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Abstract
Visual cryptography scheme is initiated to securely encode a secret image into mul-
tiple shares. The secret can be reconstructed by overlaying the shares, making it per-
ceptible to the human visual system. Random grid visual cryptography offers key 
advantages over traditional visual cryptography such as avoiding pixel expansion 
and the requirement for intricate codebook design. This paper is intended to con-
duct a critical analysis and implementation of various algorithms in random grid 
visual cryptography from 2011 to 2022. The focal parameters of this study are the-
oretical contrast, experimental contrast and visual quality. Experiments were done 
on binary images for (k, n) algorithms considering different values of threshold. By 
implementing and analysing the results, the scheme which gives the optimal result is 
identified.

Keywords  Visual cryptography · Random grid · Contrast · Pixel expansion · 
Codebook design · Aspect ratio

1  Introduction

Visual cryptography is an innovative domain of cryptography that combines the 
power of encryption with the visual representation of information. Ever since the 
technology confronted the need to transfer digital data, securing it with reliable 
techniques were pursued. Traditional cryptographic methods were evolved so as to 
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manipulate on texts or numerical data. Further inventions were made using the vis-
ual elements like images and patterns. This niche domain of cryptography in which 
encryption is done using the visual representation of information is termed as Visual 
Cryptography Scheme (VCS). The techniques in visual cryptography are widely 
used today where privacy and confidentiality are of great significance. Visual cryp-
tography has practical applications in secure communications, document authenti-
cation and watermarking allowing sensitive information to be shared and verified 
through multiple image shares. However, it faces challenges such as pixel expansion, 
ensuring high quality reconstructed images and managing color image processing. 
The fundamental idea of VCS was explained by Naor and Shamir [1] in 1994. Since 
then, it invited a great attention of many researchers from different domains such 
as image authentication, watermarking and information security. The overview of 
visual cryptography is to split an image into parts called shares and any individual 
share does not suffice to retrieve the secret image [2]. The individual shares are then 
distributed to different shareholders. The secret image can be recouped when the 
shares are combined together by stacking.

Visual cryptography is a method in which a secret image is shared within a group 
of shareholders. The image which is the secret is entrusted with group members as 
unusable fragments. Unlike conventional cryptographic techniques that rely on com-
plex algorithms and secret keys, visual cryptography does not require any crypto-
graphic expertise to retrieve the original image. This makes it applicable for sce-
narios where users may have limited technical knowledge.

A (k, n) VCS involves splitting up of a secret image into n parts. The reconstruc-
tion of the secret image becomes feasible when a minimum of k segments are com-
bined. However, if less than k segments are involved, the reconstructed image will 
be meaningless and insignificant. Decoding is achieved by the Human Visual Sys-
tem (HVS) without requiring intricate computations. This feature is widely regarded 
as the foremost advantage of VCS [3]. The conventional VCS have the following 
drawbacks: (i) pixel expansion (ii) complex codebook design (iii) change in aspect 
ratio [4].

Kafri and Keren [5] pioneered the encryption of binary images by Random 
Grid Visual Cryptography Scheme (RGVCS) in 1987. A binary image is split into 
two random parts such that they have same dimension as that of the binary image. 
RGVCS can also be used for generating master share and private share for each par-
ticipant to enhance the security and confidentiality [6]. It exceeds conventional VCS 
by preserving the secret image’s original size, effectively eliminating the issue of 
pixel expansion. This paper reviewed and analysed existing (k, n) random grid algo-
rithms with different values of threshold.

2 � Random grid visual cryptography scheme

This section gives some definitions and a concise overview of traditional RGVCS. 
Consider ⊕ as OR and ⊗ as XOR. In order to encrypt a binary secret image, S of 
dimension M x N with S (i, j), 1 ≤ i ≤ M, 1 ≤ j ≤ N, is allotted to n shares S1, S2, S3,…
.,Sn and from t (1 ≤ t ≤ n) shares the secret image S’ is retrieved. Kafri and Keren [5] 
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described random grid as a 2-D array of pixels that is formed as whether the pixels 
are transparent or not. There is an equal chance of having transparent or opaque 
pixels as the decision is made using a coin-flip method [5]. For example, consider 
a pixel b within a randomly generated grid R. The likelihood of b being transparent 
is the same as the likelihood of it being opaque. Prob (b = 0) = 1/2 = Prob (b = 1), 
where b = 0 indicates transparent and b = 1 means opaque. The light transmission of 
b is denoted as £(b) = 1/2.

Consider S1 and S2, two standalone random grids with same size, s1 ∈ S1 and 
s2 ∈ S2 where s1 and s2 are in same position of S1 and S2. When these two random 
pixels s1 and s2 are superimposed with OR, only four combinations are possible. For 
s1 ⊕ s2 being transparent, the probability is 1/4. Since S1 and S2 are superimposed, 
the average light transmission of S1 and S2 (s1 and s2) is 1/4. £( s1 ⊕ s2) = 1/4 and ( 
£(S1 ⊕ S2) = 1/4).When  b  is a complement of b, b ⊕ b=1 ⇒ Prob (b ⊕ b = 0) = 0. 
Therefore £(b ⊕ b) = 0 or £(S ⊕ S) = 0.

Definition 1  (Average light transmission): The light transmission of a transpar-
ent (resp. opaque) pixel is expressed as £(b) = 1 (resp. 0) for a specific pixel b in a 
binary image S of size M x N. Overall, the general average light transmission of S is 
described as [7,8].

Definition 2  (Contrast): The contrast (�) between the original image S and the 
recovered binary image S’ is defined as [7,8]

Three algorithms were introduced by Kafri & Keren [5] to generate two meaning-
less random shares S1 and S2. Random_GridAlg1 is considered to be better while 
contrast and light transmission are considered[7]. In encoding, S1 is created by 
choosing the values from normal distribution. Concurrently, the value of a specific 
pixel in S2 is decided by the value of respective pixel in the secret image. If the value 
is transparent, then S1 and S2 have the same value; or else they have complementary 
values. The resultant grid S1 ⊕ S2 always yields 1 when the pixel of S is black, and it 
has a partial probability of being transparent or opaque when the pixel of S is white. 
Kafri and Keren’s [5] algorithms are explained in detail.

(1)£(S ) =

∑M

i=1

∑N

j=1
£(S(i, j))

MXN

(2)� =
£(S�[S(0)] − £(S�[S(1)]

1 + £(S�[S(1)]



23208	 N. Francis et al.

1 3

The recovered images using the above algorithms are shown in Fig. 1. The equa-
tions for finding Mean Squared Error (MSE), Peak Signal-to-Noise Ratio (PSNR) 
and Structured Similarity Index Measure (SSIM) are given.
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where m and n represents the dimensions of the images, I denotes the original 
image, and K signifies the distorted image.

where MAX represents the highest possible pixel value in the image.

where µa is the mean of a, µb is the mean of b.
σ2

a and σ2
b are the variances of a and b.

σab is the covariance between a and b.
C1 = (k1L)2 and C2 = (k2L)2 are constants. PSNR and SSIM values for the 

above algorithms are given in Table 1.
Despite the superiority of RGVCS over traditional VCS, the former received 

less attention until Shyu extended the schemes [3,8]. Chen and Tsao [7,10] pre-
sented (n, n) and (2, n) schemes for binary and color images.

(3)MSE =
1

mn

m−1∑
i=0

n−1∑
j=0

[
I(i, j) − K(i, j)

]2

(4)PSNR = 10 − log10

(
MAX2

MSE

)

(5)SSIM(a,b)

(
2μaμb + C1

)(
2�ab + C2

)
(
μ2
a
+ μ2

b
+ C1

)(
�
2
a
+ �

2
b
+ C2

)

S S1 S2

RandomGridAlg1 RandomGridAlg2 RandomGridAlg3

Fig. 1   Reconstructed images proposed by Kafri & Keren [5]
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Random_Grid (S, n) demonstrates the (n, n) scheme in which Random_Grid() 
can be substituted by Random_GridAlg1, Random_GridAlg2 or Random_GridAlg3. 
Rand_Perm() randomly shuffles and assigns the generated bits to the output shares.

3 � Recent research advances in (k, n) random grid schemes

Chen and Tsao [9] extended the basic VCS techniques of (2, 2) by Kafri and Keren 
[5], (2, n) and (n, n) by Chen & Tsao [7,10], Shyu [3,8] to (k, n) VCS. The share-
holders should provide no less than k individual shares to get back the secret. Fewer 
than k shares produce meaningless superimposed image. Calculations are also done 
to determine the theoretical contrast of the superimposed result. The feasibility of 
the suggested method is demonstrated by simulating (2, 4) and (3, 4) schemes for 
both binary and color images.

Wu and Sun [11] extended Chen and Tsao’s method [9] to obtain a con-
trast-improved VCS on random grids and presented a void and cluster based 

Table 1   PSNR & SSIM

Random_GridAlg1 Random_GridAlg2 Random_GridAlg3

PSNR 53.3951 51.6517 52.1514
SSIM 0.5142 0.4183 0.4695
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post-processing to increase the uniformity of the recovered image. The visual qual-
ity of the retrieved image is increased by using the recommended schemes. Optimal 
contrast is attained by the contrast- improved RGVCS and an improved image can 
be recovered by using the post-processing techniques.

Lee et al. [12] presented quality-improved random grid based VCS scheme which 
outperforms Chen & Tsao’s (k, n) algorithm [9] as its visual quality is a concern. 
Rather than arbitrarily generating n-k pixels, they are selected from the generated k 
pixel values. Further investigations and findings of contrast proved that the proposed 
algorithm surpasses the existing techniques.

A unique (k, n) RG-based VCS proposed by Guo et al. [13] enhances the contrast 
of Chen and Tsao’s algorithm [9], thereby increases the visual quality. However, the 
values of k and n do not accurately describe the scheme’s contrast. The experiments 
and results showed the superiority of this approach over Chen and Tsao’s scheme.

Liu et al. [14] presented a (k, n) threshold VCS based on random grids, which 
has improved visual quality when compared to Wu and Sun’s [11] and Guo et al.’s 
[13] algorithms. This paper analysed the features that determine the visual quality 
and utilized the generated bits to improve the parameters. The feature of attaining 
improved contrast causes this algorithm to be applied for other domains also.

Yan et  al. [15] introduced a novel VCS threshold scheme in which multiple 
decryptions based on OR and XOR are considered. The original image can be fully 
recuperated if there is a machine having XOR operation is available. The image can 
also be retrieved with good quality by HVS without any complex cryptographic 
algorithms when minimum number of shares is available for (k, n) VCS scheme. 
Several experiments were performed to assess the effectiveness of the recommended 
scheme.

Hu et  al. [16] introduced a contrast enhanced scheme for (k, n) VCS based on 
random grids and a common equation for calculating theoretical contrast with better 
accuracy. It was inferred that there is some relationship between the first k pixels and 
the contrast. As a result, using the initial k pixels, it is possible to produce the final 
n-k pixels. Theoretical study and findings from the experiments indicates that the 
suggested method has improved visual quality and higher value of contrast than the 
existing threshold techniques.

Zhao and Fu [17] developed a new contrast enhanced (k, n) VCS based on OR 
and XOR decryptions. A common formula to calculate the value of theoretical con-
trast is also mentioned in the paper. The recommended scheme is using the par-
ity basis matrices and hence there is no pixel expansion. When suitable computing 
devices are available, an XOR procedure can completely recoup the original image. 
Further investigations and studies guaranteed the efficiency and security of the 
method.

4 � Implementation and analysis of (k, n) random grid schemes

We have implemented different (k, n) VCS techniques based on random grids using 
Python. Evaluation parameters such as theoretical contrast (α), experimental contrast 
(τ) and visual quality are considered to validate the efficiency of each algorithm. A 
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binary image S of size M x N is the input to Algorithms 1–8 and n random grids S1, 
S2,…..,Sn of the same size are generated. The different schemes are two-out-of-two, 
two-out-of-n, n-out-of-n and k-out-of-n. This paper reviewed and analysed (k, n) algo-
rithms of various researchers during 2011 to 2022.

Input: Secret image S.
Output: random grids S1, S2,…..,Sn.

Algorithm 1 

The theoretical contrast for the algorithm is given by the equation

For (3, 5) ,t = 3 → � =
2∗3C3

(23+1)5C3−3C3

=
2

89
= 0.0225

Algorithm 1[9] makes use of the basic algorithm to generate k bits and the rest of 
n-k bits are arbitrarily chosen from normal distribution. By randomly rearranging and 
permuting n bits, n shares are obtained. The theoretical contrast for (2, 4) scheme is 
0.0690, 0.1176, 0.125 for t = 2, 3, 4 respectively and for (3, 5) scheme the value is 
0.0225, 0.0482, 0.0625 for t = 3, 4, 5 respectively.

(6)� =
2 ∗ tCk

(2t + 1)nCk − tCk

where k ≤ t ≤ n

t = 4 → � =
2 ∗ 4C3(

24 + 1
)
5C3 − 4C3

=
8

116
= 0.0482

t = 5 → � =
2 ∗ 5C3(

25 + 1
)
5C3 − 5C3

=
1

16
= 0.0625
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Algorithm 2 

The theoretical contrast for the algorithm is given by the equation

(7)� =

⎧⎪⎪⎨⎪⎪⎩

(
1

2
)k−1fort = n

⎛⎜⎜⎝
n − k + 1

t − k + 1

⎞⎟⎟⎠
(
1

2
)k−1

⎛⎜⎜⎝
n

t

⎞⎟⎟⎠
+A.B.D

otherwise

where A =

⎧⎪⎨⎪⎩

��
k − 1

q − n + k − 1

�
, .......,

�
k − 1

k − 1

��
for n − k + 1 ≤ q < n

� �
k − 1

0

�
, .........,

�
k − 1

k − 1

��
otherwise

B =

⎧
⎪⎨⎪⎩

��
n − k + 1

n − k + 1

�
,…… .,

�
n − k + 1

q − k + 1

��
for n − k + 1 ≤ q < n

� �
n − k + 1

q

�
,……… ,

�
n − k + 1

q − k + 1

��
otherwise

D =

⎧⎪⎨⎪⎩

�
(
1

2
)q−n+k, ......., (

1

2
)k−2, , (

1

2
)k−1, 0

�
for n − k + 1 ≤ q < n�

1

2
, ......… .., (

1

2
)k−2, (

1

2
)k−1 , 0

�
otherwise
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For (3, 5), t = 3 → � =

⎛⎜⎜⎝
n − k + 1

t − k + 1

⎞⎟⎟⎠
(
1

2
)k−1

⎛
⎜⎜⎝
n

t

⎞⎟⎟⎠
+A.B.D

=

⎛⎜⎜⎝
3

1

⎞⎟⎟⎠
(
1

2
)2

⎛
⎜⎜⎝
5

3

⎞⎟⎟⎠
+A.B.D

=
1

16
= 0.0625

In Algorithm 2 [11], the first k-1 bits are arbitrarily chosen from normal distribu-
tion. rk is generated by performing XOR with S(i, j) and r1, r2,….rk. The rest of n-k 
bits are computed by assigning rk to rk+1, rk+2,… rn. The n bits are shuffled and rear-
ranged to obtain the random grids. The theoretical contrast obtained for (2, 4) scheme 
is 0.2, 0.333, 0.5 for t = 2,3,4 and for (3, 5) scheme the value is 0.0625, 0.1364, 0.25 for 
t = 3,4,5 respectively.

Algorithm 3 

The theoretical contrast for the algorithm is given by the equation

For (3, 5), t = 3 → � =
1

23−1
∗

3−3+1

5−3+1
=

1

2
= 0.0833

t = 4 → � =

(
n − k + 1

t − k + 1

)
(
1

2
)k−1

(
n

t

)
+ A.B.D

=

(
3

2

)
(
1

2
)2

(
5

4

)
+ A.B.D

=
3

22
= 0.1364

t = 5 → � = (
1

2
)k−1 =

1

4
= 0.25

(8)� =
1

2k−1
∗

t − k + 1

n − k + 1

t = 4 → � =
1

23−1
∗
4 − 3 + 1

5 − 3 + 1
=

1

6
= 0.1666
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Algorithm 3 [12] generates k bits by Random_Grid1(S (i, j), k, n) and the rest of n-k 
bits are randomly chosen from r1, r2,….,rk. The n bits are randomly reorganised and 
distributed to obtain n grids. The calculated theoretical contrast is 0.1666, 0.333, 0.5 
for t = 2,3,4 in (2, 4) scheme and 0.0833, 0.1666, 0.25 for t = 3,4,5 in (3, 5) scheme.

Algorithm 4 

In Algorithm 4[13], k bits are generated by the basic algorithm and repeat [n/k] 
times to obtain k * [n/k] bits. The rest of the n—k * [n/k] bits are arbitrarily chosen 
from normal distribution. These bits are shuffled and distributed to produce n shares. 
For k > n/2, this method works same as Chen & Tsao’s method. For (k, n) scheme, 
when k ≤ n/2, this method improves the contrast of Chen & Tsao’s scheme. The 
value of theoretical contrast is 0.1427, 0.2499, 0.2499 respectively for t = 2,3,4 in 
(2, 4) scheme and 0.0224, 0.0480, 0.0622 respectively for t = 4,5,6 in (4, 6) scheme.

Algorithm 5 

t = 5 → � =
1

23−1
∗
5 − 3 + 1

5 − 3 + 1
=

1

4
= 0.25
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In Algorithm 5 [14], k bits are generated by Random_Grid1(S (i, j), k, n) and the 
remaining.

n—k bits are computed by assigning rk+1 = r1, rk+2 = r2,….,r2k = rk, r2k+1 = r1. 
These n bits are randomly reordered and allotted to n shares. The theoretical contrast 
is 0.2873, 0.5018, 0.5018 for t = 2,3,4 and 0.0854, 0.1889, 0.2485 for t = 3,4,5 in (2, 
4) and (3, 5) schemes respectively.

Algorithm 6 

The theoretical contrast for the algorithm is given by the equation

For (3, 5) t = 3 → � =
2∗3C3

(23+1)5C3−3C3

=
2

89
= 0.0225

Algorithm 6 [15] generates k bits by Random_Grid1(S (i, j), k, n) and n—k bits are 
randomly generated by normal distribution if n > k. If S(i, j) = r1 ⊕ r2 ⊕ ….. ⊕ rn, ran-
domly rearrange the bits to get n shares or else randomly select p from k + 1, k + 2,….,n 

(9)𝛼 =

{
2∗tCk

(2t+1)nCk−tCk

, for k ≤ t < n or n = k

1

2n−2
, for k < n and t = n

t = 4 → � =
2 ∗ 4C3(

24 + 1
)
5C3 − 4C3

=
8

116
= 0.0482

t = 4 → � =
1

2n−2
=

1

8
= 0.125
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and then flip values of rp to ~ rp. Then rearrange and distribute the values to n shares. 
The value of theoretical contrast is 0.0689, 0.1176, 0.25 for t = 2,3,4 in (2, 4) and 
0.0225, 0.0482, 0.125 for t = 3,4,5 in (3, 5) respectively.

Algorithm 7 

The theoretical contrast for the algorithm is given by the equation

For (3, 5), r1, r2, r3, r4, r5 are split into three groups GP1 = {r1, r4}, GP2 = {r2, r5}, 
GP3 = {r3}, where r1 = r4 and r2 = r5. For computing Probw with w = 3, t = 3, the 
probability of getting t pixels from any of w groups determines the result. The per-
mitted groups of chosen pixels are {r1, r2, r3}, { r1, r5, r3}, { r4, r5, r3}, {,r4, r5, r3} the 
total is 4. There are 5C3 = 10 possible combinations with 3 pixels. As a result, the 
value of Probw=3 is 4/10 = 2/5. Similarly Probw=2 is 3/5. Combining 3 shares, theo-

retical contrast, � =

(
2

5

)1

∗
(

1

2

)2

1+
(

3

5

)
∗
(

1

2

)2 =
2

23
= 0.0870

(10)� =
Probk ∗ (

1

2
)k−1

1 +
∑k−1

w=1
Probw ∗ (

1

2
)w

where 1 ≤ w ≤ k ≤ t ≤ n
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Algorithm  7 [16] generates k—1 bits randomly from normal distribution 
and rk by performing XOR operation with S(i, j) and r1, r2,….rk-1. The rest of 
the n-k bits are generated by rk+1 = S(i, j) ⊕ rk ⊕ rk-1 ⊕ …… ⊕ r2 and rn = S(i, 
j) ⊕ rn-1 ⊕ rn-2 ⊕ …… ⊕ rn-k+1. Rearrange the n bits and then allotted to n shares. 
The theoretical contrast is 0.2857, 0.5, 0.5 for t = 2,3,4 and 0.0870, 0.1905, 0.25 for 
t = 3,4,5 in (2, 4) and (3, 5) schemes respectively.

Algorithm 8 

The theoretical contrast for the algorithm is given by the equation

(11)𝛼 =

⎛⎜⎜⎝
n − k

t − k

⎞⎟⎟⎠
⎛⎜⎜⎝
n

t

⎞⎟⎟⎠

∗
1

2k−1

1 +
∑

max{0,t+k−n}≤g<k

⎛⎜⎜⎝
k

g

⎞⎟⎟⎠

⎛
⎜⎜⎝
n − k

t − g

⎞
⎟⎟⎠

⎛⎜⎜⎝
n

t

⎞⎟⎟⎠

∗
1

2g
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For (3, 5), t = 3 → � =

⎛
⎜⎜⎜⎝

2

0

⎞
⎟⎟⎟⎠

⎛⎜⎜⎜⎝

5

3

⎞⎟⎟⎟⎠

∗
1

22

1+
∑

⎛⎜⎜⎜⎝

3

1

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

2

2

⎞⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

5

3

⎞
⎟⎟⎟⎠

∗
1

21
+

⎛⎜⎜⎜⎝

3

2

⎞⎟⎟⎟⎠

⎛⎜⎜⎜⎝

2

1

⎞⎟⎟⎟⎠
⎛
⎜⎜⎜⎝

5

3

⎞
⎟⎟⎟⎠

∗
1

22

=
1

52
= 0.0192

Table 2   Theoretical values of (2, 4) and (3, 5) VCS

Sl. no Author and year Theoretical contrast(�)–OR

(2,4) (3,5)

t = 2 t = 3 t = 4 t = 3 t = 4 t = 5

1 Chen & Tsao, [9] 0.0690 0.1176 0.125 0.0225 0.0482 0.0625
2 Wu & Sun, [11] 0.2 0.3333 0.5 0.0625 0.1364 0.25
3 Lee et al., [12] 0.1666 0.3333 0.5 0.0833 0.1666 0.25
4 Guo et al., [13] 0.1427 0.2499 0.2499 0.0224 0.0480 0.0622
5 Liu et al., [14] 0.2873 0.5018 0.5018 0.0854 0.1889 0.2485
6 Yan et al., [15] 0.0689 0.1176 0.25 0.0225 0.0482 0.125
7 Hu et al., [16] 0.2857 0.5 0.5 0.0870 0.1905 0.25
8 Zhao & Fu, [17] 0.0555 0.2 0.5 0.0192 0.0870 0.25

Table 3   PSNR & SSIM values for (3, 5) VCS

Sl.no Author and year Experimental contrast (τ)–OR

PSNR SSIM

t = 3 t = 4 t = 5 t = 3 t = 4 t = 5

1 Chen & Tsao, [9] 50.9691 51.1350 51.2022 0.1716 0.2548 0.3339
2 Wu & Sun, [11] 51.5224 51.9072 52.4723 0.1108 0.2465 0.5097
3 Lee et al., [12] 47.2899 46.6619 46.0034 0.0021 0.0097 0.0217
4 Guo et al., [13] 46.0149 45.4370 45.0582 0.0030 0.0445 0.0811
5 Liu et al., [14] 47.2171 46.6055 45.9724 0.0015 0.0089 0.0213
6 Yan et al., [15] 47.0149 46.6349 46.3208 0.0199 0.0359 0.0443
7 Hu et al., [16] 51.4363 51.4354 52.4558 0.3517 0.4992 0.5084
8 Zhao & Fu, [17] 51.4386 51.7282 52.5806 0.0501 0.1566 0.4725
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Fig. 2   Theoretical Contrast–(2, 
4) VCS 

Fig. 3   Theoretical Contrast–(3, 
5) VCS 

Fig. 4   PSNR values

Fig. 5   SSIM values
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In Algorithm  8 [17], 2k−1 × k basis matrices B0
even and B1

odd are created. Rows 
are selected randomly from B0

even and B1
odd according to the value of each pixel and 

hence k bits are generated. Then generate remaining n-k bits. Randomly rearrange 
and distribute these bits to generate n shares. The theoretical contrast is 0.0555, 0.2, 
0.5 for t = 2,3,4 respectively in (2, 4) scheme and 0.0192, 0.0870, 0.25 for t = 3,4,5 
respectively in (3, 5) scheme.

5 � Experimental findings and discussions

To determine the contrast and security of the compared algorithms, experiments and 
analyses were conducted. The secret image can be either partially or fully recon-
structed by overlapping at least k or more shares. Meaningless images are obtained 
when less than k numbers of shares are overlapped. The images supporting the 
experiments are taken from USC-SIPI image dataset. Theoretical contrast (τ), 
experimental contrast (α) and visual quality are compared to evaluate the contrast 
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Fig. 6   Secret image
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and similarity index of original and reconstructed images. The algorithms are imple-
mented using Python and hence experimental contrast is calculated for the various 
schemes. The results of theoretical contrast of OR based (2, 4) and (3, 5) schemes by 
Algorithms 1–8 is depicted in Table 2. The stacked results of different combinations 
such as t = 2,3,4 and t = 3,4,5 are also shown in the table.

In 2016, Yan et al. [18] studied and demonstrated the interval of values corre-
sponding to contrast by conducting several experiments. By studying and evaluat-
ing the outputs, we found that the visual quality of the retrieved images in differ-
ent algorithms varies according to the values of k and t. It is understood that the 
retrieved image can be identified as the original image when the calculated value 
of α is greater than zero. However, it is hard to recognize with the HVS when α is 
less than a specific value. The results of PSNR and SSIM for (3, 5) scheme for the 
values of t = 3,4,5 are given in Table 3.

Figures  2, 3, 4, 5 shows the values of theoretical contrast and experimental 
contrast of various (k, n) algorithms. From the depicted graphs, it can be under-
stood that Hu et al. [16] performs better in terms of contrast and for the values 
of PSNR and SSIM. The secret image is given in Fig. 6. Table 4 shows the com-
parative analysis of visual quality, theoretical and experimental contrasts. Based 
on the above comparisons, the visual quality of retrieved secret images in Chen 
& Tsao [7] and Guo et al. [13] are less, as there are more number of black pixels 
in the retrieved image. Besides, Wu & Sun [11] and Hu et al. [16] schemes have 
enhanced visual quality.

6 � Conclusion and future enhancements

In this paper, we mainly focused on various schemes of (k, n) VCS based on ran-
dom grids. It has been found out that Hu et al.’s algorithm surpasses other related 
algorithms in terms of visual quality, theoretical and experimental contrast. Some 
schemes used improved algorithms in order to enhance the existing contrast. Gen-
eral formula for calculating theoretical contrast is provided. It is also found that 
out of the n pixels, first k pixels are associated with the contrast and therefore the 
last n-k pixels can be generated by making use of the first k pixels. The relationship 
between visual quality and contrast deserves further investigation. The contrast of 
the schemes which are not given in terms of k, t and n can be considered as an open 
issue which is to be addressed in the future.
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