 128 bits. In order to minimize the impact of noise on the system and the 
experiment, we chose to set the value of t as a positive integer with a length of 19 
bits, based on the analysis in Sect. 3.4. The parameters corresponding to the differ-
ent plaintext dimensions n are shown in Table 2.

4.2 � Theoretical analysis

In this section, we will primarily analyze the performance of our secure outsourced 
matrix multiplication. We compare our GMS-based secure matrix multiplication 
with the methods proposed by Jiang et  al. [26], Hiromasa et  al. [6], Huang et  al. 
[4], and Zhu et  al. [5]. As shown in Table  3. “ #Ciphs” represents the number of 
ciphertexts needed to encrypt a matrix. “ #HEMult” is the number of homomor-
phic multiplications required to perform a secure outsourced matrix multiplication. 
“Matrix dims” represent the applicable dimensions of the matrix. For the time com-
plexity, let “Add” and “Mult” denote the ciphertext-ciphertext addition and cipher-
text-ciphertext multiplication, respectively. Let “Cmult” denote plaintext-ciphertext 
multiplication. “Rot” denotes the rotation operation of a ciphertext along a row 

Table 2   Parameter selection 
corresponding to different 
plaintext dimensions n 

n b a n b a

n = 8 b = 27 a = 29 n = 128 b = 217 a = 12

n = 16 b = 27 a = 29 n = 256 b = 216 a = 13

n = 32 b = 27 a = 29 n = 512 b = 216 a = 13

n = 64 b = 217 a = 12 n = 1024 b = 215 a = 14
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(or a column), and “Depth” denotes the depth of the multiplicative circuit. D1 and 
D2 denote the circuit depths of plaintext-ciphertext multiplication and ciphertext-
ciphertext multiplication, respectively. Let k1 = max{m, n, l}, k2 = median{m, n, l}, 
k3 = min{m, n, l}. The specific values are provided in Table 3.

Obviously, compared to Jiang et al. [26] and Hiromasa et al. [6], our method can 
be applied to a wider range of matrix multiplication cases, requiring lower time 
complexity and circuit depth. Huang et al. [4], Zhu et al. [5] and our method can be 
used for matrix multiplication of arbitrary dimensions. The number of Add, Cmult, 
and Rot required is of the same order of magnitude, while our method only requires 
one homomorphic multiplication to perform a matrix multiplication. The Mult of 
our method is asymptotically reduced by n and k3 times, respectively. Therefore, our 
GMS-based secure outsourced matrix multiplication has a lower time complexity 
and is more efficient compared to existing methods.

4.3 � Simulation experiment

In this section, we will verify and analyze the actual performance of our scheme, 
through a simulation experiment. We used the parameters listed in Table 2 to imple-
ment our constructed fully homomorphic encryption scheme, GMS. In this scheme, 
we randomly selected and retained the plaintext M. We then decrypted it and 
compared it with the original plaintext. If they are not the same, an error will be 
returned. If they are the same, we recorded the encryption and decryption time, as 
well as the time taken for the homomorphic multiplication they were involved in. 
The entire program runs smoothly, and no errors are reported. Table 4 presents the 
size of ciphertext, the encryption and decryption times for different plaintext dimen-
sions n,  along with the time required for homomorphic multiplication with varying 
homomorphic multiplication times k. CipherSize denotes the size of the ciphertext. 
EncTime(s) represents the encryption time. DecTime(s) is the decryption time. The 
right side of Table 4 represents the time it takes to perform k homomorphic multi-
plications on the ciphertext. The data in Table 4 represent a random sample of the 
program run multiple times.

As shown in Table 4, the size of the ciphertext corresponding to a 64 × 64-dimen-
sional plaintext is approximately only 1 MB. The encryption and decryption time 

Table 4   Ciphertext size, encryption time, decryption time, and homomorphic multiplication time

n Cipher-
Size 
(MB)

EncTime(s) DecTime(s) k times homomorphic multiplication time(s)

1 2 3 4 5 6

8 0.09 < 0.01 < 0.01 0.11 0.20 0.31 0.42 0.56 0.68
16 0.20 0.03 0.01 0.71 1.29 2.00 2.86 3.33 4.30
32 0.79 0.07 0.06 6.01 11.94 18.00 23.99 29.98 36.01
64 1.27 0.22 0.21 39.98 75.46 114.99 152.88 188.86 225.86
128 4.99 1.22 1.10 102.03 205.96 309.20 409.81 511.46 615.15
256 18.16 12.99 11.83 836.12 1659.96 2516.55 3329.14 4177.63 5008.34
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for a 128 × 128-dimensional plaintext is only about 1 second. The homomorphic 
multiplication time for a 32 × 32-dimensional plaintext is only about 6 seconds. The 
fully homomorphic encryption scheme GMS that we constructed has a small cipher-
text size and requires less time for encryption and decryption, resulting in high 
efficiency.

Next, we implemented the GMS-based secure outsourced matrix multiplication 
using the HElib library [22] and provided a detailed comparison of the resulting 
data obtained from the different secure matrix multiplication methods. Depending 
on the dimension of the matrix, it is divided into four cases: (1) Square matrix; (2) 
max{m, n, l} = m; (3) max{m, n, l} = n; (4) max{m, n, l} = l. We compare the per-
formance of our method with existing methods in Fig. 3.

From the data in Fig.  3, it is evident that in all cases, the execution time 
(matrix multiplication time) of our algorithm is the lowest. In the case of 
square matrix multiplication, our method demonstrates superior performance 
as it requires n times fewer homomorphic multiplications compared to other 
methods. Additionally, our approach requires the same number of rotations 
as the method proposed in [5], but significantly fewer rotations compared 
to the approach in [4] by a factor of O(log n) (refer to Table  3). As a result, 
we experience a greater speedup as the matrix dimension increases. When 
(m, n, l) = (128, 128, 128), we achieve the highest speedup, up to 5X and 2X, 
respectively. In the case of rectangular matrix multiplication, the superiority 
of our approach compared to [5] is not readily apparent. This is because the 
matrix multiplication time of our method, [4] and [5], is positively correlated 
with max{m, n, l}, n,   and min{m, n, l}, respectively. When the dimensions of 
the matrices are significantly different, for example, (m, n, l) = (16, 128, 4) , our 
method is more frequently utilized for CMult and Rot compared to the method 
proposed in [5]. Consequently, the time required for matrix multiplication 
remains essentially unchanged; however, there is a substantial growth rate com-
pared to the results reported in [4], up to 9X.

Fig. 3   The running time(s) of [4, 5], our method and speedup ([4, 5] vs our method)
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5 � Conclusion

In this paper, we propose an efficient fully homomorphic encryption scheme 
called GMS for matrices. The scheme has a smaller ciphertext size and less 
noise expansion, which allows for efficient updating of the ciphertext through 
key switching and modulus switching. Furthermore, GMS has significant appli-
cations in secure outsourced matrix multiplication. Through theoretical analysis 
and simulation experiments, our scheme demonstrates lower time complexity and 
superior performance compared to existing methods. It can be applied to arbitrary 
matrices, i.e., Am×n ⋅ Bn×l. Compared to existing methods, the secure outsourced 
matrix multiplication based on GMS has shown significant performance improve-
ments and higher overall efficiency. Our GMS-based secure outsourced matrix 
multiplication is expected to be widely used in schemes that require matrix multi-
plication for secure outsourced computation.

In our future work, we have two goals. One goal is to enhance and extend the 
capacity and ability to process and handle significantly large amounts of data, 
thereby promoting applicability and utility in large data protection applications 
that utilize extensive datasets as input. The other goal is to optimize and imple-
ment multiple parallel operations to enhance the efficiency of the algorithm.
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