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Abstract
In pattern recognition, statistics, machine learning, and data mining, feature or 
attribute selection is a standard dimensionality reduction method. The goal is to 
apply a set of rules to select essential and relevant features from the original data-
set. In recent years, unsupervised feature selection approaches have garnered sig-
nificant attention across various research fields. This study presents a well-organized 
summary of the latest and most effective unsupervised feature selection techniques 
in the scientific literature. We introduce a taxonomy of these strategies, elucidat-
ing their significant features and underlying principles. Additionally, we outline the 
pros, cons, challenges, and practical applications of the broad categories of unsuper-
vised feature selection approaches reviewed in the literature. Furthermore, we con-
ducted a comparison of several state-of-the-art unsupervised feature selection meth-
ods through experimental analysis.

Keywords  Unsupervised feature selection · Filter method · Wrapper method · 
Hybrid method · Embedded method · Clustering

1  Introduction

Feature selection refers to the procedure of picking a portion of the original fea-
tures based on their significance and redundancy. According to Yu and Liu [74], the 
feature subsets can be categorized into four groups: (1) highly relevant feature sub-
sets, (2) weakly relevant and nonredundant feature subsets, (3) weakly relevant and 
redundant feature subsets, and (4) completely irrelevant and noisy feature subsets, 
as shown in Fig. 1. A feature is irrelevant if it does not contribute to the accuracy of 
the prediction. To construct a decent prediction model, choosing all highly relevant 
and some weakly relevant features is desirable while excluding irrelevant, redun-
dant, or noisy features. Sometimes, weakly relevant features that are nonredundant 
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and compatible with assessment methods can also help to improve the prediction 
accuracy. During the feature selection process, redundant ones are usually thrown 
out because they may have critical statistical relationships with other features, not 
because they have information that isn’t useful. Sometimes, a feature may be unim-
portant as a standalone entity, but it might be beneficial when paired with other 
features.

In machine learning, the experimental data may be unlabeled, labeled, or partially 
labeled. This makes it possible to use unsupervised, supervised, and semisupervised 
feature selection techniques to select the essential and relevant features. Usually, 
labeled data are a collection of samples that are annotated with meaningful labels. 
Supervised feature selection refers to the procedure of picking a group of features 
based on a set of criteria for figuring out the value and importance of the features. 
On the other hand, unlabeled data are made up of samples and things that can be 
seen without labels. Unsupervised feature selection, in which you don’t know any-
thing about the underlying functional classes ahead of time, uses data structures like 
data variance, separability, and distribution to figure out the importance of each fea-
ture. In semisupervised feature selection, some portion of labeled data is added to 
unlabeled data as extra information to make an unsupervised feature selection work 
better. Nowadays, a lot of literature is available within the scope of supervised and 
semisupervised feature selection. However, unsupervised feature selection is rela-
tively less explored. So, in this paper, our primary focus is to explore unsupervised 
feature selection (UFS) approaches [66].

In unsupervised learning, clustering or grouping [23], is the primary operation 
performed on the unlabeled data to identify the essential clusters. Clustering can be 
negatively impacted by extraneous and redundant data features, which can deterio-
rate the cluster quality, lead to extensive computation costs, and increase memory 
needs. Consequently, to improve the performance, UFS is performed to get rid of 
redundant and unimportant features. To illustrate this concept, we provided Figs. 2, 
3, and 4, which show the clustering of a dataset by taking different feature subsets. 
Figure 2 shows that f1 is adequate for identifying distinct clusters. However, Fig. 3 
shows that f3 is redundant and negatively affects the homogeneity of clusters. In 
Fig. 4, it is shown that f2 is unimportant and has no effect on the clustering process 
at all because f1 is alone capable of identifying the distinct cluster. In addition, vari-
ous subsets of characteristics, including pertinent information, may provide varying 
degrees of clustering.

UFS is vital when dealing with large-scale and high-dimensional data. In such 
cases, the existence of irrelevant and duplicated features can significantly impair 

Fig. 1   Categories of feature 
subsets
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the efficiency of clustering methods. In contrast to supervised learning, which 
relies on labeled data to determine important features, unsupervised learning 
faces the difficulty of feature selection without such assistance. The importance 
of UFS stems from its capacity to augment the caliber of clusters by prioritizing 
the most informative characteristics, hence enhancing the comprehensibility and 
effectiveness of the learning process.

Furthermore, UFS has the ability to greatly decrease the computational load 
that is typically linked to datasets with a large number of dimensions. Through 
the removal of superfluous characteristics, UFS not only enhances the efficiency 
of the clustering process but also diminishes memory usage, hence enabling the 
handling of larger datasets. The decrease in dimensionality might result in more 
resilient and significant cluster formations, which are essential for applications in 
diverse domains like bioinformatics, text mining, and image analysis.

Fig. 2   Clustering by taking 
only f1

Fig. 3   Clustering by taking f1 
and f3

Fig. 4   Clustering by taking f1 
and f2



24215

1 3

A taxonomy of unsupervised feature selection methods including…

Therefore, to explore the various methodologies of UFS, we conducted a com-
prehensive and structured evaluation, ranging from fundamental to cutting-edge 
approaches, to provide an overview of UFS methods. We outlined their primary fea-
tures and the underlying concepts upon which these approaches are founded. Addi-
tionally, we presented a taxonomy of the reviewed UFS approaches, categorizing 
them based on their methodology, type, and subtype. We also highlighted the ben-
efits, drawbacks, and challenges. Moreover, through experimental finding, we com-
pared the state-of-the-art UFS methods.

A thorough assessment of these methods is required to provide a clear knowl-
edge of the current state of the art in UFS, highlight the strengths and weaknesses 
of existing techniques, and propose prospective topics for future research. This 
review intends to be a significant resource for scholars and practitioners by provid-
ing insights into the many methods used in UFS, the settings in which they are most 
effective, and the trade-offs associated with their implementation. In this review, we 
propose to advance the field of unsupervised learning by encouraging the develop-
ment of more effective and efficient feature selection techniques.

The rest of the paper is organized as follows: in Sect. 2, we presented the devel-
opment process for feature selection. Section 3 introduces various UFS approaches 
and their taxonomy classifications. The benefits and drawbacks of UFS are summa-
rized in Sect. 4. In Sect. 5, we compared state-of-the-art UFS approaches through 
experimental findings. Section 6 discusses the practical applications of UFS meth-
ods. Section 7 addresses the challenges of UFS approaches. Finally, in Sect. 8, we 
provided a summary and suggested future directions.

2 � Development of unsupervised feature selection

The development of the feature selection process consists of five steps: search direc-
tion, search strategy, evaluation criteria, stopping criterion, and result validation, as 
shown in Fig. 5. These steps are discussed in detail subsequently.

First step:
The first step of the feature selection procedure is to determine the starting point 

and the search direction. Two ways are available for this process: forward search and 
backward search. In the forward search, the construction of the feature subset begins 
with a null subset, and then adding the features occurs in successive iterations. On 

Fig. 5   Development of feature selection process
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the other hand, in backward search, the process starts with a complete set of fea-
tures, and then the elimination of features happens in successive iterations.

Second step:
The second step of the feature selection process determines the search strategy. 

There are three categories of search techniques: sequential, randomized, and expo-
nential. The sequential search strategy is also called “greedy hill-climbing search,” 
in which the addition of one feature happens at a time. The typically used sequential 
search approaches are sequential forward selection (SFS) and sequential backward 
selection (SBS). These search strategies are easy to implement, and the complex-
ity of these strategies is proportional to the number of features. It can handle prob-
lems with multiple features that are similar. However, these methods do not work 
well with indices that aren’t monotonic, and they may produce the nesting effect 
because once a feature is inserted (or deleted), it can’t be deleted (or inserted) again. 
Also, they are sensitive to how features interact, so it’s easy for them to get stuck in 
local minima. To resolve this issue, sequential forward floating selection (SFFS) and 
sequential backward floating selection (SBFS) were introduced by giving users ways 
to reselect deleted features and remove already included features. A few examples of 
the sequential search strategy are beam search, best-first search, an improved version 
of best-first search, and the plus-l take-away-r algorithm (PTA).

Another search technique is the randomized search method, which selects fea-
tures at random and then employs two distinct search methods. Firstly, it uses search 
methods like simulated annealing and random hill-climbing that work in a sequen-
tial or two-way manner. Secondly, it uses search strategies that don’t follow a linear 
approach, like the genetic algorithm (GA), the Las Vegas algorithm, and the Tabu 
search.

The exponential search begins with the original features and finds the best solu-
tion. But this strategy is hard to use and takes a lot of computing power, particularly 
for high-dimension datasets. An illustration of this technique is exhaustive search-
ing, which looks at all possible subsets to find the best one.

Third step:
The third step of the feature selection process is the determination of evaluation 

methods. In this step, the selected subset of features is examined based on specific 
evaluation method. There are four types of evaluation methods for choosing features: 
filter, wrapper, hybrid, and embedded, which are elaborated in detail in Sect. 3.

Fourth step:
The fourth step of the feature selection task is determining the stopping criteria. It 

determines when the feature selection process should end. A selection of good stop-
ping criterion can avoid overfitting, making finding the best feature subset easier and 
more effective. Decisions taken in earlier phases affect the choice of a termination 
criterion. Common cutoffs include reaching a certain number of features or itera-
tions, getting better by a certain percentage between iterations, or getting an ideal 
feature subset formed on some evaluation function.

Fifth step:
The fifth step of the feature selection procedure is validation. Various validation 

techniques have been proposed to test how well potential feature sets work for the 
learning algorithm. In the supervised context, the most common ways to estimate 
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error are cross-validation (CV) and performance measurements based on a confu-
sion matrix. On the other hand, in an unsupervised context, the Rand index and the 
Jaccard index are used to measure similarity. In previous studies, some additional 
validation and analysis have also been done. For example, the Kuncheva index (KI) 
is used to measure stability, and the analysis of variance (ANOVA) is used to meas-
ure complexity. The various existing UFS approaches are discussed subsequently.

3 � Unsupervised feature selection methods and their types 
and taxonomy

As previously mentioned, unsupervised feature selection (UFS) methods can be 
categorized into four types based on evaluation criteria: filter, wrapper, hybrid, and 
embedded methods. In this section, we discussed each of these feature selection 
methods in detail and proposed a taxonomy, illustrated in Fig. 6, to organize the var-
ious UFS approaches described in the literature. Following this, we explored these 
approaches by focusing on the underlying concepts and highlighting their primary 
qualities.

3.1 � Unsupervised filter method

The first evaluation method is the filter method, where feature relevance is measured 
using four distinct categories of evaluation measures: information, distance, consist-
ency, and dependency. Since the filter method doesn’t depend on any learning algo-
rithm, it can be used to find general solutions for different classifiers or clustering 
techniques. The filter method is the oldest and is also called an open-loop method. 
The working of the filter method is shown in Fig. 7.

Fig. 6   Taxonomy of unsupervised feature selection approaches
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The unsupervised filter methods are divided into two parts: the univari-
ate filter method and the multivariate filter method, which are discussed in detail 
subsequently.

3.1.1 � Univariate filter method

In this method, we investigate each feature separately without considering the cor-
relations between features, using various metrics such as mutual information, vari-
ance, and Fisher score. The major drawback of this method is that it can select 
redundant features due to the ignorance of correlations among features. The uni-
variate filter method is divided into two categories: information-based and spectral-
similarity-based methods. The information-based method uses information theory 
to determine the importance of feature subsets, while the spectral-similarity-based 
method uses spectral analysis and object similarity to assess feature subset impor-
tance. These methods are discussed in detail subsequently.

Information-based method
The information-based method identifies cluster patterns in the data by analyz-

ing the extent of data dispersion using metrics such as entropy, mutual information, 
divergence, and so on. In 2012, Rao and Shastri [59] proposed a univariate filter 
approach for feature selection in which they employed information theory to rank the 
feature. They weighted each feature, adopting the idea of representation entropy. The 
representation entropy is an estimate of data compression derived from the covari-
ance matrix’s eigenvalues’ entropy. It ranges from 0 to 1, with 1 denoting the high-
est compression and 0 denoting the lowest compression. Later on, in 2014, Baner-
jee et al. [6] proposed another UFS method based on singular value decomposition 
entropy (UFS-SVD). In this method, they selected features by evaluating the entropy 
of the initial data matrix by observing its singular values. The entropy ranges from 0 
to 1. When the entropy value approaches 0 (low), it indicates that the data matrix’s 
spectrum is not uniformly scattered, leading to the formation of a well-defined clus-
ter. On the other hand, when the entropy value is close to 1 (high), the spectrum of 
the data matrix is consistently scattered, and clustering is not well-defined.

Spectral-similarity-based method

Fig. 7   Filter method for feature selection
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Spectral feature selection approaches detect local or global data structures using 
the normalized Laplacian score (LS) or eigensystem of Laplacian derived from an 
object similarity matrix. In 2005, He et al. [27] said that the LS is the most promi-
nently used and helpful in univariate filter UFS algorithms depending on spectral 
feature selection. In LS, the significance of a feature is determined by its variance 
and its ability to preserve location. This approach gives high significance to the fea-
tures that mostly keep the predefined graph structure or manifold structure shown 
through the Laplacian matrix. Later, in 2009, Padungweang et al. [54] proposed a 
spectral-similarity-based feature selection method in which they used global topol-
ogy rather than the local topology to calculate the LS and come up with a new ver-
sion of the LS named Laplacian++. In 2017, Solorio et al. [65] proposed a feature 
selection method based on the LS for mixed data. In this method, they evaluated 
features by assessing the changes in the spectrum distribution (spectral gaps) of the 
first nontrivial eigenvalues of the normalized Laplacian matrix when each feature is 
omitted from the entire collection of features individually. After that, they arranged 
features in downward order according to their individual spectral gaps.

Tang et al. [70] introduced a novel UFS technique in 2023 based on the fusion of 
multiple graphs and feature weight learning. In this approach, the authors hypoth-
esized that the majority of UFS techniques are hampered by the poor quality of 
similarity graphs. Moreover, the procedure for reconstructing features is not sim-
ple. To resolve this deficiency, a weight matrix was used in the process of feature 
reconstruction. The weighted features are projected into the label space to generate 
a high-quality similarity graph. Furthermore, they fuse the multiple predefined simi-
larity graphs that are used to regularize the original data’s local data structure. In the 
end, they used the block coordinate descent algorithm, an optimization technique, to 
produce the optimal solution. They evaluated their method on six commonly used 
datasets, including COIL20 [40], YaleB [39], Orlrawslop [62], ORL [62], Lung [28], 
and Tox-17 [40], and discovered that it outperformed the MGFS [17], SOGFS [53], 
and other various UFS approaches.

In 2023, Zhu et al. [77] came up with a method for UFS that takes into account 
the fact that data points belonging to the same class are typically near one another. 
This concept is known as compactness. In this method, the selection of essential 
features was based on this compactness score. In addition, to reduce the intricacy of 
the proposed method even further, they proposed a novel method that calculates the 
addition of a k-nearest neighbor for each sample. Several public datasets, including 
Mnist, Colon, Lung, Lymphoma, Brain, and Allaml from the UCI machine learning 
repository [8], were utilized to evaluate their methodology. The performance was 
superior to LS [27] and unsupervised discriminate feature selection (UDFS) [73].

3.1.2 � Multivariate filter method

This method takes into account the correlation between features. Consequently, 
this method is capable of removing redundant features. There are primarily two 
categories of multivariate filter feature selection methods: the statistical/informa-
tion method and the bioinspired method. As the name suggests, the first type com-
prises UFS methods that carry out feature selection employing information and/
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or statistical theory measures like linear correlation, mutual information, entropy, 
variance-covariance, and others. On the other hand, the second type consists of UFS 
methods that employ stochastic search strategies based on the swarm intelligence 
concept to find a suitable feature subset that meets some quality criterion. Both the 
multivariate filter feature selection methods are discussed subsequently.

Statistical-based method
Among these kinds of works, feature selection using feature similarity (FSFS) 

[49] is especially well-known and often cited. In this work, the authors came up with 
a statistical measure of dependency or similarity called the maximal information 
compression index (MICI), which depends on the variance-covariance between fea-
tures. This was done to reduce feature redundancy. The aim behind this technique is 
to cluster the original collection of features so that features that belong to the same 
group are very similar and features that belong to other groups are quite dissimilar. 
Later on, in 2011, Yang et al. [73] proposed a UFS method named unsupervised dis-
criminative feature selection (UDFS) that employs the l2,1 norm and discriminative 
analysis to select the most discriminating subset of features. In 2012, Ferreira and 
Figueiredo [25] proposed a filter-based feature selection approach named relevance 
redundancy feature selection (RRFS), in which they selected features in two steps. 
In the first step, they sorted features according to some criteria (for the unsupervised 
case, variance, and in the supervised case, either the Fisher’s ratio or the mutual 
information). After that, in the next step, by considering the order generated in the 
first step, the features are analyzed using a feature similarity metric to figure out how 
often they are the same. After that, the first n features are selected with the lowest 
redundancy. After that, in 2015, Wang et al. [72] proposed a statistical-based feature 
selection approach with the idea of minimum redundancy and maximum projection 
(MRMP). In this method, all features are projected onto a feature subspace using a 
linear transformation with the least amount of reconstruction error.

Lee et  al. [38] came up with information-theoretic UFS (IUFS), whose goal is 
to get the most information about how chosen features interact with each other. To 
do this, they used a greedy method to solve an optimization problem and looked for 
local optima. In 2021, Lim et al. [43] devised an innovative dependency-based UFS 
method. This method calculated the dependence between features and incorporated 
it into a regression-based model for feature selection. They evaluated their method 
on multiple types of datasets, such as image and gene expression datasets titled 
Coil20 [51], Colon [3], Leukemia [26], and ORL64 [62]. They discovered that their 
approach performed better than the conventional UFS approaches: LS [27], UDFS 
[73], NDFS [42], and IUFS [38].

In 2022, Huang et al. [31] proposed a novel information-based UFS method that 
addresses the issue of imbalanced neighbors in each data sample. This method is 
used to preserve the intrinsic properties of data and performs well when the fea-
tures are not linearly independent. Using an adaptive graph and dependency score 
(AGDS), they ensured the graph’s k-connectivity and removed the most redundant 
nodes. Mutual information and entropy were used to calculate the dependency 
score. In this method, the weights of the k adjacent neighbors of each data sample 
are assigned adaptively, thereby resolving the issue of imbalanced neighbors. On 
several benchmark datasets (object dataset, shape dataset, face dataset, warpAb10P, 
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warp1E10P) and bioinformatics datasets (colon, lung, lymphoma, leukemia), they 
evaluated the performance of the ADGS approach. They discovered that their strat-
egy outperforms LS [27], UDFS [73], NDFS [42], and SOGFS [53].

Bioinspired technique
Bioinspired methods are very useful in selecting features to achieve a near-opti-

mal solution. In 2014, Tabakhi et al. [68] proposed the first UFS method using ant 
colony optimization (UFSACO). They choose the feature set with the lowest cosine 
similarity among features using the cosine similarity measure. In 2015, Tabakhi 
et al. [69] proposed another feature selection approach using the same idea as the 
previous one, named microarray gene selection using ant colony optimization 
(MGSACO), in which, they used feature redundancy and variance to assign fitness 
to a feature. Later on, Moradi and Rostami [50] proposed an integrated strategy. In 
this strategy, graph clustering was combined with ant colony optimization (ACO) 
to accomplish the feature selection task. They transformed the problem space into 
a graph where features are nodes and the connections between them represent the 
similarity between features. In the next phase, features are aggregated using a com-
munity detection strategy. The novel ACO-based strategy is used to select the final 
subset of features in the final phase. They evaluated their methodology using several 
benchmark UCI machine learning repository datasets [8].

The main drawback of the above filter-based feature selection approaches is 
that the chosen features may not perform well across all learning models. Features 
selected based on specific criteria might not be universally effective across different 
algorithms. This limits their applicability and effectiveness, highlighting the need to 
consider the characteristics of individual models when selecting features. To over-
come this drawback, researchers [32, 57, 67] have explored wrapper-based feature 
selection methods, which are discussed subsequently.

3.2 � Unsupervised wrapper method

The second evaluation method is the wrapper method [60], which binds the feature 
selection process around the learning algorithm and makes use of performance accu-
racy or the learning error rate as a criterion for evaluating feature quality. Unlike the 
filter method, the wrapper method selects the most useful feature subset by minimiz-
ing the error of a specific learning approach. The wrapper method typically yields 
better results compared to the filter method, since it directly incorporates bias from 
the learning algorithm and considers feature dependency, it tends to provide less 
generalized features. This is because the wrapper method uses a particular learning 
algorithm to evaluate feature fitness, making it uncertain that the selected features 
will be optimal for other learning algorithms. The working of the wrapper method is 
illustrated in Fig. 8.

The feature selection process in wrapper methods involves a two-step procedure 
that continues until the stopping criteria are met. Initially, an iterative search strat-
egy is used to obtain the initial feature subset, followed by an evaluation of its effec-
tiveness. Consequently, the wrapper method is effective in achieving more precise 
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results based on the learning algorithm employed, albeit with higher computational 
costs.

The unsupervised wrapper method is categorized into three types: the wrapper 
approach for model-based clustering, the wrapper approach for evolutionary clus-
tering, and the wrapper approach for K-means clustering, which is discussed as 
follows:

3.2.1 � Wrapper approach for model‑based clustering

In general, model-based clustering takes all attributes into account throughout the 
modeling process. As discussed above, many features are unimportant and redun-
dant, and considering these features may degrade the model’s performance. In addi-
tion, the model will be affected by the problem of dimensionality, also known as 
the “curse of dimensionality.” To resolve this issue, various approaches have been 
proposed by multiple researchers. In 2006, Reftery and Dean proposed the wrapper 
feature selection for model-based clustering. In this method, they used linear regres-
sion to assume that irrelevant features depended on important features. The problem 
with this method is that regression needs more parameters, but this method does 
not significantly improve clustering efficiency. Later, Maugis et  al. [48] presented 
an expanded version of Raftery and Dean [58] using greedy feature selection in the 
regression. In this approach, due to regression, they let irrelevant features be inde-
pendent of essential features. This strategy is intended to improve clustering perfor-
mance. However, the approach’s general timeline gets considerably more intricate.

3.2.2 � Wrapper approach for evolutionary clustering

The performance of evolutionary computation (EC)-based methods for clustering 
is better than that of well-known techniques like K-means and fuzzy c-means [36]. 
Data with irrelevant or duplicate features can also hurt the performance of EC-based 
clustering algorithms. To overcome this problem, a lot of approaches have been 
proposed by various researchers. In the following study, we will learn more about 

Fig. 8   Wrapper approach for feature selection
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choosing features for evolutionary clustering by talking about single-objective and 
multi-objective strategies.

Single-objective optimization
Swetha and Devi [67] proposed a two-step particle swarm optimization (PSO) 

feature selection approach for clustering. Initially, they used a two-step PSO to select 
features and then used clustering on those features. Javani et al. [32] introduced a 
new PSO-based simultaneous clustering, a method for determining features that use 
probabilistic K-means clustering, and a new kernelized validity index to counteract 
the effect of the initial condition of the evolutionary process. However, the major 
flaw of this approach is that it has not been tested on high-dimensional datasets. 
Later on, a binary PSO (BPSO)-based feature selection was proposed by Prakash 
et al. [57] in which each feature subset is encoded by 0 and 1. They used BPSO for 
the feature selection purpose, and later on, K-means clustering was performed to 
assess the effectiveness of possible feature subsets in terms of the silhouette index.

Multi-objective optimization
Prakash and Singh [33] proposed a new approach to feature selection and cluster-

ing based on genetically inspired multi-objective binary gravitational search in 2019. 
Feature subset sizes and silhouette indices were used as search objectives to look for 
potential solution spaces in this approach. For the non-dominated set, they used an 
external archive as well. The segregated dataset is then subjected to K-means clus-
tering, and the F-score is calculated according to the subset of features that were 
chosen. The final selection was made based on the best F-score. The results indicate 
that this approach outperforms the elitist non-dominated sorting GA approach intro-
duced by Deb et al. [14].

3.2.3 � Wrapper approach for K‑means clustering

The problem associated with K-means clustering is that it treats all features equally 
important. In other words, each feature adds the same amount to the clustering pro-
cess, no matter how unimportant, irrelevant, or redundant it is. If there are a lot of 
irrelevant or duplicate features in the dataset that is used for clustering, the quality 
of the clustering may go down. It’s also possible that adding irrelevant and repeti-
tive features will hurt K-means in the wrong way. This problem has been solved by 
giving each feature a certain weight, which is called feature weighting [15]. Feature 
weighting works on the assumption that every feature within the chosen subset can’t 
have the same amount of importance. Rather, it gives each feature a weight, which is 
generally between 0 and 1. Therefore, feature weighting can be viewed as a general-
ized form of feature selection.

In 1988, DeSarbo and Cron [15] proposed the first feature weighting technique 
employed in K-means, named synthesized clustering (SYNCLUS). SYNCLUS looks 
at the weights of feature groups as well as the weights that show the importance of 
each feature. In this approach, like K-means, the user must tell the program how 
many clusters there are and what data to use initially. Even though it is the first task 
in this area, it may be hard to compute, and its effectiveness is greatly based on how 
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the parameters are set. Nevertheless, researchers have attempted to improve its effi-
ciency using methods like the Polak–Ribiere optimization strategy [56] and a gen-
eral linear transformation of features. Some recent work has also been done in this 
field. In 2005, Hruschka et al. [29] presented silhouette-sequential forward selection 
(SSFS), a wrapper-based feature selection method. The authors used the k-means 
clustering algorithm to split the data and pick the feature subset with the highest 
quality based on the simplified silhouette criterion. Later on, Parvin et al. [55] pro-
posed a weight-local clustering algorithm (FWLAC). They began their investigation 
by selecting k evenly spaced points as their starting centroids. They then looked at 
the subspace next to the initial centroids to enhance the original centroids, feature 
weights, and cluster weights. Nevertheless, their performance is highly dependent 
on the control parameters.

Alharan et  al. [2] proposed a K-means clustering-based feature selection to 
enhance the classification precision of three image datasets. In this method, each 
feature was initially evaluated using the five parameters: information gain, gain 
ratio, oneR, symmetric, and reliefF. In the second phase, a matrix of features and 
parameters was created, and a K-means clustering algorithm was used to cluster the 
features into two groups, one containing more relevant features and the other con-
taining noisy features. Comparing their method to those of Kaya et al. [35], Zheng 
et al. [75], and Al-Sahaf et al. [1], they discovered that their method performed bet-
ter on the datasets Kylberg [37], Brodatz-1, and Brodatz-2 [1].

The main disadvantage of the above-discussed wrapper feature selection 
approaches is that they produce results that are closely related to the specific learn-
ing model used. While designed to improve performance within a specific model, 
this approach may limit generalizability across different algorithms or datasets. To 
overcome this, a hybrid approach has been proposed. This method combines the 
strengths of filter and wrapper techniques to achieve more robust and effective fea-
ture selection. By integrating both strategies, it aims to enhance performance and 
adaptability across various learning scenarios. The details of the hybrid method are 
followed next.

3.3 � Unsupervised hybrid approaches

The fourth evaluation method is the hybrid method. A hybrid approach can be cre-
ated by fusing two distinct strategies (such as a filter and a wrapper) or two tech-
niques that share a common criterion or two feature selection methods. The objec-
tive of the hybrid method is to take advantage of the best features of both methods. 
It employs many evaluation criteria at various stages of the search to enhance the 
accuracy and speed of predictions by making better use of faster computers. There 
are two different hybridization methods now in use. One approach uses the filter 
method, which first narrows down the feature set before passing it through the wrap-
per method to find the optimal feature subset, as shown in Fig. 9. On the other hand, 
the second strategy couples the filter and wrapper measures to allocate the relevance 
score to a specific feature.
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Dash and Liu [13] came up with a hybrid feature selection approach that derives 
entropy from data similarity and evaluates features in the filter stage using an 
entropy-based measure. The wrapper stage employs scatter separability criteria and 
K-means clustering to select the relevant feature subset. The disadvantage of this 
approach is that it is computationally intensive. Li et al. [41] later proposed a hybrid 
feature selection algorithm based on Dash and Liu’s [13] concept. To improve per-
formance, they used a fuzzy feature evaluation index (FFEI) in conjunction with an 
exponential entropy index to evaluate the feature in the filter stage. They used a scat-
ter separability criterion and a fuzzy c-means algorithm for the wrapper stage. Addi-
tionally, this approach has a high computational cost.

Hruschka et al. [30] developed an approach that incorporates a Bayesian filter and 
K-means clustering. They used a Bayesian network with the Markov blanket prop-
erty as a filtering technique. A limitation of this approach is that only datasets with 
fewer than 30 features have been tested. Later, Solorio et al. [64] introduced a two-
stage hybrid method based on the LS [27] and the Calinski–Harabasz (CH) index 
[11]. Initially, the LS is used to rank the data features. In the next step, K-means is 
used to create cluster sets from the selected feature subsets using the forward and 
backward strategies. The cluster sets are then analyzed with an updated variant of 
the CH index called the weighted normalized CH index (WNCH). The best feature 
subset is the one with the greatest WNCH value. The biggest problem with this 
method is that it uses a sequential search strategy to choose the features. Because of 
this, it doesn’t come up with the global optimal solution.

Manbari et al. [47] introduced a hybrid UFS method for high-dimensional data in 
2019. They used a combination of modified binary ant systems (BAS) and clustering 
to surmount the limitations of search space and process high-dimensional data effi-
ciently. They used a genetic algorithm-inspired damped mutation technique and sim-
ulated annealing to avoid becoming confined to local optima. They proposed a novel 
redundancy reduction strategy to measure the correlation between features. They 
evaluated their method using the benchmark datasets Wine, Hepatitis, Ionosphere, 
Spambase, Arrhythmia, Madelon, Colon, and Leukemia from the UCI machine 
learning repository [8]. They determined that their method performed better in 

Fig. 9   Hybrid method for feature selection
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terms of time and accuracy than the LS [27], UFSACO [68], and MGSACO [69]. 
Later on, Annavarapu et  al. [4] proposed a clustering-based hybrid feature selec-
tion method for choosing pertinent and redundant features from high-dimensional 
microarray data. In the filter stage, they used a combination of K-means and signal-
to-noise ratio (SNR). Eventually, the optimal gene subset was determined using a 
hybrid system comprised of an ant colony optimization method and automated cel-
lular learning. In 2023, Dwivedi et  al. [20] [19] proposed a hybrid feature selec-
tion approach for data clustering based on ant colony optimization (NCHFS-ACO). 
In this approach, they used K-means clustering to measure the effectiveness of the 
NCHFS-ACO, and it is also used to assign the fitness of features in terms of silhou-
ette index along with the LS in the feature selection process. In this method, the fea-
ture subset is created randomly so that the system doesn’t get stuck in a local optimal 
solution and the global optimal solution can be attained. They tested their approach 
on ten benchmarks and three real-life plant genome datasets and found that their 
method performed better than the method proposed by Solorio et al. [64].

The major drawback of the hybrid method is its extensive computational require-
ments. To address this, the embedded method was introduced, integrating fea-
ture selection directly into the model training process. This approach significantly 
reduces computation time while maintaining the effectiveness of selecting relevant 
features.

3.4 � Unsupervised embedded approaches

The fourth evaluation method is the embedded method. Unlike the wrapper method, 
it is a way to choose features built into the learning algorithm and utilizes the proper-
ties of the algorithm, which help in deciding how to evaluate features. Even though 
the performance is the same, the embedded method is more efficacious and easier to 
compute than the wrapper method. This is because the embedded method eliminates 
the cost of running the learning algorithm and looking at each feature subset over 
and over again. Also, this method is less likely to overfit than the wrapper method. 
Figure 10 illustrates the workings of the embedded method.

The unsupervised embedded approaches comprise UFS methods that use either 
sparse learning along with spectral analysis or spectral analysis alone. For embedded 
approaches, choosing a subset of features is part of the learning process. Because of 

Fig. 10   Embedded method for feature selection



24227

1 3

A taxonomy of unsupervised feature selection methods including…

this, embedded methods use less computing power than wrapper approaches. Sparse 
learning algorithms are very important for embedded methods because they work well 
and are easily understood. Sparse learning algorithms attempt to find a balance between 
the degree of quality and the sparsity of the outcome. In the context of sparse learning, 
we do not only care about the cluster quality or some other performance metric. Addi-
tionally, we wish to convey the clustering strategy to a user who is not an expert. In 
academics, the idea of using sparse learning in clustering has gained significant interest 
over the past few years. Most of the time, these methods use a clustering technique to 
find relevant cluster labels, which are then used to convert the UFS into a supervised 
feature selection, as shown in Fig. 11. Some embedded approaches to feature selection 
are presented subsequently.

In 2010, Cai et al. [10] proposed a feature selection method termed multi-cluster fea-
ture selection (MCFS) for clustering tasks. This embedded, sparse learning approach 
involves three main steps. Firstly, spectral analysis is utilized to compute the correla-
tion between features. Secondly, an L1-regularized least squares regression model is 
employed to gauge the goodness of fit for the features. Finally, the features with the 
highest coefficient values obtained from the regression model are selected. Recent work 
has been done on sparse learning models that use non-convex sparse regularizer func-
tions and locally linear embedding (LLE). Li et al. [42] introduced a nonnegative dis-
criminative feature selection (NDFS) method for selecting discriminative features from 
data. In this strategy, they used spectral clustering and feature selection to choose the 
most discriminative features. Furthermore, they used a nonnegative constraint to learn 
a more accurate cluster label. They tested their method on several benchmark datasets, 
including UMIST, AT &T [62], and JAFFE [46]. Later on, Nie et al. [53] suggested 
a UFS method named unsupervised feature selection with structured graph optimiza-
tion (SOGFS), in which they specified that the majority of the UFS embedded methods 
rely on the similarity matrix. However, real-world data contains a substantial amount 
of noise, so the similarity matrix obtained from the original data cannot be relied upon 
entirely. To address this shortcoming, they performed feature selection and local struc-
ture learning concurrently. In addition, the similarity matrix was constrained to include 
more pertinent information so that the selected features would be more relevant. They 
evaluated their methodology on a variety of datasets, including image and biomedical 
data, handwritten data, etc.

Luo et al. [45] came up with a new UFS method that models the data’s manifold 
structure with LLE. The objective is to describe the intrinsic local geometry with an 
LLE graph in place of the usual pairwise similarity matrix and a structure regulari-
zation term. A feature-level reconstruction rating is set up for each feature using the 
LLE graph. This score is used to choose the final subset of features. Shi et al. [63], on 
the other hand, proposed a non-convex sparse learning model. The plan is to choose 

Fig. 11   Working of sparse 
learning feature selection 
approach
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features using a nonnegative orthogonal constraint sparse regularized model and a 
novel norm called the l2,1−2 norm, which is the difference between the l2,1 norm and 
the frobenius l2,2 norm. An iterative algorithm using the alternating direction method 
of multipliers (ADMM) [9] was also proposed as a way to solve the model quickly. In 
2020, Chen et al. [12] proposed an integrated clustering approach that incorporated the 
feature selection procedure. In this method, the feature selection procedure was con-
ducted by minimizing the l2 and one output weight norm. Using eigenvalue decomposi-
tion, they computed the clustering results. Experiments were conducted using public 
datasets titled Glass, Ionosphere, Pima, Vehicle, Umist, and WarpIeop from the UCI 
machine learning repository [8] as well as datasets from WekdTexes at the University 
of Texas. They determined the effectiveness of the feature selection method by employ-
ing the chosen features in clustering. Their algorithm was superior to K-means and US-
ELM. Wang et al. [71] proposed a soft-label UFS method in 2021. Due to disturbances, 
outliers, and redundancies, pseudo-labels were utilized in this method. In addition, 
they considered the fuzzy nature of the data and employed soft tags. They performed 
the feature selection task in two phases. In the initial phase, they transformed the data 
into a lower-dimensional subspace, where the affinity matrix with sparse constraints 
is learned based on local distances. Later, in the second phase, the feature selection 
procedure was guided by an affinity matrix. They evaluated their methodology on the 
COIL20 [51], handwritten binary alphabet (BA) [7], human face dataset ORL [16], 
voice dataset isolet [24], and biology datasets Lung and ecoli [52]. Their strategy per-
formed superiorly to the UDFS [73], NDFS [42], and SOGFS [53].

In 2020, Zhu et al. [78] came up with a new UFS by building a Laplacian matrix 
dynamically from a hypergraph. In this method, they attempted to maintain the local 
structure of samples by employing a Laplacian matrix based on a hypergraph and 
the global structure by employing orthogonal constraints on the training samples’ 
covariance matrix. In addition, they used an l2,1 norm regularizer to determine the 
most important features. They evaluated their methodology for the clustering and 
image segmentation tasks. In comparison to LS [27] and SOGFS [53], their method 
performed well on benchmark datasets taken from the UCI machine learning library 
[8] and Berkeley segmentation datasets [5]. In 2023, Zhu et al. [76] suggested a UFS 
approach in which they combined the creation of a similarity matrix and the selec-
tion of features into a single framework. This way, the two processes could run at 
the same time instead of one after the other. In this approach, the similarity matrix 
adoptively maintains the manifold structure of the data. In addition, the approach 
uses l2,0 norm sparsity constraints to achieve group feature selection. The benefit of 
this method is that the similarity matrix doesn’t stay the same during the process of 
selecting features. This leads to an optimal solution. They tested their method on 
various public datasets called JAFFE [46], ORL [62], and COIL20 [40]. They found 
that their method works better than the LS [27], UDFS [73], and SOGFS [53].
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4 � Benefits and drawbacks

In the preceding section, Sect.  3, we categorized and reviewed the UFS methods 
based on their methodology and type. This section will explore some general con-
siderations, pros, and cons of the UFS approaches presented in Sect. 3.

Filter method
The filter methods provide substantial computing benefits because they are not 

reliant on the clustering process. They possess excellent computing speed and may 
be effortlessly expanded to manage extensive datasets, rendering them appropriate 
for high-dimensional data. Furthermore, filter approaches have a tendency to prevent 
overfitting since they do not directly engage with the clustering process. This segre-
gation leads to enhanced generalization, guaranteeing that the chosen characteristics 
exhibit excellent performance across diverse learning tasks. In addition, filter tech-
niques generally have better time complexity than wrapper methods, which improves 
their efficiency. Nevertheless, a significant disadvantage is that filter approaches fail 
to take into account the unique criteria of the clustering algorithm, potentially result-
ing in inadequate feature selection for the assigned clustering task.

•	 Univariate filter methods:-  Univariate filter methods, including both informa-
tion-based [6] and spectral-similarity-based approaches [65], are impartial with 
respect to the dimensionality of the data and have the ability to detect both lin-
ear and nonlinear correlations. These methods have a strong theoretical basis 
for selecting features and are computationally efficient. Nevertheless, these 
approaches fail to take into account feature interactions, which may result in the 
omission of crucial feature dependencies, hence potentially diminishing the effi-
cacy of the chosen feature subset.

•	 Multivariate filter approaches:-  Multivariate filter approaches [38, 69] over-
come the constraints of univariate methods by taking into account the interde-
pendencies among features, leading to the identification of more significant sub-
sets of features. These approaches have superior temporal complexity compared 
to wrapper methods; however, they are slower than univariate filters. Despite 
providing a more extensive selection process, multivariate filter approaches 
encounter difficulties in terms of scalability and processing complexity, particu-
larly when dealing with extremely large datasets.

Wrapper methods
Wrapper approaches combine the process of feature selection with the cluster-

ing algorithm, resulting in improved clustering accuracy through the selection of 
characteristics that are specifically suited to the algorithm’s requirements. They con-
sider feature dependencies, which might enhance the quality of the chosen subset of 
features. However, wrapper techniques do have a number of drawbacks. These tasks 
require a lot of computer power because they involve repeatedly training and assess-
ing the clustering algorithm using various subsets of features. The significant com-
putational expense of these methods hinders their ability to efficiently handle mas-
sive datasets. Moreover, the strong connection between the clustering algorithm and 
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the risk of overfitting is heightened, especially when dealing with intricate models or 
limited datasets. Moreover, due to the fact that wrapper approaches are designed to 
improve a particular clustering algorithm, the chosen characteristics may not exhibit 
good generalization when used with different algorithms.

•	 Model-based and evolutionary computation (EC)-based approaches:-  Model-
based [48] and evolutionary computation (EC)-based approaches [33, 57] are highly 
effective at capturing feature dependencies and optimizing feature subsets. Model-
based wrappers improve interpretability and durability, while EC-based wrappers 
maximize several objectives at the same time, lowering the chance of local optima. 
However, these methods necessitate meticulous parameter adjustments and involve 
significant computational resources. EC-based approaches, specifically, exhibit 
poorer performance compared to filter methods due to their inherent complexity, 
rendering them less suitable for handling large datasets.

Hybrid method
Hybrid methods [4, 20] seek to merge the advantages of filter and wrapper 

approaches, providing a trade-off between efficiency and accuracy. They take advan-
tage of the computational efficiency of filter techniques while also benefiting from 
the customized feature selection of wrapper methods. Hybrid approaches frequently 
achieve superior performance compared to either approach individually, while also 
mitigating the risk of overfitting in comparison to pure wrapper methods. Nevertheless, 
they continue to encounter obstacles pertaining to computational intricacy and scal-
ability. Hybrid methods can be influenced by the settings utilized in both the filter and 
wrapper components. Although they are more efficient than wrappers, they may still 
encounter difficulties when dealing with extremely high-dimensional data.

Embedded Method
Embedded approaches [45, 63] incorporate feature selection directly into the clus-

tering algorithm, guaranteeing that the chosen features are extremely pertinent to the 
clustering job. Compared to wrapper approaches, this integration decreases the likeli-
hood of overfitting and is typically more computationally efficient. Nevertheless, the 
features used by embedded methods are fine-tuned for the particular clustering algo-
rithm employed, hence potentially restricting their suitability for alternative algorithms. 
In addition, although embedded techniques are more efficient than wrapper methods, 
they can still encounter scaling problems when dealing with extremely large datasets.

Based on the above discussion, it can be concluded that every UFS technique pos-
sesses distinct advantages and constraints, which are shaped by characteristics such 
as computational efficiency, scalability, generalizability, and accuracy. When select-
ing a method, it is important to consider the unique needs of the clustering task, the 
characteristics of the dataset, and the computational resources that are available. This 
analysis offers a thorough comprehension of the theoretical consequences of each UFS 
technique, assisting researchers in choosing the most suitable method for their applica-
tions. The benefits and drawbacks of the UFS approaches according to the methodol-
ogy and their type are presented in Tables 1 and 2, respectively. In the next section, we 
performed a comparison of four state-of-the-art UFS approaches through experimental 
analysis.
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5 � Experimental analysis of contemporary unsupervised feature 
selection methods

We performed an experimental analysis to compare the performance of various 
techniques and categories of unsupervised feature selection (UFS) methods. For 
this, we selected four highly relevant and contemporary UFS methods. The aim 
was to conduct a systematic comparison of these methods, with a specific focus 
on evaluating the quality of the selected features across different datasets. Specifi-
cally, we compared the filter method UFS-SVD proposed by Banerjee et al. [6], the 
wrapper method SSFS proposed by Hruschka et al. [29], and two hybrid methods, 
LSWNCH-SR and NCHFS-ACO, proposed by Solorio et al. [64] and Dwivedi et al. 
[20], respectively. The datasets used in the experimentation and the evaluation meas-
ures used to evaluate the performance of these methods are discussed subsequently.

5.1 � Dataset details

The above-discussed techniques are tested on ten benchmark datasets obtained from 
the UCI machine learning library [8]. These datasets go through preprocessing, which 
includes deleting missing values. The data are then normalized using a standard scal-
ing technique. This scaling assures that each feature has a mean of zero and a variance 

Table 1   Pros and cons of UFS approaches based on the methodology used

Technique used Benefits Drawbacks

Filter methods 1. Computationally fast 1. Does not interact with clustering 
methods

2. Can be made scalable
3. Avoids overfitting
4. Better time complexity than wrapper
5. Better generalization

Wrapper methods 1. Interact with clustering technique 1. Less generalized features
2. Dependency among features is consid-

ered
2. More computational complexity

3. Better accuracy than filter method 3. Increased chance of overfitting
4. Difficult to be scalable

Hybrid methods 1. Takes the advantage of both filter and 
wrapper methods

1. Limited generalizability

2. Better computational complexity than 
wrapper

2. More sensitive to the parameters

3. Lesser risk of overfitting than wrapper 3. Difficult to be scalable
Embedded methods 1. Interact with clustering technique 1. Clustering specific features

2. Lesser risk of overfitting than wrapper
3. Less computationally expensive than 

wrapper method
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of one. The scaling is required because the outputs of feature selection and cluster-
ing algorithms are influenced by the fact that these datasets (excluding iris) contain a 
wide range of values with varying scales. Class labels are ignored and removed from 
all datasets during the feature selection and clustering process. After preprocessing, the 
details of the datasets are presented in Table 3.

5.2 � Evaluation measure

The performance of any feature selection approach is typically evaluated using a 
clustering or classification method to determine the extent to which feature selection 
improves clustering or classification performance. In the context of unsupervised fea-
ture selection methods, we used K-means clustering to assess the performance of these 
methods. For comparison, we applied K-means clustering to the features selected by 
different approaches and measured the results using the silhouette index.

Silhouette Index
The silhouette index (SI) [61] is a commonly utilized evaluation metric in clustering 

techniques. The basis of this concept is the similarity of a data point within a cluster, 
referred to as cohesion, and its proximity to the nearest cluster, known as separation. 
The SI, or silhouette index, is a numerical measure that goes from – 1 to 1. A high SI 
value implies that the data points are well-grouped. The silhouette index is determined 
by computing the mean of the silhouette coefficients for all data points.

If qr is a rth data point, the silhouette coefficient SCqr
 is determined using Eq. (1).

Where mqr
 refers to the average distance between a certain data point qr and all other 

data points inside the same cluster. nqr on the other hand, represents the average dis-
tance between qr and all other data points in the closest nearby cluster.

(1)SCqr
= (nqr − mqr

)∕(max(nqr ,mqr
)).

Table 3   Dataset details Dataset No. of samples No. of 
attributes

No. of classes

Iris 150 4 3
Sonar 208 60 2
Vehicle silhouettes 813 18 3
Ionosphere 351 33 2
Pima 768 8 2
Wine 178 13 3
Wdbc 569 30 2
Parkinsons 195 22 2
Pendigits 7494 16 10
Waveform (noise) 5000 40 3
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5.3 � Experimental comparison and discussion

The experimental findings of the UFS-SVD approach, SSFS, NCHFS-ACO, and 
Solorio et al. approach on the datasets listed in Table 3 are presented in Table 4.

From the table, it can be observed that the SSFS (wrapper) and NCHFS-ACO 
(hybrid) approaches performed better than the UFS-SVD (filter) method. This supe-
rior performance is likely because wrapper and hybrid approaches use a learning 
algorithm to evaluate the fitness of the features, resulting in better performance when 
the same algorithm is used to assess feature selection. Conversely, the UFS-SVD 
approach evaluates features in a generalized manner, which may lead to improved 
performance when different clustering algorithms are used. Additionally, when com-
paring the two hybrid approaches, NCHFS-ACO and LSWNCH-SR, the NCHFS-
ACO approach performed better. This can be attributed to NCHFS-ACO’s use of 
both filter and wrapper measures to assign fitness scores, whereas the LSWNCH-SR 
approach first narrows down the feature set using the filter method before applying 
the wrapper method. The integrated evaluation in NCHFS-ACO, which simultane-
ously considers filter and wrapper criteria, leads to a more effective selection of fea-
tures. In the next section, we described some practical applications of the various 
UFS approaches.

6 � Practical applications of unsupervised feature selection methods

Unsupervised feature selection (UFS) approaches are useful in several sectors where 
there is a limited availability or high cost associated with obtaining labeled data. 
In the fields of text mining and natural language processing [21], these techniques 
play a vital role in reducing the complexity of data and improving the efficiency of 
tasks such as document clustering and topic modeling. They achieve this by rec-
ognizing the most significant words or phrases, even without the requirement for 

Table 4   SI values of UFS-SVD approach, SSFS, NCHFS-ACO, and LSWNCH-SR approaches

Dataset Filter Wrapper Hybrid

UFS-SVD SSFS NCHFS-ACO LSWNCH-SR

Iris 0.64 0.73 0.73 0.67
Sonar 0.34 0.64 0.75 0.63
Vehicle silhouettes 0.60 0.56 0.66 0.56
Ionosphere 0.46 1.00 0.75 0.51
Pima 0.60 0.81 0.80 0.67
Wine 0.52 0.68 0.63 0.57
Wdbc 0.61 0.69 0.76 0.60
Parkinsons 0.57 0.70 0.85 0.64
Pendigits 0.35 0.68 0.77 0.63
Waveform (noise) 0.34 0.33 0.54 0.29
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labeled training data. UFS in bioinformatics [22] aids in the examination of complex 
genomic and proteomic data with several variables. It allows researchers to iden-
tify noteworthy genes or proteins that distinguish between different circumstances or 
treatments, without relying on preexisting labels or information.

In the field of image processing and computer vision [18], these techniques aid 
in the identification of the most pertinent characteristics for tasks such as image 
segmentation and object recognition. This enables more effective and precise analy-
sis of extensive image datasets. UFS is employed in anomaly detection to uncover 
patterns or characteristics that can differentiate normal behavior from anomalies in 
areas such as network security, fraud detection, and industrial monitoring.

Furthermore, UFS plays a crucial role in recommendation systems [44] by dis-
covering important user preferences and item attributes. This leads to an enhanced 
suggestion process without requiring explicit user feedback. UFS approaches are 
highly beneficial for deriving significant insights and enhancing the efficiency and 
efficacy of analytical activities in many domains with limited or unavailable labeled 
data.

7 � Challenges of unsupervised feature selection approaches

By comparing the literature presented, it can be concluded that although significant 
progress has been made in the UFS field, there are still some main challenges left for 
researchers:

1. According to the literature study, most UFS methods (filter, wrapper, hybrid, 
and embedded) need the specification of hyper-parameters such as the count of clus-
ters, count of features, or other feature selection technique-specific parameters. In 
reality, there is no such information, and it is usually hard to guess the best param-
eter values for each dataset. Thus, selecting the ideal parameters is a challenge.

2. The UFS approaches must be scalable, i.e., able to handle a huge number of 
features efficiently. In recent years, datasets consisting of millions of features have 
grown [34]. Since existing approaches are unable to accommodate a large number of 
features, therefore, scalable methods are required.

3. The UFS also faces the challenge of selecting relevant features in problems 
with both numerical and nonnumerical information (mixed data). Many real-world 
problems have mixed data, such as business, socioeconomics, biological, and health-
care applications. This literature shows most existing approaches are mainly for 
numerical data. So still, there is a need for UFS approaches that can handle mixed 
data.

8 � Conclusion

Unsupervised Feature Selection (UFS) approaches have garnered significant atten-
tion across various research fields due to their ability to select features from unla-
beled data. This study examines the most important and up-to-date UFS methods 
at the forefront of the field. We also developed a taxonomy of UFS approaches, 



24236	 R. Dwivedi et al.

1 3

highlighting the benefits and drawbacks of the broad categories. Additionally, we 
compared state-of-the-art methods through experimental analysis. This work also 
addresses current issues such as scalability, hyper-parameter specification, and UFS 
techniques for mixed data, providing a foundation for future research.
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