
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:25933–25973
https://doi.org/10.1007/s11227-024-06436-8

Community detection in attributed social networks using
deep learning

Omid Rashnodi1 · Maryam Rastegarpour2 · Parham Moradi3 ·
Azadeh Zamanifar1

Accepted: 6 August 2024 / Published online: 16 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Existing methods for detecting communities in attributed social networks often
rely solely on network topology, which leads to suboptimal accuracy in community
detection, inefficient use of available data, and increased time required for identi-
fying groups. This paper introduces the Dual Embedding-based Graph Convolu-
tion Network (DEGCN) to address these challenges. This new method uses graph
embedding techniques in a new deep learning framework to improve accuracy and
speed up community detection by combining the nodes’ content with the network’s
topology. Initially, we compute the modularity and Markov matrices of the input
graph. Each matrix is then processed through a graph embedding network with at
least two layers to produce a condensed graph representation. As a result, a multi-
layer perceptron neural network classifies each node’s community based on these
generated embeddings. We tested the suggested method on three standard datasets:
Cora, CiteSeer, and PubMed. Then, we compared the outcomes to many basic and
advanced approaches using five important metrics: F1-score, adjusted rand index
(ARI), normalized mutual information (NMI), and accuracy. The findings demon-
strate that the DEGCN accurately captures community structure, achieves superior
precision, and has higher ARI, NMI, and F1 scores, significantly outperforming
existing algorithms for identifying community structures in medium-scale networks.

Keywords  Community detection · Attributed social networks · Graph convolution
networks · Deep learning · Embeddings

1  Introduction

The exploration of community structures within networks has evolved signifi-
cantly since early sociological studies, becoming a crucial research domain that
utilizes sophisticated mathematical tools for large-scale data analysis. Notably,

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06436-8&domain=pdf

25934	 O. Rashnodi et al.

since Girvan and Newman’s pioneering efforts in 2002, identifying and under-
standing these structures have become essential for comprehending the composi-
tion and functionality of various networks, impacting fields ranging from epide-
miology to marketing.

Even though topological, content-based, and graph-theoretical approaches
have progressed with community detection, there are still many problems with
the current methods, especially with the quality of the vector representations for
network nodes. Current methods often produce representations that fail to cap-
ture the structural and contextual information of the nodes fully. This means that
they don’t work well enough for tasks like clustering or classification, and they
can’t keep up with the rising quality standards as networks get more extensive
and complicated.

This paper addresses the limitations of conventional community detection meth-
ods, mainly when applied to large-scale or high-dimensional networks constrained
by computational capacity and data volume. These constraints significantly hamper
the efficacy of traditional methods for analyzing complex, modern relational data.
As a result, to embed graphs effectively, this study employs graph neural networks
(GNNs), a specialized branch of deep learning tailored to graph data. This method
simplifies networks by reducing their dimensions and enhancing the representation
of their nodes, thereby expediting the community detection process. This study also
combines the modularity matrix with the Markov matrix to improve the accuracy of
community detection. This makes these methods more useful in complex network
structures because they are more efficient and accurate.

The contributions and innovations of this study are summarized as follows: (a)
we introduce a layout method utilizing graph convolution networks to reduce rep-
resentation dimensions and decrease algorithm implementation time; (b) we imple-
ment a novel graph layout technique that preserves the structural and content fea-
tures of nodes in the primal graph, enhancing node similarities; (c) we enhance the
efficiency of community detection by employing objective functions that reflect the
structural and content features of the network; and (d) we address the challenges
posed by non-community-centric GNNs by combining modularity and normalized
cuts, thereby improving neural network interpretability.

Community detection is acknowledged as a complex, NP-hard problem encom-
passing a broad spectrum of challenges. This paper tackles these challenges by
focusing on computational complexity and detection accuracy within attributed
social networks. By utilizing GNNs, we aim to overcome these issues through inno-
vative approaches that embed networks and enhance graph representation learning.
These strategies lead to a comprehensive solution for community detection that
offers several benefits:

•	 Innovative use of GNNs: employing GNNs within deep learning to embed net-
works and learn graph representations addresses computational complexity, scal-
ability, and detection accuracy challenges.

•	 Decreasing computational complexity: GNNs simplify computational demands
by efficiently representing nodes and their connections in a reduced-dimensional
space, achieved by performing local operations on nodes and their neighbors.

25935Community detection in attributed social networks using deep…

•	 Enhancing scalability: GNNs manage local and global network information
within a unified framework, effectively handling medium-scale networks with
hundreds of nodes and edges.

•	 Enhancing detection accuracy: deep learning and graph-based neural networks
identify intricate structures and patterns in network data, thereby increasing the
precision of community detection.

•	 Effective learning of graph representations: GNNs create network representa-
tions incorporating topological structures and node features, which are essential
for accurately detecting communities.

We structure the remainder of this paper as follows: Sect. 2 surveys the existing
literature on graph convolutional networks and dual embedding techniques, outlin-
ing fundamental advances and pinpointing gaps that our study addresses. Section 3
introduces the necessary concepts and notations, laying the groundwork for under-
standing the methodologies discussed subsequently. Section 4 provides a detailed
description of the proposed algorithm DEGCN and presents its pseudocode. Sec-
tion 5 is comprehensive and divided into three distinct parts: Sect. 5.1 offers an in-
depth description of the datasets used for testing, outlines the evaluation metrics to
assess performance, and details the chosen parameters and the experimental setup.
Section 5.2 explains the ablation studies. Section 5.3 demonstrate graph visualiza-
tion. Finally, Sect. 6 addresses the conclusion and future work.

2 � Literature review

With recent developments in information technology and the digital world, com-
plex network theory can be used in many fields, such as social networks, biologi-
cal networks, and internet networks. Community detection is one of the critical
issues in studies on complex networks seeking to discover the structural properties
of networks. The communities are created in the network by a group of nodes with
more incredible internal relationships and fewer relationships with other nodes.
Early community detection methods are mainly based on the network’s typologi-
cal features, and many approaches have been proposed based on different criteria
for similarity and closeness among groups. Before developing deep learning meth-
ods, community detection methods were divided into two general groups: hierarchi-
cal methods and partitioning methods. Hierarchical methods start from a partition
where each node is considered a cluster or from a partition where all nodes are in
a similar community. Then, clusters are continuously combined and divided using
quality measurement to form the hierarchy of clusters. Although hierarchical meth-
ods do not need to know the number of communities as a background, they require a
criterion to identify relevant partitions.

On the other hand, the partitioning methods identify clusters based on the itera-
tion of member allocation. These methods evaluate the quality of the resulting par-
titions by optimizing one or more objective functions. Some of the partitioning
techniques include finding the maximum number of cliques on a graph [1], modular-
ity maximization [2], matrix decomposition [3], seed expansion [4], linear sparse

25936	 O. Rashnodi et al.

coding [5], sparse linear coding [5], and evolutionary algorithms [1]. Both hierarchi-
cal and partitioning methods involve high computational costs. Thus, these meth-
ods cannot be efficiently implemented in large-scale networks. In other words, they
cannot find a desirable solution over a reasonable period. More flexible local meth-
ods have been proposed for separate and overlapping detection communities [6]. For
example, methods based on label propagation use the regional expansion of node
labels to identify communities in linear time [7].

Deep learning (DL) techniques are increasingly utilized across various fields,
including computer and social sciences, economics, agriculture, healthcare, and
medicine [8]. Network representation learning (NRL) transforms complex network
structure data into a manageable, low-dimensional space within this broad applica-
tion spectrum. These methods include learning network representations [9], Net-
work embedding [10], and graph embedding [11], all aimed at preserving the net-
work’s typological structure, vertex content, and auxiliary data.

By enabling robust graph data representation, these innovative learning
approaches have revolutionized the construction of complex classification, clus-
tering, and prediction models. This approach allows for executing analytical tasks
using simpler, traditional models. NRL techniques aim to get representations of net-
work vertices in fewer dimensions while keeping important network typological and
content properties[9]. Machine learning tasks, such as node classification and link
prediction, utilize the derived representations as vector inputs. This advancement
has spurred the development of sophisticated and effective NRL methodologies tai-
lored for complex networks [10]. Graph representation learning methods are broadly
categorized into three distinct groups: probabilistic models, deep learning-based
algorithms, and matrix decomposition algorithms. The subsequent discussion will
elucidate these three different models:

•	 Probabilistic Models: Techniques such as LINE [12] and Node2vec[13] focus
on extracting diverse graph patterns to learn embeddings. Node2vec maps nodes
into a vector space, enhancing link prediction and node classification capabili-
ties. Large-scale use of LINE is well known. It uses edge sampling to get around
the problems that stochastic gradient descent usually has. This improves graph
embedding processes without reducing efficiency.

•	 Deep Learning-Based Algorithms: DeepWalk [14] exemplifies the applica-
tion of deep learning in graph theory. DeepWalk is very good at encoding
complete structural data, even when some is lost. It does this by using the
local structural information of vertices and adding the Skip-Gram model to
the framework of random walks. This method has proved particularly effective
in social networks when performing multilabel classification. Deep learning
models take advantage of the nonlinear dynamics of extensive, complicated
networks. They collect many types of relational data, like details about nodes,
neighbors, edges, subgraphs, and community properties. These models are
ideally suited for handling sparse networks and excel in unsupervised learn-
ing scenarios. Algorithms such as DNGR[15], SNDE [15], and ANRL [15]
employ deep autoencoder models for high-dimensional data representation. At
the same time, other end-to-end network-based methods, such as SNE[16] and

25937Community detection in attributed social networks using deep…

DeepGL[17], combine structural and attribute data to enrich graph represen-
tation learning. A single-layer autoencoder makes the MGAE algorithm [18]
more accessible for clustering tasks, and HNE[19] combines deep autoen-
coder neural networks with convolutional networks to process adjacent vec-
tors and images.

•	 Matrix decomposition algorithms: This group includes methods such as M-NMF
[20] and TADW [21], which focus on decomposing matrices to learn node repre-
sentations effectively. These techniques are pivotal in disentangling complex net-
work structures, facilitating more profound insights into network dynamics and
interactions.

Collectively, these methods provide a robust framework for handling and analyz-
ing complex networks across various domains, supporting a wide range of applica-
tions from theoretical research to practical, real-world problem-solving.

Wang et al. [22] obtained deep representations with a graph autoencoder and
implemented a spectral clustering algorithm for representations of graph clustering.
Similarly, He et al. [23] proposed a nonlinear restructuring method for a modularity
matrix based on deep neural networks; they then extended the technique into a semi-
supervised community detection algorithm with a combination of paired limitations
in graph nodes. Both problems are challenging due to high computational costs and
the need to adjust many parameters; for example, the number of clusters is generally
unknown in many large and heterogeneous networks worldwide. Recently, graph
neural network (GNN)-based methods, including graph convolutional networks
(GCNs), have been introduced to graphs to solve the issue of community detection
[24, 25]. GCNs integrate the information of neighboring nodes in the deep convo-
lutional layers of graphs. GCNs use convolutional operations such as convolutional
neural networks to extract properties from network typology and node properties to
represent complex properties of the community [26].

Since GCN was not initially employed for community detection, it does not focus
on community structure when learning node embedding, and there are no limita-
tions on the structural adaptations between communities and nodes. For this pur-
pose, Jin et al.[27] proposed a semi-supervised GCN community detection model
named MRFasGCN, which was obtained by combining a GCN with the Markov
random fields statistical model to detect communities. The Markov random field has
been extended as a new convolutional layer that makes the MRFasGCN and moni-
tors the gross results of the GCN.

Sun et al. [28] proposed a framework to learn network embedding for cluster
nodes in attributed graphs. Specifically, this framework simultaneously learns rep-
resentations based on graphs and cluster-oriented representations. This framework
consists of three modules: a graph autoencoder module, a soft modularity maximi-
zation module, and a self-clustering module. The graph autoencoder module learns
node embedding based on typological structure and node properties.

Jin et al. [29] also proposed an unsupervised model to detect communities
through GCN embedding. In this model, the GCN has been used as the main struc-
ture of the encoder to match two information sources, namely typology and prop-
erty, where a dual encoder has been used to extract two different embeddings.

25938	 O. Rashnodi et al.

Luo et al. [30] proposed a deep learning model to find communities and struc-
tural holes simultaneously. The main framework used in this model is the GCN-
based encoder. The GCN is an effective method for combining network typology
and node properties in community detection. However, there are two problems with
using GCNs in community detection: (1) The GCN learns the representation of hid-
den layers through encoding typological features and node properties, and it does
not consider community features. Thus, the embedding obtained from a GCN will
not be community-based. (2) This is a semi-supervised model rather than an unsu-
pervised model.

Wang et al. [31, 32] proposed a new nonnegative matrix decomposition model
along with two sets of parameters, a community membership matrix and a com-
munity characteristic matrix. Additionally, several efficient updating rules were pro-
posed for evaluating the parameters while guaranteeing convergence. Using node
attributes improves community detection and provides a semantic interpretation for
the communities of the obtained communities.

Additionally, attempts have been made to develop semi-supervised methods to
detect communities based on learning network representations where data labels
have been combined via graph-based regulation to identify unlabeled nodes. Young
et al. [33] used node representation to predict the background of a network and
employed node labels to create various transfer learning and inductive learning
methods. Recently, graph convolutional networks have been introduced for network
analysis. Methods based on GCNs contribute to network typology and attribute data,
unlike most semi-supervised methods that focus on network structure; however,
these methods depend on many node labels to identify unlabeled nodes. Sun et al.
proposed a network embedding framework based on a graph convolutional autoen-
coder for cluster nodes. In addition, some unsupervised approaches have been pro-
posed recently.

In [34], a model supervised in the CNN framework was proposed for typological
defect networks, where the model has two CNN layers with max-pooling operators
to represent the network and a wholly connected DNN layer to detect the commu-
nity. In these models, convolutional layers show the local attributes of each node
from different perspectives. The experiments conducted on this model in TINs, with
10% labeled nodes and 90% unlabeled nodes, achieved an 80% accuracy of commu-
nity detection, which shows that high-order neighbor representation can improve the
accuracy of community detection.

In [35], a supervised community detection model named the linear graph neu-
ral network (LGNN) has been proposed to improve SBM efficiency in community
detection and reduce computational costs. A linear graph neural network (LGNN)
learns the represented attributes of nodes in direct networks by combining the opera-
tor without backoff and rules for messaging.

In [36], CommDGI optimizes graph representation and clustering jointly through
mutual data on nodes and communities and maximizes graph modularity. This
method uses k-means to cluster nodes by targeting cluster centers.

Spectral GCNs show all the attributes hidden from a node’s neighborhood. The
characteristics of neighboring nodes converge to the same values by frequently
implementing Laplacian operations in the deep layers of the GCN. However,

25939Community detection in attributed social networks using deep…

these models lead to over-smoothing in detecting communities. Graph convo-
lutional ladder-shaped networks have been developed to alleviate such negative
impacts as a new GCN architecture for unsupervised community detection based
on U-Net in the CNN field [37].

Since different types of links are considered simple edges, GCNs show each
link separately and add them together, leading to representation redundancy.
IPGDN [38] distinguishes neighborhoods into different sections and auto-
matically discovers the independent hidden attributes of a graph, such that it
decreases the difficulty of detecting communities. The IPGDN is supported by the
Hilbert–Schmidt independence criterion in neighborhood routing. Adaptive graph
convolution has been introduced to detect communities in attributed graphs. This
type of graph depends on structural data and representation features for detect-
ing communities through GCNs, where neighboring nodes and nodes with simi-
lar attributes are categorized into the same cluster community. Therefore, in this
method, two graph signals are multiplied, and high-frequency noise needs to be
filtered. For this purpose, adaptive graph convolution involves the design of a
low-pass graph filter with a frequency response function.

In [39], a potent method utilizing Cayley polynomials was proposed to achieve
high-order approximation within the spectral convolutional architecture of graph
neural networks. While only a handful of studies have explored GCN filters, Cay-
leyNets are notable for utilizing low-pass filters that harness extensive commu-
nity data for identification purposes.

In [40], they have addressed the limitations of graph convolutional neural net-
works in processing complex relational graphs, such as excessive smoothing dur-
ing node classification. The newly introduced SM-GCN model aims to increase
node categorization accuracy by reducing reliance on individual features and
integrating scattering embeddings to counteract the over-smoothing effect.

In [41], researchers presented a novel framework called the graph convolu-
tional fusion model (GCFM) for community detection in multiplex networks. The
primary objective of this model is to enhance the accuracy of community detec-
tion in networks that consist of multiple layers, where each layer represents a dis-
tinct type of relationship among the same set of nodes. The GCFM uses a graph
convolutional autoencoder for each layer to do this. This model lets it record and
encode the structural features within each layer while considering the nearby
nodes.

In [42], the TANMF algorithm is designed to identify dynamic modules within
cancer temporal-attributed networks, integrating genomic data and temporal net-
works to transform. The experimental results demonstrated that TANMF is more
accurate than existing methods, enriches identified modules with known pathways,
and correlates with patient survival.

In [43], the jLDEC algorithm for identifying dynamic communities in temporal
networks integrates graph representation learning, community detection, and the
dynamics of network edges into a cohesive framework to enhance the accuracy of
community detection. The results demonstrate superior performance over traditional
methods, especially in accurately characterizing the dynamics of community struc-
tures in temporal networks.

25940	 O. Rashnodi et al.

In [44], the NE2NMF algorithm detects dynamic communities within networks
by integrating network embedding and nonnegative matrix factorization. It boosts
accuracy via a third-order smoothness strategy, which considers previous, current,
and subsequent network snapshots, thereby enhancing the characterization of com-
munity dynamics. The experimental results confirm that NE2NMF outperforms tra-
ditional methods in terms of both accuracy and robustness.

In [45], the jLMDC algorithm was introduced for dynamic community detec-
tion in temporal networks, emphasizing the joint learning of feature extraction and
clustering. This approach significantly boosts the accuracy and efficiency of detect-
ing dynamic communities by integrating these processes into a unified framework.
Compared to existing methods, this approach demonstrates substantial improve-
ments in accuracy and reduced computation time, underscoring its ability to manage
large-scale networks and complex community dynamics.

In [46], the DANMF-MRL method introduces a new technique known as the
Deep Autoencoder-like NMF for MRL. This approach utilizes a deep encoding pro-
cedure to generate a representation matrix, which is then decoded to reconstruct the
original data. By employing a framework based on DANMF, we effectively address
the challenges of consistency and complementarity in multi-view data, significantly
enhancing the depth and comprehensiveness of the data representation.

In [47], a nonnegative matrix factorization-based MRL framework was proposed
to consider two essential components jointly. Specifically, the exclusivity term is
designed to leverage diverse intra-view information, while the consistency term
ensures a unified representation across multiple views. Additionally, a local mani-
fold component is integrated to maintain the local geometric structure of the data.
Finally, they introduced a multiplicative-based alternating optimization algorithm to
address this problem, complete with proof of convergence.

In [48], a hypergraph regularized diverse deep matrix factorization (HDDMF)
model is introduced for multi-view data representation. This model combines multi-
view diversity with high-order manifold analysis within a multilayer factorization
framework. A newly designed diversity enhancement term exploits the structural
complementarity across different data views. Hypergraph regularization is also
employed to preserve the high-order geometric structures within each view. Further-
more, an efficient iterative optimization algorithm is developed to implement this
model, accompanied by a theoretical analysis of its convergence.

In [49], several domain adaptation and transfer learning methods are used for
social network analysis. These methods are applicable when the source domain has
some labeled data but the target domain lacks labels. The goal is to transfer knowl-
edge from the source domain to the target using a small training set based on deep
learning.

Review studies in this field indicate that graph embedding methods can signifi-
cantly enhance efficiency and reduce the time required for community detection in
social networks. This article uses two parallel graph convolutional networks (GCNs),
a deep learning-based embedding method for network representation learning. On
the other hand, one big problem with GCNs is that they aren’t naturally community-
oriented. This means that the node representations made by these methods might
not be accurate enough, which could make it harder to find communities. To address

25941Community detection in attributed social networks using deep…

this issue and improve the interpretability of the representations, we first use the
k-core algorithm to filter the graph and remove less significant nodes, thereby reduc-
ing the graph’s size and making the communities within the graph more distinct.
Subsequently, one GCN embeds the modularity matrix (representing the graph’s
structure), and the other embeds the Markov matrix (representing node content). We
then average these two embedded representations to create the final representation,
which is more meaningful and has smaller dimensions than the initial state for com-
munity detection.

3 � Preliminaries and notation

This section briefly introduces preliminary knowledge, including basic signs and
problem statements.

3.1 � Attributed graph

Suppose that G = (V ,E,A,X) is an attributed network where V is a set of vertices {
v1, v2,… , vn

}
,E is a set of edges between nodes, A is the adjacency matrix, and X

is the attribute matrix where an element Xip represents the value of the p-th attribute
for the vertexvi. In adjacency matrix A, if there is an edge between the two vertices
of vi and vj thenaij > 0 . For weightless networks, if there is an edge, aij = 1; other-
wise, aij = 0 . If the network is not direct, aij = aji also holds [50].

3.2 � Community and community detection

Consider that we have the community set C =
{
C1,C2,… ,Cr

}
 . Each commu-

nity is a network partition with regional structures and shared cluster attributes.
The node vi that is clustered in the community Ci It should meet the condition
that the internal degree of every node is greater than its external degree. In this
paper, community detection is considered in the attributed graph. The graph has G
attributes and the number of r communities. This paper aims to find the function
f ∶ v → {1,2, 3,… , r} such that r is true for all f

(
vi
)
= r nodes of the r community.

Function partitions should follow the following principles: (1) Nodes of a group
are connected, while the nodes are not connected in different groups. (2) Nodes in
the same community tend to have similar attribute values, while those from differ-
ent communities may vary relatively, even if they are neighbors at the graph level.
(3) The function can adequately maintain the attributed graph’s node attributes and
structural information. Finally, we can find the groups separate from the nodes and
their inductive subnodes, i.e., communities.

3.3 � Decomposition k‑core

Assume a graph G = (V, E) of |V|= n vertices and |E|= e edges; a k-core is defined
as follows: A subgraph H = (C, E|C) induced by the set C ⊆ V is a k-core or a core

25942	 O. Rashnodi et al.

of order k iff ∀ v ∈ C: degree H (v) ≥ k, and H is the maximum subgraph with this
property. Therefore, a k-core of G can be obtained by recursively removing all the
vertices of degrees less than k until all vertices in the remaining graph have at least
degree k.

3.4 � Modularity and normalization cut

Assume that network G = (A, S) is undirected and attributed to n nodes, where
A = [aij] ∈ Rn∗n is the adjacency matrix. In this matrix aij = 1 if there is an edge
between nodes i and j; otherwise,aij = 0 . Here, �i =

∑
j aij is the degree of node i,

and m =
1

2

∑
i �i is the total number of network edges. S = [sij] ∈ Rn∗n is a similarity

matrix in which sij is the cosine similarity value between the corresponding content
vectors of nodes i and j. According to these explanations, the normalized cut and
modularity models are defined as follows:

3.4.1 � Modularity model

The modularity function Q was introduced by Newman-Girvan in [51]. This func-
tion is by far the most well-known quality function for community detection. There-
fore, Q modularity optimization has become one of the leading community detection
methods. Equation (1) defines this function for two communities:

where �i is equal to 1 (or − 1) if node vi belongs to community 1 (or 2). Modularity
can be easily optimized using specific vectors and values by defining a modularity
matrix, as shown in Eq. (2):

Therefore, the modularity ∅ can be rewritten as Eq. (3):

where � = [�i] ∈ {−1,1}n represents membership in a community node. However,
maximizing modularity is an NP-hard problem. By simplifying the problem and
allowing variables �i to take any integer value, the problem can be easily solved as
Eq. (4):

where Ψ = [�ij] ∈ Rn∗p is the matrix that hints at membership in the community
and Tr (0) is the trace function. The solution is to obtain p of the most significant
specific vector of modularity matrix B. In addition, the solution space allows Ψ

(1)� =
1

4m

∑

ij

(
aij −

�i�j

2m

)(
�i�j

)

(2)B =
[
bij
]
∈ Rn∗n, with entriesbij = aij −

�i�j

2m

(3)� =
1

4m
�TB�

(4)max � = maxTr
(
ΨTBΨ

)

25943Community detection in attributed social networks using deep…

reconstruction of network topology from a community structure viewpoint. There-
fore, any row of the Ψ matrix can be assumed to be a good representation of the cor-
responding node in the hidden space to detect the community.

3.4.2 � Normalize cut model

This model yields the ratio of the number of external edges to the number of inter-
nal edges. To calculate a normalized cut, the cut between clusters A and B, denoted as
Cut (A, B), is the total number of edges with only one node. The volume of cluster A,
denoted as Vol (A), is the sum of the node degrees in cluster A [52]. These are com-
puted using Eqs. (5) and (6):

Given Eqs. (5) and (6), the objective function of the normalized cut for two clusters,
A and B, is Eqs. (7) or (8) when there are k clusters C1, C2 … Ck.

where link
�
Ct,Ct

�
=

1

2

∑
i∈Ct ,j∈Ct

Sij is the total connection from nodes in Ct to all
nodes in Ct (not in Ct ) and vol

�
Ct

�
=
∑

i∈Ct
di is the total internal connection in Ct.

To achieve the minimum objective function, the normalized cut is wrapped in an
optimization problem as per Eq. (9), where L is the Laplacian graph matrix of similar-
ity and its normalized form D−1L = D−1(D − S) = I − D−1S is the identity matrix (I).
Equation (10) is known as the Markov matrix:

(5)cut(A,B) =
∑

i∈A,j∈B

wij

(6)Vol(A) =
∑

i∈A

ki

(7)Ncut(A,B) =
cut(A,B)

vol(A)
+

cut(A,B)

vol(B)

(8)Ncut
(
C1,C2,… ,Ck

)
=

k∑

t=1

link
(
Ct,Ct

)

vol
(
Ct

)

min Tr(∅TL∅)

∅ ∈ Rn∗k

S.t L = D − S

(9)D = diag
(
d1, d2,… , dn

)

25944	 O. Rashnodi et al.

In the case of this problem, the solution matrix ∅ of the specific vectors of k is
the minimum nonzero particular value of the normalized Laplacian matrix D−1L . In
other words, k is the most significant specific value M covers, representing the solu-
tion in the hidden space. More importantly, the solution matrix Φ provides a perfect
representation for obtaining the clustering.

Given the above, a higher modularity leads to a better partition structure; con-
versely, a lower normalized cut value enhances the two critical principles of graph
classification, namely maximum integrity and minimum connection.

3.5 � Graph embedding

Let G = (V, E, X), where V =
{
vi
}
i = 1,2, .., n is formed of a set of graph nodes

and eij =< vi, vj >∈ E represents a connection between the nodes. The topological
structure of graph G is illustrated by adjacency matrix A, where Aij = 1 if eij ∈ E
and otherwise Aij = 0 . X ∈ Rn∗d is the node attribute matrix, and d is the number
of attributes. In addition, xi ∈ X shows the attributes of the content of each node vi .
The objective of the embedding problem is to map nodes vi ∈ V to low-dimensional
vectors �⃗zi ∈ Rd , with a formal format f ∶ (A,X) → Z, where ziT is the-i row of the
Z ∈ Rn∗d matrix (n is the number of nodes, and d is the packing dimension). We
assume that Z is the packing matrix, so the packings should preserve A’s topology
and content information, X.

4 � Notations

Table 1, which includes various matrices, graph properties, and representation
details relevant to the discussed methods, consolidates the essential symbols used in
this paper.

5 � The proposed method: DEGCN

Our proposed model aims to identify communities in attributed social networks
using an efficient and interpretable embedding method by leveraging a parallel dual-
graph convolutional neural network. This model consists of four main phases: the
first phase is graph filtering; the second phase involves the calculation of modularity
and Markov matrices; the third phase is network embedding using the parallel dual-
graph convolutional network to obtain a new and meaningful representation; and the
fourth phase is classification. Each phase’s output seamlessly transitions to the next

�ij =

� 1√
vol(Cj)

if vi ∈ Cj

0 otherwise

(10)M = D−1

25945Community detection in attributed social networks using deep…

Table 1   List of notations used in this paper

Descriptions Symbols Descriptions Symbols

A similarity matrix S Graph adjacency matrix A
The modularity value of (vi; vj) Bij Graph attribute matrix X
The modularity evaluation metric Q Number of nodes in the graph N
The pairwise node similarity value of (vi;

vj)
Sij Representations of nodes Z

A degree matrix D Hidden dimensions H
A Laplacian matrix L Reconstructed graph adjacency matrix A

A modularity matrix B Number of communities in the graph K
A Markov matrix M Feature representation at layer i + 1 H[i+1]

Feature representation at layer i Hi The Activation function �(0)
Based on layer i bi Weight at layer i Wi

Fig. 1   Flowchart of the proposed method DEGCN

25946	 O. Rashnodi et al.

phase as input. Figure 1 depicts a detailed schematic of the proposed method. The
following sections will delve deeper into the complexities of our approach.

5.1 � Graph filtering

By applying the k-core algorithm, we filter the graph to remove nodes of lesser sig-
nificance, commonly known as low-degree nodes. This process contributes to reduc-
ing the graph’s size and complexity, thus optimizing the performance of subsequent
algorithms applied to the graph for community detection. This technique empha-
sizes the more salient regions of the graph, streamlining computations. Specifically,
a k-core is a maximal subset of the graph’s nodes where each node is connected to
at least k other nodes within the subgroup. For a node to be included in the k-core,
its degree within this subset must be at least k. The k-core is computed; nodes with a
degree less than k are removed. Subsequently, the degrees are recalculated, and the
removal process is repeated. This iterative process continues until all nodes meet the
k-core criterion. Each iteration has a computational complexity of O (E), where E
represents the number of edges. Algorithm 1 provides the pseudocode for the k-core
algorithm. Figure 2 illustrates a step-by-step visualization of a graph undergoing
k-core decomposition, focusing on nodes with a degree less than 3 being iteratively
removed. The following is an explanation for each iteration:

•	 All nodes are evaluated for degrees in the initial graph (iteration 0). Nodes 0
and 8 are identified as having degrees less than 3. These nodes are marked in
red to indicate that they will be removed from the graph. This marking marks
the beginning of the k-core decomposition process, which sets the stage for
subsequent iterations by removing nodes that do not meet the minimum degree
requirement.

•	 After removing nodes 0 and 8, the graph’s structure changes, affecting the
degrees of the adjacent nodes. In iteration 1, node 1 has a degree less than 3 (pre-
viously connected to node 0, impacting its degree). Node 1 is, therefore, marked
in red and removed from the graph. This iteration further simplifies the graph,
focusing the subsequent analysis on the remaining nodes.

•	 With node 1 removed, in iteration 2, the degree of node 5 (connected to node
1) is re-evaluated. The degree of node 5 decreases to less than three due to the

Fig. 2   A sample of the algorithm’s 3-core output

25947Community detection in attributed social networks using deep…

removal of node 1, leading to its selection for removal. This iteration is marked in
red. The graph’s structure continues to be pruned to focus on the core nodes with
higher connectivity. In this final iteration (iteration 3), no nodes are removed,
indicating that all remaining nodes have a degree of 3 or more. Nodes 2, 3, 4,
6, and 7 form the stable core of the graph. This core represents the k-core of the
graph, with each node satisfying the minimum degree requirement of 3. Such
a conclusion is the step in this k-core decomposition process, highlighting the
original network’s central, most interconnected component.

Each iteration systematically reduces the graph by removing nodes with insuf-
ficient connectivity, eventually resulting in a simplified core that illustrates the most
interconnected nodes. Given the explanations provided in this section, it is clear that
the k-core algorithm defines a community based on density; employing this algo-
rithm reduces the graph’s size (thus expediting the community detection algorithm
in subsequent steps) and enhances the community-centric orientation of graph neu-
ral networks. The dataset being analyzed influences this algorithm’s choice of k. We
determined k = 3 this study was based on a trial-and-error approach.

Algorithm 1 k-core decomposition

5.2 � Calculation of the modularity matrix and normalized cut matrix

This section calculates the modularity matrix (Matrix B) and the Markov matrix
(Matrix M) of the filtered graph, which results from applying the 3-core algorithm.
These calculations are based on Eqs. (2) and (10), as described in Sects. 3.4.1 and
3.4.2, respectively.

25948	 O. Rashnodi et al.

5.3 � Network embedding

The goal of the learning phase is to attain a robust embedding of the data graph
G = (V, E, A, X). We use a graph autoencoder to process the entire graph and learn
an effective embedding to achieve this. Figure 3 illustrates a portion of the workflow
for the processing method. In the graph autoencoder, the encoder takes the graph’s
structure A and the node content X as inputs to learn the latent representation Z.
Subsequently, the decoder reconstructs the graph’s structure from Z. In a convolu-
tional graph context, the graph autoencoder’s objective is to embed each node in the
graph into a lower-dimensional space. This process aims to aggregate the represen-
tations of similar nodes in this new feature space, focusing on developing a space-
oriented approach to community-specific features. The graph autoencoder comprises
two components, the encoder and the decoder, as elaborated below:

5.3.1 � Encoder convolutional graph model

A graph convolutional network (GCN) [53] was developed as a graph encoder to
represent graph A’s structure and node X’s content in an integrated framework.
This GCN expands the convolution operation to the graph data in the spectral
field and learns a stratified transformation through a spectral convolutional func-
tion f

(
Z(l),A|w(l)

)
 in Eq. (11):

where Z(l) is a convolution input, Z(l+1) is the convolution output, and w(l) is a matrix
of filter parameters needed for learning in the neural network. If f

(
Z(l),A|w(l)

)
 is

well defined, we can construct an efficient deep convolutional neural network. Each
layer of the GCN is expressed as f

(
Z(l),A|w(l)

)
 using Eqs. (12) and (13):

(11)Z(l+1) = f
(
Z(l),A|w(l)

)

Z(0) = X ∈ Rn∗m(n nodes and m features)

Fig. 3   Workflow scheme of the proposed graph autoencoder

25949Community detection in attributed social networks using deep…

where I is an identity matrix of A and ∅ is a nonlinear activation function such as
Relu(t) = max(0, t)or sigmoid(t) =

1

1+et
. In this paper, the encoder graph G(X, A) uti-

lizes a two-layer GCN given the dataset type. The GCN organizes the hidden fea-
tures of the graph at several layers to meet the requirements of community detection.
Equations (14) and (15) present the encoder graph equations for the two-layer GCN:

The Relu (0) function refers to activation functions applied to the first and second
layers. W (0) and W (1) are the weights associated with each layer. The activation func-
tion, Relu (0), is pivotal in graph representation learning. The encoder convolution
graph, denoted as G(X, A) = q (Z|X, A), translates the graph structure and node con-
tent into the representation Z(2).

5.3.2 � Decoder model

The proposed decoding model is used to reconstruct graph data. We can rebuild a
graph structure, content information X, or both. Here, reconstruction of the graph
structure is recommended, which gives us a higher level of flexibility so our algo-
rithm preserves its functionality even if content information X is unavailable. A
decoder p(A|Z) predicts whether there is a connection between the two nodes of
a connection. As per Eqs. (16) and (17), we trained a connection prediction layer
based on graph embedding:

The embedding of Z and A The reconstructed graphs are given in Eq. (18):

Based on the descriptions provided in Sects. 4.3.1 and 4.3.2 of graph convolu-
tion networks for the propagation of feature representations to subsequent lay-
ers, Eq. (19) is used, and nonlinear activation functions are employed to represent

(12)f
(
Z(l),A|w(l)

)
= �

(
D̃

−
1

2 �AD̃−
1

2 Z(l)w(l)
)

(13)Ã = A + I, D̃ii =
∑

j

Aij

(14)Z(1) = fReLU
(
X,A|W (0)

)

(15)Z(2) = fReLU
(
Z(1),A|W (1)

)

(16)p
(
A|Z

)
=

n∏

i=1

n∏

j=1

p(Aij|zi,zj)

(17)p
(
Aij = 1|zi,zj

)
= sigmod

(
zT
i
, zj

)

(18)A = sigmod
(
ZZT

)
, here Z = q(Z|X,A)

25950	 O. Rashnodi et al.

nonlinear features. Consequently, the feature representations at layer zero are essen-
tially the input features (X), as described by Eq. (20):

where H[i+1] represents the feature representation at layer i + 1, emerging as the out-
put of the activation function � . This function is crucial for introducing non-linearity
to the networks processing, allowing more complex patterns to be captured. Con-
currently, Wi serves as the weight matrix at layer i, crucially influencing how the
features from the previous layer affect the current layer’s outputs. Furthermore, bi
the bias at the same layer i is added to each neuron, enhancing the model’s flex-
ibility and ability to learn diverse patterns. This combination of weights and biases,
adjusted through training, determines the effectiveness of the network in feature
learning and transformation across successive layers.

where WT
[0]

 The weight matrix’s transpose is associated with the first layer, and X
denotes the input feature matrix. The term b[0] is the bias vector for the first layer.
The function σ signifies the activation function, which is applied element-wise. This
equation effectively captures how the weights and biases linearly transform the input
data X before being passed through the activation function to produce the first layer
output, H[1], which then serves as input to subsequent layers in the network.

This section uses a spectral graph convolutional network to disseminate informa-
tion through the eigen decomposition of the graph Laplacian matrix. Consequently,
Eq. (19) is implemented using this network according to Eq. (21). This equation
integrates the adjacency matrix and the input features of the nodes into the forward
propagation equation. Therefore, this technique enables the model to understand the
nodes’ features through the eigen decomposition interconnections. Furthermore, the
adjacency matrix is added to this propagation process:

In this paper, matrix A* is a renormalization of A (the adjacency matrix) designed
to counteract the vanishing gradient issue. Instead of using a matrix H[i] to create a
community-oriented representation with reduced dimensions, we utilize two specific
matrices: the modularity matrix (B) and the Markov matrix (M) as input for graph
autoencoder number 1 and graph autoencoder number 2, respectively, as shown in
Fig. 4. Figure 4 illustrates the architecture of our proposed community detection
model using dual embedding-based graph convolution networks (DEGCNs), which
integrate both the graph structure and node features.

This dual-graph autoencoder proposed setup facilitates parallel processing and
allows for comparing different matrix influences on the interpretation of graph
structure. The first graph autoencoder’s (#1) decoder, composed of a two-layer
graph convolutional neural network, processes these inputs according to Eq. (22),
producing a representation noted as Z1 . Simultaneously, the decoder of the second

(19)H[i+1] = �
(
WiHi + bi

)

(20)H[1] = �
(
WT

[0]
X + b[0]

)

(21)H[i+1] = �
(
W [i]H[i]A∗

)

25951Community detection in attributed social networks using deep…

graph autoencoder (#2), also structured as a two-layer GCN, processes inputs under
Eq. (23) to generate another representation, denoted as Z2 . These representations are
then combined according to Eq. (24):

This embedding is computed using matrices M (Markov matrix), A (adjacency
matrix), and weight matrices W0 and W1 . Here, Ã is the normalization of the adja-
cency matrix A, applied to modulate the influence of neighboring nodes differently
at two stages of the transformation.

This embedding is similar to Z1 but uses a modularity matrix, B instead of M:

This operation combines the information from both embeddings, potentially cap-
turing a more comprehensive representation by integrating matrix M and B with dif-
ferent perspectives or feature interpretations.

5.3.2.1  Loss function and optimization  The Adam optimizer, a well-known opti-
mizer for deep learning, trains the overall end-to-end deep neural network. The loss
function is the cross-entropy loss between the predicted community labels and the
partial ground-truth labels. The Adam optimizer in the diagram optimizes the models’
weights by minimizing the loss during training. In the context of a graph autoencoder,
as depicted in Fig. 4, the Adam optimizer helps adjust the neural network weights to
effectively reconstruct the graph’s adjacency matrix from the learned embeddings.
The Adam optimizer minimizes the difference (loss) between the original and recon-
structed adjacency matrix from the embedded. The model can produce more accurate
embeddings of the original graph data by reducing this loss. The graph data recon-
struction error for a self-encoder graph is minimized using Eq. (25):

(22)embeding1 = Z1 = f (M,A) = Relu
(
Ã ⋅ Relu

(
Ã ⋅M ⋅W0

)
W1

)

(23)embeding2 = Z2 = f (B,A) = Relu
(
Ã ⋅ Relu

(
Ã ⋅ B ⋅W0

)
W1

)

(24)embeding result = Zfinal = average(Z1, Z2)

Fig. 4   DEGCN framework for community detection in attributed social networks

25952	 O. Rashnodi et al.

This loss function evaluates how effectively the model can reconstruct the adja-
cency matrix based on the latent representations (Z) extracted from the data (X) and
the original adjacency matrix (A). This setup is typical when estimating how well
the model reconstructs the adjacency matrix based on the latent representations.

The function q (Z∣X, A) indicates a probabilistic encoding of the graph data and
adjacency matrix into a latent space, and p (A∣Z) represents the probabilistic decod-
ing from the latent space to the adjacency matrix. Using the log probability in the
loss function is a common choice in machine learning for stability and calculation
efficiency, particularly under cross-entropy loss.

5.4 � Node classification

In this phase, we apply min–max scaling to normalize the Zfinal feature vectors
obtained in the previous phase. This normalization process scales the data values to
zero and one, ensuring uniformity across all features. Such uniformity is crucial as
it enhances the speed of convergence and the stability of the MLP classifier, thereby
improving the overall learning efficiency. The MLP classifier is designed with three
layers, containing 128, 64, and 32 neurons, respectively. The model is set to run for
500 iterations as specified by the maximum iteration parameter. Relu is chosen as
the activation function for the hidden layers due to its effectiveness and simplicity,
making it a popular option in deep learning models.

5.5 � Time complexity analysis

Table 2 provides a general pseudocode of the program, detailing each line’s time
complexity and accompanying explanations. Loading the graph G = (V, E, A, X) has
a complexity of O (N + E), and applying k-core filtering is O (E). The GCN model is
initialized with O (1). For each epoch, training the GCN model takes O (E + N × D),
extracting embeddings is O (N × D), splitting data is O(N), performing classifica-
tion with MLP is O (Ntrain), and making predictions is O (Ntest). The computational
evaluation metric is O (Ntest). Thus, the training phase significantly contributes to
the overall complexity, yielding a final O (Epoch × (E + N × D)) complexity. Table 3
compares community detection schemes using GCNs—characteristics, properties,
and computational complexity. The computational complexity of an algorithm is a
critical factor in determining its efficiency, especially when dealing with large data-
sets. Comparatively, several methods in Table 2, such as LGNN, MRFasGCN, and
CayleyNet, have a complexity of O (m). While this seems linear and comparable to
the DEGCN, the actual efficiency would depend on what the variable m represents
in their respective contexts. If m is significantly larger than the sum of the edges and
nodes multiplied by the number of dimensions, the DEGCN will have a computa-
tional advantage.

(25)L0 = Eq(Z|(x,A))[logp(A|Z)]

25953Community detection in attributed social networks using deep…

6 � Experiment

In this section, we have conducted several meticulous experiments based on real-
world scenarios and valid datasets to make a fair comparison of DEGCN with state-
of-the-art related works. Here, we describe the assessment metric, baseline method-
ology, experimental setting, and ablation studies.

6.1 � Experimental settings

6.1.1 � Datasets

We sourced datasets from practical applications for our community detection experi-
ments, allowing a comprehensive assessment of our proposed methods. Table 4 [57]
provides the statistical details of the three datasets used in this study. These datasets
are citation networks in which nodes represent papers, edges represent citation rela-
tionships, attributes are word packet representations of paper abstracts, and labels
correspond to paper topics.

Table 2   Pseudocode of the proposed method

25954	 O. Rashnodi et al.

Ta
bl

e 
3  

S
um

m
ar

y
of

 G
C

N
-b

as
ed

 c
om

m
un

ity
 d

et
ec

tio
n

m
et

ho
ds

M
et

ho
d

Le
ar

ni
ng

 ty
pe

C
on

vo
lu

tio
n

C
lu

ste
rin

g
al

go
rit

hm
O

th
er

 c
ha

ra
ct

er
s

C
om

pl
ex

ity
In

pu
t

LG
N

N
 [3

5]
Su

pe
rv

is
ed

Fi
rs

t-o
rd

er
 li

ne
 g

ra
ph

–
Ed

ge
 fe

at
ur

e
O

 (m
)

A,
 X

M
R

Fa
sG

C
N

 [2
7]

Se
m

i-s
up

er
vi

se
d

Fi
rs

t-o
rd

er
 +

 m
ea

n
fie

ld
 a

pp
ro

xi
m

at
e

–
G

C
N

 +
 eM

R
F

O
 (m

)
A,

 X
C

ay
le

yN
et

 [3
9]

La
pl

ac
ia

n
sm

oo
th

in
g

fil
te

r
–

C
ay

le
y

po
ly

no
m

ia
l

O
 (m

)
C

om
m

D
G

I [
11

]
U

ns
up

er
vi

se
d

Fi
rs

t-o
rd

er
 +

 sa
m

pl
in

g
–

Jo
in

 o
pt

im
iz

at
io

n
–

A,
 X

N
O

C
D

 [5
4]

Fi
rs

t-o
rd

er
–

G
C

N
 +

 B
P

–
G

C
LN

 [3
7]

Fi
rs

t-o
rd

er
K

-m
ea

ns
U

ne
t a

rc
hi

te
ct

ur
e

–
IP

G
D

N
 [3

8]
Fi

rs
t o

rd
er

 +
 di

se
nt

an
gl

ed
 re

pr
es

en
ta

tio
n

K
-m

ea
ns

H
SI

C
 a

s r
eg

ul
ar

iz
er

O
 (m

)
A

G
C

 [5
5]

k-
or

de
r +

 L
ap

la
ci

an
 sm

oo
th

in
g

fil
te

r
Sp

ec
tra

l c
lu

ste
rin

g
–

O
 (n

2 dt
 +

 m
dt

)
A

G
E

[5
6]

La
pl

ac
ia

n
sm

oo
th

in
g

fil
te

r
Sp

ec
tra

l c
lu

ste
rin

g
A

da
pt

iv
e

le
ar

ni
ng

–
D

EG
C

N
Su

pe
rv

is
ed

K
-o

rd
er

M
LP

G
C

N
O

 (E
 +

 N
 ×

 D
)

A,
 X

25955Community detection in attributed social networks using deep…

6.1.2 � Evaluation metrics

This section introduces a set of qualitative measures used for assessing community
detection methods, categorized into performance and goodness measures. Perfor-
mance measures examine the quality of the community obtained via the algorithm
compared with actual communities. In addition, goodness measures assess the struc-
tural specifications of the detected communities [60]. We used six measures of nor-
malized mutual information, the rand-adjusted index, accuracy, precision, and F1
score, to assess the proposed method. Higher scores on all the measures represent
better results. In the following sections, we further discuss these measures:

•	 Normalized mutual information

The normalized mutual information computed through Eq. (26) represents the
similarity of the final community set obtained by the proposed algorithm to the cor-
rect community [60].

where k is the number of communities, n is the number of nodes, nij is the number of
nodes in the optimized community set i such that the proposed community set is in
community j, nc

i
 , the number of nodes in the community i, which is in the optimized

community set, and nc
j
 is the number of nodes in community j.

•	 Accuracy

It determines the authenticity of the community setting, and similar to NMI, com-
puting this measure requires an optimum community setting Eq. (27) [60].

where n is the number of groups, and for a specific group, i and Ći , C
i
 are the com-

munities of node i in optimum and recommended community settings. K(x, y) is a
function equal to 1 when x = y and 0 otherwise.

(26)NMI =

∑k

i=1

∑k

j=1
nij ln(nij ⋅ n∕n

c
i
⋅ nc

j
)

��∑k

i=1
nc
i
ln
�

nc
i

n

���∑k

j=1
nĆ
j
ln
�
nĆ
j
∕n

��

(27)ACC =

∑n

i=1
k
�
Ci, PM

�
Ći

��

n

Table 4   Summary of real-world
benchmarks on datasets

Dataset #Nodes #Edges #Node attributes Num. of
communi-
ties

Cora [58] 2708 5429 1433 7
CiteSeer [58] 3312 4715 3703 6
PubMed [59] 19,717 44,338 500 3

25956	 O. Rashnodi et al.

•	 Rand index adjusted

The rand index adjusted (RI) [61] is a measure that compares the results of parti-
tioning by a method to actual partitions. In addition, the RI was used to compare the
results of the two clustering methods, as shown in Eq. (28):

where n is the total number of nodes, Y and C represent two different clusters, the
number of pairs in a similar cluster in C and Y, respectively, and b is the number of
pairs in dissimilar groups. Notably, the RI is in the [0, 1] interval, equal to 1 when
two sets of clusters are identical and equal to 0 when the two sets of clusters are
entirely different.

•	 Precision

It calculates the accuracy of the community and the percentage of nodes in the
detected community that belong to the actual community and is formulated accord-
ing to Eq. (29):

where C∗
i
 is the detected community and Ci is the actual community.

•	 F1-scores

The F1-score of community detection is the harmonic mean of recall and preci-
sion, which is formulated as Eq. (30):

where C∗
i
 is the detected community and Ci is the actual community.

6.1.3 � Parameter settings

We selected 20 nodes from each class to form the training set, 500 for the validation
set, and 1000 for the test set. We conducted all experiments using a two-layer GCN
configuration. The first layer comprises 64 neurons, with each subsequent layer in
the contracting path halving the number of neurons from the previous layer. We
employed the widely used Adam optimizer for training and conducted experiments
using Tensor Flow and PyTorch. We set the learning rate at 0.01 and dynamically

(28)
RI(Y ,C) =

(a + b)
(
n

2

)

(29)Precision
(
Ci,C

∗
i

)
=

Ci ∩ C∗
i

|||C
∗
i

|||

(30)F1 − scores
(
Ci,C

∗
i

)
= 2 ⋅

precision
(
Ci,C

∗
i

)
⋅ recall

(
Ci,C

∗
i

)

precision
(
Ci,C

∗
i

)
+ recall

(
Ci,C

∗
i

)

25957Community detection in attributed social networks using deep…

optimized it using a scheduler that reduced the rate when the loss plateaued, thereby
promoting more stable convergence.

Additionally, we set the dropout rate at 0.5 and the maximum number of epochs
at 200. We applied the Relu activation function after every graph convolutional
operation. We terminated the training if the loss function decreased over 10 consec-
utive epochs. We randomly selected the initial weights of the two GCN layers in the
DEGCN from a uniform distribution. We repeated each experiment ten times and
reported the average scores below. Table 5 summarizes the parameter settings used
in our experiments, detailing the names of the parameters and their corresponding
values. We implemented the research on a system with an AMD Ryzen 71700X
Eight-Core Processor at 3.77 GHz and 32 gigabytes of RAM, using Python version
3.7 and Anaconda3-2019.03-Linux-x86_64.

6.1.4 � Experimental results and analysis

This subsection describes the experimental results analyzed from multiple evalua-
tion perspectives. To validate the efficiency of our proposed model, we examined the
Cora, CiteSeer, and PubMed medium–scale datasets. We compared our proposed
technique with three baseline categories of established methods to gain a compre-
hensive understanding. The following sections detail these comparative methods,
which serve as our reference points:

•	 Node Feature-Based Methods: This category predominantly relies on individual
nodes’ unique attributes or characteristics. Methods such as k-means and spectral
clustering, known as spectral f, exemplify this approach. These techniques con-
struct a similarity matrix from node features, typically using a linear kernel.

	  –	 Graph Structure-Based Methods: This category focuses on the
graph’s intrinsic structure. Techniques such as spectral clustering (Spectral-g)
use the node adjacency matrix to construct the similarity matrix. DeepWalk
[14] is another important method in this group; it is excellent at learning graph
embeddings. DNGR [62] combines the benefits of spectral graph clustering with
deep neural networks to understand complex graph representations. vGraph[63]
is a probabilistic generative model to learn community membership and node
representation collaboratively. Graph Encoder [64] learns graph embedding for
spectral graph clustering.

•	 Hybrid Methods: These methods combine node attributes and graph structure to
improve community detection. Although this approach generally increases com-
putational complexity, it often results in better outcomes than those that use only
node or structure information. Within this domain, several graph autoencoder
variants have emerged:

	  –	 GAE [65]: A model that utilizes neural networks to learn graph
representations.

–	 VGAE [65]: An advancement of GAEs that applies a variational inference
framework.

25958	 O. Rashnodi et al.

Ta
bl

e 
5  

D
et

ai
le

d
pa

ra
m

et
er

 se
tti

ng

D
at

as
et

s
Tr

ai
ni

ng
 E

po
ch

Le
ar

ni
ng

 ra
te

A
ct

iv
at

io
n

fu
nc

tio
n

W
ei

gh
t d

ec
ay

O
pt

im
iz

er
G

C
N

 la
ye

rs
D

ro
po

ut
 ra

te
#T

ra
in

/v
al

id
at

io
n/

te
st

no
de

C
or

a
20

0
0.

01
Re

lu
5e

-3
A

da
m

64
/3

2
0.

5
14

0/
50

0/
10

00
C

ite
Se

er
20

0
0.

01
Re

lu
5e

-3
A

da
m

64
/3

2
0.

5
12

0/
50

0/
10

00
Pu

bM
ed

20
0

0.
01

Re
lu

5e
-3

A
da

m
64

/3
2

0.
5

60
/5

00
/1

00
0

25959Community detection in attributed social networks using deep…

–	 MGAE [18]: This technique improves representation by marginalizing spe-
cific graph properties.

–	 ARGA [66]: This method uses adversarial training to improve the regulariza-
tion of graph embeddings.

–	 ARVGA [66]: This technique incorporates vibrational regularization into
encoding.

–	 DAEGC [67]: This approach uses deep autoencoders to reconstruct the
graph’s adjacency matrix.

–	 AGE [56]: A model that uses a two-stage process to enhance graph-based
learning tasks.

–	 AGC [55]: A model that leverages high-order graph convolution to under-
stand a graph’s global structure effectively

–	 DBGAN [68] and GALA [69] are two new ways to use graph neural networks
to do two very different things: group nodes together and embed node fea-
tures.

–	 CommDGI [11] and GC-VGE [70]: These graph neural network models opti-
mize the simultaneous learning of node embeddings and cluster assignments.

–	 TADW [71]: A model that employs matrix factorization for network represen-
tation learning, representing a distinct approach to addressing this issue.

–	 RMSC [72]: A robust multi-view spectral clustering method via low rank and
sparse decomposition.

–	 RTM [72]: A model that Learns how each document’s topic is distributed
from text and citation.

–	 GMIM [73]: A model that utilizes a mutual information maximization
approach for node embedding.

–	 DGVAE [74]: A model that presents a graph variational generative model
that uses the Dirichlet distributions as priors on the latent variables.

–	 BernNet [75]GCN: This technique uses a graph convolutional neural network
framework based on the Bernstein polynomial approximation of order K.

–	 WC-GCN [76]: This technique utilizes a graph convolutional neural network
framework.

–	 LGNN [35]: This method is a neural network model explicitly designed for
graph data.

–	 MRFasGCN [27]: is a model that combines a GCN with the Markov random
field statistical model for community detection.

Tables 6, 7 and 8 comprehensively compare the proposed method with baseline
community detection methods based on their performance metrics. These metrics
include accuracy (ACC %), normalized mutual information (NMI %), adjusted Rand
index (ARI %), F1-score (F1%), and precision (P %). The compared approaches are
often categorized into three groups based on the type of learning: supervised, semi-
supervised, and unsupervised. Furthermore, these strategies are classified into three
groups based on the input type: features, graph topology, or a hybrid of both.

Table 6 presents the proposed method with the highest F1 and precision scores,
83.19% and 83.70%, respectively, and an impressive NMI of 69.51%, demonstrating
its high capability in identifying community structures. Methods such as GMIM,

25960	 O. Rashnodi et al.

DBGAN, and AGE also demonstrate strong performance across multiple metrics,
reflecting advancements in graph neural networks and deep learning techniques for
community detection.

In contrast, traditional methods like K-means and spectral clustering exhibit
lower performance, highlighting the superiority of modern techniques. For instance,
K-means only achieves an ACC of 49.2% and an ARI of 23.0%, while newer
methods like LGNN reach ACC values above 79%. Supervised methods such as
LGNN, BernNet GCN, WC-GCN, and the semi-supervised MRFasGCN demon-
strate remarkable performance on the Cora dataset. LGNN achieves a high ACC of
79.04% and an ARI of 79.04%, indicating its efficiency in leveraging labeled data
for community detection. BernNet GCN, which incorporates a Bernoulli model,

Table 6   Performance comparison of different community detection methods on the Cora dataset

The best results are in bold; ‘–’ indicates that runtime exceeds 24 h or out of memory

Name of methods Learning type Input ACC% NMI% ARI% F1% P%

K-means Unsupervised Feature 49.2 32.1 23.0 36.8 36.9
Spectral-F [77] 34.7 14.7 7.1 – –
Spectral-G [77] Graph 31.46 9.69 0.35 29.67 18.07
DeepWalk [14] 56.20 39.87 32.18 47.6 5.48
Graph encoder [78] 32.5 10.9 0.6 29.8 18.2
DNGR [62] 44.39 33.31 15.86 34.68 27.86
vGraph [63] 28.7 34.5 31.2 30.5 –
TADW [71] Feature and graph 55.00 36.59 26.40 41.52 36.50
GAE [65] 60.34 44.85 36.73 58.72 61.39
VGAE [65] 63.56 47.45 39.42 63.75 65.64
MGAE [18] 63.43 45.57 38.01 38.01 –
ARGE [66] 60.84 42.21 36.88 60.49 63.38
ARVGA [66] 62.83 45.93 38.00 63.17 64.80
DGVAE [74] 64.42 47.64 38.42 62.69 64.90
AGC [55] 68.92 53.68 48.6 65.61 –
CommDGI [11] 69.8 57.9 50.2 68.4 –
DAEGC [67] 70.4 52.8 49.6 68.2 –
GC-VGE [70] 70.67 53.57 48.15 69.48 70.51
GALA [69] 72.42 53.96 47.22 – –
DBGAN [68] 74.6 57.7 53.2 – –
GMIM [73] 74.8 56.0 54.0 – –
AGE [56] 76.8 60.7 56.5 – –
MRFasGCN [27] Semi-supervised 84.3 66.2 – – –
BernNet GCN [75] Supervised 41.06 68.78 – – –
LGNN [35] 79.04 – – 79.04 –
WC-GCN [76] 79.39 – – 75.32 –
DEGCN(proposed

method)
Supervised 83.03 69.51 66.09 83.19 83.70

25961Community detection in attributed social networks using deep…

excels in NMI with a value of 68.78%, demonstrating its strength in mutual infor-
mation metrics. WC-GCN also performs well, with an ACC of 79.39% and an ARI
of 75.32%, highlighting its effectiveness in graph-based clustering. The semi-super-
vised MRFasGCN stands out with the highest ACC of 84.3% and a robust NMI of
66.2%, demonstrating the power of integrating Markov Random Fields with GCNs.
Notably, the proposed DEGCN method achieves the highest ACC among the super-
vised methods, showing its exceptional accuracy even among supervised techniques.
The proposed method outperforms all in F1 and precision, scoring 83.19% and
83.70%, respectively. It also achieves a high NMI of 69.51%, making it the most
robust method overall for community detection in this dataset.

Table 7   Performance comparison of different community detection methods on the PubMed dataset

The best results are in bold; ‘–’ indicates that runtime exceeds 24 h or out of memory

Name of methods Learning type Input ACC% NMI% ARI% F1% P%

K-means Unsupervised Feature 55.59 24.34 21.54 56.04 46.08
Spectral-F [77] 60.20 30.90 27.7 – –
Spectral-G [77] Graph 37.98 10.30 26.67 50.54 0.02
DeepWalk [14] 64.98 26.44 27.42 63.46 65.24
Graph encoder [11] 53.1 20.9 18.4 50.6 45.6
DNGR [62] 25.53 20.11 8.29 15.57 19.26
vGraph [79] 26.00 22.40 18.50 33.20 –
TADW [71] Feature and graph 46.82 9.47 5.78 51.22 38.34
GAE [65] 64.43 24.85 23.57 64.07 65.26
VGAE [65] 64.67 23.94 23.41 64.77 64.53
MGAE [18] 43.88 8.16 3.98 41.98 –
ARGA [66] 65.07 29.23 26.79 64.11 69.27
ARVGA [66] 62.01 26.62 22.46 61.66 68.41
DGVAE [74] 67.56 28.72 24.92 64.35 67.10
AGC [55] 69.78 31.59 31.19 68.72 –
CommDGI [11] 69.90 35.70 29.2 69.2 –
DAEGC [67] 67.10 26.60 27.8 65.9 –
GC-VGE [70] 68.18 29.70 29.76 66.87 69.39
GALA [69] 69.39 32.73 32.1 – –
DBGAN [68] 69.40 32.40 32.7 – –
GMIM [73] 70.87 32.43 33.25 69.19 70.83
AGE [56] 71.1 31.6 33.4 – –
MRFasGCN [27] Semi-supervised 79.6 40.7 – – –
BernNet GCN [75] Supervised 61.25 51.40 – – –
LGNN [35] 72.64 – – 72.64 –
WC–GC [76] 79.41 – – 73.75 –
DEGCN(proposed

method)
Supervised 81.34 53.71 51.07 81.30 81.33

25962	 O. Rashnodi et al.

To make a fair comparison with other related works, we repeated the experiments
on two different datasets, the PubMed dataset and the CiteSeer dataset. We present
the results and figures of this new evaluation in Tables 7 and 8, respectively.

Table 7 shows that the proposed DEGCN method performs better than the other
methods baseline, especially compared to supervised methods. DEGCN achieves
the highest accuracy (ACC) of 81.34%, significantly surpassing MRFasGCN at
79.6% and WC-GC at 79.41%. Regarding normalized mutual information (NMI),
DEGCN scores 53.71%, notably higher than BernNet GCN at 51.40%, and LGNN,
which does not report NMI but has a high accuracy. DEGCN also leads in the
adjusted Rand index (ARI) with 51.07%, compared to GMIM’s 33.25% and AGE’s
33.4%, indicating a closer match to the actual community structures. Furthermore,
DEGCN’s F1-score of 81.30% outshines WC-GC’s 73.75%, reflecting a better bal-
ance between precision and recall. DEGCN achieves 81.33% in precision (%), sig-
nificantly higher than ARGA’s 69.27% and GMIM’s 70.83%, indicating fewer false
positives. These results show that DEGCN is solid and reliable, especially com-
pared to supervised methods. They also show that it locates community structures
in the PubMed dataset better. The consistent outperformance across all key metrics

Table 8   Performance comparison of different community detection methods on the CiteSeer dataset

The best results are in bold, ‘–’ indicating that runtime exceeds 24 h or is out of memory

Name of methods Learning type Input ACC% NMI% ARI% F1% P%

K-means Unsupervised Feature 54.0 30.5 40.9 40.5 27.9
Spectral-F [77] 23.9 5.6 29.9 17.9 0.010
DeepWalk [14] Graph 32.7 8.8 27.0 24.8 9.2
Graph encoder[11] 22.5 3.3 30.1 17.9 0.010
DNGR [62] 32.6 18.0 30.0 20.0 4.4
RTM [72] 45.1 23.9 34.2 34.9 20.3
RMSC [72] 29.5 13.9 32.0 20.4 4.9
TADW [71] Feature and graph 45.5 29.1 41.4 31.2 22.8
GAE [65] 40.8 17.6 37.2 41.8 12.4
VGAE [65] 34.4 15.6 30.8 34.9 9.3
MGAE [18] 43.88 8.16 39.8 41.98 –
ARGA [66] 57.3 35.0 45.6 57.3 34.1
ARVGA [66] 54.4 26.1 52.9 54.9 24.5
AGE [56] 70.2 44.8 45.7 – –
MRFasGCN [27] Semi-supervised 73.2 46.3 – – –
BernNet GCN [75] Supervised 72.32 58.01 – – –
LGNN [35] 73.15 – – 73.15 –

73.2 46.3 – – –
WC-GCN [76] 75.18 – – 69.33 –
DEGCN
(proposed method)

Supervised 75.45 59.09 53.99 74.43 75.10

25963Community detection in attributed social networks using deep…

highlights DEGCN’s effective integration of feature and graph information, setting it
apart as the most effective method for community detection in this context.

Based on the analysis of the results presented in Table 8, the proposed method
achieves the highest accuracy (75.45%), marginally outperforming WC-GCN
(75.18%) and significantly surpassing other supervised methods like MRFasGCN
(73.2%), LGNN (73.15%), and BernNet GCN (72.32%). Regarding normalized
mutual information (NMI), DEGCN leads with 59.09%, closely followed by Bern-
Net GCN at 58.01%, indicating better mutual information capture between predicted
and actual community structures. The adjusted Rand index (ARI) for DEGCN is
53.99%, surpassing ARVGA (52.9%) and AGE (45.7%), showing a higher agree-
ment with the actual partitioning of the data. Furthermore, DEGCN’s F1-score of
74.43% outshines LGNN’s 73.15% and WC-GCN’s 69.33%, reflecting a superior
balance between precision and recall. In precision, DEGCN achieves 75.10%, the
highest among all methods, including WC-GCN (69.33%) and ARGA (34.1%),
indicating a higher rate of correctly identified positives. These results underscore
DEGCN’s robustness and reliability, particularly among supervised methods,
making it the most effective for accurately detecting community structures in the
CiteSeer dataset. The consistent outperformance across key metrics highlights
DEGCN’s superior feature and graph information integration, setting it apart as the
best-performing method in this analysis.

6.2 � Ablation studies

To demonstrate the efficacy of our proposed method, we conducted ablation studies on
the DEGCN model. An EGCN model contains more than just the topology and fea-
ture modules. The BEGCN is a model that contains only the topology module. The
MEGCN model contains a feature module. The DEGCN-K model does not include
a K-Kore algorithm for preprocessing. We evaluated accuracy (ACC) and normalized
mutual information (NMI). Table 9 summarizes the percentage results from the abla-
tion experiments below, with the best results highlighted in bold. Figures 5, 6, and 7
demonstrate the performances of various models on the CiteSeer, PubMed, and Cora
datasets, respectively. They compared models based on two key metrics: ACC% and
NMI%. Each figure visually represents how different graph neural network models
perform, highlighting variations in model effectiveness in accuracy and the ability

Table 9   Percentage of ablation experimental results (best result bold)

Dataset Metric (%) EGCN BEGCN MEGCN DEGCN-K DEGCN

Cora ACC​ 64.65 69.25 68.5 80.47 83.03
NMI 45.23 51.26 50.36 66.35 69.51

PubMed ACC​ 62.87 68.13 74.15 78.12 81.34
NMI 27.15 34.14 38.21 50.28 53.71

CiteSeer ACC​ 51.62 62.06 61.63 72.18 75.45
NMI 24.22 31.45 31.28 56.25 59.09

25964	 O. Rashnodi et al.

to capture mutual information across these diverse datasets. This analysis will focus
on the differences in ACC and normalized NMI performance metrics among various
model configurations.

Fig. 5   Performance metrics comparison for the Cora dataset

Fig. 6   Comparison of performance metrics for the PubMed dataset

25965Community detection in attributed social networks using deep…

6.2.1 � Impact of Topology Module (BEGCN vs. EGCN)

Adding the topology module to the BEGCN model significantly improves the perfor-
mance of the EGCN, which lacks it, across all datasets analyzed. In the Cora dataset,
the topology module leads to a 4.6% rise in accuracy and a 6.03% rise in normalized
mutual information (NMI). This shows how crucial structural knowledge is for making
predictions better. Also, adding the topology module for the PubMed dataset makes
it 5.26 percent more accurate and 6.99 percent better at NMI, which shows how use-
ful it is for processing complicated biomedical data. The CiteSeer dataset shows the
most pronounced improvements with the topology module, with a 10.44% increase in
accuracy and a 7.23% increase in NMI. These improvements underscore the topology
module’s critical role in capturing and leveraging the structural nuances of the data,
which contributes to a more robust and accurate performance across various types of
graph data. Figure 8 shows the rise in ACC% and NMI% across the Cora, PubMed, and
CiteSeer datasets after adding the topology module to the models.

6.2.2 � Impact of the feature module (MEGCN vs. EGCN)

Incorporating the feature module into the MEGCN model results in significant per-
formance improvements compared to the EGCN, which lacks this component, under-
scoring the feature module’s efficacy in extracting and utilizing node-specific infor-
mation. When the feature module is added to the Cora dataset, accuracy increases by
3.85%, and normalized mutual information (NMI) increases by 5.13%—demonstrat-
ing the module’s ability to enhance model understanding through node attributes.

Fig. 7   Performance metric comparison for the CiteSeer dataset

25966	 O. Rashnodi et al.

The impact is even more significant in the PubMed dataset, with an increase in accu-
racy of 11.28% and an increase in NMI of 11.06%, highlighting the module’s criti-
cal role in effectively handling detailed biomedical data. Similarly, in the CiteSeer
dataset, adding the feature module leads to a 10.01% improvement in accuracy and
a 7.06% increase in NMI. These improvements make it clear how important the fea-
ture module is for improving the model’s performance by using attribute-rich data,
which is necessary for getting more accurate results and better information synthesis
across different datasets. Figure 9 shows the significant percentage improvements
in ACC% and NMI% across the Cora, PubMed, and CiteSeer datasets attributed to
adding the feature module to the models.

6.2.3 � Influence of k‑core preprocessing (DEGCN vs. DEGCN‑K)

Including K-core preprocessing in the DEGCN model significantly enhances its per-
formance over that of the DEGCN-K model, which does not utilize this preprocess-
ing step, demonstrating the effectiveness of preprocessing in improving the model’s
focus and accuracy. In the Cora dataset, this preprocessing step leads to a 2.56%
increase in accuracy and a 3.16% improvement in normalized mutual information
(NMI). The benefits are similarly evident in the PubMed dataset, where the accuracy
increases by 3.22%, and the NMI increases by 3.43%, underscoring the importance
of refining the data representation and reducing noise. For the CiteSeer dataset, the
improvements with k-core preprocessing are also notable, with a 3.27% increase
in accuracy and a 2.84% increase in NMI. These results highlight the substantial

Fig. 8   Improvements in ACC% and NMI% with the topology module by dataset

25967Community detection in attributed social networks using deep…

impact of K-core preprocessing on the model’s performance, particularly in enhanc-
ing the quality and centrality of the data processed, leading to more robust and accu-
rate outcomes across different graph datasets. Figure 10 displays the higher accu-
racy (ACC%) and normalized mutual information (NMI%) achieved through k-core
preprocessing on the Cora, PubMed, and CiteSeer datasets. This shows that it had a
positive effect on model performance.

The analysis confirmed that each component of the DEGCN model contributes
significantly to its performance across various metrics and datasets. The topology
module is crucial for improving structural understanding, the feature module is crit-
ical in capturing essential node attributes, and k-core preprocessing enhances the
model’s focus and reduces noise. Each addition or enhancement in the model con-
figuration leads to a marked improvement in performance, validating the integrated
approach of the DEGCN model.

7 � Graph visualization

We visualize the node representations of the Cora, PubMed, and CiteSeer datasets in
two-dimensional space using t-distributed stochastic neighbor embedding (t-SNE) [49].
The results obtained from applying the t-SNE algorithm to three datasets, Cora, Pub-
Med, and CiteSeer, are displayed in Figs. 11, 12, and 13, respectively. In each figure,

Fig. 9   Improvements in ACC% and NMI% with the feature module by dataset

25968	 O. Rashnodi et al.

nodes within the same cluster are shown in the same color, while nodes in different
clusters are depicted in various colors.

Fig. 10   Improvements in ACC% and NMI% with k-core preprocessing by dataset

Fig. 11   2D visualization of node embeddings on the Cora dataset

Fig. 12   2D visualization of node embeddings on the CiteSeer dataset

25969Community detection in attributed social networks using deep…

8 � Conclusion and future work

With the rapid advances in information technology and artificial intelligence, social
network analysis has attracted the attention of many researchers worldwide. Conse-
quently, the role of social networks in today’s digital life is not negligible. Among
the current research trends in SNA, community detection is one of the most chal-
lenging tasks, with a high impact on performance and efficiency in large-scale net-
works. Considering this importance, we propose a novel method based on GNNs
to address the community detection problem effectively and precisely. Using the
DEGCN in the proposed architecture is a novel approach to community detection.
The experimental results indicated that our proposed approach could surpass many
state-of-the-art related works in the literature regarding accuracy, performance, and
effort rate. In future work, we plan to extend our research by further exploring addi-
tional GNNs and their potential to enhance community detection capabilities. We
aim to delve into more complex network structures and larger datasets to test the
scalability and robustness of our proposed method.

Moreover, we will investigate incorporating multimodal data and applying our
approach to heterogeneous networks. Another direction for future research is to improve
the interpretability of the community detection process, making it easier for users to
understand the reasoning behind the detected communities. Finally, we intend to explore
real-world applications, particularly in detecting misinformation spread and influence
maximization in social networks, to demonstrate the practical utility of our method.

Author contributions  Omid Rashnodi involved in conceptualization, methodology, software, writing—
original draft, visualization. Maryam Rastegarpour took part in conceptualization, methodology, valida-
tion, writing—original draft, writing—review and editing, supervision. Parham Moradi involved in con-
ceptualization, validation, writing—review and editing. Azadeh Zamanifar took part in conceptualization,
validation, writing—review and editing.

Data availability  All datasets utilized in our study are publicly available and accessible online, ensuring
that our work can be replicated and scrutinized by peers within the academic community. Specifically,

Fig. 13   2D visualization of node embeddings on the PubMed dataset

25970	 O. Rashnodi et al.

we have employed widely recognized datasets, including Cora, PubMed, and CiteSeer, as the foundation
for our analysis. These datasets are critical resources in the fields of document classification, citation
network analysis, and natural language processing, among others. For those interested in further explo-
ration or replication of our study, the datasets can be found at their respective repositories: Cora and
CiteSeer datasets are available through the "LINQS Datasets" website, and the PubMed dataset can be
accessed via the "National Library of Medicine" website. By utilizing these publicly available resources,
our research stands on a platform of transparency and reproducibility, core values that enhance the integ-
rity and impact of our findings.

Declarations 

Conflict of interest  The authors declare that they have no conflict of interest.

References

	 1.	 Wen X et al (2016) A maximal clique based multiobjective evolutionary algorithm for overlapping
community detection. IEEE Trans Evol Comput 21(3):363–377

	 2.	 Lu X et al (2018) Adaptive modularity maximization via edge weighting scheme. Inf Sci 424:55–68
	 3.	 Wu W et al (2018) Nonnegative matrix factorization with mixed hypergraph regularization for com-

munity detection. Inf Sci 435:263–281
	 4.	 Altinoz OT, Deb K, Yilmaz AE (2018) Evaluation of the migrated solutions for distributing refer-

ence point-based multi-objective optimization algorithms. Inf Sci 467:750–765
	 5.	 Whang JJ, Gleich DF, Dhillon IS (2016) Overlapping community detection using neighborhood-

inflated seed expansion. IEEE Trans Knowl Data Eng 28(5):1272–1284
	 6.	 Fortunato S, Hric D (2016) Community detection in networks: a user guide. Phys Rep

2016(659):1–44
	 7.	 Garza SE, Schaeffer SE (2019) Community detection with the label propagation algorithm: a sur-

vey. Physica A Stat Mech Appl 534:122058
	 8.	 Cao J et al (2018) Incorporating network structure with node contents for community detection on

large networks using deep learning. Neurocomputing 297:71–81
	 9.	 He C et al (2019) Community detection method based on robust semi-supervised nonnegative

matrix factorization. Phys A Stat Mech Appl 523:279–291
	10.	 Chen Z, Li X, Bruna J (2020) Supervised community detection with line graph neural networks.

International Conference on Learning Representations. p 1–24
	11.	 Zhang T et al (2020) CommDGI: community detection oriented deep graph infomax. p 1843–1852
	12.	 Tang J et al (2015) Line: large-scale information network embedding. The 24th International Con-

ference on World Wide Web
	13.	 Grover A, Leskovec J (2016) node2vec: Scalable feature learning for networks. p 855–864
	14.	 Perozzi B, Al-Rfou R, Skiena S (2014) Deepwalk: online learning of social representations. In: Pro-

ceedings of the 20th ACM SIGKDD International Conference on KNOWLEDGE Discovery and
Data Mining

	15.	 Chen S, Guo W (2023) Auto-encoders in deep learning—a review with new perspectives. Math-
ematics 11(8):1777

	16.	 Zhao S et al (2021) Hierarchical representation learning for attributed networks. IEEE Trans Knowl
Data Eng 35(3):2641–2656

	17.	 Lu H-Y et al (2024) Visual analytics of multivariate networks with representation learning and com-
posite variable construction. IEEE Transactions on Visualization and Computer Graphics

	18.	 Wang C et al (2017) Mgae: marginalized graph autoencoder for graph clustering. Conference on
Information and Knowledge Management

	19.	 Li B et al (2020) Multi-source information fusion based heterogeneous network embedding. Inf Sci
534:53–71

	20.	 He C et al (2021) Boosting nonnegative matrix factorization based community detection with graph
attention auto-encoder. IEEE Trans Big Data 8(4):968–981

	21.	 Yang C et al (2021) Network embedding for graphs with node attributes, in network embedding: theo-
ries, methods, and applications. p 29–38

25971Community detection in attributed social networks using deep…

	22.	 Zhang Y et al (2022) Spectral–spatial feature extraction with dual graph autoencoder for hyperspectral
image clustering. IEEE Trans Circuits Syst Video Technol 32(12):8500–8511

	23.	 Jin D et al (2021) A survey of community detection approaches: from statistical modeling to deep learn-
ing. IEEE Trans Knowl Data Eng 35(2):1149–1170

	24.	 Liu F et al (2020) Deep learning for community detection: progress, challenges and opportunities.
arXiv preprint arXiv:​2005.​08225

	25.	 Zhou J et al (2020) Graph neural networks: a review of methods and applications. AI Open. p 57–81
	26.	 Su X et al (2022) A comprehensive survey on community detection with deep learning. IEEE Trans

Neural Netw Learn Syst
	27.	 Jin D et al (2019) Graph Convolutional networks meet markov random fields: semi-supervised commu-

nity detection in attribute networks. AAAI Conf Artif Intell 33(01):152–159
	28.	 Sun H et al (2020) Network embedding for community detection in attributed networks. ACM Trans

Knowl Discov Data (TKDD) 14(3):1–25
	29.	 Jin D et al (2019) Community detection via joint graph convolutional network embedding in attribute

network. In: International Conference on Artificial Neural Networks
	30.	 Luo J, Du Y (2020) Detecting community structure and structural hole spanner simultaneously by using

graph convolutional network based auto-encoder. Neurocomputing 410:138–150
	31.	 Veličković P et al (2017) Graph attention networks. arXiv preprint arXiv:​1710.​10903
	32.	 Goodfellow I et al (2020) Generative adversarial networks. Commun ACM 63(11):139–144
	33.	 Chen H et al (2019) Exploiting centrality information with graph convolutions for network representa-

tion learning. International Conference on Data Engineering
	34.	 Xin X et al (2017) Deep community detection in topologically incomplete networks. Phys A Stat Mech

Appl 469:342–352
	35.	 Cao S et al (2023) LGNN: a novel linear graph neural network algorithm. Front in Comput Neurosci

17:1288842
	36.	 Zhang T et al (2020) CommDGI: community detection oriented deep graph infomax. International

Conference on Information and Knowledge Management
	37.	 Ruiqi H et al (2020) Going deep: graph convolutional ladder-shape networks. Proc AAAI Conf Artif

Intell 34(03):2838–2845. https://​doi.​org/​10.​1609/​aaai.​v34i03.​5673
	38.	 Liu Y et al (2020) Independence promoted graph disentangled networks. Proc AAAI Conf Artif Intell

34(04):4916–4923. https://​doi.​org/​10.​1609/​aaai.​v34i04.​5929
	39.	 Levie R et al (2018) Cayleynets: graph convolutional neural networks with complex rational spectral

filters. IEEE Trans Signal Process 67(1):97–109
	40.	 Geisler S, Zügner D, Günnemann S (2020) Reliable graph neural networks via robust aggregation. Adv

Neural Inf Process Syst 33:13272–13284
	41.	 Cai X, Wang B (2023) A graph convolutional fusion model for community detection in multiplex net-

works. Data Min Knowl Disc 37(4):1518–1547
	42.	 Li D, Zhang S, Ma X (2022) Dynamic module detection in temporal attributed networks of cancers.

IEEE/ACM Trans Comput Biol Bioinf 19(4):2219–2230
	43.	 Li D, Lin Q, Ma X (2021) Identification of dynamic community in temporal network via joint learning

graph representation and nonnegative matrix factorization. Neurocomputing 435:77–90
	44.	 Li D et al (2021) Detecting dynamic community by fusing network embedding and nonnegative matrix

factorization. Knowl Based Syst 221:106961
	45.	 Li D, Ma X, Gong M (2023) Joint learning of feature extraction and clustering for large-scale temporal

networks. IEEE Trans Cybern 53(3):1653–1666
	46.	 Huan H et al (2023) Diverse deep matrix factorization with hypergraph regularization for multi-view

data representation. IEEE/CAA J Autom Sin
	47.	 Huang H et al (2023) Exclusivity and consistency induced NMF for multi-view representation learning.

Knowl-Based Syst 281:111020
	48.	 Huang H et al (2024) Comprehensive multiview representation learning via deep autoencoder-like non-

negative matrix factorization. IEEE Trans Neural Netw Learn Syst. p 5953–5967
	49.	 Amirfarhad Farhadi MM, Arash Sharifi, Mohammad Teshnelab (2024) Domaina daptation in reinforce-

ment learning: a comprehensive and systematic study. Front Inf Technol Electron Eng
	50.	 Kanatsoulis CI, Sidiropoulos ND, Claims AI (2022) GAGE: geometry preserving attributed graph

embeddings. Fifteenth ACM International Conference on Web Search and Data Mining. p 439–448
	51.	 Newman ME (2006) Modularity and community structure in networks. Proc Natl Acad Sci

103(23):8577–8582

http://arxiv.org/abs/2005.08225
http://arxiv.org/abs/1710.10903
https://doi.org/10.1609/aaai.v34i03.5673
https://doi.org/10.1609/aaai.v34i04.5929

25972	 O. Rashnodi et al.

	52.	 Jianbo S, Malik J (2000) Normalized cuts and image segmentation. IEEE Trans Pattern Anal Mach
Intell 22(8):888–905

	53.	 Liu L et al (2015) Community detection based on structure and content: a content propagation perspec-
tive. IEEE International Conference on Data Mining

	54.	 Shchur O, Günnemann S (2019) Overlapping Community detection with graph neural networks
	55.	 Zhang X et al (2019) Attributed graph clustering via adaptive graph convolution. arXiv preprint arXiv:​

1906.​01210
	56.	 Cui G et al (2020) Adaptive graph encoder for attributed graph embedding. p 976–985
	57.	 Huang W (2021) Graph auto-encoders with edge reweighting. International Journal of Reconfigurable

and Embedded Systems (IJRES)
	58.	 Sen P et al (2008) Collective classification in network data. AI Mag 29(3):93–93
	59.	 Namata G et al (2012) Query-driven active surveying for collective classification. In 10th International

Workshop on Mining and Learning with Graphs
	60.	 Rice SA (1927) The identification of blocs in small political bodies. Am Polit Sci Rev 21(3):619–627
	61.	 Zhu W, Wang X, Cui P (2020) Deep learning for learning graph representations. In Deep learning: con-

cepts and architectures. p 169–210
	62.	 Cao S, Wei L, Qiongkai X (2016) Deep neural networks for learning graph representations. Proc AAAI

Conf Artif Intell. https://​doi.​org/​10.​1609/​aaai.​v30i1.​10179
	63.	 Sun F-Y et al (2019) vGraph: a generative model for joint community detection and node representation

learning. In: Proceedings of the 33rd International Conference on Neural Information Processing Sys-
tems. Curran Associates Inc

	64.	 Tian F et al (2014) Learning deep representations for graph clustering. Proc AAAI Conf Artif Intell.
https://​doi.​org/​10.​1609/​aaai.​v28i1.​8916

	65.	 Kipf T, Welling M (2016) Variational graph auto-encoders
	66.	 Pan S et al (2019) Learning Graph Embedding With Adversarial Training Methods. IEEE Transactions

on Cybernetics 50:1–13
	67.	 Wang C et al (2019) Attributed graph clustering: a deep attentional embedding approach. pp 3670–3676
	68.	 Zheng S et al (2020) Distribution-induced bidirectional generative adversarial network for graph repre-

sentation learning. p 7222–7231
	69.	 Park J et al (2019) Symmetric graph convolutional autoencoder for unsupervised graph representation

learning
	70.	 Guo L, Dai Q (2021) Graph clustering via variational graph embedding. Pattern Recogn 122:108334
	71.	 Yang C et al (2015) Network representation learning with rich text information. In: Twenty-Fourth

International Joint Conference On Artificial Intelligence
	72.	 Xia R et al (2014) Robust multi-view spectral clustering via low-rank and sparse decomposition. Pro-

ceedings of the AAAI Conference on Artificial Intelligence; 28(1)
	73.	 Ahmadi M, Safayani M, Mirzaei A (2022) Deep graph clustering via mutual information maximization

and mixture model. arXiv preprint arXiv:​2205.​05168
	74.	 Li J et al (2020) Dirichlet graph variational autoencoder
	75.	 Xie H, Ning Y (2023) Community detection based on BernNet graph convolutional neural network. J

Korean Phys Soc 83(5):386–395
	76.	 Deng L, Guo B, Zheng W (2024) GCN-based weakly-supervised community detection with updated

structure centres selection. Connect Sci 36(1):2291995
	77.	 Ng A, Jordan M, Weiss Y (2002) On spectral clustering: analysis and an algorithm. Adv Neural Inf

Process Syst
	78.	 Tian F et al (2014) Learning deep representations for graph clustering. Proceedings of the National

Conference on Artificial Intelligence. p 1293–1299
	79.	 Sun F-Y et al (2019) vGraph: a generative model for joint community detection and node representation

learning

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

http://arxiv.org/abs/1906.01210
http://arxiv.org/abs/1906.01210
https://doi.org/10.1609/aaai.v30i1.10179
https://doi.org/10.1609/aaai.v28i1.8916
http://arxiv.org/abs/2205.05168

25973Community detection in attributed social networks using deep…

Authors and Affiliations

Omid Rashnodi1 · Maryam Rastegarpour2 · Parham Moradi3 ·
Azadeh Zamanifar1

 *	 Maryam Rastegarpour
	 m.rastgarpour@gmail.com

	 Omid Rashnodi
	 omid.rashnodi@iau.ac.ir

	 Parham Moradi
	 p.moradi@uok.ac.ir

	 Azadeh Zamanifar
	 azamanifar@srbiau.ac.ir

1	 Department of Computer Engineering, Science and Research Branch, Islamic Azad University,
Tehran, Iran

2	 Department of Computer, Saveh Branch, College of Engineering, Islamic Azad University,
Saveh, Iran

3	 School of Engineering, RMIT University Melbourne, Melbourne, Australia

	Community detection in attributed social networks using deep learning
	Abstract
	1 Introduction
	2 Literature review
	3 Preliminaries and notation
	3.1 Attributed graph
	3.2 Community and community detection
	3.3 Decomposition k-core
	3.4 Modularity and normalization cut
	3.4.1 Modularity model
	3.4.2 Normalize cut model

	3.5 Graph embedding

	4 Notations
	5 The proposed method: DEGCN
	5.1 Graph filtering
	5.2 Calculation of the modularity matrix and normalized cut matrix
	5.3 Network embedding
	5.3.1 Encoder convolutional graph model
	5.3.2 Decoder model
	5.3.2.1 Loss function and optimization

	5.4 Node classification
	5.5 Time complexity analysis

	6 Experiment
	6.1 Experimental settings
	6.1.1 Datasets
	6.1.2 Evaluation metrics
	6.1.3 Parameter settings
	6.1.4 Experimental results and analysis

	6.2 Ablation studies
	6.2.1 Impact of Topology Module (BEGCN vs. EGCN)
	6.2.2 Impact of the feature module (MEGCN vs. EGCN)
	6.2.3 Influence of k-core preprocessing (DEGCN vs. DEGCN-K)

	7 Graph visualization
	8 Conclusion and future work
	References

