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Abstract
High-performance computing relies heavily on parallel and distributed systems, 
which promptes us to establish both qualitative and quantitative criteria to assess 
the fault tolerability and vulnerability of the system’s underlying interconnection 
networks. Consider the scenario in which large-scale link failures split the inter-
connection network into several components and each processor has multiple good 
neighboring processors. In this scenario, the fault tolerability of the system can be 
measured by g-good-neighbor r-component edge-connectivity, denoted by �g,r(G) , 
which is defined as the minimum number of edges whose removal results in a dis-
connected network with at least r connected components and each vertex has at least 
g good neighbors. It combines the strategies of g-good-neighbor edge-connectivity 
and component edge-connectivity. In this paper, the g-good-neighbor (r + 1)-com-
ponent edge-connectivity of 3-ary n-cube is investigated. This work is the first 
attempt enhancing link fault tolerability for 3-ary n-cube under double constraints 
in the presence of the large-scale faulty links, which breaks down the inherent idea 
that poses one limitation on the resulting network. In addition, our results cover the 
work of Xu et al. (IEEE Trans Reliab, 71(3):1230–1240, 2022) and Li et al. (J Paral-
lel Distrib Comput, 27:104886, 2024). Finally, the compared results reveal that the 
g-good-neighbor (r + 1)-component edge-connectivity is almost r times the size of 
g-good-neighbor edge-connectivity and much larger than (r + 1)-component edge-
connectivity in 3-ary n-cube.
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1 Introduction

Massively parallel computing systems employing hundreds to thousands of 
processors are commercially available today and offer substantially higher raw 
computing power than the fastest sequential supercomputers. Availability of 
such systems has fueled interest in investigating the performance of parallel 
and distributed systems containing a large number of processors. Parallel 
computing architectures for large-scale parallel and distributed systems have 
advanced significantly during the last decades. The interconnection network is 
well recognized to be critical in large-scale parallel and distributed systems, 
since its design has a direct impact on the system’s performance and cost-
effectiveness [3]. Topological structure is generally deemed a key design concern 
for interconnection networks. A large number of topological structures have been 
proposed and explored, most notably the hypercube structure and its variants, 
such as k-ary n-cube, folded hypercube, crossed cube, and so on. The k-ary 
n-cube, especially the 3-ary n-cube, has attracted a great deal of interest due to 
its many appealing attributes [11], including its capacity to minimize message 
latency and ease of implementation. A variety of parallel and distributed systems, 
including the J-machine [18], the Cray T3D [12], the Cray T3E [2], and the IBM 
supercomputer BlueGene/L [1], have been constructed with the k-ary n-cube 
as the underlying topological structure. The IBM supercomputer BlueGene/L’s 
fundamental architecture is the 3-ary n-cube.

With the increasing of network scale and business traffic, interconnection 
network is facing a lot of challenges, among which fault tolerability is of the 
most importance. Actually, the network malfunction, especially for link failure, 
is common and always inevitable. In a large-scale parallel and distributed system, 
the link failure on the data plane occurs more occasionally and frequently, 
and some links are likely to fail every half hour on average [9]. Link failure 
results in the interruption of traffic transmission and further degrades the 
network performance. Therefore, considering the seriousness and inevitability 
of link failure, both academia and industry pay great attention to the link fault 
tolerability.

There are several metrics that characterize the link fault tolerability of 
interconnection networks, such as classical edge-connectivity, extra edge-
connectivity, component edge-connectivity, g-good-neighbor edge-connectivity, 
cycle edge-connectivity, embedded edge-connectivity, and so on. Among these 
metrics, extra edge-connectivity, component edge-connectivity and g-good-
neighbor edge-connectivity of many prominent networks have been widely 
investigated over the years. The h-extra edge-connectivity �h(G) was proposed 
by Fàbrega et al. [8], which is defined as the minimum number of edges whose 
removal results in a disconnected network and each component has at least h + 1 
vertices. Many scholars have studied its h-extra edge-connectivity in diverse 
networks, such as bijective connection networks Bn [28], folded hypercube FQn 



24740 Q. Zhang et al.

[29], augmented cube AQn [23, 31], 3-ary n-cube Q3
n
 [22], folded crossed cube 

FCQn [19]. The g-good-neighbor edge-connectivity �g(G) was proposed by Latifi 
[13], which is defined as the minimum number of edges whose removal results 
in a disconnected network and each vertex has at least g neighbors. The g-good-
neighbor edge-connectivities of many networks, such as bijective connection 
networks Bn [14], modified bubble-sort networks MBn [5], augmented cube AQn 
[30], k-ary n-cube [15], have been determined. By the minimality of edge-cuts, 
the two types of conditional edge-connectivities mentioned above allow only 
two components to be generated after deleting the smallest conditional edge-cut. 
Generally speaking, a disconnected network with two components may not be 
as bad as a disconnected network with many more components. By constraining 
the number of components of the disconnected network, the r-component edge-
connectivity c�r(G) was proposed by Sampathkumar [20], which is defined as 
the minimum number of edges whose removal results in a disconnected network 
with at least r connected components. A lot of related work on specific networks 
have been studied, including hypercube Qn [33], locally twisted cube LTQn [21], 
augmented cube AQn [31], bijective connection networks Bn [16], 3-ary n-cube 
Q3

n
 [22], hamming graph Kn

L
 [25], folded Petersen networks Pn [24]. Note that this 

metric only puts a limit on the number of components but not on the structure of 
each component, i.e., it may produce sub-networks that have only one vertex, but 
for which it is not able to perform any of the tasks assigned by the system.

As a result, in order to establish a balance between the number of compo-
nents and their structure, Yang et al. [26] and Liu et al. [17] proposed two new 
concepts, namely h-extra r-component edge-connectivity and g-good-neighbor 
r-component edge-connectivity, by integrating the strategies of r-component 
edge-connectivity and one of h-extra edge-connectivity and g-good-neighbor 
edge-connectivity, respectively. Both emphasize the double constraints on the 
resulting network after removing the smallest edge-cut. The h-extra r-compo-
nent edge-connectivity, denoted by c�h

r
(G) , is defined as the minimum number 

of edges whose removal results in a disconnected network with at least r con-
nected components and each component has at least h + 1 vertices. The g-good-
neighbor r-component edge-connectivity, denoted by �g,r(G) , is defined as the 
minimum number of edges whose removal results in a disconnected network 
with at least r connected components and each vertex has at least g neigh-
bors. In particular, c�0

r
(G) and �0,r(G) reduce to r-component edge-connectivity 

c�r(G) , while c�h
2
(G) and �g,2(G) degrade into h-extra edge-connectivity �h(G) 

and g-good-neighbor edge-connectivity �g(G) , respectively. As applications, 
Yang et al. [26] explored the h-extra 3-component edge-connectivities of bijec-
tive connection networks Bn and folded hypercube FQn for specific ranges of h. 
Moreover, Liu et al. [17] investigated the g-good-neighbor r-component edge-
connectivity of hypercube in the same specific ranges with regarded to g and r. 
For all the related work mentioned above, we present all the results in Table 1 
to facilitate the knowledge of the progress of the related work.
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In this paper, we focus on the g-good-neighbor (r + 1)-component edge-con-
nectivity of 3-ary n-cube. More specifically, we obtain 
�g,r+1(Q

3
n
) = (2 − d)(2n − g)r ⋅ 3⌊

g

2
⌋ − [

1

2
ex(2−d)r(Q

3
n
) − (1 − d)r] ⋅ 3⌊

g

2
⌋ for n ≥ 3 , 

1 ≤ (2 − d)r ⋅ 3⌊
g

2
⌋
≤ (2 − c) ⋅ 3

�
n

2

�
−1 or r = 3k0 , 0 ≤ k0 ≤

⌊
n

2

⌋
− 1 and 

0 ≤ g ≤ 2(n − 2k0 − 1) , where d ≡ g (mod 2) , ex(2−d)r(Q3
n
) represents the maxi-

mum degree sum of the subgraph induced by (2 − d)r vertices of Q3
n
 whose exact 

value is determined by Xu et al. [22].

Table 1  The summary of the progress of the related work

∗ f1 = 2 if n is odd and f1 = 4 if n is even
⋆ c = 1 if n is odd and c = 0 if n is even
‡ f2 = 4 if n is odd and f2 = 2 if n is even
† sa =

22a−2

3
 if sa is odd and sa =

22a−1

3
 if sa is even, where a = 1, 2,… ,

⌈
n

2

⌉
− 1

Network Value range Related work and references

Bn n ≥ 4, 1 ≤ h ≤ 2⌊
n

2
⌋+1 − f1 

∗ or 2
n−1+2c

3
≤ h ≤ 2n−1 ⋆ �h(Bn) , �2n−1 (Bn) [28]

FQn n ≥ 4, 1 ≤ h ≤ 2⌊
n

2
⌋+1 − f2 ‡ or 2

⌈
n

2

⌉
+a

− sa ≤ h ≤ 2

⌈
n

2

⌉
+a † �h(FQn) , �

2

⌈
n
2

⌉
+a
(FQn) [29]

AQn n ≥ 4, 1 ≤ h ≤ 2⌊
n

2
⌋ or 2

n−1+2c

3
≤ h ≤ 2n−1 �h(AQn) , �2n−1 (Bn) [23, 31]

Q3

n n ≥ 3 , 1 ≤ h ≤
3n−1

2
�h(Q

3

n
) [22]

FCQn n ≥ 2, 1 ≤ h ≤ 2n−1 �h(FCQn)[19]
Bn n ≥ 1, 0 ≤ g ≤ n − 1 �

g(Bn) [14]
MBn n ≥ 4, 0 ≤ g ≤

n

2
�
g(MBn) [5]

AQn n ≥ 1, 0 ≤ g ≤ 2t − 1 , 0 ≤ t ≤ n − 1 �
g(AQn) [30]

Qk
n

n ≥ 3, 0 ≤ g ≤ n �
g(Qk

n
) [15]

Qn n ≥ 7 , 1 ≤ r ≤ 2⌊
n

2
⌋ c�r+1(Qn) [33]

LTQn n ≥ 7 , 1 ≤ r ≤ 2⌊
n

2
⌋ c�r+1(LTQn) [21]

AQn n ≥ 7 , 1 ≤ r ≤ 2⌊
n

2
⌋ c�r+1(AQn) [31]

Bn n ≥ 8 , 1 ≤ r ≤ 2⌊
n

2
⌋ c�r+1(Bn) [16]

Q3

n n ≥ 6 , 1 ≤ r ≤ 3

⌈
n

2

⌉
c�r+1(Q

3

n
) [22]

Kn
L n ≥ 7 , 1 ≤ r ≤ L⌊

n

2
⌋ c�r+1(K

n
L
) [25]

Pn n ≥ 2 , 1 ≤ r ≤ 2n−1 c�r+1(P
n) [24]

Qn n ≥ 4, 1 ≤ h ≤ 2⌊
n

2
⌋−1 or h = 2k0 , 0 ≤ k0 ≤ n − 2 �

h
3
(Qn) , �2

k0

3
(Qn) [26]

FQn n ≥ 4, 1 ≤ h ≤ 2⌊
n

2
⌋−1 or h = 2k0 , 0 ≤ k0 ≤ n − 2 �

h
3
(FQn),�2

k0

3
(FQn) [26]

Qn n ≥ 4, 1 ≤ r ⋅ 2g ≤ 2⌊
n

2
⌋ or

r = 2k0 , 0 ≤ k0 ≤
⌊
n

2

⌋
 , 0 ≤ g ≤ n − 2k0 − 1

�g,r+1(Qn) [17]

Q3

n n ≥ 3, 1 ≤ (2 − d)r ⋅ 3⌊
g

2
⌋
≤ (2 − c)3

�
n

2

�
−1 or

r = 3k0 , 0 ≤ k0 ≤
⌊
n

2

⌋
 , 0 ≤ g ≤ 2(n − 2k0 − 1)

�g,r+1(Q
3

n
) our result
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The rest of this paper is organized as follows. Section 2 reviews some nota-
tions and the structure and properties of the 3-ary n-cube. Section 3 constructs 
a g-good-neighbor (r + 1)-component edge-cut. Section  4 determines g-good-
neighbor (r + 1)-component edge-connectivity of 3-ary n-cube. Section  5 pre-
sents some examples. Section 6 concludes the work.

2  Preliminaries

First of all, we assume that all parameters are nonnegative integers. Let 
G(V(G),  E(G)) be a network or graph, where |V(G)|,  |E(G)| denote the order and 
size of G, respectively. For W ⊆ V(G)(resp.,E(G)) , G[W] denotes the subgraph 
of G induced by W, and G −W denotes the subgraph of G induced by V(G) ⧵W 
(resp., E(G) ⧵W ). For vertex subsets T1, T2,… , Tr ⊂ V(G) , we denote by 
E(T1, T2,… , Tr) the edge set of G with one vertex in Ti , and the other in Tj , where 
Ti ∩ Tj = ∅, 1 ≤ i < j ≤ r . The degree of a vertex v, denoted by dG(v) , is the num-
ber of vertices incident to v. We denote by �(G) the minimum degree of graph G. 
A graph G is k-regular if dG(v) = k for any vertex v ∈ V(G) . The component of G 
is the maximal connected subgraph of G. The graph G1 is isomorphic to G2 which 
is indicated by the notation G1 ≅ G2 . Let Sr be the set {0, 1, 2,… , r − 1} , Ln

l
 be the 

set {tn
i
}l−1
i=0

 , where tn
i
 is the n-ternary string conversed by the decimal number i. Let 

D(u,  v) be the number of different positions in the n-ternary strings u and v. For 
graph definitions and notations not defined here, we follow [4].

The definition of 3-ary n-cube is recalled as follows.

Definition 1 [10] The 3-ary n-cube, denoted by Q3
n
 , has 3n vertices, where each 

vertex has form {znzn−1 … z1 | zi ∈ S3, 1 ≤ i ≤ n} . For any two vertices u,  v, 
(u, v) ∈ E(Q3

n
) if and only if D(u, v) = 1.

The 3-ary n-cube Q3
n
 is a 2n-regular 2n-connected graph [6]. Q3

n
 can be decom-

posed into three vertex and edge-disjoint 3-ary (n − 1)-cubes, denoted by Q3
n
[0] , 

Q3
n
[1] , and Q3

n
[2] , which are induced by the vertices of Q3

n
 with the ith coordinate 0, 

1, and 2, respectively. Clearly, Q3
n
[i] and Q3

n
[j] are joined by one perfect matching, 

so |E(V(Q3
n
[i]),V(Q3

n
[j]))| = 3n−1 for i ≠ j ∈ S3 . For convenience, we denote Q3

n
 as 

Q3
n
[0]

⨁
Q3

n
[1]

⨁
Q3

n
[2] . We denote by tn−m

l
Zm the vertex set

where xnxn−1 … xm+1 is (n − m)-ternary string conversed by the decimal number l, Z 
represents variable in S3 . By the definition of the Q3

n
 , the subgraph Q3

n
[tn−m
l

Zm] ≅ Q3
m
 . 

The 3-ary 3-cube Q3
3
 is illustrated in Fig. 1.

{xnxn−1 … xm+1zm … z2z1 | zi ∈ S3, 1 ≤ i ≤ t},
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Denote by exl(Q
3
n
)

2
 the maximum size (the number of edges) of the subgraph 

induced by a vertex set with a given size l in Q3
n
 , where exl(Q3

n
) represents the maxi-

mum degree sum of the subgraph induced by l vertices of Q3
n
 , i.e.,

Fan et al. [7] showed that exl(Q
3
n
)

2
 can be achieved by the induced subgraph Q3

n
[Ln

l
] , i.e., 

E(Q3
n
[Ln

l
]) =

exl(Q
3
n
)

2
 . Whereafter, Zhang et al. [32] characterized structural features of 

subgraph Q3
n
[Ln

l
] in accordance with the ternary decomposition of l. Let l =

∑s

i=0
ai3

ki 
be the ternary decomposition of l such that k0 = [log3 l] , a0 = [l − 2 ⋅ 3k0 ]+ + 1 and 
ki = [log3(l −

∑i−1

j=0
aj3

kj )] , ai = [l −
∑i−1

j=0
aj3

kj − 2 ⋅ 3ki ]+ + 1 for 1 ≤ i ≤ s , where

In [32], Ln
l
 can be expressed as V(Q0 ∪ Q1 ∪⋯ ∪ Qs) , where each Qi is a subgraph 

induced by vertex set with ai3ki vertices, that is, each Qi is either 3-ary ki-subcube 
or disjoint union of two 3-ary ki-subcubes connected by a perfect matching. In 
particular, the single vertex is deemed to 3-ary 0-subcube. In addition, Qi is taken 
from a 3-ary n-cube which is obtained from Qi−1 by changing the 0 of (ti + 1)th 
coordinate of Qi−1 to 1 or the 0 and 1 of (ti + 1)th coordinate of Qi−1 to 2 for 
1 ≤ i ≤ s . So there exists at least one edge between the vertices in different Qi s. We 
present some examples in the Table 2 to illustrate this structure.

Motivated by the idea of Fan et  al. [7], Xu et  al. [22] determined the exact 
expression of exl(Q3

n
) as follows.

exl(Q
3
n
) = max{2|E(Q3

n
[W])| | W ⊆ V(Q3

n
) and |W| = l}.

[x]+ =

{
1, if x ≥ 0;

0, if x < 0.

Fig. 1  3-ary 3-cube Q3

3
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Lemma 1 [22] Let 1 ≤ l ≤ 3n and l =
∑s

i=0
ai3

ki be the ternary decomposition of l. 
Then, we have 1

2
exl(Q

3

n
) = �E(Q3

n
[Ln

l
])� = ∑s

i=0
(aiki + ai − 1)3ki +

∑s

i=1

�∑i−1

j=0
aj

�

ai3
ki .

3  Construction of g‑good‑neighbor (r + 1)‑component edge‑cut

In this section, we will construct a g-good-neighbor (r + 1)-component edge-cut in 
the 3-ary n-cube.

Lemma 2 [32] For two positive integers n,  l, let Ln
l
= V(Q3

n
) ⧵ Ln

l
 . Both Q3

n
[Ln

l
] and 

Q3
n
[Ln

l
] are connected.

3.1  g = 0 (mod 2)

First of all, we define some notations. Let n,  g,  r be three integers such that 
(r + 1) ⋅ 3

g

2 ≤ 3n . For any i ∈ Sr , let Ti = t
n−

g

2

i
Z

g

2 and Gi = Q3
n
[Ti] . Let 

Tr = V(Q3
n
) −

⋃
i∈Sr

Ti and Gr = Q3
n
[Tr] . Obviously, Gi ≅ Q3

g

2

 for any i ∈ Sr and 
Ti ∩ Tj = ∅ for i ≠ j ∈ Sr . We contract each Ti into a vertex ti for i ∈ Sr and delete the 
multiple edges between Ti and Tj when E(Ti, Tj) ≠ ∅ for i ≠ j ∈ Sr . Then the graph G∗ 
induced by {t0, t1,… , tr−1} is isomorphic to Q3

n
[Ln

r
] . Note that (ti, tj) ∈ E(G∗) if and 

only if |E(Ti, Tj)| = 3
g

2 , hence, |E(T0, T1,… , Tr−1)| = |E(G∗)| ⋅ 3
g

2 =
1

2
exr(Q

3
n
) ⋅ 3

g

2.

Lemma 3 If g = 0 (mod 2) , then

ex
r⋅3

g
2
(Q3

n
) = r ⋅ ex

3
g
2
(Q3

n
) + exr(Q

3
n
) ⋅ 3

g

2 .

Table 2  The relationship between ternary decomposition of l and structure of Q3

3
[L3

l
]

Value of l 4 5 6 8

Ternary 
decomposi-
tion of l

31 + 30 31 + 2 ⋅ 30 2 ⋅ 31 2 ⋅ 31 + 2 ⋅ 30

Structure of 
Q3

3
[L3

l
]
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Proof Let Ti be defined as above for i ∈ Sr . In light of definition of Ti , we have ⋃
i∈Sr

Ti = Ln
r⋅3

g
2

 . By Lemma 1, 2�E(Q3
n
[
⋃

i∈Sr
Ti])� = ex

r⋅3
g
2
(Q3

n
) . Therefore,

  ◻

Lemma 4 For any i ∈ Sr+1 , the subgraph Gi is connected and �(Gi) ≥ g.

Proof For any i ∈ Sr , Gi ≅ Q3
g

2

 , thereby, Gi is connected and �(Gi) ≥ g . In light of 

definition of Ti , we have 
⋃

i∈Sr
Ti = Ln

r⋅3
g
2

 and Tr = Ln
r⋅3

g
2

 . By Lemma 2, Gr is con-

nected. Let r =
∑s

j=0
aj3

kj be the ternary decomposition of r, kj +
g

2
= lj . Then,

where n − 1 − h = ls, bh = 3 − as and

for 0 ≤ i ≤ h − 1 . According to the above expression of r′ , bi = 0 for some i’s. 
Therefore, r′ can be rephrased as r� =

∑h�

i=0
b�
i
3qi , where q0 > q1 > … > qh� = ls and 

b�
h�
= 3 − as . According to the construction of Gr , each vertex in Gr falls in some Q3

qi
 . 

In view of qi ≥ ls = ks +
g

2
 for any i ∈ Sh�+1 , �(Gr) ≥ g .   ◻

Lemma 5 Let n,  g,  r be three integers such that (r + 1) ⋅ 3
g

2 ≤ 3n , where 
g = 0 (mod 2) . Then

Proof We prove this lemma by constructing a g-good-neighbor (r + 1)-compo-
nent edge-cut with size (2n − g)r ⋅ 3

g

2 −
1

2
exr(Q

3
n
) ⋅ 3

g

2 . Suppose that Gi and Ti for 
any i ∈ Sr+1 are defined as above. Then, by Lemma 4, Q3

n
− E(T0, T1,… , Tr) is dis-

connected and has exactly r + 1 components G0,G1,… ,Gr and �(Gi) ≥ g for any 
i ∈ Sr+1 . Moreover, |E(T0, T1,… , Tr−1)| = |E(G∗)| ⋅ 3

g

2 =
1

2
exr(Q

3
n
) ⋅ 3

g

2 . Therefore, 
we have

ex
r⋅3

g
2
(Q3

n
) = 2|E(Q3

n
[
⋃

i∈Sr

Ti])|

= 2

r−1∑

i=0

|E(Q3
n
[Ti])| + 2|E(T0, T1,… , Tr−1)|

= r ⋅ ex
3
g
2
(Q3

n
) + exr(Q

3
n
) ⋅ 3

g

2 .

r� = 3n − r ⋅ 3
g

2 = 3n −

s∑

j=0

aj3
lj = b03

n−1 + b13
n−2 +…+ bh3

n−1−h,

bi =

{
2 − aj, if lj = n − 1 − i;

2, otherwise,

�g,r+1(Q
3
n
) ≤ (2n − g)r ⋅ 3

g

2 −
1

2
exr(Q

3
n
) ⋅ 3

g

2 .
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Thus, the edge set E(T0, T1,… , Tr) is a g-good-neighbor (r + 1)-component edge-
cut with size (2n − g)r ⋅ 3

g

2 −
1

2
exr(Q

3
n
) ⋅ 3

g

2 . By the definition of �g,r+1(Q3
n
) , we have 

�g,r+1(Q
3
n
) ≤ (2n − g)r ⋅ 3

g

2 −
1

2
exr(Q

3
n
) ⋅ 3

g

2 .   ◻

Algorithm 1  Find one perfect matching in Q3

n
[Ln

2r
]

3.2  g = 1 (mod 2)

Similarly, we define some notations. Let n,  g,  r be three integers such that 

2(r + 1) ⋅ 3⌊
g

2
⌋
≤ 3n . For any i ∈ S2r , let Ti = t

n−⌊ g

2
⌋

i
Z⌊

g

2
⌋ . Obviously, Ti ∩ Tj = ∅ 

for i ≠ j ∈ S2r . We contract each Ti into a vertex ti for i ∈ S2r and delete the multi-
ple edges between Ti and Tj when E(Ti, Tj) ≠ ∅ for i ≠ j ∈ S2r . Then the graph G∗ 
induced by {t0, t1,… , t2r−1} is isomorphic to Q3

n
[Ln

2r
] . Note that (ti, tj) ∈ E(G∗) if 

and only if �E(Ti, Tj)� = 3⌊
g

2
⌋ , so a perfect matching in Q3

n
[Ln

2r
] corresponds to a 

|E(T0, T1,… , Tr)| =
r−1∑

i=0

|E(Ti,Ti)| − |E(T0, T1,… , Tr−1)|

= r(2n − g)3
g

2 −
1

2
exr(Q

3
n
) ⋅ 3

g

2 .
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paired-partitiom of {T0, T1,… , T2r−1} such that each pairwise paired induced sub-
graph is isomorphic to Q3

⌊ g

2
⌋+1[0]⊕ Q3

⌊ g

2
⌋+1[1].

Theorem 1 Algorithm 1 outputs one perfect matching M in Q3
n
[Ln

2r
].

Proof By Algorithm 1, it is easy to see that M covers all vertices in Ln
2r

 . Next, it suf-
fices to show that for each (x, y) ∈ M , (x, y) ∈ E(Q3

n
[Ln

2r
]) . Obviously, D(tn

0
, tn
1
) = 1 

and D(tn
0
, tn
3a
) = 1 . By the definitions of Q3

n
 and tn

j
 , if r = 1 , then (tn

0
, tn
1
) ∈ E(Q3

n
[Ln

2r
]) , 

while if r > 1 , (tn
0
, tn
3a
) ∈ E(Q3

n
[Ln

2r
]) . According to the lines 7 to 13 in Algorithm 1 

and choice of w, if l = ks , then as ≠ 2 . Thus, D(tn
w
, tn
w+3l

) = 1 , which implies that 
(tn
w
, tn
w+3l

) ∈ E(Q3
n
[Ln

2r
]) .   ◻

For example, let n = 3 and r = 8 , then by Algorithm  1, we can find one per-
fect matchinig in Q3

3
[L3

16
] , that is {(000, 100), (001, 002), (010, 020), (011, 012),

(021, 022), (101, 102), (110, 120), (111, 112)} (see Fig. 2).
By Theorem  1, there are r pairs of subgraphs G0,G1,… ,Gr−1 such that 

Gj ≅ Q3

⌊ g

2
⌋+1[0]⊕ Q3

⌊ g

2
⌋+1[1] , for any j ∈ Sr . Let T2r = V(Q3

n
) −

⋃
i∈S2r

Ti and 

Gr = Q3
n
[T2r].

Lemma 6 If g = 1 (mod 2) , then

ex
2r⋅3⌊ g

2⌋(Q
3
n
) = r ⋅ ex

2⋅3⌊ g
2⌋(Q

3
n
) + (

1

2
ex2r(Q

3
n
) − r) ⋅ 2 ⋅ 3⌊

g

2
⌋.

Fig. 2  perfect matching in Q3

3
[L3

16
]
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Proof Let Ti and Gj be defined as above for any i ∈ S2r and j ∈ Sr , respectively. In 
light of definition of Ti , we have 

⋃
i∈S2r

Ti = Ln

2r⋅3⌊ g
2⌋

 . By Lemma 1, 

2�E(Q3
n
[
⋃

i∈S2r
Ti])� = ex

2r⋅3⌊ g
2⌋(Q

3
n
) . Therefore,

  ◻

Lemma 7 For any i ∈ Sr+1 , the subgraph Gi is connected and �(Gi) ≥ g.

Proof For any i ∈ Sr , Gi ≅ Q3

⌊ g

2
⌋+1[0]⊕ Q3

⌊ g

2
⌋+1 [1], thereby, Gi is connected and 

�(Gi) ≥ g . In light of definition of Ti , we have 
⋃

i∈S2r
Ti = Ln

2r⋅3⌊ g
2⌋

 and T2r = Ln

2r⋅3⌊ g
2⌋

 . 

By Lemma 2, Gr is connected. Let 2r =
∑s

j=0
aj3

kj be the ternary decomposition of 

2r, kj +
⌊
g

2

⌋
= lj . Then,

where n − 1 − h = ls, bh = 3 − as and

for 0 ≤ i ≤ h − 1 . According to the above expression of r′ , bi = 0 for some i’s. 
Therefore, r′ can be rephrased as r� =

∑h�

i=0
b�
i
3qi , where q0 > q1 > … > qh� = ls and 

b�
h�
= 3 − as . According to the construction of Gr , each vertex in Gr falls in some Q3

qi
 . 

Because of 2(r + 1) ⋅ 3⌊
g

2
⌋
≤ 3n , �Gr� ≥ 2 ⋅ 3⌊

g

2
⌋ . If qh� = ls =

⌊
g

2

⌋
 , then each vertex 

in Q3
qh′

 has at least one neighbor outside Q3
qh′

 , and so �(Gr) ≥ g . If qh� = ls >
⌊
g

2

⌋
 , 

then �(Gr) ≥ g in view of qi ≥ ls >
⌊
g

2

⌋
 for any i ∈ Sh�+1 .   ◻

Lemma 8 Let n,  g,  r be three integers such that 2(r + 1) ⋅ 3⌊
g

2
⌋
≤ 3n , where 

g = 1 (mod 2) . Then

ex
2r⋅3⌊ g

2⌋ (Q
3
n
) = 2�E(Q3

n
[
�

i∈S2r

Ti])�

= 2

r−1�

j=0

�E(Gj)� + 2�E(V(G0),V(G1),… ,V(Gr−1))�

= r ⋅ ex
2⋅3⌊ g

2⌋(Q
3
n
) + (

1

2
ex2r(Q

3
n
) − r) ⋅ 2 ⋅ 3⌊

g

2
⌋.

r� = 3n − 2r ⋅ 3⌊
g

2
⌋ = 3n −

s�

j=0

aj3
lj = b03

n−1 + b13
n−2 +…+ bh3

n−1−h,

bi =

{
2 − aj, if lj = n − 1 − i;

2, otherwise,

�g,r+1(Q
3
n
) ≤ 2(2n − g)r ⋅ 3⌊

g

2
⌋ −

�
1

2
ex2r(Q

3
n
) − r

�
⋅ 3⌊

g

2
⌋.
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Proof We prove this lemma by constructing a g-good-neighbor (r + 1)-com-
ponent edge-cut with size 2(2n − g)r ⋅ 3⌊

g

2
⌋ − (

1

2
ex2r(Q

3
n
) − r) ⋅ 3⌊

g

2
⌋ . Sup-

pose that Gi is defined as above for any i ∈ Sr+1 . Then, by Lemma 7, 
Q3

n
− E(V(G0),V(G1),… ,V(Gr)) is disconnected and has exactly r + 1 

components G0,G1,… ,Gr and �(Gi) ≥ g for any i ∈ Sr+1 . Moreover, 
�E(V(G0),V(G1),… ,V(Gr−1))� = (

1

2
ex2r(Q

3
n
) − r) ⋅ 3⌊

g

2
⌋ . Therefore, we have

Thus, the edge set E(V(G0),V(G1),… ,V(Gr)) is a g-good-neighbor (r + 1)-compo-
nent edge-cut with size 2(2n − g)r ⋅ 3⌊

g

2
⌋ − (

1

2
ex2r(Q

3
n
) − r) ⋅ 3⌊

g

2
⌋ . By the definition 

of �g,r+1(Q3
n
) , we have �g,r+1(Q3

n
) ≤ 2(2n − g)r ⋅ 3⌊

g

2
⌋ − (

1

2
ex2r(Q

3
n
) − r) ⋅ 3⌊

g

2
⌋.   ◻

�E(V(G0),V(G1),… ,V(Gr))� =
r−1�

i=0

�E(V(Gi),V(Gi))�

− �E(V(G0),V(G1),… ,V(Gr−1))�

= 2r(2n − g)3⌊
g

2
⌋ −

�
1

2
ex2r(Q

3
n
) − r) ⋅ 3⌊

g

2
⌋.

Fig. 3  Image of �h(Q3

7
)
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4  g‑good‑neighbor (r + 1)‑component edge‑connectivity

Define

As Q3
n
 is 2n-regular, by the definition of exh(Q3

n
) , we have

In this section, we will endeavor to establish the lower bound of g-good-
neighbor (r + 1)-component edge-connectivity in Q3

n
 . In this process, we observe 

that the value of the lower bound is closely related to the function �h(Q3
n
) . More 

specifically, it relies heavily on the monotonicity of �h(Q3
n
) . Figure 3 depicts the 

image of the function �h(Q3
7
) , it possesses a fractal structure and symmetry. In 

order to determine the exact value of �g,r+1(Q3
n
) , based on a series of results by Xu 

et al. [22] and Zhang et al. [32] concerning the properties of the function �h(Q3
n
) , 

we consider only two special cases that 1 ≤ (2 − d)r ⋅ 3⌊
g

2
⌋
≤ (2 − c) ⋅ 3

�
n

2

�
−1 and 

r = 3k0 , 0 ≤ k0 ≤
⌊
n

2

⌋
− 1 , 0 ≤ g ≤ 2(n − 2k0 − 1) . In what follows, we review 

some properties of the function �h(Q3
n
).

We define

and

Lemma 9 [22] �h(Q
3
n
) is increasing with respect to h in the interval 

[1, (2 − c) ⋅ 3

⌈
n

2

⌉
− 2].

Lemma 10 [22] If (2 − c) ⋅ 3

⌈
n

2

⌉
− 3 ≤ h ≤ 3

⌈
n+2−c

2

⌉
 for n ≥ 3 , then 

�h(Q
3
n
) ≥ �

(2−c)⋅3

⌈
n
2

⌉ (Q3
n
) . In particular, �

(2−c)⋅3

⌈
n
2

⌉(Q3
n
) = �

(2−c)⋅3

⌈
n
2

⌉
−3

(Q3
n
).

Lemma 11 [22, 32] If 3k ≤ h ≤ 2 ⋅ 3n−1 for 0 ≤ k ≤ n − 1 and n ≥ 3 , then 
�h(Q

3
n
) ≥ �3k (Q

3
n
) . If 2 ⋅ 3k ≤ h ≤ 3n−1 for 0 ≤ k ≤ n − 2 and n ≥ 3 , then 

�h(Q
3
n
) ≥ �2⋅3k (Q

3
n
).

Lemma 12 [27] For n ≥ 3 and 0 ≤ g ≤ 2n , if H is a connected subgraph in Q3
n
 with 

�(H) ≥ g , then �V(H)� ≥ (2 − d)3⌊
g

2
⌋.

𝜁h(Q
3
n
) = min{|[W,W]| |W ⊂ V(G), |W| = h, both Q3

n
[W] and Q3

n
[W] are connected}.

�h(Q
3
n
) = 2nh − exh(Q

3
n
).

c =

{
1, if n = 1 (mod2);

0, if n = 0 (mod2),

d =

{
1, if g = 0 (mod2);

0, if g = 1 (mod2).
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Lemma 13 For n ≥ 3 , if 1 ≤ (2 − d)r ⋅ 3⌊
g

2
⌋
≤ (2 − c) ⋅ 3

�
n

2

�
−1 or 

r = 3k0 , 0 ≤ k0 ≤
⌊
n

2

⌋
− 1 and 0 ≤ g ≤ 2(n − 2k0 − 1) , then

Proof Let F be minimum g-good-neighbor (r + 1)-component edge-cut of Q3
n
 . By 

the minimality of F, Q3
n
− F has exactly r + 1 components, denoted by H0,H1,… ,Hr , 

satisfying that the minimum degree of each component is at least g. Let |V(Hi)| = pi 
for i ∈ Sr+1 . By Lemma 12, we have pi ≥ (2 − d) ⋅ 3⌊

g

2
⌋ . Without loss of generality, 

suppose that p0 ≥ p1 ≥ … ≥ pr . Note that 
⌈

3n

r+1

⌉
≤ p0 ≤ 3n − r ⋅ pr , we have

Therefore,

Case 1.  (2 − d)r ⋅ 3⌊
g

2
⌋
≤
∑r

i=1
pi ≤ 2 ⋅ 3n−1.

In this scenario, by iteratively using Lemmas 9, 10 and 11, we have

Therefore,

�g,r+1(Q
3
n
) ≥ (2 − d)(2n − g)r ⋅ 3⌊

g

2
⌋ − [

1

2
ex(2−d)r(Q

3
n
) − (1 − d)r] ⋅ 3⌊

g

2
⌋.

(2 − d)r ⋅ 3⌊
g

2
⌋
≤ r ⋅ pr ≤

r�

i=1

pi ≤ 3n −

�
3n

r + 1

�
=

�
r ⋅ 3n

r + 1

�
.

�F� =
r�

i=1

�E(V(Hi),V(Hi))� − �E(V(H1),V(H2),… ,V(Hr))�

= 2n

r�

i=1

pi − 2

r�

i=1

�E(Hi)� −
������

E
� r�

i=1

Hi

������
−

r�

i=1

�E(Hi)�
�

= 2n

r�

i=1

pi −

r�

i=1

�E(Hi)� −
�����
E
� r�

i=1

Hi

������

≥ 2n

r�

i=1

pi −
1

2

r�

i=1

expi (Q
3
n
) −

1

2
ex∑r

i=1
pi
(Q3

n
)

=
1

2

r�

i=1

�pi
(Q3

n
) +

1

2
�∑r

i=1
pi
(Q3

n
)

≥
1

2

r�

i=1

�
(2−d)⋅3⌊ g

2⌋ (Q
3
n
) +

1

2
�∑r

i=1
pi
(Q3

n
) (by Lemma 11)

=
1

2
(2 − d)(2n − g)r ⋅ 3⌊

g

2
⌋ + 1

2
�∑r

i=1
pi
(Q3

n
).

�∑r

i=1
pi
(Q3

n
) ≥ �

(2−d)r⋅3⌊ g
2⌋(Q

3
n
) = 2n(2 − d)r ⋅ 3⌊

g

2
⌋ − ex

(2−d)r⋅3⌊ g
2⌋(Q

3
n
).
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Case 2. 2 ⋅ 3n−1 <
∑r

i=1
pi ≤

�
r⋅3n

r+1

�
.

Case 2.1. 1 ≤ (2 − d)r ⋅ 3⌊
g

2
⌋
≤ (2 − c) ⋅ 3

�
n

2

�
−1.

In this scenario, we have

By the symmetry of edge-cut, we have �∑r

i=1
pi
(Q3

n
) = �3n−

∑r

i=1
pi
(Q3

n
) . By Lemmas 9 

and 11,

holds. Therefore, by Lemmas 3 and 6, we have

Case 2.2. r = 3k0 and 0 ≤ g ≤ 2(n − 2k0 − 1) , where 0 ≤ k0 ≤
⌊
n

2

⌋
− 1.

In this scenario, we have

By the symmetry of edge-cut, we have �∑r

i=1
pi
(Q3

n
) = �3n−

∑r

i=1
pi
(Q3

n
) . By Lemma 11,

holds. Therefore, by Lemmas 3 and 6, we have

Summing up above, we have

  ◻

Combining Lemma 13 with Lemmas 5 and 8, the following result is immediately 
obtained.

�F� ≥ 1

2
(2 − d)(2n − g)r ⋅ 3⌊

g

2
⌋ + 1

2
[2n(2 − d)r ⋅ 3⌊

g

2
⌋ − ex

(2−d)r⋅3⌊ g
2⌋(Q

3
n
)]

= (2 − d)(2n − g)r ⋅ 3⌊
g

2
⌋ − [

1

2
ex(2−d)r(Q

3
n
) − (1 − d)r] ⋅ 3⌊

g

2
⌋.

(2 − c) ⋅ 3

�
n

2

�
−1

≤

�
3n

1

(2−d)
(2 − c) ⋅ 3

�
n

2

�
−1−⌊ g

2
⌋ + 1

�
≤

�
3n

r + 1

�
≤ 3n −

r�

i=1

pi ≤ 3n−1.

�3n−
∑r

i=1
pi
(Q3

n
) ≥ �

(2−d)r⋅3⌊ g
2⌋(Q

3
n
) = 2n(2 − d)r ⋅ 3⌊

g

2
⌋ − ex

(2−d)r⋅3⌊ g
2⌋(Q

3
n
)

�F� ≥ (2 − d)(2n − g)r ⋅ 3⌊
g

2
⌋ − [

1

2
ex(2−d)r(Q

3
n
) − (1 − d)r] ⋅ 3⌊

g

2
⌋.

(2 − d)r ⋅ 3⌊
g

2
⌋
≤ 2 ⋅ 3n−k0−1 ≤

�
3n

3k0 + 1

�
≤

�
3n

r + 1

�
≤ 3n −

r�

i=1

pi ≤ 3n−1.

�3n−
∑r

i=1
pi
(Q3

n
) ≥ �

(2−d)r⋅3⌊ g
2⌋(Q

3
n
) = 2n(2 − d)r ⋅ 3⌊

g

2
⌋ − ex

(2−d)r⋅3⌊ g
2⌋(Q

3
n
)

�F� ≥ (2 − d)(2n − g)r ⋅ 3⌊
g

2
⌋ − [

1

2
ex(2−d)r(Q

3
n
) − (1 − d)r] ⋅ 3⌊

g

2
⌋.

�g,r+1(Q
3
n
) ≥ (2 − d)(2n − g)r ⋅ 3⌊

g

2
⌋ −

�
1

2
ex(2−d)r(Q

3
n
) − (1 − d)r

�
⋅ 3⌊

g

2
⌋.
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Theorem  2 Let n,  g,  r be three integers such that n ≥ 3 , 

1 ≤ (2 − d)r ⋅ 3⌊
g

2
⌋
≤ (2 − c) ⋅ 3

�
n

2

�
−1 or r = 3k0 , 0 ≤ k0 ≤

⌊
n

2

⌋
− 1 and 

0 ≤ g ≤ 2(n − 2k0 − 1) . Then,

Corollary 1 [15, 22] (1) For n ≥ 2 and g ≤ n , �g(Q3
n
) = (2 − d)(2n − g)3⌊

g

2
⌋.

(2) For n ≥ 6 and r ≤ 3

⌈
n

2

⌉
 , c�r+1(Q3

n
) = 2nr −

exr(Q
3
n
)

2
.

5  Application and comparisons

This work concentrates on the g-good-neighbor (r + 1)-component edge-connectiv-

ity under the conditions 1 ≤ (2 − d)r ⋅ 3⌊
g

2
⌋
≤ (2 − c) ⋅ 3

�
n

2

�
−1 or 

r = 3k0 , 0 ≤ k0 ≤
⌊
n

2

⌋
− 1 and 0 ≤ g ≤ 2(n − 2k0 − 1) . In what follows, we present 

an example in each of these two cases. For instance, let r = 2 and n = 10 . In this 
case, r = 2 satisfies the former condition, hence, we have 0 ≤ g ≤ 8 . Based on the 
formulas of Theorem  2 and Corollary 1, we derive the corresponding values of 
�g,3(Q

3
10
) , �g(Q3

10
) and c�g+1(Q3

10
) with respect to 0 ≤ g ≤ 8 (see Table 3). Another 

example is r = 3 and n = 9 . In this case, r = 3 satisfies the latter condition, hence, 
we deduce that 0 ≤ g ≤ 12 . Subsequently, we obtain the corresponding values of 
�g,4(Q

3
9
) , �g(Q3

9
) and c�g+1(Q3

9
) with respect to 0 ≤ g ≤ 12 in the same manner (see 

Table 3). As can be seen from Table 3, the value of �g,3(Q3
10
) is almost twice as large 

�g,r+1(Q
3
n
) =

�
(2n − g)r ⋅ 3

g

2 −
1

2
exr(Q

3
n
) ⋅ 3

g

2 , if g = 0 (mod2);

2(2n − g)r ⋅ 3⌊
g

2
⌋ − (

1

2
ex2r(Q

3
n
) − r) ⋅ 3⌊

g

2
⌋, if g = 1 (mod2),

Table 3  The value of �g,r+1(Q3

n
) , 

�
g(Q3

n
) and c�g+1(Q3

n
)

g �g,3(Q
3

10
) �

g(Q3

10
) c�g+1(Q

3

10
) �g,4(Q

3

9
) �

g(Q3

9
) c�g+1(Q

3

9
)

0 39 20 0 51 18 0
1 74 38 20 96 34 18
2 105 54 39 135 48 35
3 198 102 57 252 90 51
4 279 144 76 351 126 68
5 522 270 94 648 234 84
6 729 378 111 891 324 99
7 1350 702 129 1620 594 115
8 1863 972 146 2187 810 130
9 – – – 3888 1458 144
10 – – – 5103 1944 161
11 – – – 8748 3402 177
12 – – – 10935 4374 192
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as �g(Q3
10
) and much larger than the value of c�g+1(Q3

10
) regardless of the value of g. 

A similar conclusion can be drawn in Q3
9
 , the value of �g,4(Q3

9
) is almost three times 

the value of �g(Q3
9
) and much larger than the value of c�g+1(Q3

9
).

The quantitative relationship among �g,r+1(Q3
n
) , �g(Q3

n
) and c�g+1(Q3

n
) can be 

clearly observed from Table  3. Next, we plot Figs.  4 and 5 to better present the 
growth rates of these three indicators as g increases. Consistent results can be 
observed that when r and n are fixed, �g,r+1(Q3

n
) grows at a rapid rate as g increases, 

whereas c�g+1(Q3
n
) is relatively flat. This implies that only a few failed links can 

disrupt this network to generate multiple components, but to allow each processor 
to communicate with more processors would require large-scale link failures. In 

Fig. 4  Illustration that r = 2 , n = 10 and 0 ≤ g ≤ 8

Fig. 5  Illustration that r = 3 , n = 9 and 0 ≤ g ≤ 12
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addition, Figs. 6 and 7 depict the variation of �g,r+1(Q3
n
) with the growth of g for 

fixed n and r, respectively.

6  Concluding Remarks

This work suggests a novel indicator, namely g-good-neighbor r-component edge-
connectivity, for measuring network reliability and fault tolerability of 3-ary n-cube, 
which is proposed by Liu et  al. [17]. This concept breaks down the inherent idea 
to emphasize the double constraints on the resulting network in the presence of 
the large-scale faulty links, which not only limits the number of component in the 

Fig. 6  Illustration that 2 ≤ r ≤ 5 , n = 10 and 0 ≤ g ≤ 8

Fig. 7  Illustration that r = 3 , 10 ≤ n ≤ 13 and 0 ≤ g ≤ 8
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resulting network, but also requires that each vertex is adjacent to at least g fault-free 
links. More importantly, g-good-neighbor (r + 1)-component edge-connectivity is 
almost r times the size of g-good-neighbor edge-connectivity and much larger than 
(r + 1)-component edge-connectivity in 3-ary n-cube. As a consequence, this metric 
offers a more refined quantitative indicator of the robustness of a multiprocessor sys-
tem in the presence of link disruption.
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