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Abstract
The internet of things (IoT) is an exponentially growing network of physical objects 
equipped with sensors, software and network connectivities to collect, process, 
transmit and receive data. Wireless sensor networks (WSNs) play an essential role 
in supporting the IoT. These networks, made up of nodes with the ability to moni-
tor their environment, enable the collection and transmission of specific data in real 
time, offering enhanced applications and services within IoT networks. This sym-
biosis between WSN and IoT can be defined as WSN-based IoT. The complexity 
of WSN-based IoT lies in the effective management of these varied devices, each 
with its own distinct capabilities. Clustering is a popular technique for reducing the 
communication load, conserving energy, aggregating data and optimizing the per-
formance of WSN-based IoT systems. Once the cluster heads (CHs) are chosen, con-
ventional clustering algorithms typically use a single radius of clustering (RC) to 
group devices into multiple clusters. However, this approach may not be optimized 
for WSN-based IoT networks, as devices may have different features, for example, 
the residual energy ( REnrg ) and the distance to the base station (DistBS). In a previ-
ous work, we proposed the DCOPA (a distributed clustering based on objects per-
formances aggregation for hierarchical communications in IoT applications) proto-
col for clustering in WSN-based IoT networks. DCOPA applies the same clustering 
algorithm to the elected CHs, without considering their distinctions in terms of 
REnrg and DistBS. The proposed new approach, called unequal-DCOPA (UDCOPA), 
allows us to define for each CH its adaptive radius of clustering (ARC) which will be 
sensitive to the local criteria of REnrg and DistBS of the CH concerned. The ARC is 
modeled as a multicriteria system applied to each CH. Simulation results show that 
our new UDCOPA approach outperforms DCOPA and LEACH protocols for energy 
management, load balancing, scalability and network lifetime. UDCOPA increases 
lifetime by (62.61%) over LEACH and by (32.72%) over DCOPA.
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1  Introduction and motivation

1.1  Introduction

WSN-based IoT networks are now indispensable in diverse fields such as the envi-
ronment, logistics, industry, home and urban automation, disaster management 
and medical care, as well as in the security and monitoring of critical infrastruc-
tures  [1, 2]. These two closely related fields, WSN and IoT, have witnessed expo-
nential growth in the number of research projects in recent years. Clustering [3–5], 
a technique commonly used in WSN-based IoT networks for energy optimization 
and lifetime enhancement, involves grouping nodes into multiple clusters to opti-
mize well-screened network performance. Most of the work in the literature has 
focused on clusters of equal size. However, in reality, different nodes in WSN-based 
IoT networks may have different processing power, REnrg , DistBS, communication 
range and several other criteria. Our contribution focuses on the clustering of une-
qual sizes in WSN-based IoT. The aim is to explore how this approach can optimize 
the energy performance of WSN-based IoT networks by taking into account existing 
disparities between nodes, namely REnrg and DistBS. The DCOPA protocol [6, 7] is 
a distributed clustering algorithm based on multicriteria decision making [8]. CHs 
are elected through a competition in which all sensors participate on the basis of a 
timer T(i) calculated according to two local criteria: the node’s REnrg and its DistBS. 
T(i) is obtained using multicriteria aggregation with predefined weights associated 
with the two selected criteria. DCOPA considerably ameliorates the shortcomings of 
the LEACH (low-energy adaptive clustering hierarchy) protocol [9], notably the fact 
that a CH is advertised by sending a message over a maximum distance that cov-
ers the entire network, and the abundance of randomness in the process of electing 
CHs. The aim of this work is to analyze and further improve the DCOPA protocol 
in such a way as to increase network lifetime with balanced clustering and energy 
efficiency. DCOPA uses the REnrg and the DistBS of a node as two primary criteria 
that define its qualification to win the CH role by calculating a T(i). Each criterion 
is assigned a specific weight to express its relevance. Our contribution consists in 
analyzing the DCOPA protocol and, more particularly, in examining the cluster-
ing process, focusing on the RC used by elected CHs when announcing their elec-
tions. A major drawback of this protocol is that the same RC is applied to all CHs, 
independently of differences between them in terms of their local criteria such as 
REnrg and DistBS. This unified approach, used by the DCOPA protocol, does not 
consider the specific features of each CH, thus inevitably triggering failures of nodes 
lacking sufficient energy for clustering over a very considerable radius such as that 
required by the protocol, which is constant for all CHs throughout the network’s 
lifetime. The DistBS of a CH was also not taken into account when broadcasting 
its candidacy. To address this limitation, our study aims to explore an alternative 
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approach that dynamically adjusts the RC according to the local criteria of a node 
elected as CH. Adopting our new adaptive approach, we aim to model the computa-
tion of the RC using the multicriteria approach to associate two essential criteria of 
each CH to decide its RC while assigning weights depending on their interests in 
the context of the application. As a result, we will design a distributed multicriteria 
approach for unequal RC in WSN-based IoT networks to address a major drawback 
of the DCOPA protocol and highlight the importance of the unequal radius approach 
for clustering in WSN-based IoT. By exploiting the differences between nodes in a 
WSN-based IoT network, this approach opens up new potential for optimizing the 
energy efficiency of nodes and the entire network, boosting network lifetime and 
balancing the load between CHs nodes according to their individual performance.

1.2  Motivation

This section details the fundamental motivations that were behind our research 
approach.

• Performance optimization: The main motivation behind our work is to improve 
the performance of the DCOPA protocol in the clustering operation. Currently, 
the same clustering algorithm is used across all CHs, without considering their 
disparities in terms of REnrg and DistBS.

• Energy management: Another key aim of our study is to optimize energy con-
sumption and network lifetime. This is achieved by empowering each CH to 
adjust its RC according to its specific level of performance.

• Reduction of long-distance communications: By integrating DistBS and REnrg 
into the setting of each CH’s RC, our UDCOPA [10] approach aims to attenu-
ate long-distance communications, thus ensuring a more efficient use of network 
resources.

• Multicriteria and distributed nature of the contribution: We adopt a multicriteria 
approach to modeling the RC calculation. This approach simultaneously consid-
ers REnrg and DistBS as criteria, providing for more refined and adaptive deci-
sion-making.

By pursuing these research motivations, our goal is to enhance performance, energy 
efficiency and communication quality within WSN-based IoT networks, through an 
unequal clustering approach based on adaptive RC.

1.3  Research questions

• Limitations of the DCOPA protocol:

• What are the potential limitations of the DCOPA protocol when the RC is 
kept unchanged for all CH nodes throughout the lifetime of the network?

• How might these limitations impact on energy performance, load balancing 
and network scalability?
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• Improving the DCOPA protocol:

• How can we improve the DCOPA protocol by introducing RC adjustment to 
an ARC aware of the context and local criteria of an elected CH?

• How can this adaptation be adjusted according to the level of REnrg and the 
DistBS of each CH?

• Impact of ARC on energy performance, load balancing and network lifetime:

• What will be the impact of introducing ARC into the DCOPA protocol clus-
tering process?

• How will ARC influence critical parameters such as energy consumption, 
node death rate, load balancing, cluster distribution and geographic coverage?

These research questions have oriented our approach to enhancing the DCOPA pro-
tocol by integrating adaptive and adjustable RC, enabling greater flexibility and 
dependability in response to CH node criterion conditions.

The following is the structure of the rest of the paper. Related work is given in 
Sect. 2. In Sect. 3, we explain the concept of the optimum number of clusters and 
the energy model that we will employ in our simulations. Section 4 outlines the the-
oretical and formal foundations of the DCOPA protocol. Section 5 is reserved for 
the development of our new UDCOPA approach. In Sect. 6, we will illustrate the 
performance evaluation of the proposed approach. The final section is devoted to 
conclusions of our contribution.

2  Related works

This section is dedicated to a review of the few related works focusing on the con-
cept of unequal clustering in WSN-based IoT. We discuss some algorithms and pro-
tocols proposed in the literature to dynamically adapt and adjust the RC according to 
some specific criteria which are relevant for WSN-based IoT networks. By studying 
these works, we are clearly able to position our proposed approach and demonstrate 
the effectiveness of our contribution in the area of unequal clustering. In this sec-
tion, it is essential to examine some protocols for building equal-sized clusters in 
WSN-based IoT networks. We start with the protocol considered in the literature to 
be the founder of clustering in WSN. Heinzelman et al. [9] proposed LEACH, a dis-
tributed protocol for dynamic, probabilistic clustering. The protocol uses a threshold 
calculated by each node in the network according to a number of parameters. During 
the setup phase, nodes calculate their T(i) value and declare themselves as CHs by 
sending an advertisement CH message (ADV-CH) into the network if a random 
number generated (between 0 and 1) is less than T(i). The steady state phase is dedi-
cated to cluster formation and data communication. Ordinary nodes choose the near-
est CH. The CHs aggregate the data and transmit it to the base station (BS). In a 
large-scale context, the authors in [11] have applied the concept of regression to a 
variant of LEACH in order to predict the lifetime of a large-scale network based on 
a network with a reduced number of nodes. With the DCOPA protocol (a distributed 
clustering based on objects performances aggregation for hierarchical 
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communications in IoT applications) proposed by Mir et al. [6], the network nodes 
organize a competition between themselves by calculating a timer T(i) as a function 
of the REnrg and the DistBS for the election of CHs. Each node decrements its T(i). If 
T(i) reaches 0, the node declares itself CH and cancels the candidacies of the other 
nodes for the role of CH on an RC radius who will drop out of the competition and 
send a joining message to the nearest CH. Unequal clustering has been shown to be 
more effective than equal clustering, as assigning the same RC to all CHs in the net-
work, without taking into account their respective performance, inevitably leads to 
load imbalance and the exhaustion of some CHs with little REnrg . Determining this 
RC for CHs is a complex issue when designing and modeling unequal clustering 
protocols. Haleem et al. in [12] introduced and evaluated a novel grid-based hybrid 
network deployment (GHND) framework for WSN. The framework is designed to 
enhance energy efficiency and load balancing through a merge and split technique 
that ensures even distribution of sensor nodes across the network. Specifically, the 
method constructs a grid where low-density zones are merged and high-density 
zones are split to address the hotspot problem. The authors in  [13] proposed an 
improved grid-based hybrid network deployment (IGHND) scheme for zone head 
(ZH) selection and reselection in WSN-based IoT. The framework enhances energy 
efficiency and network stability by considering multiple criteria for ZH selection, 
including energy level, distances from neighboring nodes and the zone center, the 
number of times a node has been ZH, and whether a node is merged. These criteria 
are evaluated using the analytical network process (ANP), a multicriteria decision-
making tool. The authors in [14] proposed the DSBCA (Balanced clustering algo-
rithm with distributed self-organization) protocol, which focuses on balanced clus-
tering with distributed self-organization. The cluster size is adjusted based on the 
distance from the BS and node density, employing a larger cluster radius for greater 
distance and lower density, and vice versa. DSBCA aims to achieve cluster load bal-
ancing while minimizing communication costs. The main idea of [15] is the intro-
duction and evaluation of COSBIoT, a centralized algorithm designed to optimize 
energy-efficient maximum area coverage in sensor-based IoT (SBIoT) frameworks. 
By leveraging Miquel triangles (MT) and anticomplementary triangles (ACT), 
COSBIoT schedules sensor nodes in sleep-awake cycles to effectively cover dense 
and randomly deployed networks. The authors in [16] proposed a novel scheme for 
clustering and event detection in sensor-based IoT (SBIoT) frameworks that incorpo-
rate user context. This approach divides the deployment region into sub-regions, 
forming sensing clusters based on user-defined parameters, which enables accurate 
and context-aware event detection. Additionally, the scheme utilizes communication 
clusters and compressive data gathering to enhance energy efficiency. The authors 
in [17] proposed a hybrid cluster-based smart random walk (CBSRW) routing tech-
nique for WSN aimed at enhancing reliable data transmission and network lifetime. 
By integrating random walk (RW) with clustering methodologies, the CBSRW 
approach facilitates multihop data gathering and aggregation, effectively reducing 
redundant data transmission. Proposed in [18], the EADUC (Energy-aware distrib-
uted unequal clustering) protocol suggests the formation of clusters with unequal 
sizes by assigning varying radius of competition to the nodes. Smaller clusters are 
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favored for CHs closer to the BS to conserve energy for intercluster data communi-
cations. The EECS (Energy efficient clustering scheme) protocol, presented in [19], 
proposes a clustering method incorporating competition between candidate CHs. A 
node chooses the CH based on its energy and the load balancing of the CHs with 
two distance factors. The CH selection decision is guided by a cost function, com-
bining intra and intercluster distances with a weighting factor. The aim is to achieve 
a balance between intracluster energy consumption and intercluster communication 
load. An in-depth taxonomy, comparison, analysis and discussion of unequal clus-
tering protocols is reported in  [20], investigating scalability, energy efficiency and 
load balancing. The lack of exploration of unequal clustering protocols was 
expressed by the authors, despite their potential for load balancing, hotspot remedia-
tion and energy efficiency. Unequal clustering protocols are categorized according to 
cluster size control methods based on (i) node degree like power aware dynamic 
clustering protocol (PADCP)  [21], dynamic transmission power control method 
(DTPC)  [22] and dynamic load balanced clustering-problem (DLBCP)  [23], (ii) 
relay load like: energy efficient unequal clustering (EEUC) [24], cross layer unequal 
clustering routing algorithm (CUCRA) [25], UCS [26], EEC-SCH [27], UBUC [28] 
and fuzzy logic-based relay load balancing unequal clustering protocol EAUCF [29] 
and (iii) the combination of both as: IEEUC [30], IFUC [31], PSO-UFC [32] and 
EDDUCA  [33]. The authors in their review, as detailed in  [34], have categorized 
unequal clustering protocols into three basic classes: probabilistic, deterministic, 
and preset. The pobabilistic category is further subdivided into random, including 
protocols such as PRODUCE [35], EDUC [36], LUCA [37] and Hybrid, including 
protocols such as EEUC  [24] and UCR  [38]. The deterministic category is struc-
tured as weight, encompassing approaches such as, ACT  [39], EADUC  [18], 
CUCA [40], fuzzy with protocols such as FUCP [41], FBUC [42], DUCF [43], heu-
ristic including SMEBUC  [44], GAEEP  [45] and compound like EDDUCA  [33]. 
Finally, the preset category, with the UCS protocol  [26] as an example. Pravin 
et  al.  [46] developed a protocol to improve energy efficiency, energy balance and 
network scalability in IoT-enabled WSN using a genetic algorithm (GA) for CHs 
selection, considering factors likedensity, stability, node energy and capacity. The 
protocol featured a stochastic CHs selection model (SCHSM) and included multiple 
movable sink nodes. Sankar et  al.  [47] introduced a novel fuzzy-based Har-
ris–Hawks optimization (FHHO) algorithm for optimal CHs selection in IoT net-
works, aiming to address the energy scarcity problem and extend network lifetime. 
The FHHO algorithm takes into account residual energy and the distance between 
the sink and the node, using fuzzy logic to evaluate the fitness function. The authors 
in [48] developed a new approach for optimizing CHs selection and the path of data 
transmission in IoT-enabled smart agriculture systems. This novel approach inte-
grates whale optimization algorithm (WOA), modified fuzzy logic and enhanced 
crow swarm optimization (ECSO). Fuzzy logic evaluates parameters like distance, 
trust, energy, overhead and node degree for CH selection, while ECSO optimizes the 
data transmission path. Recent research introduces an energy-efficient data packet 
aggregation scheme for long range (LoRa) communication in low-power wide area 
network (LPWANs) to address high-energy consumption. The proposed load bal-
ancing algorithm [49] improves network performance and energy savings. The load 
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balancing model used in the study focuses on optimizing data transmission in LoRa 
networks by strategically managing how data packets are aggregated and transmitted 
among nodes. Compared to conventional star connected LoRa and other protocols, 
this approach significantly enhances energy efficiency, prolongs network lifetime 
and increases stability.

3  Optimum number of clusters and the energy model

3.1  Energy consumption model

The energy consumption model (ECM) from Heinzelman et al. [50] is used in our 
simulations. It measures the energy required for transmission as a function of mes-
sage size (l) and communication distance (d). The reception energy is determined 
by the size of the received message (l). Data aggregation energy is covered by this 
model. When transmitting, the energy consumed is given by ETx(l, d) shown in For-
mula 2. Depending on the distance d, two power control settings and two channel 
models are applied as follows ( d0 is specified in Formula 3):

• Utilize the free space power amplifier Efs and the channel corresponding to the 
free space model ( d2 power loss) when d < d0.

• Utilize the multipath power amplifier Emp and the channel corresponding to the 
multipath fading model ( d4 power loss) when d ≥ d0.

The definitions for Eelec , Emp and Efs are given in Table  1. The reception energy 
ERx(l, d) for l bits is defined in Formula 4

(1)ETx(l, d) = ETx−elec(l) + ETx−amp(l, d)

(2)ETx(l, d) = {{
llEelec ∗ l + Efs ∗ l ∗ d2 if d < d0
Eelec ∗ l + Emp ∗ l ∗ d4 if d ≥ d0.

(3)d0 =

√

Efs

Emp

(4)ERx(l, d) = ERx−elec(l) = Eelec ∗ l

Table 1  ECM parameters

Parameters Values Description

Eelec 50 nJ/bit Required energy to run electronic circuit
Emp 0.0013 pJ/bit/m4 Multi path propagation
Efs 10 pJ/bit/m2 Free space propagation
EDA 5 nJ/bit/signal Required energy for data aggregation
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The CHs nodes aggregate data using an energy represented as EDA for transmission 
to the BS, as indicated in Table 1.

3.2  The optimum number of clusters ( Kopt)

The Kopt (see Formula 5) defined by Heinzelman et al. [50] is computed according to 
several network and radio parameters (see Table 1). The demonstration is clearly out-
lined in [50]. The deployment of the network is on a surface of M*M m 2 , N is the initial 
number of nodes and dtoCH is the average distance of the CHs from the BS.

4  Theoretical and formal basis of the DCOPA protocol

DCOPA is a distributed protocol conceived for clustering in WSN-based IoT. A compe-
tition is initiated between network nodes by calculating T(i), which is treated as a timer, 
according to the REnrg and the DistBS for self-selection of CHs in a current round. 
T(i) ∈]0, � − �[ , is less than the time allocated to the CH election period, which is (�) . 
� ∈]0, 0.1[ , is a very small time that ensures that a node does not declare itself as a CH 
outside the CH designation period. DCOPA is scheduled in two phases. In the setup 
phase, each node decrements its T(i) (see Formula 6) at the beginning of each round. If 
T(i) is equal to zero, the node decides to act as a CH and broadcasts an ADV_CH on an 
RC radius to its neighbors, who then drop their candidacy for the CH position and look 
forward to further ADV_CH from other CHs. The steady state phase consists of three 
periods: (i) Normal nodes send acknowledgment control messages to the nearest CH, 
(ii) CHs broadcast a TDMA (Time division multiple access) calendar for cluster nodes 
to transmit data messages. This time period is used for data routing inside the cluster 
and (iii) the CHs aggregate the data and forward it to the BS using the MAC CSMA 
(carrier-sense multiple access media access control) protocol. Table 2 shows the vari-
ables used in the description of T(i).

The following points should be noted: Ei (Formula 8) and Di (Formula 9) are defined 
after the normalization procedure.

(5)Kopt =

√

N
√

2Π

�

Efs

Emp

M

d2
toCH

(6)T(i) =

{

(�Ei + �Di)(� − �) if i ∈ G

� − � otherwise

(7)� + � = 1

(8)Ei =

(

EMax − Eri

EMax

)
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Formula (10) is verified and demonstrated in [6].

5  Contribution: the unequal‑DCOPA protocol

5.1  DCOPA protocol and equal clustering limitation

A particular drawback of the DCOPA protocol is the restriction of using the 
same RC for all CHs, as exemplified in Fig. 1. This is a drawback due to the dis-
similar REnrg between CHs and their DistBS. Broadcasting an advertising mes-
sage (ADV_CH) by a CH using a RC that is the identical for all nodes, whatever 
their amount of energy, and whatever their distance from the BS, can never be 
an advantage. This equality of RC across CHs, even though they differ in criteria 
such as energy and DistBS, results in premature failures of certain CHs. As a 
consequence, nodes with low energy may not be in a position to efficiently cover 
their clustering area on the one hand and have a large number of nodes and thus 
a large number of control messages and data on the other. In addition, nodes 
located far from the BS may have the same intracluster activities as a CH that is 
very close to the BS and in addition have a long transmission distance to the BS 
once the data are aggregated, which inevitably leads to their accelerated failures 
compared to other CHs in the network.

(9)Di =

(

ditoBS − dMintoBS

dMaxtoBS − dMintoBS

)

(10)0 <𝛼
EMax − Eri

EMax

+ 𝛽
ditoBS − dMintoBS

dMaxtoBS − dMintoBS

≤ 1

Table 2  Variables of T(i) Variables Description

ditoBS The distance between the node N(i) and the BS
dMaxtoBS The maximum distance to the BS
dMintoBS The minimum distance to BS
EMax The initial energy of the node
Eri The REnrg of node N(i)
� The weight of the energy criterion
� The weight of the distance criterion
� The time of the self-election period of CHs
� A small positive real number
Ninit The initial number of nodes
G The set of nodes which were not CHs during 

the previous (1/P) rounds, P=(Kopt∕Ninit)



 F. Mir, F. Meziane 

5.2  Contribution description

To avoid the inequity of assigning the same RC to the CHs despite their very dif-
ferent capabilities, it would be appropriate to take into account the differences 
in REnrg and DistBS when broadcasting the ADV_CH by the CHs in the network. 
The present contribution is a continuation of the work undertaken in [10], which 
establishes the conceptual and methodological basis for this proposal. It could be 
envisaged to define variable or adaptive RC based on these criteria, enabling a 
more efficient allocation of resources and better adaptation to the context of each 
CH. An adaptive approach that dynamically adjusts RC according to the individ-
ual characteristics of CHs could help improve mortality rates, node and network 
energy and network lifetime. We have modeled the problem as a multicriteria 
optimization system, where we attempt to find the ARC taking into account two 
different criteria. We assign weights to the two criteria to define their degree of 
relative importance. These weights can be defined according to the specific needs 
of the application. For example, if energy conservation is a top priority, a higher 
weight can be assigned to REnrg than to DistBS. The weighted sum approach is 
chosen to combine the two criteria into a single objective function. The objective 
function would take the form of a linear combination of the two criteria, where 
each criterion is multiplied by its corresponding weight. Using this approach, 
DCOPA can make more intelligent and adaptive decisions regarding the calcula-
tion of RC by each CH.

Fig. 1  RC used in DCOPA protocol [6]
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5.3  UDCOPA protocol architecture

UDCOPA consists of two phases, the setup phase and the steady state phase. 
In the setup phase, each node begins to decrement its T(i) (see Formula  6) at 
the starting point of each round. If T(i) reaches zero, the node declares itself as 
CH and diffuses an ADV_CH for its neighbors who are within an ARC, see For-
mula  13, instead of the RC implemented in DCOPA, which is identical for all 
CHs and across the whole lifetime of the network. Nodes receiving this ADV_CH 
message drop their applications for the CH role and wait for other solicitations 
by ADV_CH from additional CHs if it is included in their ARC. The steady state 
phase is exactly the same as in the DCOPA protocol.

5.3.1  Adaptive radius of clustering

Before the ADV_CH message is diffused by a CH, the ARC is calculated using 
the weighted sum, which is a method applied in multicriteria analysis, of the two 
criteria of REnrg and DistBS, assigning weights that will be defined according 
to the WSN-based IoT application or user needs. The ARC takes the maximum 
value equal to RC which is calculated, specified and demonstrated in [6]. RC is 
calculated as a function of the surface area of the monitoring zone and the opti-
mum number of culsters K = Kopt (see Formula 5).

ARC will be maximized if the REnrg is maximized and the DistBS is maximized. 
This means that we will get clusters with a large radius once the CH’s REnrg and 
DistBS are large. As a result, nodes with a very small amount of energy will pose 
the problem of obtaining a very small ARC that tends toward zero, which is a real 
drawback, as once the nodes in the network lose a large part of their energy, we 
will have a very large number of CHs communicating directly to the BS. Conse-
quently, the network can lose a very large number of nodes, which has an impact 
on its lifetime. To overcome this drawback, we have set a minimum value for this 
radius, called RC_Min , given in Formula 12.

FR represents the Factor of Reduction of the chosen RC, considered as a percentage 
(examples: 25% , 30% , 50% , etc.).

(11)RC =
2M

√

ΠK

(12)RC_Min = (RC ∗ FR) =

�

2M
√

ΠK
∗ FR

�
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5.3.2  Calculation of ARC in the UDCOPA protocol

The ARC on which a CHi sends its ADV_CH message is determined by For-
mula 13, explained in what follows.

The parameters used in Formula 13 are given in Table 3. Following the nor-
malization process, ECHi

 and DCHi
 are defined as follows: (the variables dMaxtoBS , 

dMintoBS and EMax are described in Table 2):

Formula 17 is verified as follows:

• The primary objective is to maximize the distance from a CHi to the BS, 
denoted as dCHitoBS

 . 

(13)

ARCCHi
= ((�ECHi

+ �DCHi
)(RC − RC_Min)) + RC_Min

=

�

(�ECHi
+ �DCHi

)

��

2M
√

ΠK

�

−

�

2M
√

ΠK
∗ FR

���

+

�

2M
√

ΠK
∗ FR

�

=

�

(�ECHi
+ �DCHi

)

�

2M
√

ΠK
(1 − FR)

��

+

�

2M
√

ΠK
∗ FR

�

(14)� + � = 1

(15)ECHi
=

(

ErCHi

EMax

)

(16)DCHi
=

(

dCHitoBS
− dMintoBS

dMaxtoBS − dMintoBS

)

(17)0 < 𝜃
ErCHi

EMax

+ 𝜔
dCHitoBS

− dMintoBS

dMaxtoBS − dMintoBS

≤ 1

(18)dMintoBS ≤ dCHitoBS
≤ dMaxtoBS

Table 3  Parameters of the 
Formula 13

Parameters Meaning

dCHitoBS
The distance of the CHi from the BS

ECHi
The REnrg of the CHi

RC The Radius of Clustering (see Formula 11)
RC_Min The minimum value of the RC (see Formula 12)
FR The Factor of Reduction
� The weight of energy criterion
� The weight of the distance criterion
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 Following normalization, the result will be: 

• The second objective is to maximize the REnrg , for a CHi , represented as ErCHi
 . 

 Following normalization, the result will be: 

 Using Formulas 14, 20, and 22, the verification of Formula 17 is completed.
Under conditions where ECHi

→ EMax and dCHitoBS
→ dMaxtoBS , the (ARC) converges 

to the RC. This indicates that when the energy resource of a CH is high and it is 
located at a high distance from the BS, the ARC mechanism favors a configuration 
that maximizes the number of member nodes with the advertisement of its elec-
tion over a sizeable radius. On the other hand, when the residual energy of a CH 
decreases ( ECHi

→ 0 ) and its DistBS is minimal ( dCHitoBS
→ dMintoBS ), the ARC 

converges toward (RC_Min) by favoring a minimal number of member nodes. This 
underlines the adaptability of the protocol, dynamically adjusting the RC according 
to energy constraints and DistBS.

6  UDCOPA: performance evaluation

6.1  Simulation assumptions

In our simulations, we made several very important assumptions about the features of the 
BS and the network nodes. We assumed that the BS has no energy constraints, allowing 
it to operate without any power restrictions. Nodes, however, are equipped with storage 
batteries that cannot be recharged or renewed. In addition, nodes are not able to move, nor 
do they have the technological equipment needed to know their positions. Finally, nodes 
have the ability to adapt their transmission range according to their distance from the 
receiver(s) and will stop working if, and only if, their energy is fully depleted.

6.2  Simulation environment

The coverage area is a square of side M meters and area M*M m2 . N nodes are 
randomly and uniformly dispatched. All nodes are initially supplied with an equal 
amount of energy. Two types of messages are exchanged: control messages, which 
are used to structure the network, and data messages, which include the data 

(19)0 ≤ dCHitoBS
− dMintoBS ≤ dMaxtoBS − dMintoBS

(20)0 ≤

dCHitoBS
− dMintoBS

dMaxtoBS − dMintoBS

≤ 1

(21)0 < ErCHi
≤ EMax

(22)0 <
ErCHi

EMax

≤ 1 ⇒ 0 < ECHi
≤ 1
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collected by the nodes for the specific application. Simulations are carried out using 
MATLAB1 to measure the protocol’s efficiency. The BS, in charge of data collec-
tion and processing, is outside the area under surveillance. The weights of the crite-
ria, used in T(i) and ARCCHi

 , that we have chosen are listed in the Table 4. Table 5 
defines the utilized parameters. We used a computer equipped with an Intel(R) 
Core(TM) i5-10400 CPU running at a frequency of 2.90 GHz. This processor, from 
the 10th generation Intel Core family, offers robust performance for computationally 
intensive tasks, which are essential for running complex simulations. In addition, the 
computer is equipped with 16 GB of RAM memory, enabling it to efficiently man-
age large data volumes and run several simulations in parallel without compromis-
ing performance.

We have chosen to compare our UDCOPA protocol, which is an improvement on 
the DCOPA protocol, with LEACH for several reasons. Firstly, LEACH is widely 
recognized in the literature as the leading clustering protocol for WSN. It is often 
used as a baseline reference for the evaluation of new protocols, due to its reputation 
as a distributed and probabilistic protocol. Secondly, in addition to LEACH, we also 
carried out a comparison with DCOPA, which is a more recent protocol that relies 

Table 4  Criterion weights for 
both cases

Case Function Criterion Value F
R
(%) Description

1 T(i) Ei � = 0.3 (1∕3) = 33% REnrg(N(i))

Di � = 0.7 DistBS(N(i))
ARCCHi

ECHi
� = 0.3 REnrg(CHi)

DCHi
� = 0.7 DistBS(CHi)

2 T(i) Ei � = 0.5 (1∕2) = 50% REnrg(N(i))

Di � = 0.5 DistBS(N(i))
ARCCHi

ECHi
� = 0.3 REnrg(CHi)

DCHi
� = 0.7 DistBS(CHi)

Table 5  Simulation parameters Parameters Values Description

M ∗ M 1002 m 2 Area network
EMax 0.5 j Initial energy
dMintoBS 75 m Nearest point to BS
dMaxtoBS 183 m Furthest point to BS
Sinkx 50 m Sink x-axis
Sinky 175 m Sink y-axis
MsgCtrl 25 bytes Control message length
DataMsg 200 bytes Data message length
K = Kopt Kopt , see Formula 5 Optimum clusters number [50]

1 https:// www. mathw orks. com.

https://www.mathworks.com
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on multicriteria aggregation for CH election. DCOPA was compared with other pro-
tocols such as TB-LEACH and LEACH-MAC and demonstrated better performance 
than the latter. So, by showing that our UDCOPA protocol outperforms DCOPA, we 
can indirectly conclude that UDCOPA is superior not only to LEACH, but also to 
TB-LEACH [51] and LEACH-MAC [52].

6.3  Network nodes mortality rate

Careful analysis of Fig. 2b, clearly reveals that the LEACH protocol exhibits more 
severe mortality compared to the UDCOPA and DCOPA protocols. Initially, the 

Table 6  Lifetime metrics results Protocols FND HND LND

LEACH 605 771 1062
DCOPA ( � = 0.5, � = 0.5) 629 858 1301
UDCOPA 

( � = 0.3, � = 0.7, � = 0.3,� = 0.7,F
R
= 33%)

419 782 1727

UDCOPA 
( � = 0.5, � = 0.5, � = 0.3,� = 0.7,F

R
= 50%)

485 814 1624

Fig. 2  Energy performance and mortality rate (100 nodes)
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UDCOPA protocol, in both simulated cases, and the DCOPA protocol rival each 
other in node loss rate, with approximately equivalent performance until around the 
1100 round. From this round onwards, DCOPA shows a more accelerated and severe 
rate of mortality than UDCOPA, leading to total node extinction in round 1301. In 
contrast, the UDCOPA protocol maintains a more stable loss with a less acceler-
ated rate than DCOPA, resulting in prolonged resistance up to round 1727 for Case 
(1): (UDCOPA: � = 0.3, � = 0.3, � = 0.3,� = 0.7,FR = 33% ) and round 1624 for 
Case (2): (UDCOPA: � = 0.5, � = 0.5, � = 0.3,� = 0.7,FR = 50% ). It is important 
to state that the UDCOPA protocol is characterized by its ability to maintain a more 
stable node loss than DCOPA. This makes it more resilient to sudden decreases 
in the number of nodes in the network. The lifetime metrics selected are given in 
Table 6. These are the first node dead (FND), the half nodes dead (HND) and the 
last node dead (LND).

6.3.1  Interpretation 1

It is important to emphasize that the UDCOPA protocol stands out for its superior 
performance in terms of node failure rate, with a steady and uniform decrease in 
the number of nodes over the lifetime of the network. UDCOPA shows no sharp 
drop-off or significant failures over a small number of rounds. This indicates highly 
improved and balanced node energy management. The nature of the radius ARC is 
behind the improvement in node and network lifetime metrics. The radius is char-
acterized by its contextual awareness of a CH’s criteria. It is calculated on the basis 
of an objective function based on multicriteria optimization (aggregation) that com-
bines two criteria: the CH’s energy capacity and its DistBS, taking into account their 
respective weights according to their degree of importance in the application or net-
work context. As a result, the CHs in the network will have different ARC depend-
ing on their individual performance. This approach creates an unequal clustering 
where CHs with high energy and long DistBS get a large ARC. Inversely, CHs build 
clusters on a very small ARC to avoid long and energy-intensive communications, 
which could put an end to their energies. This property can be described as a distri-
bution of the number of nodes or the load according to the individual capacity of 
each CH. In summary, ARC optimizes the energy use of nodes and CHs, ensuring 
a balanced consumption and distribution of normal nodes over all CHs in a given 
round.

6.4  Total network energy

Figure 2a shows the results for total network energy as a function of rounds. The 
results clearly show that UDCOPA is characterized by better energy conservation 
than the DCOPA and LEACH protocols. Total energy management for UDCOPA 
and DCOPA is particularly adjacent, indicating almost identical energy manage-
ment up to around round (750). However, from round (750) on, the UDCOPA pro-
tocol distinguishes itself by showing better energy conservation than the DCOPA 
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protocol, and thus maintains stability up to round (1727) for Case (1) and (1624) for 
Case (2) (see Table 4).

6.4.1  Interpretation 2

The performance reported regarding the total network energy indicates that 
UDCOPA and DCOPA significantly outperform the LEACH protocol, mainly due 
to its many drawbacks, notably the RC covering the entire network. This accelerates 
the exhausting process of CHs and nodes. The energy efficiency of UDCOPA com-
pared with DCOPA lies in the fact that when nodes lose energy, UDCOPA compen-
sates by reducing the radius according to REnrg and DistBS. This strategy distributes 
the load between CHs and avoids long-distance communications. In contrast, the 
DCOPA protocol continues to operate with the same RC radius despite the energy 
loss of the nodes and does not take their DistBS into account. The UDCOPA proto-
col achieves energy balancing and stability, demonstrating the success of the radius 
adaptation mechanism of ARC, which is sensitive to variations in DistBS and CH 
energy. On the other hand, the DCOPA protocol shows a certain limitation due to 
the constant RC, which is not sensitive to the criteria of a CH, and to the decrease in 
the REnrg of the nodes over the rounds.

6.5  Average residual energy per node

The results for average REnrg per node as a function of rounds are shown in 
Fig. 2c. The LEACH protocol shows a somewhat abrupt degradation of its aver-
age REnrg per node compared with other protocols. By contrast, the DCOPA and 
UDCOPA protocols show very similar values up to the round (700). Beyond this 
stage, the DCOPA protocol experiences a severe decrease in the average energy 
of network nodes [from round (750) with (0.1 J) to round (1301) with (0J)], while 
the UDCOPA protocol maintains almost linear stability over a significant number 
of rounds (from round 750 with (0.12 J) to around (1500) (0.09–0.06 J)). From 
this point on, a decay is observed until the entire network is lost.

6.5.1  Interpretation 3

The drastic decrease in the average REnrg of the nodes observed in the LEACH pro-
tocol can be attributed to several drawbacks known in the literature. These include 
the random election of CHs, the lack of consideration of the energy factor in the CH 
election process, the variability of the number of CHs in each round and the high 
RC covering the entire network. These factors are directly associated with a consid-
erable reduction in average node energy from one round to the next. On the other 
hand, the DCOPA and UDCOPA protocols demonstrate very adjacent performance 
up to a certain round, approximately at (750). From this point on, the nodes start to 
lose energy significantly. In the case of DCOPA, nodes maintain their RC as initially 
defined, while for UDCOPA, nodes adjust their RC to form a significantly reduced 
adjusted radius (ARC). This very positive adaptation has a significant impact on 
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energy conservation, as the adjusted ARC allows CHs to communicate over optimal 
distances for cluster construction. Similarly, normal nodes transmit their data over 
distances smaller than the RC of DCOPA, thus minimizing the energy required for 
communication.

6.6  Average energy consumption per node

The results for average energy consumption per node as a function of rounds are 
plotted in Fig. 3a and the results summarized in Table 7. We will carry out an in-
depth analysis of the variances and means of four distinct representations, with 
the aim of comparing them rigorously. Analysis of the findings shows significant 
differences between the LEACH, DCOPA, UDCOPA Case (1) and UDCOPA 
Case (2) protocols in terms of the variance and mean of the average energy con-
sumed per node as a function of rounds. When we focus on the variance val-
ues, which measure the dispersion of the data in relation to the mean, we see 

Table 7  Variance and mean of 
average energy consumption 
per node

Protocol Variance ( �J2) Mean ( �J)

LEACH 0.0056 609.7040
DCOPA 0.0032 548.7964
UDCOPA Case (1) 0.0033 546.7640
UDCOPA Case (2) 0.0029 537.3271

Fig. 3  Average energy consumption per node and for the entire network (100 nodes)
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that LEACH has the highest variance (0.0056), followed by DCOPA (0.0032), 
UDCOPA Case (1) (0.0033) and finally UDCOPA Case (2) (0.0029). This differ-
ence in dispersion indicates that LEACH has greater variability in energy con-
sumption than the other protocols. Concerning means, which represent the central 
tendency of the data, we observe that LEACH has the highest mean (609.7), fol-
lowed by DCOPA (548.8), UDCOPA Case (1) (546.8) and UDCOPA Case (2) 
(537.3). This indicates that LEACH has a higher average energy consumption per 
node than other protocols. In summary, although LEACH has a higher average 
energy consumption, it is important to take into account the variability measured 
by the variance. DCOPA, UDCOPA Case (1) and UDCOPA Case (2) show lower 
levels of variability, reflecting more stable energy consumption. These results 
underline the importance of considering both central tendency and data disper-
sion for a comprehensive evaluation of protocol performance in the context of 
energy consumption.

6.7  Average energy consumption by the complete network

Examining the variability of the average energy consumption of the whole net-
work as a function of rounds, see Fig. 3b.  The results, as summarized in Table 8, 
reveal significant differences between protocols. The variances, measuring the 
dispersion of values around the mean, are more pronounced for UDCOPA Case 
(1) (618.06) and UDCOPA Case (2) (616.85) than for LEACH (580.41) and 
DCOPA (464.39). This variability indicates a greater fluctuation in node energy 
consumption for the UDCOPA protocols. In terms of means, LEACH has the 
highest value (47,  080.98), indicating high average energy consumption com-
pared with the other protocols. DCOPA has a lower average (38,  431.98), fol-
lowed by UDCOPA Case (2) (30, 788.18) and UDCOPA Case (1) (28, 951.94).

6.7.1  Interpretation 4

LEACH takes last rank because of certain limitations observed in its mode of 
operation. LEACH uses a fixed RC for cluster formation, and this radius covers the 
entire network region. In addition, LEACH does not take node-specific criteria into 
account when selecting nodes as CHs. This approach can lead to problems, particu-
larly when nodes with energy very close to zero are elected as CHs. Not consider-
ing node criteria can lead to the selection of CHs less suited to their context, which 

Table 8  Variance and mean 
of energy consumption for the 
entire network

Protocol Variance ( �J2) Mean ( �J)

LEACH 580.4122 47080.9793
DCOPA 464.3853 38431.9754
UDCOPA Case (1) 618.0579 28951.9398
UDCOPA Case (2) 616.8491 30788.1773
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can result in premature failure of these nodes and negatively affect network energy 
performance.

In second-to-last place, we have DCOPA, which offers an improvement on 
LEACH by aggregating node criteria to compete for the CH role. However, DCOPA 
has an important limitation in terms of its fixed broadcast radius RC. The RC is used 
to define the solicitation message range of normal nodes in order to include them in 
a CH’s cluster. Unfortunately, this fixed RC remains constant throughout the lifetime 
of the network, which can impact the results of average energy consumption per 
node and per network over the rounds. This limitation becomes more of a factor, 
especially when network nodes have lost a significant amount of their energy. In the 
first place, we find UDCOPA, which represents an improved version of DCOPA by 
introducing significant adjustments. UDCOPA takes into account nodes’ criteria in 
their election as CHs, offering a more adaptive approach to the various conditions of 
the network. Unlike DCOPA, UDCOPA introduces the notion of the ARC, which is 
dynamic and adjustable according to the CH’s performance. This innovation enables 
a CH to adapt its communication radius to its specific context, thus optimizing its 
communications and energy consumption.

The flexibility provided by the ARC contributes to better adaptation to changing 
network conditions, thus enhancing the overall energy performance of the UDCOPA 
protocol. It is important to note that the number of rounds has a significant influ-
ence on the results obtained. Greater variability in the number of rounds can lead 
to increased data dispersion, thus impacting the variance of observations. In our 
context, the disparity in the number of rounds between UDCOPA (1727), DCOPA 
(1301) and LEACH (1062) could explain the higher variance observed in UDCOPA. 
This difference is explained by the fact that an increase in the number of rounds 
leads to a more extensive collection of observations, potentially introducing greater 
variability into the data analyzed.

7  Analysis of clusters load balancing and distribution of CHs 
and their member nodes

In what follows, we will look at metrics that are of crucial importance in WSN-
based IoT network clustering protocols. These metrics play a key role in perfor-
mance evaluation. The metrics examined include distribution of nodes, CHs and 
clusters. These metrics evaluate how nodes and CHs are distributed in clusters, 
as well as the shape and geographical extent of the clusters formed (the geo-
graphical configuration). These objectives are developed with a view to design-
ing clustering protocols that minimize energy consumption by guaranteeing a 
balanced distribution of nodes and geographical space (area). The analysis of the 
following points relates to the load balancing metrics of a clustering protocol.

• Distribution of nodes and CHs: evaluating how nodes are distributed in their 
clusters and the distribution of CHs in the network is crucial. An unequal 
distribution of nodes can lead to energy overload for some CHs, compromis-
ing the life of the network and CHs overloaded with member nodes.
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• Shape and geographical extent of clusters: the shape of the clusters formed 
and their geographical extent is essential for energy efficiency. Clusters with a 
well-balanced surface area enable more efficient energy management, reduc-
ing the need for long-distance communication. A very large cluster surface 
area implies the possibility of having so many member nodes far removed 
from their CHs.

These metrics aim to highlight the development of energy-efficient clustering 
protocols to meet the challenges posed by WSN-based IoT networks and thus 
contribute to optimizing their lifetime.

7.1  Specific metrics studied

The following metrics are applied to four case studies, namely the LEACH, 
DCOPA and UDCOPA protocols with two parameter variations.

• Bidimensional distribution of formed clusters with density contours.
• Bidimensional distribution of nodes within each formed cluster.
• Distribution of nodes and CHs within the formed clusters, including the RC 

for each CH.
• Distribution of CHs with their RC.
• Elected CHs along with their corresponding RC, the count of their nodes and 

the DistBS.

This analysis aims to compare the performance of these protocols, highlighting 
the distribution and load balancing that are extremely important for any cluster-
ing protocol. Our load balancing model takes into account several key aspects 
for optimizing energy efficiency in IoT-based WSN. The distribution of nodes 
and CHs is analyzed to ensure even distribution across the network. The shape 
and geographical extent of clusters are considered. We use bidimensional dis-
tributions to visualize the density contours of the clusters formed and the dis-
tribution of nodes within each cluster. In addition, our model takes into account 
the ARC coverage for each CHs. Compared to the load balancing model pre-
sented in [49], the focus is on optimizing the aggregation and data transmission 
between nodes.

7.1.1  Interpretation 5

1. LEACH: LEACH protocol performance is detailed in Fig. 4. However, the clus-
ters formed do not show satisfactory homogeneity or balancing, as illustrated in 
Fig. 4a, b. There are marked disparities in both cluster size and shape, with clus-
ters of highly variable dimensions. This is attributable to the purely random nature 
of the CHs election. The RC, having been determined to encapsulate the entire 
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Fig. 4  Clustering metrics: distribution and load balancing in the LEACH protocol (100 nodes)
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Fig. 5  Clustering metrics: distribution and load balancing in the DCOPA protocol ( (� = 0.5, � = 0.5) , 
100 nodes)
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network, turns out to be quite extensive. A relevant observation from Fig. 4c, 
d highlights the distribution property of the CHs in the network. It is clear that 
some CHs are very close to each other, negatively impacting their distribution. 
Figure 4e reinforces this observation by revealing significant disparities in terms 
of the number of member nodes within clusters, compromising load balancing. 
Taken together, these observations point to critical aspects inherent to the LEACH 
protocol, notably the random election of CHs, the absence of criteria to guide CHs 
selection and the full coverage of the network by the RC. These shortcomings 
have adverse consequences on the distribution of both CHs and nodes, directly 
compromising the guarantee of efficient load balancing.

2. DCOPA ( � = 0.5, � = 0.5 ): The performance of the DCOPA protocol is illus-
trated in Fig. 5. DCOPA is distinguished by a more efficient and geographically 
balanced distribution of clusters, as shown in Fig. 5a, b. Figure 5c, d highlights a 
more even distribution of CHs in the network, with a defined and respected mini-
mum distance between each pair of CHs. This feature is crucial to ensure a bal-
anced distribution of CHs throughout the network. Furthermore, Fig. 5e confirms 
that the DCOPA protocol excels in terms of load balancing, with clusters featuring 
a more uniform distribution of the number of member nodes (12, 14, 20, 26, 28). 
The DCOPA protocol outperforms the LEACH protocol in terms of CH distribu-
tion and more efficient load balancing, due to an RC calculation approach and 
competition between nodes for the role of CHs based on a multicriteria approach 
involving the REnrg of nodes as well as their DistBS.

3. UDCOPA ( � = 0.3, � = 0.7, � = 0.3,� = 0.7,FR = 33% ): The performance of 
the UDCOPA protocol, with the specified parameters, is shown in Fig. 6. This 
approach proposes a new clustering method known as unequal clustering. Cluster 
sizes, as shown in Fig. 6a, b, vary, but in a homogeneous way. Looking at these 
results, we see large clusters in regions far from the BS, medium-sized clusters 
in the center and small clusters in regions closer to the BS. This feature is not 
constant across all rounds, as two criteria define the RC. In our case, the energy 
is almost the same considering we are in the first round, so it is the DistBS cri-
terion that predominates. Figure 6c, d highlights a homogeneous distribution of 
CHs, with variable RC, as explicitly illustrated. The CHs respect their minimum 
distances, calculated according to the performance of each node. Figure 6d high-
lights a crucial property: the RC differs from one CH to another, depending on its 
performance, thus ensuring the formation of large or small clusters. In this con-
text, the UDCOPA protocol guarantees real load balancing, despite disparities in 
terms of number of nodes and geographical extent, these factors being controlled 
by the individual performance of each node. UDCOPA’s advanced performance 
results from the introduction of a new notion: ARC to ensure unequal clustering, 
sensitive to the context of a CH node’s energy performance and its DistBS.

4. UDCOPA ( � = 0.5, � = 0.5, � = 0.3,� = 0.7,FR = 50% ): The performance of the 
UDCOPA protocol, configured with the specified parameters, is shown in Fig. 7. 
A further run of the UDCOPA protocol was carried out, this time with a varia-
tion in parameters. Figure 7a–e provides an overview of the distribution and load 
balancing performance resulting from this new configuration, particularly with 
regard to the minimum ARC value (50%) and the weights assigned to the criteria 
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Fig. 6  Clustering metrics: distribution and load balancing in the UDCOPA protocol 
[(� = 0.3, � = 0.7, � = 0.3,� = 0.7,F

R
= 33% ), 100 nodes]



 F. Mir, F. Meziane 

Fig. 7  Clustering metrics: distribution and load balancing in the UDCOPA protocol 
[(� = 0.5, � = 0.5, � = 0.3,� = 0.7,F

R
= 50% ), 100 nodes]
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used in calculating the competition timer or ARC. Performance in this scenario 
is influenced by the same factors discussed in the first UDCOPA configuration.

The load balancing and distribution of CHs within the UDCOPA protocol can be 
described as highly efficient, or even true balancing and efficient distribution. Both 
properties are sensitive to the context of CH energy performance and DistBS, with 
RC adaptation or adjustment depending on these two criteria. This leads to the 
design of a new ARC aimed at assigning a load adapted to the capacity of the net-
work CHs.

8  Scalability analysis

Scalability is of key importance in WSN-based IoT networks. Its primary aim is 
to ensure that the network adapts effectively and efficiently to the growing num-
ber of nodes and extended coverage space. The continuous evolution of WSN-
based IoT applications requires expansion capacity without affecting network 
performance, particularly in terms of energy management. We undertook the 
realization of several scenarios with different settings for UDCOPA, compared to 
a single configuration for DCOPA. Our choice was to study scalability by look-
ing at two key lifetime metrics, namely FND and LND. These two metrics were 
measured for several networks, ranging from 100 nodes to 500, with an increment 
of 50 nodes at each time. The simulation parameters are indicated in Table 5.

The value of Kopt varies according to several factors, see Formula  5. In our 
case, as we increase the number of nodes in the network, Kopt increases as the 
number of nodes increases. Table 9 shows the values of Kopt as a function of the 
number of nodes in the network.

Density is a crucial aspect of clustering. In our study, we observed an increase in 
node density as the number of nodes in the network increased, while the deployment 
area remained unchanged. Thus, the Kopt values, as presented in Table 9, also remain 

Table 9  Kopt values for different 
numbers of nodes

Number of nodes Kopt (see formula 5) Rounded Kopt

100 4.84 5
150 5.93 6
200 6.85 7
250 7.65 8
300 8.39 8
350 9.06 9
400 9.68 10
450 10.27 10
500 10.83 11
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unchanged. Indeed, density is not considered in the calculation of Kopt , as indicated 
in Formula 5.

An analysis of the impact of scalability on network lifetime parameters for the 
different protocols is presented in Fig. 8. We observe, through the FND metric illus-
trated in Fig. 8a, c, e, that the LEACH protocol is characterized by a progressive 
decrease in FND as the number of nodes in the network increases. This is because, 
in some rounds, we can have a very limited number of CHs with a large number of 

Fig. 8  Analysis of the effect of scalability on network lifetime parameters
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member nodes (in some cases, we could even have the whole network constitute a 
single cluster), which directly affects node mortality.

We observe fluctuations in the FND metric, with significant deviations for 
DCOPA and UDCOPA. This is due to the nature of the generated network, which 
has isolated nodes not solicited by other CHs. These nodes, not being normal nodes 
belonging to a given cluster, see the timer responsible for their proclamation as CHs 
constantly reach zero, leading them to declare themselves as CHs several times in 
succession. This leads to their premature exhaustion and, ultimately, the complete 
depletion of their energy, resulting in the rapid attainment of FND for such a net-
work. We observed this type of behavior when simulating DCOPA [6], but by calcu-
lating the confidence interval for several networks, we obtained really good results.

With regard to the LND metric illustrated in Fig. 8b, d, f, the LEACH protocol 
shows very negative results toward the scalability effect, due to all the drawbacks 
described above. DCOPA, on the other hand, shows very stable performance despite 
network extensions of up to 500 nodes, due to its assignment of the CH role to nodes 
according to their local criteria, directly influencing energy consumption. UDCOPA, 
with its different configurations, reflects good results that exceed the DCOPA pro-
tocol, with a slight decrease once the number of nodes starts to increase and then 
shows stability. The ARC plays a central and pivotal role in UDCOPA’s architecture.

9  Conclusion

UDCOPA is a distributed unequal clustering algorithm for data communications in 
WSN-based IoT networks that improve on the DCOPA protocol, in particular, by 
defining the radius within which this CH will search for the nodes that make up its 
cluster. Our goal is to improve the adaptability of the RC, the context-sensitivity of 
the criteria for a CH and the dynamic adjustment of the RC for balancing energy 
consumption, balancing the extent of clusters and the number of nodes allowed per 
cluster, and balancing the distribution of CHs and clusters in the coverage area. We 
realized that the same clustering algorithm is applied to CHs once they have been 
elected in the DCOPA protocol, without taking into consideration their disparities 
and differences in terms of REnrg and DistBS. To remedy this disadvantage, we have 
introduced a new approach, called UDCOPA, which allows each CH to establish 
its own RC, taking into account its REnrg and DistBS criteria. This multicriteria 
modeling is implemented on a weighted sum basis to ensure that clustering is opti-
mally adapted to the specific criteria of each CH. Simulation results showed that 
our UDCOPA protocol outperformed both the DCOPA and LEACH protocols in 
terms of energy management, load balancing, scalability and network lifetime. Our 
contribution has significantly enhanced clustering in WSN-based IoT networks by 
proposing an unequal and multicriteria approach, UDCOPA, for defining the RC of 
CHs that will be able to make decisions for modifying their RC for a more adapted 
and contextual clustering. The promising results of our simulations demonstrate the 
effectiveness and significant improvement of our approach over comparison proto-
cols. The clusters formed by the UDCOPA protocol with an ARC are of unequal 
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size. Smaller clusters have a smaller ARC, and fewer member nodes are closest to 
the BS. On the other hand, clusters further away from the BS have a larger ARC and 
a larger number of member nodes. This characteristic can lead to imbalances, as the 
number of CHs in areas closer to the BS can increase, allowing a node to be elected 
as CH several times, resulting in excessive energy dissipation for some nodes close 
to the BS. For the most remote CHs, they will have a large number of member nodes 
and increased communication, which also leads to excessive energy consumption. 
For future work, there are plans to incorporate additional criteria aimed at enhancing 
ARC calculation, refining Kopt calculation and integrating density as a factor that 
could influence ARC.
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