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Abstract
Existing methods for detecting communities in attributed social networks often 
rely solely on network topology, which leads to suboptimal accuracy in community 
detection, inefficient use of available data, and increased time required for identi-
fying groups. This paper introduces the Dual Embedding-based Graph Convolu-
tion Network (DEGCN) to address these challenges. This new method uses graph 
embedding techniques in a new deep learning framework to improve accuracy and 
speed up community detection by combining the nodes’ content with the network’s 
topology. Initially, we compute the modularity and Markov matrices of the input 
graph. Each matrix is then processed through a graph embedding network with at 
least two layers to produce a condensed graph representation. As a result, a multi-
layer perceptron neural network classifies each node’s community based on these 
generated embeddings. We tested the suggested method on three standard datasets: 
Cora, CiteSeer, and PubMed. Then, we compared the outcomes to many basic and 
advanced approaches using five important metrics: F1-score, adjusted rand index 
(ARI), normalized mutual information (NMI), and accuracy. The findings demon-
strate that the DEGCN accurately captures community structure, achieves superior 
precision, and has higher ARI, NMI, and F1 scores, significantly outperforming 
existing algorithms for identifying community structures in medium-scale networks.

Keywords Community detection · Attributed social networks · Graph convolution 
networks · Deep learning · Embeddings

1 Introduction

The exploration of community structures within networks has evolved signifi-
cantly since early sociological studies, becoming a crucial research domain that 
utilizes sophisticated mathematical tools for large-scale data analysis. Notably, 
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since Girvan and Newman’s pioneering efforts in 2002, identifying and under-
standing these structures have become essential for comprehending the composi-
tion and functionality of various networks, impacting fields ranging from epide-
miology to marketing.

Even though topological, content-based, and graph-theoretical approaches 
have progressed with community detection, there are still many problems with 
the current methods, especially with the quality of the vector representations for 
network nodes. Current methods often produce representations that fail to cap-
ture the structural and contextual information of the nodes fully. This means that 
they don’t work well enough for tasks like clustering or classification, and they 
can’t keep up with the rising quality standards as networks get more extensive 
and complicated.

This paper addresses the limitations of conventional community detection meth-
ods, mainly when applied to large-scale or high-dimensional networks constrained 
by computational capacity and data volume. These constraints significantly hamper 
the efficacy of traditional methods for analyzing complex, modern relational data. 
As a result, to embed graphs effectively, this study employs graph neural networks 
(GNNs), a specialized branch of deep learning tailored to graph data. This method 
simplifies networks by reducing their dimensions and enhancing the representation 
of their nodes, thereby expediting the community detection process. This study also 
combines the modularity matrix with the Markov matrix to improve the accuracy of 
community detection. This makes these methods more useful in complex network 
structures because they are more efficient and accurate.

The contributions and innovations of this study are summarized as follows: (a) 
we introduce a layout method utilizing graph convolution networks to reduce rep-
resentation dimensions and decrease algorithm implementation time; (b) we imple-
ment a novel graph layout technique that preserves the structural and content fea-
tures of nodes in the primal graph, enhancing node similarities; (c) we enhance the 
efficiency of community detection by employing objective functions that reflect the 
structural and content features of the network; and (d) we address the challenges 
posed by non-community-centric GNNs by combining modularity and normalized 
cuts, thereby improving neural network interpretability.

Community detection is acknowledged as a complex, NP-hard problem encom-
passing a broad spectrum of challenges. This paper tackles these challenges by 
focusing on computational complexity and detection accuracy within attributed 
social networks. By utilizing GNNs, we aim to overcome these issues through inno-
vative approaches that embed networks and enhance graph representation learning. 
These strategies lead to a comprehensive solution for community detection that 
offers several benefits:

• Innovative use of GNNs: employing GNNs within deep learning to embed net-
works and learn graph representations addresses computational complexity, scal-
ability, and detection accuracy challenges.

• Decreasing computational complexity: GNNs simplify computational demands 
by efficiently representing nodes and their connections in a reduced-dimensional 
space, achieved by performing local operations on nodes and their neighbors.
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• Enhancing scalability: GNNs manage local and global network information 
within a unified framework, effectively handling medium-scale networks with 
hundreds of nodes and edges.

• Enhancing detection accuracy: deep learning and graph-based neural networks 
identify intricate structures and patterns in network data, thereby increasing the 
precision of community detection.

• Effective learning of graph representations: GNNs create network representa-
tions incorporating topological structures and node features, which are essential 
for accurately detecting communities.

We structure the remainder of this paper as follows: Sect. 2 surveys the existing 
literature on graph convolutional networks and dual embedding techniques, outlin-
ing fundamental advances and pinpointing gaps that our study addresses. Section 3 
introduces the necessary concepts and notations, laying the groundwork for under-
standing the methodologies discussed subsequently. Section  4 provides a detailed 
description of the proposed algorithm DEGCN and presents its pseudocode. Sec-
tion 5 is comprehensive and divided into three distinct parts: Sect. 5.1 offers an in-
depth description of the datasets used for testing, outlines the evaluation metrics to 
assess performance, and details the chosen parameters and the experimental setup. 
Section 5.2 explains the ablation studies. Section 5.3 demonstrate graph visualiza-
tion. Finally, Sect. 6 addresses the conclusion and future work.

2  Literature review

With recent developments in information technology and the digital world, com-
plex network theory can be used in many fields, such as social networks, biologi-
cal networks, and internet networks. Community detection is one of the critical 
issues in studies on complex networks seeking to discover the structural properties 
of networks. The communities are created in the network by a group of nodes with 
more incredible internal relationships and fewer relationships with other nodes. 
Early community detection methods are mainly based on the network’s typologi-
cal features, and many approaches have been proposed based on different criteria 
for similarity and closeness among groups. Before developing deep learning meth-
ods, community detection methods were divided into two general groups: hierarchi-
cal methods and partitioning methods. Hierarchical methods start from a partition 
where each node is considered a cluster or from a partition where all nodes are in 
a similar community. Then, clusters are continuously combined and divided using 
quality measurement to form the hierarchy of clusters. Although hierarchical meth-
ods do not need to know the number of communities as a background, they require a 
criterion to identify relevant partitions.

On the other hand, the partitioning methods identify clusters based on the itera-
tion of member allocation. These methods evaluate the quality of the resulting par-
titions by optimizing one or more objective functions. Some of the partitioning 
techniques include finding the maximum number of cliques on a graph [1], modular-
ity maximization [2], matrix decomposition [3], seed expansion [4], linear sparse 
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coding [5], sparse linear coding [5], and evolutionary algorithms [1]. Both hierarchi-
cal and partitioning methods involve high computational costs. Thus, these meth-
ods cannot be efficiently implemented in large-scale networks. In other words, they 
cannot find a desirable solution over a reasonable period. More flexible local meth-
ods have been proposed for separate and overlapping detection communities [6]. For 
example, methods based on label propagation use the regional expansion of node 
labels to identify communities in linear time [7].

Deep learning (DL) techniques are increasingly utilized across various fields, 
including computer and social sciences, economics, agriculture, healthcare, and 
medicine [8]. Network representation learning (NRL) transforms complex network 
structure data into a manageable, low-dimensional space within this broad applica-
tion spectrum. These methods include learning network representations [9], Net-
work embedding [10], and graph embedding [11], all aimed at preserving the net-
work’s typological structure, vertex content, and auxiliary data.

By enabling robust graph data representation, these innovative learning 
approaches have revolutionized the construction of complex classification, clus-
tering, and prediction models. This approach allows for executing analytical tasks 
using simpler, traditional models. NRL techniques aim to get representations of net-
work vertices in fewer dimensions while keeping important network typological and 
content properties[9]. Machine learning tasks, such as node classification and link 
prediction, utilize the derived representations as vector inputs. This advancement 
has spurred the development of sophisticated and effective NRL methodologies tai-
lored for complex networks [10]. Graph representation learning methods are broadly 
categorized into three distinct groups: probabilistic models, deep learning-based 
algorithms, and matrix decomposition algorithms. The subsequent discussion will 
elucidate these three different models:

• Probabilistic Models: Techniques such as LINE [12] and Node2vec[13] focus 
on extracting diverse graph patterns to learn embeddings. Node2vec maps nodes 
into a vector space, enhancing link prediction and node classification capabili-
ties. Large-scale use of LINE is well known. It uses edge sampling to get around 
the problems that stochastic gradient descent usually has. This improves graph 
embedding processes without reducing efficiency.

• Deep Learning-Based Algorithms: DeepWalk [14] exemplifies the applica-
tion of deep learning in graph theory. DeepWalk is very good at encoding 
complete structural data, even when some is lost. It does this by using the 
local structural information of vertices and adding the Skip-Gram model to 
the framework of random walks. This method has proved particularly effective 
in social networks when performing multilabel classification. Deep learning 
models take advantage of the nonlinear dynamics of extensive, complicated 
networks. They collect many types of relational data, like details about nodes, 
neighbors, edges, subgraphs, and community properties. These models are 
ideally suited for handling sparse networks and excel in unsupervised learn-
ing scenarios. Algorithms such as DNGR[15], SNDE [15], and ANRL [15] 
employ deep autoencoder models for high-dimensional data representation. At 
the same time, other end-to-end network-based methods, such as SNE[16] and 
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DeepGL[17], combine structural and attribute data to enrich graph represen-
tation learning. A single-layer autoencoder makes the MGAE algorithm [18] 
more accessible for clustering tasks, and HNE[19] combines deep autoen-
coder neural networks with convolutional networks to process adjacent vec-
tors and images.

• Matrix decomposition algorithms: This group includes methods such as M-NMF 
[20] and TADW [21], which focus on decomposing matrices to learn node repre-
sentations effectively. These techniques are pivotal in disentangling complex net-
work structures, facilitating more profound insights into network dynamics and 
interactions.

Collectively, these methods provide a robust framework for handling and analyz-
ing complex networks across various domains, supporting a wide range of applica-
tions from theoretical research to practical, real-world problem-solving.

Wang et  al. [22] obtained deep representations with a graph autoencoder and 
implemented a spectral clustering algorithm for representations of graph clustering. 
Similarly, He et al. [23] proposed a nonlinear restructuring method for a modularity 
matrix based on deep neural networks; they then extended the technique into a semi-
supervised community detection algorithm with a combination of paired limitations 
in graph nodes. Both problems are challenging due to high computational costs and 
the need to adjust many parameters; for example, the number of clusters is generally 
unknown in many large and heterogeneous networks worldwide. Recently, graph 
neural network (GNN)-based methods, including graph convolutional networks 
(GCNs), have been introduced to graphs to solve the issue of community detection 
[24, 25]. GCNs integrate the information of neighboring nodes in the deep convo-
lutional layers of graphs. GCNs use convolutional operations such as convolutional 
neural networks to extract properties from network typology and node properties to 
represent complex properties of the community [26].

Since GCN was not initially employed for community detection, it does not focus 
on community structure when learning node embedding, and there are no limita-
tions on the structural adaptations between communities and nodes. For this pur-
pose, Jin et  al.[27] proposed a semi-supervised GCN community detection model 
named MRFasGCN, which was obtained by combining a GCN with the Markov 
random fields statistical model to detect communities. The Markov random field has 
been extended as a new convolutional layer that makes the MRFasGCN and moni-
tors the gross results of the GCN.

Sun et  al. [28] proposed a framework to learn network embedding for cluster 
nodes in attributed graphs. Specifically, this framework simultaneously learns rep-
resentations based on graphs and cluster-oriented representations. This framework 
consists of three modules: a graph autoencoder module, a soft modularity maximi-
zation module, and a self-clustering module. The graph autoencoder module learns 
node embedding based on typological structure and node properties.

Jin et  al. [29] also proposed an unsupervised model to detect communities 
through GCN embedding. In this model, the GCN has been used as the main struc-
ture of the encoder to match two information sources, namely typology and prop-
erty, where a dual encoder has been used to extract two different embeddings.
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Luo et al. [30] proposed a deep learning model to find communities and struc-
tural holes simultaneously. The main framework used in this model is the GCN-
based encoder. The GCN is an effective method for combining network typology 
and node properties in community detection. However, there are two problems with 
using GCNs in community detection: (1) The GCN learns the representation of hid-
den layers through encoding typological features and node properties, and it does 
not consider community features. Thus, the embedding obtained from a GCN will 
not be community-based. (2) This is a semi-supervised model rather than an unsu-
pervised model.

Wang et  al. [31, 32] proposed a new nonnegative matrix decomposition model 
along with two sets of parameters, a community membership matrix and a com-
munity characteristic matrix. Additionally, several efficient updating rules were pro-
posed for evaluating the parameters while guaranteeing convergence. Using node 
attributes improves community detection and provides a semantic interpretation for 
the communities of the obtained communities.

Additionally, attempts have been made to develop semi-supervised methods to 
detect communities based on learning network representations where data labels 
have been combined via graph-based regulation to identify unlabeled nodes. Young 
et  al. [33] used node representation to predict the background of a network and 
employed node labels to create various transfer learning and inductive learning 
methods. Recently, graph convolutional networks have been introduced for network 
analysis. Methods based on GCNs contribute to network typology and attribute data, 
unlike most semi-supervised methods that focus on network structure; however, 
these methods depend on many node labels to identify unlabeled nodes. Sun et al. 
proposed a network embedding framework based on a graph convolutional autoen-
coder for cluster nodes. In addition, some unsupervised approaches have been pro-
posed recently.

In [34], a model supervised in the CNN framework was proposed for typological 
defect networks, where the model has two CNN layers with max-pooling operators 
to represent the network and a wholly connected DNN layer to detect the commu-
nity. In these models, convolutional layers show the local attributes of each node 
from different perspectives. The experiments conducted on this model in TINs, with 
10% labeled nodes and 90% unlabeled nodes, achieved an 80% accuracy of commu-
nity detection, which shows that high-order neighbor representation can improve the 
accuracy of community detection.

In [35], a supervised community detection model named the linear graph neu-
ral network (LGNN) has been proposed to improve SBM efficiency in community 
detection and reduce computational costs. A linear graph neural network (LGNN) 
learns the represented attributes of nodes in direct networks by combining the opera-
tor without backoff and rules for messaging.

In [36], CommDGI optimizes graph representation and clustering jointly through 
mutual data on nodes and communities and maximizes graph modularity. This 
method uses k-means to cluster nodes by targeting cluster centers.

Spectral GCNs show all the attributes hidden from a node’s neighborhood. The 
characteristics of neighboring nodes converge to the same values by frequently 
implementing Laplacian operations in the deep layers of the GCN. However, 
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these models lead to over-smoothing in detecting communities. Graph convo-
lutional ladder-shaped networks have been developed to alleviate such negative 
impacts as a new GCN architecture for unsupervised community detection based 
on U-Net in the CNN field [37].

Since different types of links are considered simple edges, GCNs show each 
link separately and add them together, leading to representation redundancy. 
IPGDN [38] distinguishes neighborhoods into different sections and auto-
matically discovers the independent hidden attributes of a graph, such that it 
decreases the difficulty of detecting communities. The IPGDN is supported by the 
Hilbert–Schmidt independence criterion in neighborhood routing. Adaptive graph 
convolution has been introduced to detect communities in attributed graphs. This 
type of graph depends on structural data and representation features for detect-
ing communities through GCNs, where neighboring nodes and nodes with simi-
lar attributes are categorized into the same cluster community. Therefore, in this 
method, two graph signals are multiplied, and high-frequency noise needs to be 
filtered. For this purpose, adaptive graph convolution involves the design of a 
low-pass graph filter with a frequency response function.

In [39], a potent method utilizing Cayley polynomials was proposed to achieve 
high-order approximation within the spectral convolutional architecture of graph 
neural networks. While only a handful of studies have explored GCN filters, Cay-
leyNets are notable for utilizing low-pass filters that harness extensive commu-
nity data for identification purposes.

In [40], they have addressed the limitations of graph convolutional neural net-
works in processing complex relational graphs, such as excessive smoothing dur-
ing node classification. The newly introduced SM-GCN model aims to increase 
node categorization accuracy by reducing reliance on individual features and 
integrating scattering embeddings to counteract the over-smoothing effect.

In [41], researchers presented a novel framework called the graph convolu-
tional fusion model (GCFM) for community detection in multiplex networks. The 
primary objective of this model is to enhance the accuracy of community detec-
tion in networks that consist of multiple layers, where each layer represents a dis-
tinct type of relationship among the same set of nodes. The GCFM uses a graph 
convolutional autoencoder for each layer to do this. This model lets it record and 
encode the structural features within each layer while considering the nearby 
nodes.

In [42], the TANMF algorithm is designed to identify dynamic modules within 
cancer temporal-attributed networks, integrating genomic data and temporal net-
works to transform. The experimental results demonstrated that TANMF is more 
accurate than existing methods, enriches identified modules with known pathways, 
and correlates with patient survival.

In [43], the jLDEC algorithm for identifying dynamic communities in temporal 
networks integrates graph representation learning, community detection, and the 
dynamics of network edges into a cohesive framework to enhance the accuracy of 
community detection. The results demonstrate superior performance over traditional 
methods, especially in accurately characterizing the dynamics of community struc-
tures in temporal networks.
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In [44], the NE2NMF algorithm detects dynamic communities within networks 
by integrating network embedding and nonnegative matrix factorization. It boosts 
accuracy via a third-order smoothness strategy, which considers previous, current, 
and subsequent network snapshots, thereby enhancing the characterization of com-
munity dynamics. The experimental results confirm that NE2NMF outperforms tra-
ditional methods in terms of both accuracy and robustness.

In [45], the jLMDC algorithm was introduced for dynamic community detec-
tion in temporal networks, emphasizing the joint learning of feature extraction and 
clustering. This approach significantly boosts the accuracy and efficiency of detect-
ing dynamic communities by integrating these processes into a unified framework. 
Compared to existing methods, this approach demonstrates substantial improve-
ments in accuracy and reduced computation time, underscoring its ability to manage 
large-scale networks and complex community dynamics.

In [46], the DANMF-MRL method introduces a new technique known as the 
Deep Autoencoder-like NMF for MRL. This approach utilizes a deep encoding pro-
cedure to generate a representation matrix, which is then decoded to reconstruct the 
original data. By employing a framework based on DANMF, we effectively address 
the challenges of consistency and complementarity in multi-view data, significantly 
enhancing the depth and comprehensiveness of the data representation.

In [47], a nonnegative matrix factorization-based MRL framework was proposed 
to consider two essential components jointly. Specifically, the exclusivity term is 
designed to leverage diverse intra-view information, while the consistency term 
ensures a unified representation across multiple views. Additionally, a local mani-
fold component is integrated to maintain the local geometric structure of the data. 
Finally, they introduced a multiplicative-based alternating optimization algorithm to 
address this problem, complete with proof of convergence.

In [48], a hypergraph regularized diverse deep matrix factorization (HDDMF) 
model is introduced for multi-view data representation. This model combines multi-
view diversity with high-order manifold analysis within a multilayer factorization 
framework. A newly designed diversity enhancement term exploits the structural 
complementarity across different data views. Hypergraph regularization is also 
employed to preserve the high-order geometric structures within each view. Further-
more, an efficient iterative optimization algorithm is developed to implement this 
model, accompanied by a theoretical analysis of its convergence.

In [49], several domain adaptation and transfer learning methods are used for 
social network analysis. These methods are applicable when the source domain has 
some labeled data but the target domain lacks labels. The goal is to transfer knowl-
edge from the source domain to the target using a small training set based on deep 
learning.

Review studies in this field indicate that graph embedding methods can signifi-
cantly enhance efficiency and reduce the time required for community detection in 
social networks. This article uses two parallel graph convolutional networks (GCNs), 
a deep learning-based embedding method for network representation learning. On 
the other hand, one big problem with GCNs is that they aren’t naturally community-
oriented. This means that the node representations made by these methods might 
not be accurate enough, which could make it harder to find communities. To address 
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this issue and improve the interpretability of the representations, we first use the 
k-core algorithm to filter the graph and remove less significant nodes, thereby reduc-
ing the graph’s size and making the communities within the graph more distinct. 
Subsequently, one GCN embeds the modularity matrix (representing the graph’s 
structure), and the other embeds the Markov matrix (representing node content). We 
then average these two embedded representations to create the final representation, 
which is more meaningful and has smaller dimensions than the initial state for com-
munity detection.

3  Preliminaries and notation

This section briefly introduces preliminary knowledge, including basic signs and 
problem statements.

3.1  Attributed graph

Suppose that G = (V ,E,A,X) is an attributed network where V is a set of vertices {
v1, v2,… , vn

}
,E is a set of edges between nodes, A is the adjacency matrix, and X 

is the attribute matrix where an element Xip represents the value of the p-th attribute 
for the vertexvi. In adjacency matrix A, if there is an edge between the two vertices 
of vi and vj thenaij > 0 . For weightless networks, if there is an edge, aij = 1; other-
wise, aij = 0 . If the network is not direct, aij = aji  also holds [50].

3.2  Community and community detection

Consider that we have the community set C =
{
C1,C2,… ,Cr

}
 . Each commu-

nity is a network partition with regional structures and shared cluster attributes. 
The node vi that is clustered in the community Ci It should meet the condition 
that the internal degree of every node is greater than its external degree. In this 
paper, community detection is considered in the attributed graph. The graph has G 
attributes and the number of r communities. This paper aims to find the function 
f ∶ v → {1,2, 3,… , r} such that r is true for all f

(
vi
)
= r nodes of the r community. 

Function partitions should follow the following principles: (1) Nodes of a group 
are connected, while the nodes are not connected in different groups. (2) Nodes in 
the same community tend to have similar attribute values, while those from differ-
ent communities may vary relatively, even if they are neighbors at the graph level. 
(3) The function can adequately maintain the attributed graph’s node attributes and 
structural information. Finally, we can find the groups separate from the nodes and 
their inductive subnodes, i.e., communities.

3.3  Decomposition k‑core

Assume a graph G = (V, E) of |V|= n vertices and |E|= e edges; a k-core is defined 
as follows: A subgraph H = (C, E|C) induced by the set C ⊆ V is a k-core or a core 
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of order k iff ∀ v ∈ C: degree H (v) ≥ k, and H is the maximum subgraph with this 
property. Therefore, a k-core of G can be obtained by recursively removing all the 
vertices of degrees less than k until all vertices in the remaining graph have at least 
degree k.

3.4  Modularity and normalization cut

Assume that network G = (A, S) is undirected and attributed to n nodes, where 
A = [aij] ∈ Rn∗n is the adjacency matrix. In this matrix aij = 1 if there is an edge 
between nodes i and j; otherwise,aij = 0 . Here, �i =

∑
j aij is the degree of node i, 

and m =
1

2

∑
i �i is the total number of network edges. S = [sij] ∈ Rn∗n is a similarity 

matrix in which sij is the cosine similarity value between the corresponding content 
vectors of nodes i and j. According to these explanations, the normalized cut and 
modularity models are defined as follows:

3.4.1  Modularity model

The modularity function Q was introduced by Newman-Girvan in [51]. This func-
tion is by far the most well-known quality function for community detection. There-
fore, Q modularity optimization has become one of the leading community detection 
methods. Equation (1) defines this function for two communities:

where �i is equal to 1 (or − 1) if node vi belongs to community 1 (or 2). Modularity 
can be easily optimized using specific vectors and values by defining a modularity 
matrix, as shown in Eq. (2):

Therefore, the modularity ∅ can be rewritten as Eq. (3):

where � = [�i] ∈ {−1,1}n represents membership in a community node. However, 
maximizing modularity is an NP-hard problem. By simplifying the problem and 
allowing variables �i to take any integer value, the problem can be easily solved as 
Eq. (4):

where Ψ = [�ij] ∈ Rn∗p is the matrix that hints at membership in the community 
and Tr (0) is the trace function. The solution is to obtain p of the most significant 
specific vector of modularity matrix B. In addition, the solution space allows Ψ 

(1)� =
1

4m

∑

ij

(
aij −

�i�j

2m

)(
�i�j

)

(2)B =
[
bij
]
∈ Rn∗n, with entriesbij = aij −

�i�j

2m

(3)� =
1

4m
�TB�

(4)max � = maxTr
(
ΨTBΨ

)
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reconstruction of network topology from a community structure viewpoint. There-
fore, any row of the Ψ matrix can be assumed to be a good representation of the cor-
responding node in the hidden space to detect the community.

3.4.2  Normalize cut model

This model yields the ratio of the number of external edges to the number of inter-
nal edges. To calculate a normalized cut, the cut between clusters A and B, denoted as 
Cut (A, B), is the total number of edges with only one node. The volume of cluster A, 
denoted as Vol (A), is the sum of the node degrees in cluster A [52]. These are com-
puted using Eqs. (5) and (6):

Given Eqs. (5) and (6), the objective function of the normalized cut for two clusters, 
A and B, is Eqs. (7) or (8) when there are k clusters C1, C2 … Ck.

where link
�
Ct,Ct

�
=

1

2

∑
i∈Ct ,j∈Ct

Sij is the total connection from nodes in Ct to all 
nodes in Ct (not in Ct ) and vol

�
Ct

�
=
∑

i∈Ct
di is the total internal connection in Ct.

To achieve the minimum objective function, the normalized cut is wrapped in an 
optimization problem as per Eq. (9), where L is the Laplacian graph matrix of similar-
ity and its normalized form D−1L = D−1(D − S) = I − D−1S is the identity matrix (I). 
Equation (10) is known as the Markov matrix:

(5)cut(A,B) =
∑

i∈A,j∈B

wij

(6)Vol(A) =
∑

i∈A

ki

(7)Ncut(A,B) =
cut(A,B)

vol(A)
+

cut(A,B)

vol(B)

(8)Ncut
(
C1,C2,… ,Ck

)
=

k∑

t=1

link
(
Ct,Ct

)

vol
(
Ct

)

min Tr(∅TL∅)

∅ ∈ Rn∗k

S.t L = D − S

(9)D = diag
(
d1, d2,… , dn

)
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In the case of this problem, the solution matrix ∅ of the specific vectors of k is 
the minimum nonzero particular value of the normalized Laplacian matrix D−1L . In 
other words, k is the most significant specific value M covers, representing the solu-
tion in the hidden space. More importantly, the solution matrix Φ provides a perfect 
representation for obtaining the clustering.

Given the above, a higher modularity leads to a better partition structure; con-
versely, a lower normalized cut value enhances the two critical principles of graph 
classification, namely maximum integrity and minimum connection.

3.5  Graph embedding

Let G = (V, E, X), where V =
{
vi
}
i = 1,2, .., n is formed of a set of graph nodes 

and eij =< vi, vj >∈ E  represents a connection between the nodes. The topological 
structure of graph G is illustrated by adjacency matrix A, where Aij = 1 if eij ∈ E 
and otherwise Aij = 0 . X ∈ Rn∗d is the node attribute matrix, and d is the number 
of attributes. In addition, xi ∈ X shows the attributes of the content of each node vi . 
The objective of the embedding problem is to map nodes vi ∈ V  to low-dimensional 
vectors �⃗zi ∈ Rd , with a formal format f ∶ (A,X) → Z, where ziT is the-i row of the 
Z ∈ Rn∗d matrix (n is the number of nodes, and d is the packing dimension). We 
assume that Z is the packing matrix, so the packings should preserve A’s topology 
and content information, X.

4  Notations

Table  1, which includes various matrices, graph properties, and representation 
details relevant to the discussed methods, consolidates the essential symbols used in 
this paper.

5  The proposed method: DEGCN

Our proposed model aims to identify communities in attributed social networks 
using an efficient and interpretable embedding method by leveraging a parallel dual-
graph convolutional neural network. This model consists of four main phases: the 
first phase is graph filtering; the second phase involves the calculation of modularity 
and Markov matrices; the third phase is network embedding using the parallel dual-
graph convolutional network to obtain a new and meaningful representation; and the 
fourth phase is classification. Each phase’s output seamlessly transitions to the next 

�ij =

� 1√
vol(Cj)

if vi ∈ Cj

0 otherwise

(10)M = D−1
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Table 1  List of notations used in this paper

Descriptions Symbols Descriptions Symbols

A similarity matrix S Graph adjacency matrix A
The modularity value of (vi; vj) Bij Graph attribute matrix X
The modularity evaluation metric Q Number of nodes in the graph N
The pairwise node similarity value of (vi; 

vj)
Sij Representations of nodes Z

A degree matrix D Hidden dimensions H
A Laplacian matrix L Reconstructed graph adjacency matrix A

A modularity matrix B Number of communities in the graph K
A Markov matrix M Feature representation at layer i + 1 H[i+1]

Feature representation at layer i Hi The Activation function �(0)
Based on layer i bi Weight at layer i Wi

Fig. 1  Flowchart of the proposed method DEGCN
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phase as input. Figure 1 depicts a detailed schematic of the proposed method. The 
following sections will delve deeper into the complexities of our approach.

5.1  Graph filtering

By applying the k-core algorithm, we filter the graph to remove nodes of lesser sig-
nificance, commonly known as low-degree nodes. This process contributes to reduc-
ing the graph’s size and complexity, thus optimizing the performance of subsequent 
algorithms applied to the graph for community detection. This technique empha-
sizes the more salient regions of the graph, streamlining computations. Specifically, 
a k-core is a maximal subset of the graph’s nodes where each node is connected to 
at least k other nodes within the subgroup. For a node to be included in the k-core, 
its degree within this subset must be at least k. The k-core is computed; nodes with a 
degree less than k are removed. Subsequently, the degrees are recalculated, and the 
removal process is repeated. This iterative process continues until all nodes meet the 
k-core criterion. Each iteration has a computational complexity of O (E), where E 
represents the number of edges. Algorithm 1 provides the pseudocode for the k-core 
algorithm. Figure  2 illustrates a step-by-step visualization of a graph undergoing 
k-core decomposition, focusing on nodes with a degree less than 3 being iteratively 
removed. The following is an explanation for each iteration:

• All nodes are evaluated for degrees in the initial graph (iteration 0). Nodes 0 
and 8 are identified as having degrees less than 3. These nodes are marked in 
red to indicate that they will be removed from the graph. This marking marks 
the beginning of the k-core decomposition process, which sets the stage for 
subsequent iterations by removing nodes that do not meet the minimum degree 
requirement.

• After removing nodes 0 and 8, the graph’s structure changes, affecting the 
degrees of the adjacent nodes. In iteration 1, node 1 has a degree less than 3 (pre-
viously connected to node 0, impacting its degree). Node 1 is, therefore, marked 
in red and removed from the graph. This iteration further simplifies the graph, 
focusing the subsequent analysis on the remaining nodes.

• With node 1 removed, in iteration 2, the degree of node 5 (connected to node 
1) is re-evaluated. The degree of node 5 decreases to less than three due to the 

Fig. 2  A sample of the algorithm’s 3-core output
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removal of node 1, leading to its selection for removal. This iteration is marked in 
red. The graph’s structure continues to be pruned to focus on the core nodes with 
higher connectivity. In this final iteration (iteration 3), no nodes are removed, 
indicating that all remaining nodes have a degree of 3 or more. Nodes 2, 3, 4, 
6, and 7 form the stable core of the graph. This core represents the k-core of the 
graph, with each node satisfying the minimum degree requirement of 3. Such 
a conclusion is the step in this k-core decomposition process, highlighting the 
original network’s central, most interconnected component.

Each iteration systematically reduces the graph by removing nodes with insuf-
ficient connectivity, eventually resulting in a simplified core that illustrates the most 
interconnected nodes. Given the explanations provided in this section, it is clear that 
the k-core algorithm defines a community based on density; employing this algo-
rithm reduces the graph’s size (thus expediting the community detection algorithm 
in subsequent steps) and enhances the community-centric orientation of graph neu-
ral networks. The dataset being analyzed influences this algorithm’s choice of k. We 
determined k = 3 this study was based on a trial-and-error approach.

Algorithm 1 k-core decomposition

5.2  Calculation of the modularity matrix and normalized cut matrix

This section calculates the modularity matrix (Matrix B) and the Markov matrix 
(Matrix M) of the filtered graph, which results from applying the 3-core algorithm. 
These calculations are based on Eqs. (2) and (10), as described in Sects. 3.4.1 and 
3.4.2, respectively.
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5.3  Network embedding

The goal of the learning phase is to attain a robust embedding of the data graph 
G = (V, E, A, X). We use a graph autoencoder to process the entire graph and learn 
an effective embedding to achieve this. Figure 3 illustrates a portion of the workflow 
for the processing method. In the graph autoencoder, the encoder takes the graph’s 
structure A and the node content X as inputs to learn the latent representation Z. 
Subsequently, the decoder reconstructs the graph’s structure from Z. In a convolu-
tional graph context, the graph autoencoder’s objective is to embed each node in the 
graph into a lower-dimensional space. This process aims to aggregate the represen-
tations of similar nodes in this new feature space, focusing on developing a space-
oriented approach to community-specific features. The graph autoencoder comprises 
two components, the encoder and the decoder, as elaborated below:

5.3.1  Encoder convolutional graph model

A graph convolutional network (GCN) [53] was developed as a graph encoder to 
represent graph A’s structure and node X’s content in an integrated framework. 
This GCN expands the convolution operation to the graph data in the spectral 
field and learns a stratified transformation through a spectral convolutional func-
tion  f

(
Z(l),A|w(l)

)
 in Eq. (11):

where Z(l) is a convolution input, Z(l+1) is the convolution output, and w(l) is a matrix 
of filter parameters needed for learning in the neural network. If f

(
Z(l),A|w(l)

)
 is 

well defined, we can construct an efficient deep convolutional neural network. Each 
layer of the GCN is expressed as f

(
Z(l),A|w(l)

)
 using Eqs. (12) and (13):

(11)Z(l+1) = f
(
Z(l),A|w(l)

)

Z(0) = X ∈ Rn∗m(n nodes and m features)

Fig. 3  Workflow scheme of the proposed graph autoencoder
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where I is an identity matrix of A and ∅ is a nonlinear activation function such as 
Relu(t) = max(0, t)or sigmoid(t) =

1

1+et
. In this paper, the encoder graph G(X, A) uti-

lizes a two-layer GCN given the dataset type. The GCN organizes the hidden fea-
tures of the graph at several layers to meet the requirements of community detection. 
Equations (14) and (15) present the encoder graph equations for the two-layer GCN:

The Relu (0) function refers to activation functions applied to the first and second 
layers. W (0) and W (1) are the weights associated with each layer. The activation func-
tion, Relu (0), is pivotal in graph representation learning. The encoder convolution 
graph, denoted as G(X, A) = q (Z|X, A), translates the graph structure and node con-
tent into the representation Z(2).

5.3.2  Decoder model

The proposed decoding model is used to reconstruct graph data. We can rebuild a 
graph structure, content information X, or both. Here, reconstruction of the graph 
structure is recommended, which gives us a higher level of flexibility so our algo-
rithm preserves its functionality even if content information X is unavailable. A 
decoder p(A|Z) predicts whether there is a connection between the two nodes of 
a connection. As per Eqs. (16) and (17), we trained a connection prediction layer 
based on graph embedding:

The embedding of Z and A The reconstructed graphs are given in Eq. (18):

Based on the descriptions provided in Sects. 4.3.1 and 4.3.2 of graph convolu-
tion networks for the propagation of feature representations to subsequent lay-
ers, Eq. (19) is used, and nonlinear activation functions are employed to represent 

(12)f
(
Z(l),A|w(l)

)
= �

(
D̃

−
1

2 �AD̃−
1

2 Z(l)w(l)
)

(13)Ã = A + I, D̃ii =
∑

j

Aij

(14)Z(1) = fReLU
(
X,A|W (0)

)

(15)Z(2) = fReLU
(
Z(1),A|W (1)

)

(16)p
(
A|Z

)
=

n∏

i=1

n∏

j=1

p(Aij|zi,zj)

(17)p
(
Aij = 1|zi,zj

)
= sigmod

(
zT
i
, zj

)

(18)A = sigmod
(
ZZT

)
, here Z = q(Z|X,A)
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nonlinear features. Consequently, the feature representations at layer zero are essen-
tially the input features (X), as described by Eq. (20):

where H[i+1] represents the feature representation at layer i + 1, emerging as the out-
put of the activation function � . This function is crucial for introducing non-linearity 
to the networks processing, allowing more complex patterns to be captured. Con-
currently, Wi serves as the weight matrix at layer i, crucially influencing how the 
features from the previous layer affect the current layer’s outputs. Furthermore, bi 
the bias at the same layer i is added to each neuron, enhancing the model’s flex-
ibility and ability to learn diverse patterns. This combination of weights and biases, 
adjusted through training, determines the effectiveness of the network in feature 
learning and transformation across successive layers.

where WT
[0]

 The weight matrix’s transpose is associated with the first layer, and X 
denotes the input feature matrix. The term b[0] is the bias vector for the first layer. 
The function σ signifies the activation function, which is applied element-wise. This 
equation effectively captures how the weights and biases linearly transform the input 
data X before being passed through the activation function to produce the first layer 
output, H[1], which then serves as input to subsequent layers in the network.

This section uses a spectral graph convolutional network to disseminate informa-
tion through the eigen decomposition of the graph Laplacian matrix. Consequently, 
Eq.  (19) is implemented using this network according to Eq.  (21). This equation 
integrates the adjacency matrix and the input features of the nodes into the forward 
propagation equation. Therefore, this technique enables the model to understand the 
nodes’ features through the eigen decomposition interconnections. Furthermore, the 
adjacency matrix is added to this propagation process:

In this paper, matrix A* is a renormalization of A (the adjacency matrix) designed 
to counteract the vanishing gradient issue. Instead of using a matrix H[i] to create a 
community-oriented representation with reduced dimensions, we utilize two specific 
matrices: the modularity matrix (B) and the Markov matrix (M) as input for graph 
autoencoder number 1 and graph autoencoder number 2, respectively, as shown in 
Fig.  4. Figure  4 illustrates the architecture of our proposed community detection 
model using dual embedding-based graph convolution networks (DEGCNs), which 
integrate both the graph structure and node features.

This dual-graph autoencoder proposed setup facilitates parallel processing and 
allows for comparing different matrix influences on the interpretation of graph 
structure. The first graph autoencoder’s (#1) decoder, composed of a two-layer 
graph convolutional neural network, processes these inputs according to Eq.  (22), 
producing a representation noted as Z1 . Simultaneously, the decoder of the second 

(19)H[i+1] = �
(
WiHi + bi

)

(20)H[1] = �
(
WT

[0]
X + b[0]

)

(21)H[i+1] = �
(
W [i]H[i]A∗

)
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graph autoencoder (#2), also structured as a two-layer GCN, processes inputs under 
Eq. (23) to generate another representation, denoted as Z2 . These representations are 
then combined according to Eq. (24):

This embedding is computed using matrices M (Markov matrix), A (adjacency 
matrix), and weight matrices W0 and W1 . Here, Ã is the normalization of the adja-
cency matrix A, applied to modulate the influence of neighboring nodes differently 
at two stages of the transformation.

This embedding is similar to Z1 but uses a modularity matrix, B instead of M:

This operation combines the information from both embeddings, potentially cap-
turing a more comprehensive representation by integrating matrix M and B with dif-
ferent perspectives or feature interpretations.

5.3.2.1 Loss function and  optimization The Adam optimizer, a well-known opti-
mizer for deep learning, trains the overall end-to-end deep neural network. The loss 
function is the cross-entropy loss between the predicted community labels and the 
partial ground-truth labels. The Adam optimizer in the diagram optimizes the models’ 
weights by minimizing the loss during training. In the context of a graph autoencoder, 
as depicted in Fig. 4, the Adam optimizer helps adjust the neural network weights to 
effectively reconstruct the graph’s adjacency matrix from the learned embeddings. 
The Adam optimizer minimizes the difference (loss) between the original and recon-
structed adjacency matrix from the embedded. The model can produce more accurate 
embeddings of the original graph data by reducing this loss. The graph data recon-
struction error for a self-encoder graph is minimized using Eq. (25):

(22)embeding1 = Z1 = f (M,A) = Relu
(
Ã ⋅ Relu

(
Ã ⋅M ⋅W0

)
W1

)

(23)embeding2 = Z2 = f (B,A) = Relu
(
Ã ⋅ Relu

(
Ã ⋅ B ⋅W0

)
W1

)

(24)embeding result = Zfinal = average(Z1, Z2)

Fig. 4  DEGCN framework for community detection in attributed social networks
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This loss function evaluates how effectively the model can reconstruct the adja-
cency matrix based on the latent representations (Z) extracted from the data (X) and 
the original adjacency matrix (A). This setup is typical when estimating how well 
the model reconstructs the adjacency matrix based on the latent representations.

The function q (Z∣X, A) indicates a probabilistic encoding of the graph data and 
adjacency matrix into a latent space, and p (A∣Z) represents the probabilistic decod-
ing from the latent space to the adjacency matrix. Using the log probability in the 
loss function is a common choice in machine learning for stability and calculation 
efficiency, particularly under cross-entropy loss.

5.4  Node classification

In this phase, we apply min–max scaling to normalize the Zfinal feature vectors 
obtained in the previous phase. This normalization process scales the data values to 
zero and one, ensuring uniformity across all features. Such uniformity is crucial as 
it enhances the speed of convergence and the stability of the MLP classifier, thereby 
improving the overall learning efficiency. The MLP classifier is designed with three 
layers, containing 128, 64, and 32 neurons, respectively. The model is set to run for 
500 iterations as specified by the maximum iteration parameter. Relu is chosen as 
the activation function for the hidden layers due to its effectiveness and simplicity, 
making it a popular option in deep learning models.

5.5  Time complexity analysis

Table  2 provides a general pseudocode of the program, detailing each line’s time 
complexity and accompanying explanations. Loading the graph G = (V, E, A, X) has 
a complexity of O (N + E), and applying k-core filtering is O (E). The GCN model is 
initialized with O (1). For each epoch, training the GCN model takes O (E + N × D), 
extracting embeddings is O (N × D), splitting data is O(N), performing classifica-
tion with MLP is O (Ntrain), and making predictions is O (Ntest). The computational 
evaluation metric is O (Ntest). Thus, the training phase significantly contributes to 
the overall complexity, yielding a final O (Epoch × (E + N × D)) complexity. Table 3 
compares community detection schemes using GCNs—characteristics, properties, 
and computational complexity. The computational complexity of an algorithm is a 
critical factor in determining its efficiency, especially when dealing with large data-
sets. Comparatively, several methods in Table 2, such as LGNN, MRFasGCN, and 
CayleyNet, have a complexity of O (m). While this seems linear and comparable to 
the DEGCN, the actual efficiency would depend on what the variable m represents 
in their respective contexts. If m is significantly larger than the sum of the edges and 
nodes multiplied by the number of dimensions, the DEGCN will have a computa-
tional advantage.

(25)L0 = Eq(Z|(x,A))[logp(A|Z)]
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6  Experiment

In this section, we have conducted several meticulous experiments based on real-
world scenarios and valid datasets to make a fair comparison of DEGCN with state-
of-the-art related works. Here, we describe the assessment metric, baseline method-
ology, experimental setting, and ablation studies.

6.1  Experimental settings

6.1.1  Datasets

We sourced datasets from practical applications for our community detection experi-
ments, allowing a comprehensive assessment of our proposed methods. Table 4 [57] 
provides the statistical details of the three datasets used in this study. These datasets 
are citation networks in which nodes represent papers, edges represent citation rela-
tionships, attributes are word packet representations of paper abstracts, and labels 
correspond to paper topics.

Table 2  Pseudocode of the proposed method
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6.1.2  Evaluation metrics

This section introduces a set of qualitative measures used for assessing community 
detection methods, categorized into performance and goodness measures. Perfor-
mance measures examine the quality of the community obtained via the algorithm 
compared with actual communities. In addition, goodness measures assess the struc-
tural specifications of the detected communities [60]. We used six measures of nor-
malized mutual information, the rand-adjusted index, accuracy, precision, and F1 
score, to assess the proposed method. Higher scores on all the measures represent 
better results. In the following sections, we further discuss these measures:

• Normalized mutual information

The normalized mutual information computed through Eq.  (26) represents the 
similarity of the final community set obtained by the proposed algorithm to the cor-
rect community [60].

where k is the number of communities, n is the number of nodes, nij is the number of 
nodes in the optimized community set i such that the proposed community set is in 
community j, nc

i
 , the number of nodes in the community i, which is in the optimized 

community set, and nc
j
 is the number of nodes in community j.

• Accuracy

It determines the authenticity of the community setting, and similar to NMI, com-
puting this measure requires an optimum community setting Eq. (27) [60].

where n is the number of groups, and for a specific group, i and Ći , C
i
 are the com-

munities of node i in optimum and recommended community settings. K(x, y) is a 
function equal to 1 when x = y and 0 otherwise.

(26)NMI =

∑k

i=1

∑k

j=1
nij ln(nij ⋅ n∕n

c
i
⋅ nc

j
)

��∑k

i=1
nc
i
ln
�

nc
i

n

���∑k

j=1
nĆ
j
ln
�
nĆ
j
∕n

��

(27)ACC =

∑n

i=1
k
�
Ci, PM

�
Ći

��

n

Table 4  Summary of real-world 
benchmarks on datasets

Dataset #Nodes #Edges #Node attributes Num. of 
communi-
ties

Cora [58] 2708 5429 1433 7
CiteSeer [58] 3312 4715 3703 6
PubMed [59] 19,717 44,338 500 3



25956 O. Rashnodi et al.

• Rand index adjusted

The rand index adjusted (RI) [61] is a measure that compares the results of parti-
tioning by a method to actual partitions. In addition, the RI was used to compare the 
results of the two clustering methods, as shown in Eq. (28):

where n is the total number of nodes, Y and C represent two different clusters, the 
number of pairs in a similar cluster in C and Y, respectively, and b is the number of 
pairs in dissimilar groups. Notably, the RI is in the [0, 1] interval, equal to 1 when 
two sets of clusters are identical and equal to 0 when the two sets of clusters are 
entirely different.

• Precision

It calculates the accuracy of the community and the percentage of nodes in the 
detected community that belong to the actual community and is formulated accord-
ing to Eq. (29):

where C∗
i
 is the detected community and Ci is the actual community.

• F1-scores

The F1-score of community detection is the harmonic mean of recall and preci-
sion, which is formulated as Eq. (30):

where C∗
i
 is the detected community and Ci is the actual community.

6.1.3  Parameter settings

We selected 20 nodes from each class to form the training set, 500 for the validation 
set, and 1000 for the test set. We conducted all experiments using a two-layer GCN 
configuration. The first layer comprises 64 neurons, with each subsequent layer in 
the contracting path halving the number of neurons from the previous layer. We 
employed the widely used Adam optimizer for training and conducted experiments 
using Tensor Flow and PyTorch. We set the learning rate at 0.01 and dynamically 

(28)
RI(Y ,C) =

(a + b)
(
n

2

)

(29)Precision
(
Ci,C

∗
i

)
=

Ci ∩ C∗
i

|||C
∗
i

|||

(30)F1 − scores
(
Ci,C

∗
i

)
= 2 ⋅

precision
(
Ci,C

∗
i

)
⋅ recall

(
Ci,C

∗
i

)

precision
(
Ci,C

∗
i

)
+ recall

(
Ci,C

∗
i

)
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optimized it using a scheduler that reduced the rate when the loss plateaued, thereby 
promoting more stable convergence.

Additionally, we set the dropout rate at 0.5 and the maximum number of epochs 
at 200. We applied the Relu activation function after every graph convolutional 
operation. We terminated the training if the loss function decreased over 10 consec-
utive epochs. We randomly selected the initial weights of the two GCN layers in the 
DEGCN from a uniform distribution. We repeated each experiment ten times and 
reported the average scores below. Table 5 summarizes the parameter settings used 
in our experiments, detailing the names of the parameters and their corresponding 
values. We implemented the research on a system with an AMD Ryzen 71700X 
Eight-Core Processor at 3.77 GHz and 32 gigabytes of RAM, using Python version 
3.7 and Anaconda3-2019.03-Linux-x86_64.

6.1.4  Experimental results and analysis

This subsection describes the experimental results analyzed from multiple evalua-
tion perspectives. To validate the efficiency of our proposed model, we examined the 
Cora, CiteSeer, and PubMed medium–scale datasets. We compared our proposed 
technique with three baseline categories of established methods to gain a compre-
hensive understanding. The following sections detail these comparative methods, 
which serve as our reference points:

• Node Feature-Based Methods: This category predominantly relies on individual 
nodes’ unique attributes or characteristics. Methods such as k-means and spectral 
clustering, known as spectral f, exemplify this approach. These techniques con-
struct a similarity matrix from node features, typically using a linear kernel.

  – Graph Structure-Based Methods: This category focuses on the 
graph’s intrinsic structure. Techniques such as spectral clustering (Spectral-g) 
use the node adjacency matrix to construct the similarity matrix. DeepWalk 
[14] is another important method in this group; it is excellent at learning graph 
embeddings. DNGR [62] combines the benefits of spectral graph clustering with 
deep neural networks to understand complex graph representations. vGraph[63] 
is a probabilistic generative model to learn community membership and node 
representation collaboratively. Graph Encoder [64] learns graph embedding for 
spectral graph clustering.

• Hybrid Methods: These methods combine node attributes and graph structure to 
improve community detection. Although this approach generally increases com-
putational complexity, it often results in better outcomes than those that use only 
node or structure information. Within this domain, several graph autoencoder 
variants have emerged:

  – GAE [65]: A model that utilizes neural networks to learn graph 
representations.

– VGAE [65]: An advancement of GAEs that applies a variational inference 
framework.
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– MGAE [18]: This technique improves representation by marginalizing spe-
cific graph properties.

– ARGA [66]: This method uses adversarial training to improve the regulariza-
tion of graph embeddings.

– ARVGA [66]: This technique incorporates vibrational regularization into 
encoding.

– DAEGC [67]: This approach uses deep autoencoders to reconstruct the 
graph’s adjacency matrix.

– AGE [56]: A model that uses a two-stage process to enhance graph-based 
learning tasks.

– AGC [55]: A model that leverages high-order graph convolution to under-
stand a graph’s global structure effectively

– DBGAN [68] and GALA [69] are two new ways to use graph neural networks 
to do two very different things: group nodes together and embed node fea-
tures.

– CommDGI [11] and GC-VGE [70]: These graph neural network models opti-
mize the simultaneous learning of node embeddings and cluster assignments.

– TADW [71]: A model that employs matrix factorization for network represen-
tation learning, representing a distinct approach to addressing this issue.

– RMSC [72]: A robust multi-view spectral clustering method via low rank and 
sparse decomposition.

– RTM [72]: A model that Learns how each document’s topic is distributed 
from text and citation.

– GMIM [73]: A model that utilizes a mutual information maximization 
approach for node embedding.

– DGVAE [74]: A model that presents a graph variational generative model 
that uses the Dirichlet distributions as priors on the latent variables.

– BernNet [75]GCN: This technique uses a graph convolutional neural network 
framework based on the Bernstein polynomial approximation of order K.

– WC-GCN [76]: This technique utilizes a graph convolutional neural network 
framework.

– LGNN [35]: This method is a neural network model explicitly designed for 
graph data.

– MRFasGCN [27]: is a model that combines a GCN with the Markov random 
field statistical model for community detection.

Tables 6, 7 and 8 comprehensively compare the proposed method with baseline 
community detection methods based on their performance metrics. These metrics 
include accuracy (ACC %), normalized mutual information (NMI %), adjusted Rand 
index (ARI %), F1-score (F1%), and precision (P %). The compared approaches are 
often categorized into three groups based on the type of learning: supervised, semi-
supervised, and unsupervised. Furthermore, these strategies are classified into three 
groups based on the input type: features, graph topology, or a hybrid of both.

Table 6 presents the proposed method with the highest F1 and precision scores, 
83.19% and 83.70%, respectively, and an impressive NMI of 69.51%, demonstrating 
its high capability in identifying community structures. Methods such as GMIM, 
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DBGAN, and AGE also demonstrate strong performance across multiple metrics, 
reflecting advancements in graph neural networks and deep learning techniques for 
community detection.

In contrast, traditional methods like K-means and spectral clustering exhibit 
lower performance, highlighting the superiority of modern techniques. For instance, 
K-means only achieves an ACC of 49.2% and an ARI of 23.0%, while newer 
methods like LGNN reach ACC values above 79%. Supervised methods such as 
LGNN, BernNet GCN, WC-GCN, and the semi-supervised MRFasGCN demon-
strate remarkable performance on the Cora dataset. LGNN achieves a high ACC of 
79.04% and an ARI of 79.04%, indicating its efficiency in leveraging labeled data 
for community detection. BernNet GCN, which incorporates a Bernoulli model, 

Table 6  Performance comparison of different community detection methods on the Cora dataset 

The best results are in bold; ‘–’ indicates that runtime exceeds 24 h or out of memory

Name of methods Learning type Input ACC% NMI% ARI% F1% P%

K-means Unsupervised Feature 49.2 32.1 23.0 36.8 36.9
Spectral-F [77] 34.7 14.7 7.1 – –
Spectral-G [77] Graph 31.46 9.69 0.35 29.67 18.07
DeepWalk [14] 56.20 39.87 32.18 47.6 5.48
Graph encoder [78] 32.5 10.9 0.6 29.8 18.2
DNGR [62] 44.39 33.31 15.86 34.68 27.86
vGraph [63] 28.7 34.5 31.2 30.5 –
TADW [71] Feature and graph 55.00 36.59 26.40 41.52 36.50
GAE [65] 60.34 44.85 36.73 58.72 61.39
VGAE [65] 63.56 47.45 39.42 63.75 65.64
MGAE [18] 63.43 45.57 38.01 38.01 –
ARGE [66] 60.84 42.21 36.88 60.49 63.38
ARVGA [66] 62.83 45.93 38.00 63.17 64.80
DGVAE [74] 64.42 47.64 38.42 62.69 64.90
AGC [55] 68.92 53.68 48.6 65.61 –
CommDGI [11] 69.8 57.9 50.2 68.4 –
DAEGC [67] 70.4 52.8 49.6 68.2 –
GC-VGE [70] 70.67 53.57 48.15 69.48 70.51
GALA [69] 72.42 53.96 47.22 – –
DBGAN [68] 74.6 57.7 53.2 – –
GMIM [73] 74.8 56.0 54.0 – –
AGE [56] 76.8 60.7 56.5 – –
MRFasGCN [27] Semi-supervised 84.3 66.2 – – –
BernNet GCN [75] Supervised 41.06 68.78 – – –
LGNN [35] 79.04 – – 79.04 –
WC-GCN [76] 79.39 – – 75.32 –
DEGCN(proposed 

method)
Supervised 83.03 69.51 66.09 83.19 83.70
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excels in NMI with a value of 68.78%, demonstrating its strength in mutual infor-
mation metrics. WC-GCN also performs well, with an ACC of 79.39% and an ARI 
of 75.32%, highlighting its effectiveness in graph-based clustering. The semi-super-
vised MRFasGCN stands out with the highest ACC of 84.3% and a robust NMI of 
66.2%, demonstrating the power of integrating Markov Random Fields with GCNs. 
Notably, the proposed DEGCN method achieves the highest ACC among the super-
vised methods, showing its exceptional accuracy even among supervised techniques. 
The proposed method outperforms all in F1 and precision, scoring 83.19% and 
83.70%, respectively. It also achieves a high NMI of 69.51%, making it the most 
robust method overall for community detection in this dataset.

Table 7  Performance comparison of different community detection methods on the PubMed dataset

The best results are in bold; ‘–’ indicates that runtime exceeds 24 h or out of memory

Name of methods Learning type Input ACC% NMI% ARI% F1% P%

K-means Unsupervised Feature 55.59 24.34 21.54 56.04 46.08
Spectral-F [77] 60.20 30.90 27.7 – –
Spectral-G [77] Graph 37.98 10.30 26.67 50.54 0.02
DeepWalk [14] 64.98 26.44 27.42 63.46 65.24
Graph encoder [11] 53.1 20.9 18.4 50.6 45.6
DNGR [62] 25.53 20.11 8.29 15.57 19.26
vGraph [79] 26.00 22.40 18.50 33.20 –
TADW [71] Feature and graph 46.82 9.47 5.78 51.22 38.34
GAE [65] 64.43 24.85 23.57 64.07 65.26
VGAE [65] 64.67 23.94 23.41 64.77 64.53
MGAE [18] 43.88 8.16 3.98 41.98 –
ARGA [66] 65.07 29.23 26.79 64.11 69.27
ARVGA [66] 62.01 26.62 22.46 61.66 68.41
DGVAE [74] 67.56 28.72 24.92 64.35 67.10
AGC [55] 69.78 31.59 31.19 68.72 –
CommDGI [11] 69.90 35.70 29.2 69.2 –
DAEGC [67] 67.10 26.60 27.8 65.9 –
GC-VGE [70] 68.18 29.70 29.76 66.87 69.39
GALA [69] 69.39 32.73 32.1 – –
DBGAN [68] 69.40 32.40 32.7 – –
GMIM [73] 70.87 32.43 33.25 69.19 70.83
AGE [56] 71.1 31.6 33.4 – –
MRFasGCN [27] Semi-supervised 79.6 40.7 – – –
BernNet GCN [75] Supervised 61.25 51.40 – – –
LGNN [35] 72.64 – – 72.64 –
WC–GC [76] 79.41 – – 73.75 –
DEGCN(proposed 

method)
Supervised 81.34 53.71 51.07 81.30 81.33
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To make a fair comparison with other related works, we repeated the experiments 
on two different datasets, the PubMed dataset and the CiteSeer dataset. We present 
the results and figures of this new evaluation in Tables 7 and 8, respectively.

Table 7 shows that the proposed DEGCN method performs better than the other 
methods baseline, especially compared to supervised methods. DEGCN achieves 
the highest accuracy (ACC) of 81.34%, significantly surpassing MRFasGCN at 
79.6% and WC-GC at 79.41%. Regarding normalized mutual information (NMI), 
DEGCN scores 53.71%, notably higher than BernNet GCN at 51.40%, and LGNN, 
which does not report NMI but has a high accuracy. DEGCN also leads in the 
adjusted Rand index (ARI) with 51.07%, compared to GMIM’s 33.25% and AGE’s 
33.4%, indicating a closer match to the actual community structures. Furthermore, 
DEGCN’s F1-score of 81.30% outshines WC-GC’s 73.75%, reflecting a better bal-
ance between precision and recall. DEGCN achieves 81.33% in precision (%), sig-
nificantly higher than ARGA’s 69.27% and GMIM’s 70.83%, indicating fewer false 
positives. These results show that DEGCN is solid and reliable, especially com-
pared to supervised methods. They also show that it locates community structures 
in the PubMed dataset better. The consistent outperformance across all key metrics 

Table 8  Performance comparison of different community detection methods on the CiteSeer dataset

The best results are in bold, ‘–’ indicating that runtime exceeds 24 h or is out of memory

Name of methods Learning type Input ACC% NMI% ARI% F1% P%

K-means Unsupervised Feature 54.0 30.5 40.9 40.5 27.9
Spectral-F [77] 23.9 5.6 29.9 17.9 0.010
DeepWalk [14] Graph 32.7 8.8 27.0 24.8 9.2
Graph encoder[11] 22.5 3.3 30.1 17.9 0.010
DNGR [62] 32.6 18.0 30.0 20.0 4.4
RTM [72] 45.1 23.9 34.2 34.9 20.3
RMSC [72] 29.5 13.9 32.0 20.4 4.9
TADW [71] Feature and graph 45.5 29.1 41.4 31.2 22.8
GAE [65] 40.8 17.6 37.2 41.8 12.4
VGAE [65] 34.4 15.6 30.8 34.9 9.3
MGAE [18] 43.88 8.16 39.8 41.98 –
ARGA [66] 57.3 35.0 45.6 57.3 34.1
ARVGA [66] 54.4 26.1 52.9 54.9 24.5
AGE [56] 70.2 44.8 45.7 – –
MRFasGCN [27] Semi-supervised 73.2 46.3 – – –
BernNet GCN [75] Supervised 72.32 58.01 – – –
LGNN [35] 73.15 – – 73.15 –

73.2 46.3 – – –
WC-GCN [76] 75.18 – – 69.33 –
DEGCN
(proposed method)

Supervised 75.45 59.09 53.99 74.43 75.10
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highlights DEGCN’s effective integration of feature and graph information, setting it 
apart as the most effective method for community detection in this context.

Based on the analysis of the results presented in Table 8, the proposed method 
achieves the highest accuracy (75.45%), marginally outperforming WC-GCN 
(75.18%) and significantly surpassing other supervised methods like MRFasGCN 
(73.2%), LGNN (73.15%), and BernNet GCN (72.32%). Regarding normalized 
mutual information (NMI), DEGCN leads with 59.09%, closely followed by Bern-
Net GCN at 58.01%, indicating better mutual information capture between predicted 
and actual community structures. The adjusted Rand index (ARI) for DEGCN is 
53.99%, surpassing ARVGA (52.9%) and AGE (45.7%), showing a higher agree-
ment with the actual partitioning of the data. Furthermore, DEGCN’s F1-score of 
74.43% outshines LGNN’s 73.15% and WC-GCN’s 69.33%, reflecting a superior 
balance between precision and recall. In precision, DEGCN achieves 75.10%, the 
highest among all methods, including WC-GCN (69.33%) and ARGA (34.1%), 
indicating a higher rate of correctly identified positives. These results underscore 
DEGCN’s robustness and reliability, particularly among supervised methods, 
making it the most effective for accurately detecting community structures in the 
CiteSeer dataset. The consistent outperformance across key metrics highlights 
DEGCN’s superior feature and graph information integration, setting it apart as the 
best-performing method in this analysis.

6.2  Ablation studies

To demonstrate the efficacy of our proposed method, we conducted ablation studies on 
the DEGCN model. An EGCN model contains more than just the topology and fea-
ture modules. The BEGCN is a model that contains only the topology module. The 
MEGCN model contains a feature module. The DEGCN-K model does not include 
a K-Kore algorithm for preprocessing. We evaluated accuracy (ACC) and normalized 
mutual information (NMI). Table 9 summarizes the percentage results from the abla-
tion experiments below, with the best results highlighted in bold. Figures 5, 6, and 7 
demonstrate the performances of various models on the CiteSeer, PubMed, and Cora 
datasets, respectively. They compared models based on two key metrics: ACC% and 
NMI%. Each figure visually represents how different graph neural network models 
perform, highlighting variations in model effectiveness in accuracy and the ability 

Table 9  Percentage of ablation experimental results (best result bold)

Dataset Metric (%) EGCN BEGCN MEGCN DEGCN-K DEGCN

Cora ACC 64.65 69.25 68.5 80.47 83.03
NMI 45.23 51.26 50.36 66.35 69.51

PubMed ACC 62.87 68.13 74.15 78.12 81.34
NMI 27.15 34.14 38.21 50.28 53.71

CiteSeer ACC 51.62 62.06 61.63 72.18 75.45
NMI 24.22 31.45 31.28 56.25 59.09
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to capture mutual information across these diverse datasets. This analysis will focus 
on the differences in ACC and normalized NMI performance metrics among various 
model configurations.

Fig. 5  Performance metrics comparison for the Cora dataset

Fig. 6  Comparison of performance metrics for the PubMed dataset
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6.2.1  Impact of Topology Module (BEGCN vs. EGCN)

Adding the topology module to the BEGCN model significantly improves the perfor-
mance of the EGCN, which lacks it, across all datasets analyzed. In the Cora dataset, 
the topology module leads to a 4.6% rise in accuracy and a 6.03% rise in normalized 
mutual information (NMI). This shows how crucial structural knowledge is for making 
predictions better. Also, adding the topology module for the PubMed dataset makes 
it 5.26 percent more accurate and 6.99 percent better at NMI, which shows how use-
ful it is for processing complicated biomedical data. The CiteSeer dataset shows the 
most pronounced improvements with the topology module, with a 10.44% increase in 
accuracy and a 7.23% increase in NMI. These improvements underscore the topology 
module’s critical role in capturing and leveraging the structural nuances of the data, 
which contributes to a more robust and accurate performance across various types of 
graph data. Figure 8 shows the rise in ACC% and NMI% across the Cora, PubMed, and 
CiteSeer datasets after adding the topology module to the models.

6.2.2  Impact of the feature module (MEGCN vs. EGCN)

Incorporating the feature module into the MEGCN model results in significant per-
formance improvements compared to the EGCN, which lacks this component, under-
scoring the feature module’s efficacy in extracting and utilizing node-specific infor-
mation. When the feature module is added to the Cora dataset, accuracy increases by 
3.85%, and normalized mutual information (NMI) increases by 5.13%—demonstrat-
ing the module’s ability to enhance model understanding through node attributes. 

Fig. 7  Performance metric comparison for the CiteSeer dataset
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The impact is even more significant in the PubMed dataset, with an increase in accu-
racy of 11.28% and an increase in NMI of 11.06%, highlighting the module’s criti-
cal role in effectively handling detailed biomedical data. Similarly, in the CiteSeer 
dataset, adding the feature module leads to a 10.01% improvement in accuracy and 
a 7.06% increase in NMI. These improvements make it clear how important the fea-
ture module is for improving the model’s performance by using attribute-rich data, 
which is necessary for getting more accurate results and better information synthesis 
across different datasets. Figure  9 shows the significant percentage improvements 
in ACC% and NMI% across the Cora, PubMed, and CiteSeer datasets attributed to 
adding the feature module to the models.

6.2.3  Influence of k‑core preprocessing (DEGCN vs. DEGCN‑K)

Including K-core preprocessing in the DEGCN model significantly enhances its per-
formance over that of the DEGCN-K model, which does not utilize this preprocess-
ing step, demonstrating the effectiveness of preprocessing in improving the model’s 
focus and accuracy. In the Cora dataset, this preprocessing step leads to a 2.56% 
increase in accuracy and a 3.16% improvement in normalized mutual information 
(NMI). The benefits are similarly evident in the PubMed dataset, where the accuracy 
increases by 3.22%, and the NMI increases by 3.43%, underscoring the importance 
of refining the data representation and reducing noise. For the CiteSeer dataset, the 
improvements with k-core preprocessing are also notable, with a 3.27% increase 
in accuracy and a 2.84% increase in NMI. These results highlight the substantial 

Fig. 8  Improvements in ACC% and NMI% with the topology module by dataset
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impact of K-core preprocessing on the model’s performance, particularly in enhanc-
ing the quality and centrality of the data processed, leading to more robust and accu-
rate outcomes across different graph datasets. Figure 10 displays the higher accu-
racy (ACC%) and normalized mutual information (NMI%) achieved through k-core 
preprocessing on the Cora, PubMed, and CiteSeer datasets. This shows that it had a 
positive effect on model performance.

The analysis confirmed that each component of the DEGCN model contributes 
significantly to its performance across various metrics and datasets. The topology 
module is crucial for improving structural understanding, the feature module is crit-
ical in capturing essential node attributes, and k-core preprocessing enhances the 
model’s focus and reduces noise. Each addition or enhancement in the model con-
figuration leads to a marked improvement in performance, validating the integrated 
approach of the DEGCN model.

7   Graph visualization

We visualize the node representations of the Cora, PubMed, and CiteSeer datasets in 
two-dimensional space using t-distributed stochastic neighbor embedding (t-SNE) [49]. 
The results obtained from applying the t-SNE algorithm to three datasets, Cora, Pub-
Med, and CiteSeer, are displayed in Figs. 11, 12, and 13, respectively. In each figure, 

Fig. 9  Improvements in ACC% and NMI% with the feature module by dataset
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nodes within the same cluster are shown in the same color, while nodes in different 
clusters are depicted in various colors.

Fig. 10  Improvements in ACC% and NMI% with k-core preprocessing by dataset

Fig. 11  2D visualization of node embeddings on the Cora dataset

Fig. 12  2D visualization of node embeddings on the CiteSeer dataset
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8  Conclusion and future work

With the rapid advances in information technology and artificial intelligence, social 
network analysis has attracted the attention of many researchers worldwide. Conse-
quently, the role of social networks in today’s digital life is not negligible. Among 
the current research trends in SNA, community detection is one of the most chal-
lenging tasks, with a high impact on performance and efficiency in large-scale net-
works. Considering this importance, we propose a novel method based on GNNs 
to address the community detection problem effectively and precisely. Using the 
DEGCN in the proposed architecture is a novel approach to community detection. 
The experimental results indicated that our proposed approach could surpass many 
state-of-the-art related works in the literature regarding accuracy, performance, and 
effort rate. In future work, we plan to extend our research by further exploring addi-
tional GNNs and their potential to enhance community detection capabilities. We 
aim to delve into more complex network structures and larger datasets to test the 
scalability and robustness of our proposed method.

Moreover, we will investigate incorporating multimodal data and applying our 
approach to heterogeneous networks. Another direction for future research is to improve 
the interpretability of the community detection process, making it easier for users to 
understand the reasoning behind the detected communities. Finally, we intend to explore 
real-world applications, particularly in detecting misinformation spread and influence 
maximization in social networks, to demonstrate the practical utility of our method.
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Data availability All datasets utilized in our study are publicly available and accessible online, ensuring 
that our work can be replicated and scrutinized by peers within the academic community. Specifically, 

Fig. 13  2D visualization of node embeddings on the PubMed dataset
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we have employed widely recognized datasets, including Cora, PubMed, and CiteSeer, as the foundation 
for our analysis. These datasets are critical resources in the fields of document classification, citation 
network analysis, and natural language processing, among others. For those interested in further explo-
ration or replication of our study, the datasets can be found at their respective repositories: Cora and 
CiteSeer datasets are available through the "LINQS Datasets" website, and the PubMed dataset can be 
accessed via the "National Library of Medicine" website. By utilizing these publicly available resources, 
our research stands on a platform of transparency and reproducibility, core values that enhance the integ-
rity and impact of our findings.
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