
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:23995–24025
https://doi.org/10.1007/s11227-024-06382-5

MTDB: an LSM‑tree‑based key‑value store using
a multi‑tree structure to improve read performance

Xinwei Lin1,2 · Yubiao Pan1,2 · Wenjuan Feng1 · Huizhen Zhang1 · Mingwei Lin3

Accepted: 18 July 2024 / Published online: 1 August 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Traditional LSM-tree-based key-value storage systems face significant read ampli-
fication issues due to the multi-level structure of LSM-tree, the unordered SSTable
files in Level 0, and the lack of an in-memory index structure for key-value pairs.
We observed that, under the influence of workloads with locality features, key-
value pairs exhibit a range-specific access intensity. Addressing the three reasons
for LSM-tree read amplification, we have utilized the range-specific access intensity
of workload to propose a multi-tree structure consisting of a B+ tree, a single-level
hot tree, and an LSM-tree with partition-based Level 0. This aims to enhance the
read performance of LSM-tree-based key-value storage systems. We designed the
prototype, MTDB, based on LevelDB. The experimental results show that MTDB’s
read performance is 1.62× to 2.02× that of LevelDB, and it approaches or exceeds
the read performance of KVell and Bourbon while reducing memory overhead by
58.85%–86%.

Keywords  Key-value store · Storage system · LSM-tree · Read amplification · Write
amplification

1  Introduction

The Log-Structured Merge-tree (LSM-tree) [1] is a widely adopted data structure in
current key-value storage systems, such as Google’s BigTable [2] and LevelDB [3],
Facebook’s RocksDB [4] and Cassandra [5], and Apache’s HBase [6].

The LSM-tree exhibits several features. Firstly, it turns random writes into
sequential writes. Specifically, the LSM-tree initially caches key-value pairs from
user’s random writes in a MemTable. When the capacity of the MemTable reaches
its limit, the MemTable is converted into an Immutable MemTable. The sorted data
is then sequentially written to storage devices in the form of SSTables (Sorted String
Tables). Secondly, the LSM-tree maintains a multi-level and ordered structure in

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06382-5&domain=pdf

23996	 X. Lin et al.

external memory. Key-value pairs within each level are globally ordered (except for
the Level 0), and the capacity of each level is limited and gradually increases (typi-
cally increased by a factor of 10, e.g., the capacity of Level i+1 is 10 times that of
Level i). Lastly, key-value pairs always move from the upper levels to the lower lev-
els of the LSM-tree. For instance, when a certain Level i reaches its capacity limit,
the LSM-tree triggers a Major Compaction operation. This operation selects SSTa-
ble files from Level i and all SSTable files in Level i+1 that overlap in key ranges.
These files are then read into memory, sorted, one or more new SSTable files is gen-
erated, written back to Level i+1, and the selected SSTable files are deleted.

Due to the characteristics of the LSM-tree, key-value storage systems based on
LSM-tree suffer from a significant issue known as read amplification. This problem
is primarily attributed to three reasons: (1) The multi-level structure of the LSM-
tree necessitates the key-value storage system to traverse through levels from top
to bottom to locate the required key-value pairs, continuing until the target pair is
found or the absence of the specified key-value pair is confirmed. (2) Unlike other
globally ordered levels, the SSTable files in Level 0 exhibit overlaps. Consequently,
when searching for a target key-value pair in Level 0, the system needs to check all
SSTable files in Level 0 (up to a maximum of 12 files), whereas other levels only
require checking one SSTable file. (3) Since the key-value pairs in SSTable files
lack in-memory indexes, checking SSTable files involves reading their index blocks,
Bloom filter blocks, and data blocks to ascertain whether the desired key-value pairs
can be located. Research indicates that LSM-tree-based key-value storage systems
sometimes face read amplification as high as 300 [7, 8], leading to a decline in read
performance. In real-world scenarios, the majority of database workloads involve
more reads than writes. For example, the read-to-write ratio in AI/ML applications
can reach 9:1, in OLTP applications it can be as high as 10:1, and in Twitter’s Mem-
cached workload, the ratio can reach 7:1 [9].

Therefore, addressing the issue of read amplification in key-value storage sys-
tems based on LSM-tree has become an interesting research issue in this field. In
response to the aforementioned challenges, one category of research [10, 11] utilizes
a global in-memory indexing structure, indexing all key-value pairs in the LSM-
tree. Although this approach eliminates the efficiency gap between early and recent
writes, it incurs high memory indexing costs for the large number of cold key-value
pairs under skewed workloads, yielding minimal benefits. Another category of
research [12] seeks to enhance the retrieval efficiency of lower-level data by moving
frequently accessed SSTable files from lower levels to upper levels or into mem-
ory. However, since read operations typically require traversing all SSTable files in
Level 0, relocating SSTable files to Level 0 can exacerbate read amplification. There
is also a category of work [13] that addresses read amplification by implementing
Bloom filters. While this approach helps mitigate read amplification, it still fails to
resolve the challenges associated with multi-level access.

Research indicates that key-value storage system workloads commonly exhibit
pronounced locality characteristics [14–16]. Due to the sequential arrangement
of key-value pairs, under the influence of evident workload locality character-
istics, there exists a range-specific access intensity for key-value pairs. In other
words, certain ranges of key-value pairs within the workload experience higher

23997MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

access frequencies, while others within different ranges are accessed less fre-
quently. Therefore, to reduce the memory overhead of global indexing, this study
leverages the range-specific access intensity characteristics of key-value pairs in
workloads, using in-memory indexes only for key-value pairs with range-specific
hotness. This approach avoids the memory overhead caused by cold key-value
pairs in global indexing. At the same time, it addresses the three causes of read
amplification in LSM-tree by proposing a multi-tree structure to enhance the read
performance of LSM-tree-based key-value storage systems. Specifically, our con-
tributions in this paper are as follows.

•	 To minimize the overhead of LSM-tree’s top-down level-by-level search for
required key-value pairs in external memory, this paper introduces a multi-
tree structure, namely an in-memory B+tree, an on-disk single-level hot tree,
and an on-disk three-level LSM-tree. Newly entered key-value pairs, with
frequently accessed feature, reside temporarily in the B+tree. As the access
frequency decreases for certain key-value pairs, they are flushed to the on-
disk LSM-tree. When the access frequency for key-value pairs within certain
ranges increases in the LSM-tree, those with range-specific access intensity
are moved to the on-disk hot tree. This multi-tree structure dynamically allo-
cates key-value pairs to different structures based on workload variations,
thereby enhancing read performance.

•	 To address the problem of traditional key-value storage systems having to
check all SSTable files in Level 0, this paper designs a partition-based Level
0 for the three-level LSM-tree. Specifically, we adopt a partitioned design for
Level 0 based on key ranges, where key-value pairs between different parti-
tions are ordered, allowing overlapping key ranges within each partition.
Additionally, each partition in Level 0 is limited to a maximum of 4 SSTable
files. Consequently, when checking Level 0, the system only needs to examine
up to 4 SSTable files.

•	 We do not create in-memory indexes for all key-value pairs. Instead, we create
in-memory indexes only for key-value pairs with range-specific access inten-
sity to improve their read performance. Specifically, we generate in-memory
indexes for range-specific key-value pairs in the on-disk hot tree and record
them in the B+tree. This allows for direct reading of these key-value pairs
through the in-memory indexes stored in the B+tree, avoiding additional
operations like reading index blocks, Bloom filter blocks, and data blocks.
Furthermore, the transfer of range-specific key-value pairs from LSM-tree
to the on-disk hot tree may introduce write amplification, so we design this
movement as a logical operation.

•	 Finally, we design reasonable data flows in the multi-tree structure and imple-
ment the prototype system MTDB (Multi-Tree Database). We evaluate the
design using standard database evaluation tools, Yahoo! Cloud Serving Bench-
mark (YCSB) [17], and Rocksdb-benchmark-Mixgraph (RBM) [4], comparing
it with KVell [11], WiredTiger [26], Bourbon[27] and LevelDB [3] in terms of
throughput, read amplification, CPU and memory usage, and access overhead.
Experimental results validate the effectiveness of our design.

23998	 X. Lin et al.

The remainder of this paper is structured as follows. Section 2 provides an introduc-
tion to the background and research motivation of this paper. Section 3 outlines the
specific details of MTDB, the system we designed. Section 4 presents our experi-
mental design and results. Section 5 discusses MTDB’s challenges and future work.
Section 6 discusses research work relevant to this paper. Finally, Sect. 7 offers a
summary and conclusion of this paper.

2 � Background and motivation

2.1 � LSM‑tree

The LSM-tree exhibits excellent write performance by turning random write opera-
tions into sequential write operations. LevelDB [3] is one of the most popular key-
value storage databases based on LSM-tree. Figure 1 illustrates the overall archi-
tecture of LevelDB. In memory, LevelDB utilizes a SkipList to implement the
MemTable and Immutable MemTable. On external storage (e.g., SSD), all SSTable
files are organized in a multi-level structure, including seven levels represented by
Level 0 to Level 6. Each SSTable contains several Data Blocks, an Index Block, and
several Meta Blocks. The Data Block contains key-value pairs, the Index Block is
used to index the Data Block, and the Meta Block includes extended features such
as Bloom filters. The write process for new key-value pairs is as follows: the key-
value pairs are first appended to the SSD’s Log for crash recovery, then added to
the MemTable, which is sorted by key. Once the MemTable is full, it is converted
into an Immutable MemTable and flushed to Level 0 on SSD. When Level i is full,

Fig. 1   The architecture of LevelDB

23999MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

the key-value pairs in Level i undergo Major Compaction to merge into Level i+1.
Specifically, the Major Compaction operation reads overlapping data from adjacent
levels, merges them, generates a new SSTable file, and writes it back to Level i+1.
Clearly, this process introduces additional I/O operations and leads to write amplifi-
cation. The read process involves searching through multiple SSTables. Specifically,
the read process for key-value pairs is as follows: the system first checks the in-
memory structures, then searches all SSTables in Level 0 and one SSTable in each
remaining level until it finds the data or reaches the bottommost level. Despite the
use of Bloom filters [18], due to their false positives and limited memory for cach-
ing Bloom filters, each read still requires multiple I/O operations, resulting in read
amplification.

The factors contributing to read amplification in LSM-tree can be mainly attrib-
uted to three aspects. Firstly, the hierarchical structure and search mechanism in
LSM-tree reduce read efficiency. The multi-level structure of LSM-tree requires
searching through multiple SSTable files from the first level to the last when looking
for the required key-value pairs. As the number of levels increases, read amplifica-
tion becomes more severe. Secondly, to ensure write performance, key-value pairs
are flushed from memory directly to Level 0 in the form of SSTable files without
triggering Major Compaction operations. This results in key range overlaps among
SSTable files in Level 0, ultimately requiring the examination of all SSTable files in
Level 0 during read operations. Thirdly, due to the lack of in-memory indexes for
key-value pairs in SSTable files, examining SSTables involves reading their index
blocks, Bloom filter blocks, and data blocks. Research indicates that, in the worst-
case scenario, LevelDB and WiscKey may need to inspect up to 14 and 10 SSTable
files, respectively [7]. In LevelDB, the number of SSTable files to be checked in
Level 0 is approximately equal to the sum of the SSTables in all other levels.

2.2 � Motivation

Current real-world workloads exhibit highly skewed characteristics. Research by
Facebook shows that in their distributed key-value storage engine ZippyDB, approx-
imately 1% of key-value pairs handle 50% of the read operations, with each of these
key-value pairs being accessed more than 100 times. In contrast, about 73% of key-
value pairs are accessed only once [15]. Observations in Alibaba’s production envi-
ronment indicate that 50% (in daily cases) to 90% (in extreme cases) of accesses
touch only 1% of the total items [19].

In applications like AppsFlyer [20], Flurry [21], Google Firebase [22], and social
networks such as Twitter [16], data items have key prefixes with varying access
intensities. Common key prefixes result in higher access frequencies for key-value
pairs within certain key ranges. Due to the sequential arrangement of key-value
pairs, these applications exhibit range-specific access intensity in read operations.

To validate the existence of range-specific access intensity, we conducted exper-
iments and performed statistical analysis on workloads generated by YCSB [17].
We generated a load of one million requests following a Zipf distribution with
a Zipfian constant of 0.99, partitioned into 90 subspaces based on different key

24000	 X. Lin et al.

prefixes. We then recorded the access frequency for each key-value pair and the
access frequency for each subspace. Figure 2 presents the experimental results. We
assigned numerical identifiers to key-value pairs in ascending order of character
sequence. The orange triangles represent the access frequencies for each key-value
pair, and each bar in the histogram represents the total access frequency for key-
value pairs with the same key prefix. The results indicate that among the 90 sub-
spaces, the first 9 subspaces encompass nearly half of the key-value pairs. This
suggests that the workload exhibits spatial locality characteristics, where certain
key prefix data have higher operational frequencies. Furthermore, examining the
heatmaps of the subspaces reveals significant differences in the total access fre-
quencies among different subspaces. Therefore, key-value pair access has range-
specific access intensity, meaning that the frequency of accessing key-value pairs
within certain ranges is higher, while the frequency is lower for key-value pairs
within other ranges.

From the above discussion, we observe that optimizing read performance in
LSM-tree by leveraging the range-specific access intensity feature of key-value
pair accesses is an intriguing problem. Therefore, this paper proposes a solution
to mitigate the read amplification caused by LSM-tree’s top-down level-by-level
access. The approach involves keeping the hottest data in memory and transfer-
ring key-value pairs with range-specific access intensity from the LSM-tree to a
separate single-level hot tree. Additionally, the paper suggests designing a par-
tition-based Level 0 where limits the number of SSTables within each partition
to reduce the read amplification. Finally, the paper proposes creating in-memory
indexes for key-value pairs with range-specific access intensity residing on the hot
tree to further accelerate their read performance. The details of these design strat-
egies will be elaborated in the next section.

Fig. 2   The number of operations on KV Pairs and the distribution of operations in subspaces under
YCSB workloads

24001MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

3 � MTDB design

In this section, we begin by introducing the system architecture of MTDB that we
have designed. Subsequently, we provide a detailed description of the primary data
structures and the data flow of MTDB. Finally, we discuss several issues in practical
implementation.

3.1 � Architecture overview of MTDB

Figure 3 illustrates the system architecture of MTDB that we have designed. The
main concept behind the MTDB architecture is to leverage the range-specific access
intensity. It involves designing a multi-tree structure to store key-value pairs with
different hotness levels on separate trees. This approach aims to alleviate the per-
formance degradation in reads caused by the traditional LSM-tree’s multi-level
searches, Level 0’s SSTable file checks, and the lack of in-memory indexes.

Specifically, MTDB incorporates three crucial design principles: (1) MTDB
treats key-value pairs with range hotness differently. The hottest range of key-value
pairs is retained in the B+tree, the coldest ones are stored in the three-level LSM-
tree, and dynamically changing key-value pairs within a moderately hot range are
moved to the single-level hot tree. This differential treatment of key-value pairs
with varying hotness levels helps alleviate the performance decline in reads caused
by the multi-level searches in traditional LSM-tree. (2) MTDB designs a partition-
based Level 0 for the three-level LSM-tree. In Level 0, MTDB introduces Guards
to partition the KV pairs, and the B+tree flushes key-value pairs to the specified
partition based on each partition’s key range. Additionally, MTDB limits the number
of SSTables in each partition to 4. Due to these designs, the partitions in Level 0

Fig. 3   The architecture of MTDB

24002	 X. Lin et al.

are ordered, and the 4 SSTables within each partition allow for overlapping. Con-
sequently, each search for key-value pairs in Level 0 is constrained by MTDB to a
maximum of 4 SSTables in a specific partition, reducing the Level 0 search over-
head in traditional LSM-tree. (3) As SSTables lack in-memory indexes, traditional
LSM-tree checks for SSTables involve reading index blocks, bloom filter blocks, and
data blocks. To boost the reading process of hot key-value pairs in SSTables, MTDB
creates in-memory indexes for key-value pairs in the single-level hot tree through
Transfer Compaction, storing them in the B+tree. MTDB achieves this by consum-
ing a small amount of memory to accelerate the reading of frequently accessed hot
key-value pairs. The single-level hot tree does not perform Compaction. Instead, it
uses Garbage Collection to reclaim cold key-value pairs back to the LSM-tree.

3.2 � Data structure

To implement the aforementioned design principles, the system architecture of
MTDB retains traditional components such as MemTable, Immutable MemTable,
and Log from LSM-tree-based key-value storage systems. Additionally, MTDB
introduces new components and related designs, including a B+tree, a single-level
hot tree, and a three-level LSM-tree based on partition-based Level 0. In the follow-
ing subsections, we will provide a detailed introduction to each of the new compo-
nents and describe the data flow processes between them.

3.2.1 � B+tree

Unlike LevelDB, which directly flushes Immutable MemTable to SSD, MTDB
caches key-value pairs from Immutable MemTable in the B+tree first. Additionally,
MTDB creates in-memory indexes for key-value pairs in the hot tree and stores them
in the B+tree. Therefore, the B+tree has two types of leaf nodes: one type is called
key-value nodes, which retain the latest and frequently operated key-value pairs, and
the other type is called key-value index nodes, which provide indexes for key-value
pairs in the hot tree.

Figure 4 illustrates the structure of these two types of leaf nodes. “key" and the
identifier “isValue" are fixed fields in each leaf node. When the leaf node stores
key-value pairs, MTDB allocates fields such as “value", “key type" (1 Byte),
“key sequence" (8 Bytes), and “last_optime" (4 Bytes). The “key type" and “key
sequence" are the elements required to form an internal key in LevelDB. “last_
optime" is used to record the time of the most recent operation on the key-value
pair. Therefore, when a key-value pair undergoes insert, read, or update operations,

Fig. 4   Two different types of B+tree leaf nodes

24003MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

its “last_optime" will be initialized or updated. When the leaf node stores indexes
(pointers) for key-value pairs in the hot tree, it allocates “sst_num" and “offset"
fields. “sst_num" takes up 2 Bytes, indicating the file number of the SSTable where
the target key-value pair is located, and “offset" takes up 4 Bytes, indicating the off-
set of the target key-value pair’s data block relative to the SSTable file. By using
“sst_num" and “offset" it is possible to quickly locate the data block correspond-
ing to the target key-value pair. Additionally, we allocate separate memory spaces
for the leaf nodes storing key-value pairs in the B+tree and the leaf nodes storing
key-value indexes. This makes it easier to control the additional memory overhead
caused by the introduction of the B+tree.

3.2.2 � Single‑level hot tree

We have implemented a single-level hot tree in MTDB, which receives key-value
pairs from the LSM-tree. When MTDB identifies certain ranges of key-value pairs
within the workload experience higher access frequencies, it isolates all SSTables
belonging to that key range across the levels of the LSM-tree into the hot tree.
It’s important to note that this isolation is logical, meaning all SSTables isolated
to the hot tree are not rewritten. Instead, MTDB system records the metadata of
these SSTables in the hot tree. Specifically, MTDB writes the metadata information
of these SSTables from the LSM-tree’s Manifest into the hot tree’s Manifest and
removes them from the LSM-tree, achieving logical isolation of SSTables into the
hot tree. The total space of this single-level hot tree is determined by a configurable
parameter, Ratio hot_tree, which represents the percentage of the total database size
that the hot tree occupies. When the size of this single-level hot tree is determined,
the size of the leaf nodes in the B+tree that stores indexes for key-value pairs in the
hot tree is also determined.

3.2.3 � Three‑level LSM‑tree with Partition‑based Level 0

We have designed a three-level LSM-tree with partition-based Level 0. Specifi-
cally, we leverage the Guard concept from SkipList [23, 24] to partition the entire
key space in Level 0 of the LSM-tree into multiple subspaces. Two adjacent
Guards constrain the key range of a subspace in Level 0, and using Guards to
organize data ensures that each subspace only contains key-value pairs within a
specific key range. Furthermore, we set a maximum limit of 4 SSTables for each
subspace in Level 0, which is fewer than the original limit of 12 in Level 0. By
reducing the number of SSTables that need to be searched in Level 0, we aim to
decrease the read amplification in Level 0. Initially, MTDB sets several Guards
(default is 100), and when a subspace performs one Compaction operation, it
indicates that the workload is concentrated in this subspace, exhibiting a certain
range-specific access intensity. After the completion of one Compaction in the
subspace, MTDB adds a new Guard to evenly partition this key range, obtain-
ing smaller granularity subspaces. For applications in key-value storage systems,
the character composition of their key-value pairs has fixed characteristics. For
example, in SQL database storage engine UDB, the keys mostly consist of the

24004	 X. Lin et al.

4-byte MySQL table index, two object IDs, the object type, and other information
[15]. In blockchain systems, different types of key-value pairs have different fixed
key prefixes [25]. By adding new Guards, the system can quickly adapt to the
key-value composition characteristics in the application load and perform finer-
grained partitioning of hot key subspaces. When the number of Guards reaches
the upper limit (default is 500), no further changes will occur. Finally, we limit
the LSM-tree to three levels to reduce the overhead of LSM-tree’s level-by-level
search.

3.2.4 � Data flow among multiple trees

1)B+tree → LSM-tree:
When the B+tree’s leaf nodes, which store key-value pairs, reach the capacity

limit, the B+tree performs a flushing operation. At this point, MTDB scans all key-
value nodes in the B+tree, using data sampling and hotness evaluation to filter out
key-value pairs. The key-value pairs with lower hotness are then written into the
LSM-tree.

Specifically, MTDB conducts several random accesses in the B+tree to sample
key-value nodes and obtain the last_optime of these sampled nodes. The last_opti-
meaverage is calculated and used as the overall last_optime for the B+tree. Subse-
quently, MTDB traverses all key-value nodes in the B+tree. By comparing the
last_optime of each key-value pair with the last_optimeaverage, key-value pairs with a
last_optime lower than the last_optimeaverage are flushed to Level 0 of the LSM-tree.
It’s worth noting that the above operation is passively terminated based on SSTable
size limits or when crossing Guards to ensure generated SSTables do not cross two
subspaces in Level 0.

During each scan of the B+tree, approximately half of the key-value nodes
are flushed to Level 0, leaving enough buffer space to accommodate new write
operations.

2)LSM-tree → Hot tree:
To logically isolate SSTables with range-specific access intensity to a single-

level hot tree, we designed the Transfer Compaction operation. First, we set up a
70KB Hotness List in memory, which records the access frequency of each sub-
space defined in Level 0. When triggering one Transfer Compaction, we calculate
the range hotness of each subspace, defined as the access frequency of that subspace
divided by its key range.

We have two different triggering mechanisms for Transfer Compactions based on
mixed read-write workloads and read-intensive workloads:

•	 For mixed read-write workloads, when a subspace in Level 0 reaches the SSTa-
ble quantity limit, MTDB utilizes the Hotness List and calculates the range hot-
ness for each subspace. If the range hotness of the subspace that needs Com-
paction ranks in the bottom percentage in terms of hotness among all subspaces
and is less than the Ratiohot_tree, MTDB triggers a Transfer Compaction, logically
isolating SSTables within this key range to the single-level hot tree. Otherwise,

24005MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

MTDB triggers the traditional Major Compactions, moving SSTables from Level
0 to Level 1.

•	 For read-intensive workloads, MTDB calculates the read-to-write ratio of the
workload over a certain period. When the read-to-write ratio is too high (e.g.,
exceeding 90%), the system calculates the range hotness for all subspaces every
1000 read operations and selects the subspace with the highest range hotness for
Transfer Compactions.

The participants in Transfer Compaction are all data within a selected subspace in
the LSM-tree. Specifically, all SSTables in Level 0 corresponding to the subspace
will be selected. In Level 1 and Level 2, all SSTables related to the key range of
this subspace will be selected. Subsequently, one Transfer Compaction copies the
metadata of these SSTables from the LSM-tree’s Manifest to the single-level hot
tree’s Manifest and finally removes them from the LSM-tree’s Manifest. Therefore,
the Manifest in the hot tree records SSTable number, Minkey, and Maxkey similarly
to the LSM-tree. Finally, the Transfer Compaction creates memory indexes for all
key-values in the hot tree and stores them in B+tree key-value index nodes. Since
SSTables from different levels in the LSM-tree contribute to these steps, effective
handling of new and old versions is required. Specifically, we read these SSTables
into memory, merge them, and then use SSTable file numbers and data block offsets
to create and maintain indexes in the B+tree, ensuring that only the latest version of
key-value pairs are indexed.

3)Hot tree → LSM-tree:
We control the size of the single-level hot tree and, consequently, limit the over-

head of memory indexes by setting the Ratiohot_tree. When the total capacity of
SSTables logically isolated to the hot tree reaches the specified limit, MTDB trig-
gers a garbage collection (GC) operation to move the data from the hot tree back to
the LSM-tree.

Specifically, MTDB performs a range hotness calculation based on the Hotness
List for all subspaces contained in the hot tree when triggering GC. It selects the
coldest subspace range, releases all key-value index nodes corresponding to this
range in the B+tree, and rewrites the key-value pairs of this range back to Level 0
of the LSM-tree. Since the leaf nodes of the B+tree are ordered, performing a range
scan for this subspace in the B+tree allows for a quick completion of the GC opera-
tion. Once the coldest key range is identified, MTDB traverses the key-value index
nodes within this range in the B+tree. It retrieves the key-value pairs through the
index, generates SSTables, and writes them into the corresponding partition of Level
0 in the LSM-tree. Finally, MTDB delete the corresponding SSTables.

3.2.5 � Reading and writing process

Figure 5 illustrates the detailed example of the write and read processes in MTDB.
1)Writing process:
Taking Fig. 5 as an example, let’s discuss the write process in MTDB. Please

refer to Algorithm 1 for the specific write process.
STEP 1 Write to the Log.

24006	 X. Lin et al.

STEP 2 Batch write to MemTable.
STEP 3 MemTable transforms into Immutable MemTable.
STEP 4 Immutable MemTable moves to B+tree. For update requests, the new

version of the value directly replaces the old version in the B+tree, achieving in-
place updates. For delete requests, the tombstone marker for the key is recorded in
the B+tree, and then written into LSM-tree.

STEP 5 Traverse key-value nodes in the B+tree and use a sampling strategy
to flush cold data to the corresponding partition (subspace) in Level 0. As shown
in Fig. 5, if there exists a subspace with 20 ≤ Key < 30 in Level 0, this range scan
in the B+tree will start from the smallest key greater than or equal to 20, i.e., 23.
Through hotness calculation, the key-value pair 23 with lower hotness, its last_
optime is less than the last_optimeaverage, will be added to the SSTable waiting to be
written to SSD. Similarly, when the SSTable is not at its size limit, key 26 will also
be added to the SSTable. Key 27 with high hotness will continue to be retained in the
B+tree. The termination conditions for the range scan include whether the SSTable
has reached its size limit. The next flush operation will continue from the interrupted
position after the thread is awakened and will scan the entire key range partition,
which can refer to the example when handling the subspace with 90 ≤ Key < 100.

STEP 6 When the number of SSTables in a partition (subspace) in Level 0 of
LSM-tree reaches the limit, range hotness calculation will be performed to deter-
mine the specific Compaction strategy. If the subspace has high hotness, the Trans-
fer Compaction will be triggered. One Transfer Compaction creates B+tree indexes
for hot SSTables, and logically isolates hot SSTables into the hot tree. As shown in
Fig. 5, when the number of SSTables in the range 80 ≤ Key < 90 in LSM-tree Level
0 reaches the limit, a range hotness calculation is performed, and the hotness for the
range 80 ≤ Key < 90 reaches the requirement for logical isolation. MTDB triggers
the Transfer Compaction operation for the subspace 80 ≤ Key < 90 , selecting SST1,
SST2, and SST3 in Level 0, and SST4–SST9 in Level 1 and Level 2. Next, these

Fig. 5   Write and read examples in MTDB

24007MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

nine SSTables undergo key-value pair merging. For Key 80, the generated index 80I
is saved in the B+tree. The indexes of key-value pairs in the remaining range are
also saved in the B+tree, using a flag to distinguish between key-value pairs and
index structures. Finally, these SST1–SST9 are logically isolated from LSM-tree
into the hot tree. If the subspace has low hotness, Major Compaction is triggered.
Major Compaction searches Level 1 for SSTables overlapping with the subspace key
range. It merges the key-value pairs from the subspace in Level 0 into Level 1.

STEP 7 When the hot tree space ratio reaches the limit, Ratiohot_tree, GC is trig-
gered. A coldest subspace is selected for GC, freeing the B+tree indexes corre-
sponding to key-value pairs in this coldest range and rewriting the key-value pairs
back to LSM-tree Level 0. As shown in Fig. 5, when the range hotness for the range
30 ≤ Key < 40 in the hot tree is the lowest, GC is performed for SST10 and SST11
in this range. Since the B+tree can perform in-place update operations on leaf nodes
marked with an index, there may be expired data in SST10 and SST11. For example,
key 35 may have been an index in SST10 or SST11, and after the in-place update,
the index for key 35 is overwritten by the new key-value pair. To ensure data cor-
rectness during GC and reduce GC overhead, we only need to perform a range scan
on the B+tree for key-value index nodes. Through a range scan of 30 ≤ KeyI < 40 ,
we can identify leaf nodes with index markers in the range 30 to 40. These indexes
point to valid key-value pairs in SST10 and SST11 and represent the latest version in
MTDB. After reading the corresponding key-value pairs from the data block based
on the index, SSTable is generated and written into Level 0 within the partition
30 ≤ Key < 40.

The process described above illustrates the write and compaction operations in
MTDB, showcasing how it effectively manages data through various stages.

24008	 X. Lin et al.

Algorithm 1   Write operation

24009MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

2)Reading process:
The read operation is relatively straightforward, and the specific process is illus-

trated in Algorithm 2. The read request proceeds by sequentially searching through the
Memtable, Immutable MemTable, B+tree, and LSM-tree. Upon hitting a leaf node
in the B+tree, the algorithm first checks the type of the leaf node. If it stores a key-
value pair, the result is directly returned. If it stores an index for key-value pairs in the
single-level Hot Tree, the algorithm reads the target data block from the hot tree based
on the SSTable Number and data block offset and performs a binary search to locate
the value, then returns the result. In case of a miss in the B+tree, the algorithm pro-
ceeds to search in the LSM-tree from top to bottom. The LSM-tree searches each level
for SSTables that might contain the target key-value pair. It checks up to four SSTables
in the partitioned Level 0 and up to one SSTable in the remaining levels. The search is
conducted by reading and searching the Index Block and Data Block of the SSTables
to determine if they contain the target key-value pair. If the requested key-value pair is
not found in the last layer of the LSM-tree, it returns a “not found" result.

Algorithm 2   Read operation

3.3 � Implementation issues

3.3.1 � Serialization and deserialization of B+tree

When the database is closed, all node information in the B+tree is serialized to
SSD. Upon reopening the database, the in-memory B+tree structure is restored by

24010	 X. Lin et al.

deserializing those information. In our experiments, we allocated 150MB of mem-
ory space for the B+tree, and both the serialization and deserialization times were
less than 1 s.

3.3.2 � Crash consistency

To ensure the robustness of MTDB, a crash recovery mechanism is essential for the
B+tree to maintain consistency. The B+tree comprises two types of leaf nodes: key-
value nodes and key-value index nodes.

For key-value nodes, MTDB employs the MemTable Log and our designed Read
Log to achieve crash recovery. During a round of transferring B+tree data to the
LSM-tree, MTDB traverses all key-value nodes from beginning to end, compares
their last_optime with the last_optimeaverage, and flushes key-value pairs with last_
optime lower than the last_optimeaverage to Level 0 of LSM-tree.

MTDB delays the deletion of MemTable Log. The deletion mechanism used is
that after a round of data transfer is completed, the Memtable Log with a creation
time less than last_optimeaverage can be safely deleted. The key-value pairs in these
Memtable Log may have undergone three types of operations in the B+tree: (1)
Since the last_optime of the key-value pairs is less than last_optimeaverage, they have
already been transferred to the LSM-tree. (2)The key-value pairs have undergone
in-place updates. The updated key-value pairs are written to new Memtable Log,
making the key-value pairs in the original Memtable Log invalid. (3)Due to read
operations, the last_optime of the key-value pairs is greater than last_optimeaverage,
so they are retained in the B+tree. To safely delete the Memtable Log and reduce
space amplification and crash recovery costs, we designed a Read Log to record key-
value pairs and their corresponding read operation times. The same, after a round
of data transfer is completed, the records in the Read Log with operation times less
than last_optimeaverage can also be safely deleted.

Therefore, only recording the last_optimeaverage for each flush is necessary for
B+tree recovery. When restoring B+tree key-value nodes, the MemTable Log,
used for write requests, and Read Log is scanned, timestamps are compared, and
data with timestamps greater than or equal to the recorded last_optimeaverage are
recovered.

For key-value index nodes, we can reconstruct the index based on the metadata
information of the hot tree. By traversing all SSTables in the hot tree and filtering
the latest versions of key-value pairs, the index can be rebuilt.

Table 1   YCSB Core workloads

R: Read, U: Update, I: Insert, S: Scan, M: Read-Modify-Write

Workload A B C D E F

Operations R: 50% R: 95% R: 100% R: 95% S: 95% R: 50%
U: 50% U: 5% I: 5% I: 5% M: 50%

Req. Dist Zipfian Zipfian Zipfian Latest Zipfian Zipfian

24011MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

In summary, during crash recovery, MTDB performs a merge operation on the
hot tree and all log files, including MemTable Log and Read Log. This ensures
MTDB’s crash consistency and data persistence.

4 � Evaluation

In this section, we conducted benchmark tests on MTDB using the Yahoo! Cloud
Serving Benchmark (YCSB) tool to simulate real-world workloads and the Rocksdb-
benchmark-Mixgraph (RBM) workload which simulate realistic social-graph work-
loads as developed by Facebook. The system evaluation was performed on hardware
with an Intel i7-11700 processor, 32GB DRAM, and a 512GB SAMSUNG 980
PRO SSD, running Ubuntu 20.04 LTS.

4.1 � Experimental setup

We conducted a comparative analysis between MTDB and four prominent key-value
storage systems: Google’s LevelDB [3], which is based on LSM-tree; WiredTiger
[26], which uses a disk-based B+tree; KVell [11], which employs a global in-mem-
ory B+tree index; and Bourbon [27], which utilizes a key-value separation with a
learned index. To implement MTDB, we added approximately 3500 lines of code
on top of Google’s LevelDB [1], creating a prototype. In MTDB, we reserved 50MB
for key-value nodes of the B+tree as a buffer for segregating newly written hot and
cold key-value pairs. The Ratiohot_tree was set to 30%, with a 70MB reservation for
hot tree indexing. Additionally, considering the internal structure overhead of the
B+tree, we limited the overall memory usage of the B+tree to 150MB, with an
8MB cache, and configured the size of Level 1 to 1GB. For LevelDB,Bourbon and
WiredTiger, we configured the Memtable size to 32MB and the cache to 128MB to
balance memory overhead. The other parameters in the four systems use default con-
figurations. KVell’s memory overhead, including indexes and page cache, was mini-
mized. In workload testing, KVell needed to scan the entire database for memory

Fig. 6   YCSB(1KB) performance

24012	 X. Lin et al.

index reconstruction each time it opened the database. We denote KVell, includ-
ing the time for index reconstruction, as KVell*. To make a fair comparison, all the
databases use one foreground thread and one background thread, and the Linux page
cache is disabled.

4.2 � Experiments under YCSB workloads

The Yahoo! Cloud Serving Benchmark (YCSB) [17] is commonly employed to
evaluate the performance of key-value storage systems under real-world workloads.
It provides a framework and a standard set of six workloads for assessing the per-
formance of key-value stores. The detailed information about the workloads is pre-
sented in Table 1. We utilized YCSB based on the Zipf distribution with a Zipfian
constant of 0.99 (the default in YCSB) to load databases of two different value sizes,
1KB and 16KB, each with a total size of 10 GB. There are 5 M operations in the
each workload with 1KB value sizes, while there are 312K operations in the each
workload with 16KB value sizes.

4.2.1 � Experiments under YCSB workloads

Figure 6 presents the performance evaluation of three systems using YCSB with a
key-value size of 1KB. Overall, MTDB outperforms LevelDB by 1.52−2.19 times in
throughput and achieves 1.27−2.43 times the throughput of WiredTiger, except for
the E workload. In most cases, MTDB’s performance is close to or better than KVell
and Bourbon, while reducing memory overhead (Sect. 4.4). During the Load phase,
MTDB exhibits a 1.7× improvement over LevelDB, primarily due to its design of
partition-based Level 0, which accommodates more key-value pairs, reduces the
frequency of Compaction triggers, and enhances the efficiency of each Compac-
tion. KVell, utilizing a global memory index structure and avoiding Compaction,
and Bourbon, employing a key-value separation structure to avoid rewriting values
during LSM-tree Compaction, both achieve notable write performance. WiredTi-
ger, which uses a disk-based B+tree, performs the worst under the Load workload.
Under Workload A, MTDB’s performance is second only to Bourbon. For update

Fig. 7   YCSB(16KB) perfor-
mance

24013MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

workloads, MTDB supports in-place updates. KVell achieves in-place updates
within storage device pages but requires block erasure and rewriting, reducing its
performance. Bourbon performs best under Workload A, mainly due to its key-value
separation structure’s advantages in update-heavy workloads. In Workload B (95%
read) and C (100% read), MTDB’s design of temporarily storing hot key-value pairs
in a hot tree index results in read-intensive workload performance close to that of
the globally memory-indexed KVell. Bourbon’s learned index reduces the read and
lookup overhead of Index Blocks and Data Blocks but cannot avoid the cost of read-
ing Filter Blocks and retrieving values from the Vlog. Bourbon’s read throughput
is better than LevelDB and WiredTiger but lower than the memory-indexed MTDB
and KVell.WiredTiger’s disk-based B+tree performs better than LevelDB under
read-intensive workloads (Workload B, C, D). In the Latest distribution of Work-
load D, MTDB’s B+tree caches recently written new data, and the partition design
increases Level 0 capacity, resulting in superior performance compared to other
systems. In Workload E, KVell excels in range lookups as it only needs to traverse
the memory B+tree index. WiredTiger’s disk-based B+tree has advantages in range
lookups over other LSM-tree-based systems. MTDB, Bourbon, and LevelDB per-
form similarly; MTDB’s B+tree indexes only the hot tree data, requiring an iterator
on the LSM-tree for range lookups. Additionally, MTDB does not perform Com-
paction in the hot tree, leading to a scattered distribution of key-value pairs. Dur-
ing range scans, MTDB requires more data blocks than LevelDB, but its memory
index reduces the overhead of reading index blocks. In Workload F, KVell achieves
in-place updates within storage device pages but still requires I/O operations. In
Read-Modify-Write, some key-value pairs in MTDB’s B+tree create an index, and
in-place updates reduce the amount of data flushed, resulting in better performance
than other systems. After accounting for the index rebuild time, the performance of
KVell* shows a significant decrease. Except for Workload E, MTDB outperforms
KVell*.

Figure 7 illustrates the experimental results of evaluating LevelDB, WiredTi-
ger, Bourbon, and MTDB using YCSB with a key-value size of 16KB, observing

Fig. 8   Read amplification analysis under YCSB-C

24014	 X. Lin et al.

the performance of each system as the key-value pair size increases. KVell cannot
store key-value pairs larger than the specified page size, so KVell and KVell* are
not included in the experimental results. With the same database size, the reduced
number of key-value pairs results in fewer node splits and merges in WiredTiger’s
B+tree, making its write performance superior to the other LSM-tree-based systems.
With the same database size and index memory overhead, MTDB’s index structure
can more effectively cover the data in the SSD. This reduces the number of data
transfers from the hot tree to the LSM-tree when the memory space is insufficient.
MTDB’s relative performance in read-intensive workloads (Workload B, C, D) is

Fig. 9   Access analysis of each component for LevelDB and MTDB

Fig. 10   Data distribution of each component in LevelDB and MTDB

24015MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

further improved and outperforms the other compared systems. In workloads that
include write operations (Workload A, F), the key-value separation system Bourbon
and the B+tree-based storage system WiredTiger have advantages when handling
16KB key-value pairs. In contrast, the Compaction rewrite overhead is more pro-
nounced in the LSM-tree-based MTDB and LevelDB. However, MTDB, with its
Level 0 partition design, reduces write amplification compared to LevelDB. Conse-
quently, MTDB still outperforms LevelDB in Workload A and F.

4.2.2 � Read amplification under YCSB‑C

Figure 8 illustrates the read amplification during Workload C for various systems.
MTDB exhibits lower read amplification compared to other systems by reducing the
number of accesses to Level 0 files through partitioning and creating indexes for the
hot tree. Additionally, compared to LevelDB, MTDB has fewer LSM-tree levels for
the same database size, reducing the number of SSTables to search. WiredTiger’s
B+tree has an advantage in read amplification, outperforming the LSM-tree-based
LevelDB and MTDB. KVell incurs higher read amplification due to reading a sig-
nificant amount of data during the reconstruction of the database index and subse-
quently reading data during the read load phase. Overall, the read amplification of
KVell is higher than that of MTDB. Bourbon uses a key-value separation structure,
resulting in a smaller overall size of the LSM-tree. This reduces lookup overhead
within the LSM-tree. Additionally, Bourbon employs learned indexes to predict the
location of data, reducing the number of accesses during lookup operations.

4.2.3 � Access analysis of each component

In order to better analyze the read performance in the LSM-tree-based key-value
stores, LevelDB and MTDB, we conducted a statistical analysis of the hit probabili-
ties for various components in both systems, as shown in Fig. 9. We defined eight

Fig. 11   Write amplification analysis

24016	 X. Lin et al.

categories of components, including various memory structures and different levels
of the LSM-tree. The read operation flows through these components from memory
to SSD, ultimately reaching the highest level of the LSM-tree. The experiment did
not include cache in the statistical analysis. The color intensity in the components
represents the system overhead when a read operation hits that component, with
darker colors indicating higher overhead. In MTDB, the system overhead for read
operations is relatively low, and the overall color in the figure is lighter compared to
LevelDB. Read operations in LevelDB concentrate on Level 3 and Level 4, while in
MTDB, read operations are focused on the B+tree index and Level 2.

4.2.4 � Data distribution of each component

After executing the WorkLoad, we compared the data distribution in various
components of the LSM-tree-based key-value stores, LevelDB and MTDB, as

Fig. 12   Total size of flushed data

Fig. 13   The number of
operations on KV Pairs and the
distribution of operations in sub-
spaces under RBM workloads

24017MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

illustrated in Fig. 10. In MTDB, the data is primarily concentrated in the hot tree
and Level 2, with approximately 30% of the data residing in the Hot tree, occupy-
ing about 145MB of B+tree memory space dedicated to indexing key-value pairs
in the hot tree. On the other hand, in LevelDB, 90% of the data is located in Level
4, which is a significant factor causing the concentration of data hits in Level 4
and consequently leading to a decline in read performance.

4.2.5 � Write amplification

Figure 11 depicts the write amplification statistics during the Load phase for var-
ious systems. In the Load phase, MTDB retains some data in Level 0 partitions,
reducing the number of Compaction triggers. Additionally, MTDB performs Level
0-Level 1 Compaction based on key ranges, selecting only SSTables in Level 1 that
match the key range. This strategy reduces the involvement of Level 1 SSTables in

Fig. 14   Performance comparison under RBM workloads

Fig. 15   CPU usage under
LOAD and YCSB-C

24018	 X. Lin et al.

Level 0-Level 1 Compaction, preventing rewriting of Level 1 SSTables. The write
amplification in MTDB is reduced by 70% compared to LevelDB. KVell, utilizing a
memory index design, avoids write amplification by not executing Compaction but
incurs higher space amplification and memory usage as a trade-off. Bourbon uses a
key-value separation structure, has the smallest write amplification during the Load
phase.

4.2.6 � Total amount of persistent data

Figure 12 illustrates the number of key-value pairs flushed during WorkLoad F.
WorkLoad F includes read operations and read-modify-write operations, allow-
ing the B+tree to retain some hot key-value pairs to absorb update operations. This
strategy effectively reduces the amount of writes to SSD under update loads. MTDB
shows a 24% reduction in the number of flushed key-value pairs compared to Lev-
elDB in WorkLoad F.

KVell necessitates a substantially higher volume of data to be flushed during
update operations. This is because KVell uses an in-place update strategy. When
the size of the key-value pair (1KB) is smaller than the page size of the SSD (4KB),
KVell’s in-place updates can cause frequent read-write-modify operations within the
SSD, ultimately resulting in KVell’s data write volume far exceeding that of other
systems.

4.3 � Experiments under RBM workloads

We conducted an analysis of spatial locality characteristics within YCSB workloads,
as discussed in 2.2. Some subspaces in YCSB exhibit relatively high range hotness.
RBM [4] emulates real-world workloads of key-value stores, characterized by their
distribution of hotness and temporal patterns. Thus, RBM workloads can generate
more pronounced spatial locality features, and we analyzed one million data points
to understand these characteristics. The results, shown in Fig. 13, reveal that certain

Fig. 16   Memory usage under
LOAD and YCSB-C

24019MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

subspaces have significantly higher hotness compared to others, and there are no
keys with extremely high operation frequencies. Using this workload and simulating
the operation ratio of YCSB Workload A, the experimental results in Fig. 14 demon-
strate a 10% performance improvement for MTDB compared to using the standard
YCSB workload. This improvement is attributed to the more accurate identification
of hot subspaces by the hotness strategy, leveraging the spatial locality features.

4.4 � CPU and memory usage

Figure 15 shows the CPU usage of various systems during the write-intensive
LOAD phase and the read-intensive YCSB-C phase. During the LOAD phase, the
CPU overhead of LevelDB and MTDB, which use LSM-tree, is relatively high, pri-
marily due to the frequent triggering of compaction operations. Although MTDB
mitigates the triggering of Level 0 to Level 1 compactions, the in-memory B+tree
and Transfer Compaction add extra CPU overhead, which is 8% higher than Lev-
elDB. KVell, with its in-memory B+tree index and disk append-write design, incurs
lower CPU overhead. Bourbon, using a key-value separation structure, has lower
CPU overhead when writing data, with the main CPU consumption occurring dur-
ing the learning index model building after the LOAD phase.

To avoid interference from Size Compaction in LevelDB, Bourbon, and MTDB
during the CPU overhead testing of read workloads, the YCSB-C workload was exe-
cuted when the database was in a stable state and no Size Compaction would be
triggered. In MTDB, background threads perform Transfer Compaction and hot tree
garbage collection to improve the access efficiency of hot key-value pairs, resulting
in CPU overhead 1.4 times that of LevelDB but with minimal impact on foreground
threads. Additionally, MTDB disables Seek Compaction, while in LevelDB, Seek
Compaction triggered by read operations causes CPU overhead. KVell has high
CPU overhead during the index rebuilding phase but low CPU overhead during read
operations. Bourbon avoids data block retrieval, reducing CPU usage.

Figure 16 shows the memory usage of various systems during the write-intensive
LOAD phase and the read-intensive YCSB-C phase. The memory usage of LevelDB
and MTDB, both using LSM-tree, is similar and lower than the other compared sys-
tems. KVell maintains a global B+tree index in memory, while Bourbon keeps the
model in memory, resulting in higher memory usage compared to the other systems.
MTDB’s memory overhead is reduced by 58.85−72.08% compared to KVell and by
69.61−86.00% compared to Bourbon.

5 � Discussion

(1)Worst-case Scenario with Rapid Changes in Key Range Hotness. During drastic
changes in key range hotness, all hot tree data needs to be GC into the LSM-tree.
The experiment simulated this situation. To avoid the impact of compaction oper-
ations in the LSM-tree, the experiment was conducted after all Size Compactions
were completed and Level 0 was empty. During GC, data is sequentially written to

24020	 X. Lin et al.

Level 0 by traversing B+ tree index nodes. As GC data increases, Level 0-Level 1
compactions slow down throughput, taking about 105 s for 3 million 1KB key-value
pairs. In extreme hotness changes, writing to Level 0 may not be optimal. Future
work could assess key range hotness change frequency and choose a lower level for
writing. The experiment also tested the overhead when large amounts of LSM-tree
data are transferred to the hot tree. Since only index addresses are fetched and writ-
ten to the B+ tree without rewriting SSTables, throughput is faster than hot tree gar-
bage collection, taking about 24 s for Transfer Compaction on 3 million 1KB key-
value pairs.

Under workloads with non-extreme key range hotness changes, both Transfer
Compaction and GC in MTDB are executed at the key subspace granularity. Data
within each key subspace ranged from 10MB to 40MB. Background threads per-
form Transfer Compaction and GC in short periods, locking only specific partitions
and minimally impacting foreground threads.

(2)Handling Key Character Composition Changes. When handling regular work-
loads in MTDB, the number of Guards stabilizes once it reaches the upper limit.
However, if the character composition of keys changes in the workload, the current
Guard strategy (no deletion or reallocation) may result in skewed data distribution
within key subspaces, potentially causing large data volumes during Transfer Com-
paction and GC. Additionally, in sequential load workloads, this could lead to the
addition of ineffective Guards. Future work should consider operations for deleting
and reallocating Guards to adapt to these special workloads.

3)Uniform Workloads with Insignificant Hotness Features. In uniform workloads
where hotness features are not significant, the benefits gained by MTDB cannot off-
set the overhead of separating and transferring hot and cold key-value pairs in the
B+tree. In such workloads, the hot tree index in MTDB can only handle 30% of read
requests. Most lookups hit the LSM-tree, increasing the lookup path compared to
LevelDB as an additional lookup in the B+tree is required first. Future work should
consider a dynamic multi-tree usage strategy, where data skips writing to the B+tree
and directly writes to L0 when hotness features are not significant, and the execution
of Transfer Compaction is turned off.

6 � Related work

Read optimization Tidal-Tree-Mem [12] moves frequently accessed files from
lower levels to higher positions to reduce the overall file lookup time. Bourbon
[27] accelerated searches on SStables by constructing learned indexes from static
data stored within the SStables. TridentKV [9] employs a space-efficient partition
strategy to address the Read-After-Delete problem and incorporates an optimized
learned index block structure for faster file reading. SineKV [28] utilizes the char-
acteristics of SSDs [29, 30] to decouple secondary index management from primary
index management to accelerate query performance. LTG-LSM [31] maintains a
hotness prediction model at each level. However, these approaches do not address
the issue of needing to traverse all files in Level 0 during read operations due to

24021MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

the relaxed order in Level 0. MTDB strengthens the order in Level 0, reducing the
lookup cost and expanding the number of SSTables Level 0 can accommodate.

Index. KVell [11] achieves fast read and write speeds by managing unordered KV
data on disk using a complete B-tree index in DRAM. However, it comes with high
memory costs and slow recovery. REMIX [32] focuses on improving range query
efficiency by proposing a space-efficient KV index structure for a global sorted view
of KV data-related files. SLM-DB [10] uses NVM storage for B+tree indexing of
KV data on an SSD, avoiding KVell’s downsides but requiring special hardware
support and incurring additional crash consistency maintenance overhead. UniKV
[33] combines hash indexing with LSM-tree, using hash indexing for new data on
disk and LSM-tree for old data. LSM-trie [34] uses LSM-tree-based prefix hash
indexing to manage keys, introducing a partitioned hierarchical approach to reduce
write amplification. ForestDB [35] proposes a new hybrid index structure called
HB+trie to efficiently manage variable-length string keys and reduce the number of
disk accesses during index operations, achieving high throughput for both read and
write operations. However, these solutions do not achieve in-place updates in mem-
ory under update workloads. MTDB utilizes B+tree for both memory component
key-value separation and unified indexing structure, reducing global index memory
overhead and accommodating update workloads with in-place updates.

Hot and Cold Separation TRIAD [36] suggests separating hot and cold keys in
memory components to address write amplification, but its smaller Memtable size
limits the effectiveness of hotness detection. Siberia [37] records access timestamps
and predicts hot records, saving hot data in memory and moving cold data to disk.
MTDB, using B+tree, achieves hot and cold key separation in memory components.
However, Siberia and TRIAD do not consider the scenario where cold keys in disk
become hot after some time, lacking effective hotness strategies for already written
disk key-value pairs. MTDB partitions based on key subspaces and transfers hot-
ness, creating indexes for hot key subspaces, providing access priority for hot key-
value pairs that were already written to disk.

Partitioning LWC-tree [38] uses vertical partitioning to narrow the key range
of dense SSTable groups, reducing write amplification. Pebblesdb [39], inspired by
skip lists, integrates the sentinel concept into LSM-tree management, using a seg-
mented log structure-merge tree to build a key-value store. PebblesDB relaxes the
constraint of non-overlapping key ranges outside Level 0 and introduces protec-
tion to prevent rewriting data at the same level, reducing Compaction costs. MTDB
implements partitioning design only in Level 0, maintaining non-overlapping key
ranges in other levels of LSM-tree. This contrasts with PebblesDB’s coarse-grained
data structure, which results in serious space amplification. MTDB adapts its mem-
ory B+tree structure to fit the Level 0 partition design, mitigating heavy Level
0-Level 1 Compaction costs, achieving Level 0 partitioning without affecting write
performance. To balance overall performance, MTDB maintains the non-overlap-
ping key range setting in the remaining levels, avoiding additional read operation
costs if partitioning were applied.

Cache AC-Key [40] sets three different granularities of cache: key-value cache,
key-pointer cache, and block cache. It can dynamically adjust the sizes of these three
cache components based on the cost and benefit recorded in the cache to adapt to

24022	 X. Lin et al.

workload changes, improving the performance of point read and range lookup opera-
tions. However, it cannot avoid the issue of Block Cache invalidation under mixed
read-write workloads. LSbM [41] adds an inter-layer merge buffer on the disk, adap-
tively maintaining a collection of frequently accessed data to minimize cache invali-
dation caused by merge operations, ensuring cache hit rates during queries. Similarly,
Leaper [42] addresses the problem of block cache invalidation and the resulting drop
in cache hit rates caused by inter-layer merge operations by predicting hot data and
prefetching it into the cache when it affects background operations, thereby reducing
cache invalidation and improving read performance. However, the Block Cache does
not reduce the lookup path for read requests. Lookup requests in the LSM-tree still
need to search layer by layer from the higher levels to the lower levels, and steps like
obtaining file handles and retrieving index blocks cannot be avoided. MTDB uses
a B+tree index to shorten the lookup path, allowing direct access to the data block
addresses of hot key-value pairs. Under skewed workloads, the access frequency of
MTDB’s hot tree data blocks is high, and since no Compaction operations occur in
the hot tree, the probability of cache invalidation in the cache is reduced.

Filter ElasticBF [13] automatically adjusts the Bloom filter false positive rate
based on the hotness and access frequency of keys, considering storage constraints.
Monkey [43] optimizes the overall system performance of LSM-tree-based systems
by worst-case analysis of lookup operations. Using filters can reduce the number of
data block accesses but cannot reduce the overhead of opening SSTables, reading,
and searching index blocks. Additionally, it requires reading extra filter blocks and
using additional memory space to cache the filter. MTDB uses a B+tree to index
hot key-value pairs, allowing direct retrieval of the target key-value pair’s data block
address, thereby avoiding the overhead of reading and searching index blocks.

7 � Conclusion

We introduce MTDB, a novel database system that effectively combines B+tree,
single-level hot tree and LSM-tree. MTDB utilizes hotness detection in B+tree to
distinguish between hot and cold key-value pairs. It indexes a Single-Level Hot tree
in B+tree and efficiently manages new and early-written key-value pairs in LSM-
tree based on hotness characteristics. This approach improves the read efficiency
of lower levels in LSM-tree under workloads with evident range hotness features.
Experimental results demonstrate that, compared to prior research, MTDB reduces
memory consumption by 58.85–86% and index reconstruction overhead, leading to
enhanced read and write performance.

Author Contributions  XL, YP, WF, HZ contributed to conceptualization, methodology, and investigation.
XL done formal analysis, software, validation, and writing—original draft. YP and ML done supervision
and resources. YP, WF, HZ, ML helped in writing—review and editing.

Funding  This work was supported by Nature Science Foundation of Fujian Province under Grant No.
2021J01319, Fundamental Research Founds for the Central Universities of Huaqiao University under
Grant No. ZQN-910, National Natural Science Foundation of China under Grant No. 61872086, Natural

24023MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

Science Foundation of Fujian Province of China under Grant No. 2022J06020, and the Young Top Talent
of Young Eagle Program of Fujian Province, China under Grant No. F21E0011202B01.

Data availability  No datasets were generated or analysed during the current study

Declarations 

Conflict of interest  The authors declare no conflict of interest.

References

	 1.	 O’Neil Patrick, Cheng Edward, Gawlick Dieter, O’Neil Elizabeth (1996) The log-structured merge-tree
(lsm-tree). Acta Inf 33:351–385

	 2.	 Chang Fay, Dean Jeffrey, Ghemawat Sanjay, Hsieh Wilson C, Wallach Deborah A, Burrows Mike, Chan-
dra Tushar, Fikes Andrew, Gruber Robert E (2008) Bigtable: A distributed storage system for structured
data. ACM Trans. Comput. Syst. (TOCS) 26(2):1–26

	 3.	 LevelDB (2021) https://​github.​com/​google/​level​db
	 4.	 RocksDB (2022) http://​rocks​db.​org/
	 5.	 Cassandra (2020) http://​cassa​ndra.​apache.​org/
	 6.	 HBase (2020) http://​hbase.​apache.​org/
	 7.	 Lu Lanyue, Pillai Thanumalayan Sankaranarayana, Gopalakrishnan Hariharan, Arpaci-Dusseau Andrea C,

Arpaci-Dusseau Remzi H (2017) Wisckey: separating keys from values in ssd-conscious storage. ACM
Trans Storage 13(1):1–28

	 8.	 Agrawal Nitin, Prabhakaran Vijayan, Wobber Ted, Davis John D, Manasse Mark, Panigrahy Rina (2008)
Design tradeoffs for ssd performance. In: 2008 USENIX Annual Technical Conference

	 9.	 Kai Lu, Zhao Nannan, Wan Jiguang, Fei Changhong, Zhao Wei, Deng Tongliang (2021) Tridentkv: a
read-optimized lsm-tree based kv store via adaptive indexing and space-efficient partitioning. IEEE
Trans Parallel Distrib Syst 33(8):1953–1966

	10.	 Kaiyrakhmet Olzhas, Lee Songyi, Nam Beomseok, Noh Sam H, Choi Young-ri (2019) Slm-db:single-
levelkey-value store with persistent memory. In: 17th USENIX Conference on File and Storage Tech-
nologies, pp 191–205

	11.	 Lepers Baptiste, Balmau Oana, Gupta Karan, Zwaenepoel Willy (2019) Kvell: the design and imple-
mentation of a fast persistent key-value store. In: Proceedings of the 27th ACM Symposium on Operat-
ing Systems Principles, pp 447–461

	12.	 Ma Chenlin, Yang Hao, Shangyu Wu, Wang Yi, Mao Rui (2022) Tidal-tree-mem: Toward read-inten-
sive key-value stores with tidal structure based on lsm-tree. IEEE Trans Comput Aided Des Integr Cir-
cuits Syst 42(2):423–436

	13.	 Li Yongkun, Tian Chengjin, Guo Fan, Li Cheng, Xu Yinlong (2019) Elasticbf: Elastic bloom filter with
hotness awareness for boosting read performance in large key-value stores. In: 2019 USENIX Annual
Technical Conference, pp 739–752

	14.	 Atikoglu Berk, Xu Yuehai, Frachtenberg Eitan, Jiang Song, Paleczny Mike (2012) Workload analysis of
a large-scale key-value store. In: Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE Joint
International Conference on Measurement and Modeling of Computer Systems, pp 53–64

	15.	 Cao Zhichao, Dong Siying, Vemuri Sagar, Du David HC (2020) Characterizing, modeling, and bench-
marking rocksdb key-value workloads at facebook. In: 18th USENIX Conference on File and Storage
Technologies, pp 209–223

	16.	 Yang Juncheng, Yue Yao, Rashmi KV (2021) A large-scale analysis of hundreds of in-memory key-
value cache clusters at twitter. ACM Trans Storage (TOS) 17(3):1–35

	17.	 Cooper Brian F, Silberstein Adam, Tam Erwin, Ramakrishnan Raghu, Sears Russell (2010) Bench-
marking cloud serving systems with ycsb. In: Proceedings of the 1st ACM symposium on Cloud com-
puting, pp 143–154

	18.	 Wikipedia. Bloom filter. https://​en.​wikip​edia.​org/​wiki/​Bloom_​filter
	19.	 Chen Jiqiang, Chen Liang, Wang Sheng, Zhu Guoyun, Sun Yuanyuan, Liu Huan, Li Feifei (2020)

Hotring: A hotspot-aware in-memory key-value store. In: 18th USENIX Conference on File and Stor-
age Technologies (FAST 20), pp 239–252

	20.	 Appsflyer (2021) https://​appsf​lyer.​com

https://github.com/google/leveldb
http://rocksdb.org/
http://cassandra.apache.org/
http://hbase.apache.org/
https://en.wikipedia.org/wiki/Bloom_filter
https://appsflyer.com

24024	 X. Lin et al.

	21.	 Flurry analytics (2021) https://​flurry.​com
	22.	 Google firebase (2020) https://​fireb​ase.​google.​com
	23.	 Pugh William (1990) Skip lists: a probabilistic alternative to balanced trees. Commun ACM

33(6):668–676
	24.	 Pugh William (1998) A skip list cookbook. Technical report
	25.	 Wei Qian, Chen Zehao, Chen Xiaowei, Zhang Yuhao, Cai Xiaojun, Jia Zhiping, Shen Zhaoyan, Wang

Y, Shao Zili, Li Bingzhe (2023) A semantic-integrated lsm-tree based key-value storage engine for
blockchain systems. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems

	26.	 WiredTiger storage engine (2023) https://​docs.​mongo​db.​com/​manual/​core/​wired​tiger/
	27.	 Dai Yifan, Xu Yien, Ganesan Aishwarya, Alagappan Ramnatthan, Kroth Brian, Arpaci-Dusseau

Andrea, Arpaci-Dusseau Remzi (2020) From wisckey to bourbon: A learned index for log-structured
merge trees. In: 14th USENIX Symposium on Operating Systems Design and Implementation (OSDI
20), pp 155–171

	28.	 Li Fei, Lu Youyou, Yang Zhe, Shu Jiwu (2020) Sinekv: Decoupled secondary indexing for lsm-based
key-value stores. In: 2020 IEEE 40th International Conference on Distributed Computing Systems, pp
1112–1122

	29.	 Luo Yuhan, Lin Mingwei, Pan Yubiao, Zeshui Xu (2022) Dual locality-based flash translation layer for
nand flash-based consumer electronics. IEEE Trans Consum Electron 68(3):281–290

	30.	 Zhang Jianpeng, Lin Mingwei, Pan Yubiao, Zeshui Xu (2023) Crftl: Cache reallocation-based page-
level flash translation layer for smartphones. IEEE Trans Consum Electron 69(3):671–679

	31.	 Yu JiaPing, Chen HuaHui, Qian JiangBo, Dong YiHong (2020) Ltg-lsm: The optimal structure in lsm-
tree combined with reading hotness. In: 2020 IEEE 26th International Conference on Parallel and Dis-
tributed Systems, pp 1–8

	32.	 Zhong Wenshao, Chen Chen, Wu Xingbo, Jiang Song (2021) Remix: Efficient range query for lsm-
trees. In: 19th USENIX Conference on File and Storage Technologies, pp 51–64

	33.	 Zhang Qiang, Li Yongkun, Lee Patrick PC, Xu Yinlong, Cui Qiu, Tang Liu (2020) Unikv: Toward
high-performance and scalable kv storage in mixed workloads via unified indexing. In: 2020 IEEE 36th
International Conference on Data Engineering, pp 313–324

	34.	 Wu Xingbo, Xu Yuehai, Shao Zili, Jiang Song (2015) Lsm-trie: An lsm-tree-basedultra-largekey-value
store for small data items. In: 2015 USENIX Annual Technical Conference, pp 71–82

	35.	 Ahn Jung-Sang, Seo Chiyoung, Mayuram Ravi, Yaseen Rahim, Kim Jin-Soo, Maeng Seungryoul
(2015) Forestdb: A fast key-value storage system for variable-length string keys. IEEE Trans Comput
65(3):902–915

	36.	 Balmau Oana, Didona Diego, Guerraoui Rachid, Zwaenepoel Willy, Yuan Huapeng, Arora Aashray,
Gupta Karan, Konka Pavan (2017) Triad: Creating synergies between memory, disk and log in log
structured key-value stores. In: 2017 USENIX Annual Technical Conference, pp 363–375

	37.	 Levandoski Justin J, Larson Per-Åke, Stoica Radu (2013) Identifying hot and cold data in main-mem-
ory databases. In: 2013 IEEE 29th International Conference on Data Engineering, pp 26–37

	38.	 Yao Ting, Wan Jiguang, Huang Ping, He Xubin, Fei Wu, Xie Changsheng (2017) Building efficient
key-value stores via a lightweight compaction tree. ACM Trans Storage 13(4):1–28

	39.	 Raju Pandian, Kadekodi Rohan, Chidambaram Vijay, Abraham Ittai (2017) Pebblesdb: Building key-
value stores using fragmented log-structured merge trees. In: Proceedings of the 26th Symposium on
Operating Systems Principles, pp 497–514

	40.	 Wu Fenggang, Yang Ming-Hong, Zhang Baoquan, Du David HC (2020) Ac-key: Adaptive caching for
lsm-based key-value stores. In: 2020 USENIX Annual Technical Conference (USENIX ATC 20), pp
603–615

	41.	 Teng Dejun, Guo Lei, Lee Rubao, Chen Feng, Ma Siyuan, Zhang Yanfeng, Zhang Xiaodong (2017)
Lsbm-tree: Re-enabling buffer caching in data management for mixed reads and writes. In: 2017 IEEE
37th International Conference on Distributed Computing Systems (ICDCS), pp 68–79. IEEE

	42.	 Yang Lei, Hong Wu, Zhang Tieying, Cheng Xuntao, Li Feifei, Zou Lei, Wang Yujie, Chen Rongyao,
Wang Jianying, Huang Gui (2020) Leaper: a learned prefetcher for cache invalidation in lsm-tree based
storage engines. Proc VLDB Endowment 13(12):1976–1989

	43.	 Dayan Niv, Athanassoulis Manos, Idreos Stratos (2017) Monkey: Optimal navigable key-value store.
In: Proceedings of the 2017 ACM International Conference on Management of Data, pp 79–94

https://flurry.com
https://firebase.google.com
https://docs.mongodb.com/manual/core/wiredtiger/

24025MTDB: an LSM‑tree‑based key‑value store using a multi‑tree…

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Xinwei Lin1,2 · Yubiao Pan1,2 · Wenjuan Feng1 · Huizhen Zhang1 · Mingwei Lin3

 *	 Yubiao Pan
	 panyubiao@hqu.edu.cn

 *	 Mingwei Lin
	 linmwcs@163.com

	 Xinwei Lin
	 linxinwei@stu.hqu.edu.cn

	 Wenjuan Feng
	 fengwenjuan@hqu.edu.cn

	 Huizhen Zhang
	 zhanghz@hqu.edu.cn

1	 The School of Computer Science and Technology, Huaqiao University, Xiamen 361021, Fujian,
China

2	 Data Security Department, Xiamen Key Laboratory of Data Security and Blockchain
Technology, Xiamen 361021, Fujian, China

3	 The College of Mathematics and Informatics, Fujian Normal University, Fuzhou 350000,
Fujian, China

	MTDB: an LSM-tree-based key-value store using a multi-tree structure to improve read performance
	Abstract
	1 Introduction
	2 Background and motivation
	2.1 LSM-tree
	2.2 Motivation

	3 MTDB design
	3.1 Architecture overview of MTDB
	3.2 Data structure
	3.2.1 B+tree
	3.2.2 Single-level hot tree
	3.2.3 Three-level LSM-tree with Partition-based Level 0
	3.2.4 Data flow among multiple trees
	3.2.5 Reading and writing process

	3.3 Implementation issues
	3.3.1 Serialization and deserialization of B+tree
	3.3.2 Crash consistency

	4 Evaluation
	4.1 Experimental setup
	4.2 Experiments under YCSB workloads
	4.2.1 Experiments under YCSB workloads
	4.2.2 Read amplification under YCSB-C
	4.2.3 Access analysis of each component
	4.2.4 Data distribution of each component
	4.2.5 Write amplification
	4.2.6 Total amount of persistent data

	4.3 Experiments under RBM workloads
	4.4 CPU and memory usage

	5 Discussion
	6 Related work
	7 Conclusion
	References

