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Abstract
Along with the rising popularity of pay-as-you-go cloud services, many businesses 
and communities are deploying their business or scientific workflow applications 
on cloud-based computing platforms. The primary responsibility of cloud service 
providers is to reduce the monetary cost and execution time of Infrastructure as a 
Service (IaaS) cloud services. The majority of current solutions for cost and makes-
pan reduction were developed for conventional cloud platforms and are incompat-
ible with heterogeneous computing systems (HCS) having service-based resource 
management approaches and pricing models. Fog-cloud infrastructures (FCI) have 
emerged as desirable target areas for workflow automation across several fields of 
application. In heterogeneous FCI, the execution of workflows involving tasks hav-
ing different properties might influence the performance in terms of resource usage. 
The primary goal of this research is to efficiently offload the computational task and 
optimally schedule the workflow in such diverse computing environment. In this 
article, we present a novel strategy for building an environment that includes tech-
niques for offloading and scheduling while balancing competing demands from the 
user and the resource providers. In order to address the issue of uncertainty, our 
approach incorporates a fuzzy dominance-based task clustering and offloading tech-
nique. To construct a suitable execution sequence of tasks that helps to limit the 
precedence relationship, by preserving dependency constraints among the tasks, 
a novel algorithm for tasks segmentation is employed. To simplify the problem of 
the complexity, a hybrid-heuristics based on Harmony Search Algorithm (HSA) 
and Genetic Algorithm (GA) for resource scheduling algorithm is used. The multi-
objective optimization using three competing objectives is taken into consideration 
for investigation in heterogeneous FCI. The fitness function derived includes mini-
mization of makespan and cost along with maximization of resource utilization. We 
performed experimental research using five workflow datasets in order to investi-
gate and verify the efficacy of our proposed technique. We contrasted our proposed 
strategy with the primary, closely comparable strategies. Extensive testing using 
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scientific workflows confirms the effectiveness of our offloading approach. Our solu-
tion provided a substantially better cost-makespan tradeoffs, while achieving signifi-
cantly less energy consumption and can execute marginally quicker than the existing 
algorithms.

Keywords Fog-cloud computing · Task offloading · Resource scheduling · 
MOTORS · FDTCO · HORSA

1 Introduction

The Internet of Things (IoT) is a dynamic, worldwide network architecture that ena-
bles linked physical things (such as gadgets, appliances, heavy equipment, and auto-
mobiles) to function independently and autonomously. These gadgets have become 
an integral part of our daily life. Demands are emerging for mobile devices (MDs) to 
execute complex computational programs. These devices are designed to be capable 
of sending and receiving data via the Internet, monitoring their surroundings, and 
taking actions depending on information exchange. They do this by using informa-
tion and telecommunications technology. In contrast to the local computing envi-
ronment, these devices often develop data-intensive activities that demand for more 
high-performance computing capabilities. Compared to desktop counterparts, local 
computing power is not enough to do complicated operations. MDs have constrained 
computing and battery life due to their physical size limitations. The bottleneck of 
MDs is thus the energy constraint. Offloading computation [1, 2] is a viable tech-
nique for overcoming the bottleneck mentioned above. It allows resource-restricted 
MDs to offload tasks to more resourceful servers for their most energy-consuming 
activities. The MD may offload computations to the cloud server (CS). The CS then 
performs tasks and delivers the results to the MDs. However, recent research has 
shown that offloading computations to the CS are not always a viable option since 
some applications that are sensitive to time needs to be entertained within their delay 
tolerance [3, 4]. Cloud computing (CC) is inappropriate, especially for network edge 
devices (EDs). EDs enable low-latency computation offloading, which helps with 
latency-sensitive operations, thanks to the availability of nearby resources using fog 
computing (FC).

FC is a contemporary concept of CC at the edge of the network. It has less pro-
cessing power than CC. With the limitations of the delay tolerance and high trans-
mission rate, we resolve the task offloading issue by reducing energy usage and 
overall cost [5]. Task offloading involves the transfer of tasks from MDs to either 
Fog Nodes (FN) or CS. The FN or CS then process the task and deliver the result to 
the MDs [6]. The significant distance between the CS and the ED results in higher 
energy consumption and expense, which has a direct impact on real-time applica-
tions. In recent years, there has been a partial migration of storage capabilities and 
computing from the computer science field to the field of functional networks. FC 
relocates storage and computing resources in close proximity to MDs [7]. FC ena-
bles the proximity of MDs to the data generation, computational capability, and 
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data storage, eliminating the need for dependence on a distant central site. The pri-
mary factor for this is that real-time data is not affected by latency issues, which can 
impact the performance of an application [7, 8]. So, in a CC/FC architecture, effec-
tive workflow automation is crucial to model the significance of tasks, orchestrate 
their communication, and ensure their progress. The most difficult problem at hand 
is to optimize the workflow scheduling in Fog-Cloud Infrastructure (FCI), for which 
we have identified an acceptable solution. The primary benefits of FCI include: (1) 
FCI surpasses the issue of restricted computing capability in user equipment when 
compared to local computing. (2) Offloading duties directly to the CS can result in 
significant latency due to the considerable distance between the MDs and the CS [9, 
10].

1.1  Motivation

The resource-limited end users can transfer the bunch of tasks to the nearest FN 
in their area in a typical FC system. However, the FN typically searches CS (ver-
tical cooperation) and/or the other FNs because of the computational and storage 
resource constraints inside a FN (horizontal cooperation). In both offloading situ-
ations, more delay and energy use might be imposed. The constrained bandwidth 
of the uplink leads to a further delay in the completion of the task for the vertical 
cooperation in which the FN tries to download task details to the remote CS. Like-
wise, in horizontal cooperation with adjacent FNs, the lack of appropriate process-
ing and storage capabilities in FNs is a concern although transmission delay is lower 
than in the FCI. The essential yet unresolved problem is thus to pick the offload-
ing point i.e., the nearby FN or remote CS, and to share the task while ensuring 
the end-user time limit varies with the network traffic [11]. CC contains multiple 
computing resources that aid in enhancing and facilitating the execution of work-
flow. Collaboration between the CC and FC environments also enhances the imple-
mentation of workflows that may involve tasks with varied characteristics. Certain 
activities require high levels of computational power, while others necessitate rapid 
response times. FCI is defined by decentralized resources with limited capacity that 
are located at the periphery of the network. These resources, including FN and CS, 
aim to accomplish workflow tasks. Therefore, tasks that require low latency can be 
divided among the FNs, while tasks that require a lot of computational power can be 
transferred to the CS. Resource scheduling solutions can optimize the response and 
execution times of a workflow in an efficient and effective manner. The resources 
provided by FN are equivalent to those offered by the CS, hence utilizing FCI col-
laboratively will yield some more advantages [12, 13].

Resource scheduling problem are also well-known for being non-deterministic 
polynomial NP-hard [14]. There is now considerable research in the field of work-
flow technology, which tends to automate workflows  and provide tools for their 
administration. These workflows  combine many automated actions to accomplish 
a specified goal while being subject to severe limitations. The efficient execution 
of the complete workflow  is made possible by scheduling these tasks within the 
bounds of the available IT resources. This helps in achieving the goals stated and in 
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adhering to the limitations. Workflow has been used to automate a variety of sectors 
throughout time, including astronomy, biology, business, and more recently the IoT 
industry. The variety of fields covered results into various application kinds being 
automated by the same workflow. IoT activities aim to be completed with a quick 
reaction time, whereas scientific workloads need advanced processing capabilities.

1.2  Contributions

In this article, we have proposed an efficient offloading algorithm based on fuzzy 
logic to address the above-mentioned problem, taking into account input file size, 
output file size and length of task. In this paper, we also suggest a hybrid optimiza-
tion-based resource scheduling method for heterogeneous computing systems based 
on Harmony Search (HS) and Genetic Algorithm (GA). The suggested work takes 
into account several competing goals, including resource usage, makespan and cost 
minimization. By preservation of the dependency constraints among the tasks, a 
novel representation of agents is shown. To construct a suitable execution sequence 
of activities that helps to limit the precedence relationship, recursive algorithms are 
used. Fitness function is derived using numerous objectives that are taken into con-
sideration. Extensive simulations on various sets of scientific, Fast Fourier Transfor-
mation (FFT), and synthetic workflow applications data sets are used to examine and 
validate the performances. Our work’s contributions can be summarized as follows:

• Firstly, we propose an efficient task offloading algorithm namely fuzzy domi-
nance-based task clustering and offloading (FDTCO) for workflow applications 
in FCI, in which we first calculate task length, input and output file size. Then, 
after clustering the task based on these three task attributes, the proposed fuzzy 
inference system (FIS) is used to decide the optimal offloading layer.

• Secondly a novel hybrid optimization-based resource scheduling algorithm 
(HORSA) has been presented that makes use of numerous objectives that are 
thought to be in conflict. To provide a proper execution sequence of tasks while 
maintaining dependency restrictions, a novel algorithm has been proposed.

• A novel agent representation that always abides by precedence relationships 
has also been presented. It always makes sure to offer a viable solution to the 
resource scheduling problem. The agent’s validity is ensured while the agent val-
ues are modified throughout the evolution. Additionally, a multi-objective fitness 
function derivation has been provided using several competing goals.

• Extensive simulation results on various data sets for scientific process applica-
tions have been used to validate the proposed study. Numerical results demon-
strate that the proposed technique has optimal makespan, execution cost, energy 
consumption and resource utilization than other existing techniques.

The rest of the paper is arranged accordingly. The system model is presented 
in Sect. 2. The issue formula and solutions are described in Sect. 3. Section 4 has 
numerical results. The document is concluded in Sect. 5 Table 1 demonstrates the 
abbreviations used in this article.
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Table 1  Abbreviations used

Abbreviation Description

IaaS Infrastructure as a service
HCS Heterogeneous computing systems
FCI Fog-cloud infrastructures
HSA Harmony search algorithm
GA Genetic algorithm
MEC Mobile edge computing
MD Mobile devices
ED Edge devices
TL Terminal layer
TA Terminal agent
CC Cloud computing
CS Cloud server
CL Cloud layer
CA Cloud agent
FC Fog computing
FN Fog node
FL Fog layer
FA Fog agent
FDTCO Fuzzy dominance-based task clustering and offloading
HORSA Hybrid optimization-based resource scheduling algorithm
FFT Fast Fourier transformation
FIS Fuzzy inference system
MPSO Modified particle swarm optimization
VM Virtual machine
CSP Cloud service provider
DAG Directed acyclic graph
RUV Resources utilization vector
RUF Resource utilization factor
RUM Resource utilization magnitude
CI Computation intensity
CP Computing power
MIPS Million instructions per second
MC Memory capacity
QoS Quality of service
ORS Optimal resource schedule
MOTORS Multi-objective task offloading and resource scheduling
TSA Topological sorting algorithm
HM Harmony memory
MI Maximum number of iterations
NI Number of iterations
PS Population size
CR Crossover rate
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2  Related work

Extensive research is currently being conducted in the topic of resource scheduling, 
with the aim of automating workflows and developing tools for their management. 
These workflows integrate multiple automated processes to achieve a certain objec-
tive while operating under strict constraints. The optimal implementation of the 
entire workflow is facilitated by scheduling these processes within the limitations 
of the accessible computing resources. This facilitates the attainment of the stated 
objectives and ensures compliance with the constraints [15, 16]. Several efforts were 
recently dedicated to the offloading of computation in FC [17–19] and mobile edge 
computing (MEC) [20, 21]. In the paper, the authors studied primarily the combined 
optimization of decision factors and the allocation of computation and communica-
tion resources [22]. Dual connection for end-users was anticipated during offloading 
[19]. In particular, they assume that one link is connected to the FN and the other is 
connected to the greater computational units at the base station. For example, Chen 
et al. have suggested an optimal solution to process the tasks in the FN or remote CS 
through a system model made for a single user with one task [23], a single user with 
multiple tasks at [24] and multiple users with multiple tasks at [11], under a differ-
ent nomenclature called computer access points. Nonetheless, [11, 23, 24] regarded 
most of these efforts to be the situation of a single FN. When the FN cannot finish 
the tasks within delays and energy constraints, it just discharges the tasks into the 
CS. A multi-FN situation and the CS are taken into account in [25] to ensure mini-
mal latency.

The optimal solution would be computation offloading scenario where a FN could 
compute the fully offloaded task data in the FCI [26, 27]. However, either horizontal 
or vertical cooperation may be necessary for the FN. Some work is being done on 
collaborating horizontally with nearby FNs [28–30] and on vertical collaboration 
with the remote CS [11, 23, 24]. Here are a few examples. Wang et al. [5] recently 
proposed a situation, where the allocation of computing resources is evaluated both 

Table 1  (continued)

Abbreviation Description

MR Mutation rate
HMS Harmony memory size
HMCR Harmony memory considering rate
PAR Pitch adjusting rate
BW Displacement bandwidth
MS Makespan
EN Energy consumption
ART Algorithm running time
CO Cost of execution
ACO Ant colony optimization
HPSOGWO Hybrid particle swarm optimization-gray wolf optimization
MAA Multi-objective based artificial algae algorithm
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horizontally and vertically to reduce the time required for the completion of the task 
process. However, in their research, the waiting time due to the queue in the FN was 
not taken into account. In addition, for average delay reduction and the allocated 
computing and communication resources, multi-user and varied delay demands for 
every user play a significant role. In [28] and [29], the latency of transmission across 
FNs was taken into account but the multi-user situation was not treated explicitly. To 
improve the selection on computation offloading, the multi-user scenario has also 
been examined in [16, 31]. However, the waiting time [32] for task handling at the 
FN, which receives the tasks both from end-users and other FNs, is still crucial to 
take into account. None of this research, however, [5, 16, 29] examined the delay in 
queuing at the FN, especially in cooperation with the horizontal FN.

Task scheduling or resource management in FCI has also been the subject of sev-
eral research. [33] proposes a task scheduling method for use in a FCI while taking 
into account the deadline, task priority level, and resource availability at fog layer 
(FL). The suggested approach uses resource allocation and load balancing to reduce 
the task execution time and cost. The Time–Cost aware Scheduling method was sug-
gested by the authors in [34] to optimize a trade-off between task execution time and 
operational costs. The modified particle swarm optimization (MPSO) technique is 
employed in [35] for load balancing and task scheduling. To meet the latency and 
deadline requirements of tasks in a smart manufacturing framework, an intelligent 
scheduling method of the computer resources is presented in [36]. By recommend-
ing three parallel methods for task offloading, task buffering, and resource allocation 
while taking into consideration the estimated task execution time, laxity, and trans-
mission latency to the CS, the authors in [37] increased task completion ratio and 
throughput. Ref. [38] describes a trade-off between the task’s processing require-
ments and time limitations.

The authors suggested genetic algorithm-based scheduling in the FCI. But nei-
ther resource demands of the tasks nor virtual machines (VMs) and the resources 
that were accessible in the FL were taken into account. The allocation of IoT appli-
cation modules to the FN and CS by taking into account the necessary resources 
constraints is done in [39], and it has increased resource utilization in FCI. In [40], 
the authors used evolutionary algorithms that allocate tasks to the processing nodes 
to optimize energy usage and service quality. The aforementioned studies fall short 
in their treatment of factors that might impact task processing time, such as com-
munication overhead between FNs, resource availability at the processing node and 
communication overhead between FL and cloud layer (CL). In [41], the resources 
needed by the tasks, their due dates, and the strain on the processing nodes in addi-
tion to the CS’s transmission time is taken into account. Additionally, the proposed 
approach lowers communication overhead because it runs at the central fog agent.

The literature extensively discusses the restricted resource management prob-
lem’s optimization [15–41]. The majority of these studies seek to arrange scientific 
workflows without considering the latency sensitivity of IoT workflow activities. 
In addition, every resource management solution has been centralized designed in 
such a distributed setting. The workflow issue has been addressed using a variety 
of approaches, including fuzzy logic and meta-heuristic methodologies, which have 
shown success in workflow optimization and so are effective. In order to improve 
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task offloading and workflow scheduling in FCI, we want to provide a novel method 
in this study. To address the problem of task offloading and thus assist in decision-
making, we proposed the FDTCO method. To make up for the shortcomings of tra-
ditional theory based on ideas of approximation reasoning, fuzzy logic is used to 
explore the representation of imprecise information, approximate reasoning, and the 
modelling of hazy conceptions of natural language. This sort of logic depends on 
a set of rules and fuzzy inference techniques to decrease uncertainty and arrive at 
a solution that is appropriate in a short period of time. In our study, we have also 
utilized the hybridization of optimization strategies, depending on multi-objective 
fitness function, to achieve successful scheduling based on proposed HORSA tech-
nique. When it comes to FCI systems where rigor is not ideal, such as when CS and 
FN are executing workflow scheduling, FIS based offloading has another benefit that 
allows enormous flexibility.

3  System model and problem formulation

The core challenge of resource management is to allocate workflow tasks to com-
puter resources in a manner that satisfies all imposed limitations and maximizes 
established objectives. The issue raised and the suggested model for the approach 
are presented in this section.

3.1  Workflow model

This issue has been dealt with in FCI on two different levels, namely the workflow 
user and the cloud service provider (CSP). There are restrictions and goals placed 
on both of these elements. A workflow is represented as a Directed Acyclic Graph 
(DAG) [42] from the user’s perspective and is indicated by G (T, A), where T is the 
collection of n tasks that make up process G and are stated in the form T = (T1,…, 
Tn). Each Ti that belongs to a T is in charge of the instruction lines throughout the 
workflow’s execution. A is collection of edges, which denotes the restriction on task 
priority. Each edge Aij illustrates how tasks Ti and Tj are related to one another, with 
Ti serving as the parent task and Tj as the child task. As a result, Tj begins to run 
after its parent task Ti has finished running. The output data from task Ti that will be 
passed on to task Tj is represented by the variable Aij. In our work, parent tasks that 
have no predecessors are regarded as being ready for execution.

3.2  System model

As shown in Fig. 1, the architecture of FCI is organized around three major lev-
els. The term "terminal layer" (TL) refers to the end-user layer. It is separated into 
a number of nearby sections and reflects the end-user environment. A FN is con-
nected to numerous IoT devices that supply each region. The processing of tasks 
created by the TL might take place at the local FN, a nearby FN, or a CS. The 
task’s characteristics, prerequisites, and the FN’s capabilities all play a role in 
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this. The FL consists of a collection of FNs, designated as NFog = {N1
Fog...Nm

Fog}, 
each of which is identified by a d-dimensional Vector of Resources Utilization 
(RUV), a geographic area (Gi

Fog), and a utilization threshold (UTi).

The VMs that are stored on each FN are represented by the equation 
VMFog = (vm1

Fog, …, vmd
Fog), where each vmi

Fog is located on an NFog defined by 
following elements:

• The number of instructions that can be processed in a second is referred to as 
computing power (CP).

• Bandwidth (BW)  denotes a network-connected VM’s capacity to communi-
cate with other VMs and send data. Megabits per second (Mb/s) is the BW 
unit of measurement that we use in our work.

• Rate is an amount paid per minute.
• MC stands for memory capacity.

RUV = {RU1

vm
Fog

1

,…… ,RUd

vm
Fog

d

}

Fig. 1  Fog-cloud computing scenario [43]
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• a resource utilization amount RUi

vm
Fog

i

 that represents how much of a VM is being 

used at any one time and is determined by the aggregate of the sizes of the tasks 
that were allotted, as specified by Eq. (1).

where Zj represents the length of Task Tj and c is the number of tasks that have been 
allotted in vmi

Fog. The CL is intended to be the top layer in contact with the FL. It 
contains a collection of servers as well as a number of data centers DC = (DC1,…, 
DCe). Each server in DCi eliminates a group of VMs. VMi

Cloud = (vm1
Cloud… 

vmd
Cloud), where each vmi

Cloud ∈ DC is defined by a computation speed expressed by 
the number of instructions executed per second, a bandwidth indicating the features 
of a network linked to the other VMs and a cost per time unit.

3.3  Quality of service (QoS) metrics model

• Makespan:

The maximum time for a task to be completed within a workflow defines the Makes-
pan of the workflow G. The Makespan measure is provided by Equation (2) [44]:

where Ti denotes ith task in the workflow and TF(Ti) denotes the execution finish 
time of task Ti.

• Cost:

The cost measure shows the overall expense of executing a workflow. Equation (3) 
[44] provides the cost:

where the task’s execution completion time is represented as TF(Ti). The pricing 
unit of a VMj that processes the task Ti is Uj. The connection weight between Ti and 
Tj is represented by Cwij. The cost of transferring information between the machine 
where Ti is mapped and another machine where Tj has been affected is denoted by 
the symbol CTR ij.

• Energy Consumption:

The energy consumption cost is taken from [45], which contains active energy com-
ponents denoted by Eactive and idle energy components denoted Eidle. The Eactive is 

(1)RUi

vm
Fog

i

=

c
∑

j=1

Zj

(2)Makespan = max{TF
(

Ti
)

}

(3)Cost =

n
∑

i=0

m
∑

j=0

(TF(Ti) ∗ Uj) +

n
∑

i=1

m
∑

j=1

(Cwij ∗ CTRij)
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related to the energy used while performing a task, whereas the Eidle, is referred to 
the energy consumed by idle resources. The term "active energy" can be determined 
using

where α is a constant, fi represents the frequency and vi represent the supply voltage 
for the resource on which task i  is being performed. TS

(

Ti
)

 and TF
(

Ti
)

 represents 
the starting and finishing time of execution for task Ti, respectively. When idle, the 
resource enters a sleep state with a low power supply and less relative frequency. As 
a result, [45] is used to calculate the energy consumed over this period:

where  IDLEjk is a set of all idle slots of resource j. fmini and vmini represent the low-
est  supply  voltage  and frequency  of  resource  j,  respectively.  Ljk  is  the  amount 
of  idle  time  for  idlejk.  During  the  execution of tasks in the workflow,  the  overall 
energy consumed by the FCI is

• Resource Utilization Factor:

Resource Utilization Factor (RUF) is measured by assigning the most workload to 
each VM while staying within the resource utilization threshold, as well as by reduc-
ing cost and power use. In order to determine how well resources are being used, we 
use the RUF equation as described in Eq. (7) [46]:

The scheduling strategy that employs the least number of VMs for scheduling 
workflows and increases the RUF value is the one which optimally leverages the 
VMs, leading to greater energy efficiency of the system.

3.4  Problem formulation

The issue to be resolved is how to most effectively offload and schedule a specific 
workflow in a heterogeneous FCI while taking the user’s restrictions into account. 
The task scheduling issue is then resolved by establishing the sequence in which 
workflow tasks should be completed as well as the VMs to which they should be 
assigned. Some goals and restrictions must be met by the developed strategy. In 
this study, we want to maximize the computational resource usage while mini-
mizing the makespan and cost factors. Additionally, we aim to accommodate the 

(4)Eactive =

n
∑

i=1

�fiv
2
i

{

TF(Ti) − TS(Ti)
}

(5)Eidle =

m
∑

j=1

∑

idlejk ∈ IDLEjk�fmini
v2
mini

Ljk

(6)E = Eactive+Eidle

(7)RUF =
Ts

VMs



22326 P. Shukla, S. Pandey 

1 3

user’s financial and time restrictions. Consequently, the issue can be stated as fol-
lows: how to design a workflow scheduling strategy that distributes tasks to VMs 
in order to minimize makespan, cost but maximize computing resource utiliza-
tion while performing tasks within a restricted budget and time frame. We then 
express the issue formally as a multi-objective optimization problem which mini-
mizes objective parameters to be within enforced limitations.

where n is the number of objective functions, which is always greater than or equal 
to 2, and x = (x1, x2, ..., xr) ∈ X, F(X) is a vector of decision-making variables. X is 
also the set of possible solutions.

4  Proposed approach for resource management

In this section, we outline our proposed resource management approach for the 
FCI. The issue is seen as a complicated one that must be resolved in the best man-
ner possible while taking into consideration a number of factors such as objec-
tives and restrictions. Here, we suggest the use of a Multi-Agent System (MAS) 
model to provide a distributed resource management strategy. The MAS model 
that we suggest consists of three different kinds of cognitive agents, having one 
agent or a group of agents responsible for each layer of the system architecture, as 
shown in Fig. 2. These agents work together to achieve a certain goal.

• Terminal Agent:

A terminal agent (TA) is in charge of carrying out the workflow by actively seek-
ing the appropriate resources while abiding by the applicable QoS metrics and 
the established limits. The main function is for the TA to divide the workflow into 
three distinct sections, executing the light-weighted small tasks on its own, off-
loading delay-sensitive heavy tasks to Fog Agents (FA) as well as computation-
ally demanding huge tasks to the Cloud Agent (CA).

• Fog Agents {FA1…FAm}:

In an IoT area, each Fog Agents (FA) oversees a FN. Its main job is to react to a 
received scheduling request with an offer that maximizes its interest, meets the limi-
tations, and improves the enforced QoS metrics. When an offloading request is sub-
mitted; the Fog Broker (FB) is introduced as the central agent, assuring cooperation 
with nearby FAs and CA to develop an appropriate scheduling scheme with the least 
amount of waiting time. The next step is for the FB to scheduling delay-sensitive 
tasks among FAs and offloading computationally demanding tasks to the CA.

(8)
Multi−ObjectiveOptimization

{

minimize(x ∈ X)F(X) = (f1(x), f2(x), ..., fn(x))
}
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• Cloud Agents {CA1, …,  CAe}:

In the CS context, each Cloud Agent (CA) is a resource provider. The function of 
 CAi is to deliver an acceptable number of resources with the least processing time 
and minimal expense possible with the CS’s limitless resources [47]. If necessary, 
this agent can communicate with the FB. When it gets a request from a FB, it cre-
ates a scheduling solution with its resources. As a result, the CA is in standby mode 
awaiting a request. The FB tries to maximize the distribution of tasks across the FL 
while handling an IoT workflow.

4.1  Proposed algorithms

In this subsection, we describe the methods used for the task offloading and resource 
scheduling presented in this paper. The TA of workflow application must first be 
provided with the workflow to start the process of workflow partitioning, task clus-
tering and sequencing and task offloading. A fuzzy clustering-based task offloading 
request as shown in Eq. (9) is created by the TAs of workflow application after par-
titioning workflow into different clusters of tasks based on task length, input file size 
and output file size. We also develop task segmentation and sequencing techniques 
before the scheduling algorithm as the major objective is to minimize the overhead 
of the entire  scheduling procedure. Algorithm  1 depicts the various stages of our 

Fig. 2  Layered architecture of the proposed system model
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strategy, which aims to organize the processing of workflow while meeting the goals 
of both the user and the provider.

where Tid is a set of individual identifiers for every task in the workflow. PC repre-
sents how the tasks are related to one another and define the scheduling sequence 
that needs to be followed. Z indicates the length of task as defined by the number of 
instructions.
Algorithm 1:  Resource Management Algorithm

4.1.1  Fuzzy dominance‑based task clustering and offloading

Figure 3 provides an illustration of our proposed offloading approach. Workflows are 
grouped using a fuzzy workflow partitioning strategy in accordance with task speci-
fications. These task groups are then clustered into L clusters and assigned to the 
appropriate tiers using fuzzy task-layer assignment rule, which is created, evolved, 
and optimized.

Fuzzy logic integrates quantitative and qualitative data derived from human 
specialists. Task clustering is the initial and crucial phase in the fuzzy logic-
based workflow partitioning method, which tries to divide the workflows into 

(9)Req = {Tid,PC, Z}



22329

1 3

MOTORS: multi‑objective task offloading and resource…

tasks before realizing the current status of the VMs. The fuzzy nearness calcu-
lation approach employed in [48] is also used here to classify tasks into several 
clusters based on the three characteristics of the tasks.

As the computational workload directly influences the computing resource 
requirement, and the communication overhead influences the latency between dif-
ferent tiers. Three features of tasks: task length, input and output file size, are 
used to cluster the tasks. Equations (10) and (11) are used to determine the input 
and output file sizes for task k, respectively:

where the sets of parent and child tasks for task k are indicated by Parents(k) and 
Children(k), respectively. Apart from relationship among tasks in the workflow, each 
task can be identified by their well-known characteristics with three possible fuzzy 
values:

• Task Length: Z˜ ∈ {Short, Moderate, Long};
• Input File size: F˜in ∈ {Small, Medium, Large};
• Output File size: F˜out ∈ {Small, Medium, Large};

Fuzzy dominance is used for sorting and labelling the tasks in every dimension. 
Algorithm 2 is presented with the thorough pseudo-code. Figure 4a demonstrates 
how maximum nearness value is calculated and Fig 4b illustrates the computa-
tion of minimum distance between clusters. In accordance with every dimension 
as described in Algorithm-2, tasks are arranged in decreasing order of l˜ and the 
lowest, the mean, and highest values for every dimension are determined by the 
centroids of related clusters. In this manner, three levels are assigned to each task.

(10)F∼
in
(k) =

∑

j D∼(j, k), ∀j ∈ Parents(k)

(11)F∼
out
(k) =

∑

j D∼(k, j), ∀j ∈ Children(k)

Fig. 3  Proposed fuzzy dominance-based task clustering and offloading (FDTCO)
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Algorithm 2:  Fuzzy Dominance-based Task Clustering

After workflow partitioning, all tasks are tagged and grouped into 3 × 3 × 3 = 27 
clusters. The next step is to understand and identify the "cluster-layer" allocation 
rule, which is shown in Fig. 5. Each task cluster has three options: the TL, the FL 
and the CL. The solution space for layer assignment is  327, which is too big for the 
brute force technique. Therefore, this rule is created and optimized through thresh-
old tuning. After rigorous experimentation with huge numbers of permutations and 
combinations of possible scenarios, we finally devised the FIS rules for task-tier 
allocation. Following the determination of the task-layer assignment rule, the tasks 
will be distributed to the VMs of the respective layer in accordance with the pro-
posed scheduling technique.

4.1.2  Task segmentation algorithm

The segmentation algorithm is executed as soon as a set of offloaded workflow 
tasks are received from the TA. This algorithm was created to handle a variety of 
operations that may be carried out on the FL. These tasks are distinguished from 
those demanding advanced computing abilities over  the limits of the FN by the 
demands which fall under the capability of the available resources. This phase 

Fig. 4  a Maximum nearness value (upper) b Minimum distance (below)
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is carried out by the FL by comparing every task in the workflow using Eq. (12), 
which specifies the Computation Intensity (CI) of a task on a FN.

where CT stands for execution completion time of the task and f stands for the oper-
ating frequency of the FN, which is the combined clock speed of the processors run-
ning on that FN. It can be calculated by the aggregating computing power CP of the 
VMs associated with FN shown in Eq. (13) and can be measured in million instruc-
tions per second (MIPS).

Applying Eq. (12) yields two groups of values: (1) the group of light computa-
tion activities creates CI values that are trending toward 0 and less than 1, and (2) 
the group of computation-intensive  activities generates CI values that are more 
than 1. In our study, each task is given a binary variable named type (Ti) = 1 or 0, 
which reflects the task’s category. This type (Ti) variable is used in further steps 
for making optimal offloading decision. Equation (14) specifies the variable type 
of task Ti. Algorithm 3 illustrates the task segmentation phases that the FA will 
carry out.

(12)CI =
CT

f

(13)f =

m
∑

j=1

CPj

(14)type
(

Ti
)

=

{

1, if 0 < CI(Ti) < 1

0, if CI(Ti) ≥ 1

Fig. 5  Fuzzy rules for task–layer assignment
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Algorithm 3:  Task Segmentation Algorithm

4.1.3  Task sequencing

The tasks sequencing procedure, which is accomplished using the Topological Sort-
ing Algorithm (TSA), is the second action taken by the FB [49]. We use the TSA to 
adhere to the restriction on task precedence. The goal is to produce an ordered list L 
that organizes the workflow tasks while taking into consideration the dependencies 
between the tasks in terms of priority. It should be noted every task gets added to the 
queue only once. When the TSA is applied to the workflow instance made up of five 
tasks, depicted by the DAG in Fig. 6, the order of tasks is given sequentially as L = 
(a, c, d, b, e).

Each task belonging to the workflow is characterized by a list of parent tasks 
containing the previous tasks. Next, a list of parent tasks that include the preceding 
tasks is a characteristic of every task in the workflow. Then, using the set of parent 
tasks, a list named edge-value was constructed, which represents the total number of 
input edges of every task. The list edge-value determined for the example workflow 
depicted in Fig. 6 is illustrated in Table 2.

Firstly, the task with the list edge-value = 0 will be inserted into the list L and will 
then be labelled as visited. This task has no predecessor tasks and will be regarded 
as a root task. The subsequent tasks will then be appended to the list named queue. 
The result is a reduction of 1 in the total number of edges. The task will be recorded 

Fig. 6  DAG representation of a 
workflow with five tasks
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as visited and inserted into L whenever this edge-value  of a task  reaches 0. Once 
a task with no child is encountered,  the algorithm terminates and all the tasks are 
then labelled as visited. The conclusive arrangement of workflow tasks by the TSA 
is shown in Fig. 7. The FB transmits the L list to the CA. To generate comprehen-
sive and effective execution, the task  scheduling algorithm is then applied to the 
workflow across both levels. In this procedure, the tasks whose value type = 0 are 
assigned to the FA, while the tasks whose value type = 1 are assigned to the CA.

4.1.4  Task scheduling

We describe the workflow scheduling method in this section. It attempts to bring 
together the competing goals of the user and service provider. We handle the work-
flow scheduling problem as a multi-objective optimization with constraint satisfac-
tion problem. The workflow scheduling problem in FCI often aids in identifying 
the best scheduling that maximizes one or more QoS metrics. In this scenario, we 
present a resource scheduling strategy with multi-objective optimization for Makes-
pan, cost, and resource utilization. These are described in Sect.  3.3. The Genetic 
Algorithm (GA), which we combined with Harmony Search algorithm (HSA) and 
to form Hybrid Meta-heuristic-based Optimized Resource Scheduling Algorithm 
(HORSA) for scheduling scientific workflow, will shorten Makespan, reduce costs, 
and improve resource utilization in the FL and CL. In this part, we describe each 
stage of the proposed algorithm.

HSA has a high convergence speed but a poor level of accuracy. The usage of 
GA is widespread and simple to adopt, although there are still certain gaps. Actu-
ally, the individual/chromosome in GA and the harmony in HS are two distinct 
representations of a viable solution. Additionally, populations in GA and harmonic 
memory in HS are two alternative formulations for a collection of practical solu-
tions. These serve as the foundation for the introduction of HSA into GA. Harmony 
memory (HM) and population, as well as chromosomes and harmony, are properly 
interlinked. As a result, the novel HORSA algorithm is proposed.

The proposed HORSA algorithm’s primary step is to first set up several param-
eters, such as maximum number of iterations (MI), population size (PS), crossover 

Table 2  Number of edges for 
tasks

Tasks a c d e b

Edge-value 0 1 1 2 1

Fig. 7  The linear order of the graph
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rate (CR), mutation rate (MR),  harmony memory size (HMS), harmony memory 
considering rate (HMCR), pitch adjusting rate (PAR), number of iterations (NI), and 
displacement bandwidth (BW). Determine each individual’s fitness value through-
out the population. Then Create the subsequent population using selection, crosso-
ver and mutation. Consider the following population to be a HM, and each indi-
vidual  to be a harmony. Produce New-Harmony using HS. Recalculate the fitness 
value for each individual in the population. Until satisfactory outcomes are attained, 
the entire procedure is repeated. Figure 8 shows the flowchart of proposed HORSA 
algorithm.

When compared with GA, the novel HORSA algorithm  improves the speed of 
convergence and capacity to find the best solution. In each cycle, if all the  indi-
viduals  of the entire population are processed by both GA and HS,  then duration 
of operation and degree of complexity of the novel HORSA  algorithm will be 
greater than that of GA. This paper gives two enhancements that take into account 

Fig. 8  Flowchart of proposed hybrid-heuristic-based optimized resource scheduling algorithm (HORSA)
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the result quality, convergence rate, and complexity of the proposed algorithm. The 
first improvement of this new approach is that GA is utilized as a  global heuris-
tic throughout all iterations, but HS is executed only when the number of iterations 
is an integral multiple of N (N is an integer), to make the local heuristic more effec-
tive. Second improvement of this approach is to execute HS on only M (M is an inte-
ger) chromosomes after running GA on the next generated population in each round. 
These improvements reduce the amount and size of HS operations to make HORSA 
quicker and simpler.

• Initial population generation:

We utilize the genetic approach to initialize a population. Here w tasks are allocated 
VMs at random (w is greater than half of total number of tasks and less than the 
total number of tasks), while the remaining tasks are allocated to VMs such that 
exploitation of available resources is maximum. The calculation of resource utiliza-
tion magnitude (RUM) is specified in Eq. (15), which was inspired by the research 
presented in [46, 50]. This condition is equivalent to when the task Ti is scheduled in 
the VM vmj.

where MUi,j is determined using Eq. (16) which shows the total quantity of memory 
utilized by a VM vmj, when a task Ti of size Zi is assigned to the vmj. MAi,j is deter-
mined using Eq. (17) shows the quantity of memory of vmj that is still available if Ti 
is assigned to vmj.

The MCj variable denotes the memory capacity of vmj. The task-resource alloca-
tion which maximizes the RUM is the one which most effectively equalizes the RU 
in the VM. A positive or zero number is always used to quantify the RUM, just like 
any other metrics.

Evaluation of Fitness Function:
A multi-objective fitness function F that maximizes makespan, cost, and RUF is 

used in the GA assessment stage. As stated in Eq. (18), the fitness function maxi-
mizes the makespan by α, the cost values by β, and the RUF by �.

In the first phase, we assume that all accepted QoS measures are satisfied with 
weights that are equal. In accordance with the decision-maker’s choices, we might 
give each goal or measure more or less weight. When F is applied to the result-
ing solutions, the GA will eventually reach at an efficient schedule that minimizes 
Makespan and cost  and ensures the optimal utilization of VMs. The proposed 

(15)RUM
(

Ti, vmj

)

=

√

(MUi,j −MAi,j)
2

(16)MUi,j = RU
j

vm
Fog∕Cloud

i

+ Zi

(17)MAi,j = MCj −MUi,j

(18)F = � ∗ MakespanNormalized + � ∗ CostNormalized + � ∗ RUFNormalized
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approach seeks to optimize a collection of QoS measures with widely varied 
scales and values, whereas normalization is a crucial calculation. The RUF is one 
statistic that should be maximized, while cost and Makespan are two metrics that 
should be minimized. Equation (19) establishes the normalization formula [45].

where MaxQoS specifies the highest value of QoS attained till current itera-
tion. Equation (19) determines the normalized value for a certain QoS measure 
after every iteration.

• Selection operation:

The selection process facilitates us in  picking the pairs of chromosomes (solu-
tions) that act as inputs for the crossover process. In our approach, we choose a 
pair of individuals (solutions) using a binary tournament. This includes choosing 
a couple randomly from the overall population and identifying the best individual 
(the one with maximum fitness value  is selected in the case of maximization). 
This process will be performed once more. These  two chosen chromosomes  are 
designated as parents during the crossover procedure.

• Crossover operation:

The crossover operation is employed to produce a new solution using two-parent 
solutions. The goal is to produce new individual(offspring) in the present popula-
tion by blending various components of existing individuals  [47]. After picking 
two parent solutions(schedules) from the population namely Parent1 and Parent2, 
the crossover operator now  chooses two random spots  (task-ids)  in the  Par-
ent1  solution(schedule). The values at  the chosen spots (resource-ids) are then 
swapped with the corresponding spots in Parent2 solution(schedule).

A crossover operation using Parent1 and Parent2 is shown in Fig. 9 as an exam-
ple. Initially, the tasks Tb, Tc, Td and Te are randomly selected from Parent1. The 
resource-ids  are then exchanged between both parent schedules to generate the 
new schedules, namely Offspring.

(19)QoSNormalized =

{ QoSi

maxQoSi
, if QoS is to be minimized

1 −
QoSi

maxQoSi
, if QoS is to be maximized
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• Mutation operation:

The mutation operation is employed to reintroduce stochastic characteristics that 
are unrelated to any of the parent solutions, which prevents  converging to a local 
optimum solution [45]. We apply permutation mutation as the mutation mechanism 
in our approach. The primary goal is to alter the order in which a solution  com-
pletes tasks. The two primary phases of the mutation process are (1) selecting a 
task at random from the solution, and (2) selecting a different resource-id at random 
that replaces  the selected  task allocation [36]. Figure 10 shows an instance of the 
mutation process being applied to Parent using permutation to create new offspring, 
referred to as Offspring. The instance given involves the selection of TC at random, 
followed by a random change in the allotted resources.

• Applying Harmony Search:

In 2001, Z. W. Geem proposed the harmony search algorithm. It is a brand-new, 
clever optimization algorithm that mimics the way musicians improvise music 
by constantly  adjusting the pitches of their musical  instruments  in order to get 
the ultimate, ideal harmony. HSA correlates the ith decision variable with the ith 
musical instrument, the jth solution vector with the Harmony Hj (j = 1, 2,…, M) 
produced by all musical instruments, and the objective function with evaluation. 
The fundamental step in the HS procedure is to first set up the parameters HMS, 
HMCR, PAR  and BW. Afterward, placing the initial solution vectors i.e. HMS 
in  HM  which  were produced at random. For each New-Harmony component 

Fig. 9  Illustration of crossover operator on Parent1 and Parent2

Fig. 10  Illustration of mutation operator on parent



22338 P. Shukla, S. Pandey 

1 3

(solution vector), we can either randomly find and pick in HM with a probability 
of HMCR  or we can  randomly  find values throughout the range without taking 
HM into consideration with a probability of 1-HMCR. When doing a search in 
HM, move the New-Harmony component with a probability of PAR to nearby val-
ues that are under a BW range. When the New Harmony has been created, if it is 
superior to the worst old harmony in HM, HM should now include the New-Har-
mony while excluding the worst old one. Until satisfactory results are attained, 
this procedure is repeated. The HSA flowchart is shown in Fig. 11. Algorithm 4 
presents an illustration of the way the GA is used for workflow scheduling. The 
initial population is created in lines 4–8, and the produced population is evaluated 
in line 9. The instructions for using the genetic operators following the harmony 
search are provided in the remaining sections of the procedure. The proposed 
algorithm produces the optimal resource schedule as its result.

Algorithm  4:  Hybrid Meta-heuristic-based Optimized Resource Scheduling 
Algorithm (HORSA)

Fig. 11  Flowchart of harmony search algorithm
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5  Performance evaluation

5.1  Workflow datasets

The proposed technique is effectively evaluated in this research using five well-
known scientific processes [51] from distinct scientific fields. The DAG XML files 
that describe each of these scientific operations are utilized as input for the simu-
lations, which are released by the Pegasus project [52]. Inspired from the existing 
works [15, 16, 53–55], we have utilized five well-known workflow datasets which 
belong to different area of application and has different DAG structures. And the 
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diversity of these workflow datasets contributes to validating the generality and 
applicability of our proposed algorithm across different domains and scenarios. 
These workflows are made up of a variety of tasks, dependencies, run-times, and 
data that must be passed from one task to another. A simple graphical representation 
of the workflows used is shown in Fig. 12.

The following is a description of these workflow datasets:

(1) Montage workflow: This illustrates an astronomy project that produces unique 
sky mosaics from a variety of input photographs.

(2) CyberShake workflow: This approach is used to describe the earthquake risks 
that exist in a specific region.

(3) Epigenomics workflow: This is used in bioinformatics to automate many steps 
involved in processing genome sequences.

(4) LIGO (Inspiral) workflow: This method is used to find gravitational waves.
(5) Sipht workflow: This is used to automatically search all bacterial replications for 

sRNA producing genes.

Fig. 12  Structure of scientific workflows: a Montage, b CyberShake, c Epigenomics, d LIGO, e SIPHT 
[53]
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5.2  Simulation environment

The primary purpose of this study is to determine the efficacy of the proposed work-
flow offloading and task scheduling strategy in the heterogeneous FCI. Since Fog-
WorkflowSim is the most widely used simulator and provides a full simulation envi-
ronment for optimizing workflow execution in the FCI [54], we employ it with the 
Fuzzy logic toolkit to conduct our experiments. We have used a collection of five 
standard scientific workflows with variety of task sizes to replicate various workflow 
application in our simulation. First, we simulated some lightweight IoT applications 
using workflows of 20–80 interconnected tasks. Then, we simulated computationally 
expensive applications using workflow of 100–1000 tasks. As the FogWorkflowSim 
platform uses iFogSim to mimic the computing environment, we configured it with 
various configurations of resources to create heterogeneous environment and all FNs 
includes VMs with reduced performance than that of the CS. Inspired by the FAT-
ETO technique [55], the simulated infrastructure comprises of 5 mobile devices, 5 
CSs working with 5 FNs.

Table 3 lists the settings of simulation environment. The MIPS of the VMs at FN 
are kept between 1200 and 1600, and those of the CS between 1600 and 2000. We 
began by first implementing our proposed FDTCO techniques and evaluate the QoS 
improvement with and without using our strategy in terms of makespan, cost, energy 
consumption and resource utilization. We then implemented our proposed HORSA 
algorithm along with some existing resource scheduling techniques [56–58] in 
FCI to assess the QoS parameters in terms of makespan and cost. Here, the multi-
objective fitness function of the optimization algorithm is evaluated by assigning 
makespan, cost and RUF with an equal weightage of 33.33% each. Figure 13 shows 
the parameter tuning of the proposed HORSA algorithm based on Makespan(MS), 

Table 3  Simulation environment settings

Parameters MD FD CS

Number of servers/devices 5 5 5
Processing Speed (MIPS) MD1—1000, MD2—1000, 

MD3—1000, MD4—
1000, MD5—1000

FN1—1200, FN2—
1300, FN3—1400, 
FN4—1500, 
FN5—1600

CS1—1600, 
CS2—1700, 
CS3—1800, 
CS4—1900, 
CS5—2000

Task Execution Cost ($) 0 FN1—0.1, FN2—0.2, 
FN3—0.3, FN4—
0.4, FN5—0.5

CS1—0.5, CS2—
0.6, CS3—0.7, 
CS4—0.8, 
CS5—0.9

Communication cost ($) 0 0.01 0.02
Active power (MW) 700 800 1600
Idle power (MW) 30 40 1300
Uplink bandwidth (Mbps) 20 10 1
Downlink bandwidth 

(Mbps)
40 10 10
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Cost(CO) and Energy Consumption(EN) and Algorithm Running Time(ART). The 
parameters tuning of GA’s algorithmic parameters like MaxIter, MaxSize, CR, and 
MR are done and also compared with [53, 59] before finalizing the parameter values 
used during the simulation. Table 4 enlists the optimal parameter settings after run-
ning the HORSA with a number of different combinations of algorithm parameter 
values.

5.3  Results and evaluation

The evaluation of our strategy in terms of its efficacy in the FCI and a comprehen-
sive result comparison of our proposed approach with other existing strategies are 
covered in this section. Three performance metrics are used to evaluate our proposed 
techniques are makespan, cost, and resource usage. These performance metrics are 
described in Eqs. (2)–(7). We repeated each experiment 10 times and we have exe-
cuted 100 iterations for each experiment. Finally, we compared average of makes-
pan, cost, resource usage of our approach to those of the existing techniques. Our 
proposed MOTORS algorithm (combination of FDTCO and HORSA) outperformed 
existing approaches measured in terms of percentage variation in QoS parameters.

5.3.1  Evaluation of proposed FDTCO algorithm

The simulation assessment of our proposed offloading technique was done in terms 
of four QoS indicators on five benchmark workflow datasets having various sizes 
of workflows. First, we simulated all the five benchmark workflow datasets while 
increasing the number of tasks in the workflow from 20 to 1000. Figures 14, 15, 16, 
17, 18 show the workflow execution outcomes in terms of percentage improvement 
in makespan and cost. The QoS metric improvement of our proposed offloading 
techniques is shown in Tables 5 and 6. We compare our proposed scheduling strat-
egy with and without the proposed offloading algorithm in order to better understand 
the significance of offloading techniques that effectively distributes workflow tasks 
across FL and CL in heterogeneous FCI. The goal of this experiment is to determine 
if the proposed offloading strategy can enhance the collaboration between resources 

Fig. 13  Parameter tuning of (HMCR, PAR, BW) in proposed HORSA
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at CL and FL. For this, we used five standard scientific workflows with 20–1000 
tasks to apply our resource scheduling method. We used a number of configurations 
of proposed HORSA algorithm with equal weights allocated to the makespan, cost, 
and RUF. Then, we conducted experiments with our resource scheduling strategy, 
first without taking the offloading method into consideration and then with it. First, 
our proposed technique is concurrently launched in CL and FL conditions. Then, 
the fitness function used in the HORSA implementation optimizes the quality of all 
chosen QoS indicators.

Fig. 14  Difference percentage between QoS (Makespan-Diff % and Cost-Diff %) generated with pro-
posed FDTCO algorithm (Makespan-2 and Cost-2) and without offloading algorithm (Makespan-1 and 
Cost-1) using Montage Workflow

Fig. 15  Difference percentage between QoS (Makespan-Diff % and Cost-Diff %) generated with pro-
posed FDTCO algorithm (Makespan-2 and Cost-2) and without offloading algorithm (Makespan-1 and 
Cost-1) using CyberShake Workflow
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The outcomes of using our resource scheduling strategy without taking the off-
loading method into account are shown in Table 5. In all algorithm settings, we see 
that the number of tasks carried out by the FL is much larger than those carried 
out by the CL. Because the method gives the highest priority to the top-performing 
VMs, the resource scheduling solutions derived in this way are optimized in terms 
of makespan. As the technique maximizes resource utilization at FL and reduces 
the number of VMs utilized at CL, resource scheduling solutions are also optimized 
in terms of load balancing. The outcomes of testing our strategy using the FDTCO 

Fig. 16  Difference percentage between QoS (Makespan-Diff % and Cost-Diff %) generated with pro-
posed FDTCO algorithm (Makespan-2 and Cost-2) and without offloading algorithm (Makespan-1 and 
Cost-1) using Epigenomics Workflow

Fig. 17  Difference percentage between QoS (Makespan-Diff % and Cost-Diff %) generated with pro-
posed FDTCO algorithm (Makespan-2 and Cost-2) and without offloading algorithm (Makespan-1 and 
Cost-1) using Inspiral Workflow
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technique are shown in Table 6. According to the analysis, the quantity of tasks in 
the CL and FL varies drastically, which enhances intra-layer cooperation. The QoS 
values produced by this experiment are quite better than those of the previous trial. 
As there are heterogeneous VMs in all three layers, the metric values of makespan, 
energy consumption and cost vary drastically for all considered workflow datasets. 
We found that the number of tasks executed in the FL increased in direct propor-
tion to the number of tasks in the workflow. As a result, carrying out more tasks in 
the FL instead of CL can have a big impact on the Makespan metric which exceed 
the delay constraint. Furthermore, the cost metric is also impacted by increasing the 
number of tasks in a computing layer.

The difference between the makespan of the solution produced using our HORSA 
technique and the FDTCO algorithm (Makespan-1) and the makespan of the solu-
tion produced without the offloading (Makespan 2) is shown in Figs.  14, 15, 16, 
17, 18 in terms of percentage computed with percentage variation. The findings for 
montage, CyberShake and epigenomics workflow datasets show that the makespan 
difference surpass 50%, which may be regarded as a huge improvement in makes-
pan. We highlight from the findings that average of makespan difference is approxi-
mately 10% and 15% for inspiral and SIPHT workflow, respectively, which is also 
significant enhancement in makespan. The cost of scheduling solutions for all work-
flow datasets is shown to be greatly reduced when the FDTCO technique is used, 
as shown in Figs. 14, 15, 16, 17, 18. In comparison to the first trial without the off-
loading technique, the difference in cost is reduced by 25%, 20%, 15% and 15% on 
average for montage, epigenomics, inspiral and SIPHT workflow, respectively. This 
reduction in difference in cost from the first experiment without the offloading tech-
nique is typically 100% for CyberShake workflow.

In summary, we can say that the cooperation between CS and FN resources to 
optimize QoS metric values is greatly improved by our proposed FDTCO technique. 

Fig. 18  Difference percentage between QoS (Makespan-Diff % and Cost-Diff %) generated with pro-
posed FDTCO algorithm (Makespan-2 and Cost-2) and without offloading algorithm (Makespan-1 and 
Cost-1) using SIPHT Workflow
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Table 5  QoS and task distribution of proposed HORSA without offloading algorithm on benchmark 
workflow datasets

Workflow 
dataset

Makespan 
(s)

Energy 
consumed 
(J)

Cost ($) RUF at 
CL

RUF at 
FL

No. of 
tasks in 
CL

No. of 
tasks in 
FL

No. of 
tasks in 
TL

Montage 
20

122 7 59 0.4 3.2 2 16 3

Montage 
40

193 10 111 0.4 7.2 2 36 3

Montage 
60

278 14 161 0.4 11.2 2 56 3

Montage 
80

350 18 204 0.4 15 2 75 4

Montage 
100

415 21 257 0.4 19.2 2 96 3

Montage 
200

794 38 639 0.4 39.2 2 196 3

Montage 
300

1520 42 1072 0.4 59.2 2 296 3

Montage 
1000

4140 126 3417 0.4 199.2 2 996 3

Cyber-
Shake 
30

78,250 593 29,664 2.4 1 12 5 14

Cyber-
Shake 
50

76,628 897 45,715 4.6 1 23 5 23

Cyber-
Shake 
100

128,817 1786 55,901 8.4 3 42 15 44

Cyber-
Shake 
1000

242,670 3596 45,821 85.8 22.4 429 112 460

Epigenom-
ics 24

11,782 406 6029 0 2 0 10 15

Epigenom-
ics 47

18,179 612 10,619 0 4.6 0 23 25

Epigenom-
ics 100

149,075 4498 94,555 0 8 0 40 61

Epigenom-
ics 997

549,290 35,419 813,211 0 90 0 450 548

Inspiral 30 1729 72 1513 1.4 4.6 7 23 1
Inspiral 50 2532 125 2630 2.4 7.6 12 38 1
Inspiral 

100
2997 192 4627 4.8 9.2 24 46 1

Inspiral 
1000

18,464 1904 48,981 50.2 149.8 251 749 1

Sipht 30 3060 109 1802 0.2 4.4 1 22 7
Sipht 60 3681 146 3019 0.4 10.2 2 51 6
Sipht 100 4964 147 4148 0.6 17.8 3 89 6
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Consequently, to fulfil the rising demands of workflow applications, the FCI should 
be preferred under such circumstances. In comparison to resource scheduling with-
out the offloading technique, our FDTCO approach produced resource scheduling 
solutions that are more cost and makespan effective.

5.3.2  Evaluation of proposed MOTORS Algorithm (combination of FDTCO 
and HORSA)

We evaluated the average makespan and cost produced by our proposed technique 
with those of other existing techniques in order to illustrate the efficiency of our 
approach in comparison to existing approaches. The average makespan of five 
benchmark workflows with tasks ranging between 20 and 1000 is shown in Figs. 19, 
20, 21, 22, 23, 24, 25, 26, 27, 28 along with a comparison with other existing meth-
ods. When compared to the ACO [56], HPSOGWO [57] and MAA [58] techniques 
our proposed technique provides a significant reduction in makespan. In compari-
son to ACO [56], HPSOGWO [57] and MAA [58], our technique often reduces the 
value of makespan by an average of 91%, 88% and 49%, respectively. Our method 
reduces the makespan by using both the fuzzy dominance-based task clustering and 
offloading approach and the multi-objective optimization using the hybrid approach 
of HSA and GA, which involves offloading tasks, optimizing the scheduling based 
on makespan, cost and RUF metrics, and then repeatedly running the HORSA until 
it reaches satisfactory values. The HPSOGWO technique also involves optimizing 
other QoS metrics, including makespan, cost, latency, reliability, and availability 
that have an impact on makespan values. However, as shown in Figs.  19, 20, 21, 
22, 23, 24, 25, 26, 27, 28, our strategy results in an average cost that is somewhat 
greater than that of other alternatives. The average difference between our outcomes 
and the ACO [56], HPSOGWO [57] and MAA [58] approaches is roughly 129%, 
112% and 100%, respectively, this variation in cost that are still acceptable.

The optimization balance of our proposed technique when compared to others 
between makespan and cost metrics that we show previously is thereafter supported 
by Table 8. We use the average of QoS metrics to precisely compare how the algo-
rithms vary from one another. We provide the average makespan produced by the 
four analyzed techniques in Figs. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28. The find-
ings indicate that the average values are noteworthy, particularly for montage work-
flows with 20 to 1000 tasks, demonstrating that our technique provides much lower 
makespan metrics than previous approaches. The average of the cost produced by 
the comparative algorithms are shown in Figs. 19, 20, 21, 22, 23, 24, 25, 26, 27, 28. 
According to the findings, the improvement is seldom as significant as it was in the 

Table 5  (continued)

Workflow 
dataset

Makespan 
(s)

Energy 
consumed 
(J)

Cost ($) RUF at 
CL

RUF at 
FL

No. of 
tasks in 
CL

No. of 
tasks in 
FL

No. of 
tasks in 
TL

Sipht 1000 22,572 1206 37,948 6.4 180.4 32 902 35
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Table 6  QoS and task distribution of Proposed HORSA with FDTCO Algorithm on benchmark work-
flows datasets

Workflow 
dataset

Makespan 
(s)

Energy 
consumed 
(J)

Cost ($) RUF at 
CL

RUF at 
FL

No. of 
tasks in 
CL

No. of 
tasks in 
FL

No. of 
tasks in 
TL

Montage 
20

60 6 47 0.00 3.00 0 15 6

Montage 
40

95 10 91 0.00 7.20 0 36 5

Montage 
60

133 14 129 0.20 11.00 1 55 5

Montage 
80

163 17 169 0.20 15.00 1 75 5

Montage 
100

203 18 213 0.40 19.00 2 95 4

Montage 
200

647 26 419 0.40 39.40 2 197 2

Montage 
300

1108 38 704 0.40 59.40 2 297 2

Montage 
1000

3633 111 2241 0.60 199.00 3 995 3

Cyber-
Shake 
30

39,149 1185 220 0.00 3.00 0 15 16

Cyber-
Shake 
50

39,078 1191 228 0.00 5.20 0 26 25

Cyber-
Shake 
100

40,818 1258 452 0.00 10.60 0 53 48

Cyber-
Shake 
1000

41,699 1615 371 0.00 100.40 0 502 499

Epigenom-
ics 24

6756 220 4450 0.00 3.20 0 16 9

Epigenom-
ics 47

9603 319 8629 0.00 5.40 0 27 21

Epigenom-
ics 100

73,020 2221 74,491 0.00 9.40 0 47 54

Epigenom-
ics 997

270,192 17,486 640,658 0.00 82.20 0 411 587

Inspiral 30 1252 44 1292 0.00 5.60 0 28 3
Inspiral 50 1985 76 2179 0.00 9.00 0 45 6
Inspiral 

100
3200 130 3860 0.00 17.80 0 89 12

Inspiral 
1000

19,716 1292 40,866 0.00 180.80 0 904 97

Sipht 30 3137 111 1468 0.20 1.60 1 8 21
Sipht 60 3245 132 2582 0.40 3.40 2 17 40
Sipht 100 3530 172 3457 0.60 4.20 3 21 74
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makespan example. This indicates that our method produces cost metrics that are 
almost identical to those of the other existing methods. We come to the conclusion 
that our technique provides the best resource scheduling solutions in terms of cost 

Table 6  (continued)

Workflow 
dataset

Makespan 
(s)

Energy 
consumed 
(J)

Cost ($) RUF at 
CL

RUF at 
FL

No. of 
tasks in 
CL

No. of 
tasks in 
FL

No. of 
tasks in 
TL

Sipht 1000 17,275 1412 31,623 6.40 46.20 32 231 706

Fig. 20  Average Cost of the Montage workflow

Fig. 19  Average Makespan of the Montage workflow
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and makespan after assessing its efficacy in comparison to ACO [56], HPSOGWO 
[57] and MAA [58] in multi-objective optimization.

All the QoS parameters of the existing techniques are compared with that of our 
proposed technique. Figures 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 show the makespan 
and cost metric outcomes after simulating all the five workflow datasets. As seen in 
all the simulation results, the makespan and the cost metric rises as number of tasks in 
workflow is increased from 20 to 1000 for all workflow datasets. Tables 7 and 8  dem-
onstrates the proposed algorithm’s makespan (shown in bold letters) and execution cost 
(shown in bold letters) of workflow, respectively, which yields better QoS metrics with 
respect to other existing techniques. This is because the number of tasks carried out 

Fig. 21  Average Makespan of the CyberShake workflow

Fig. 22  Average Cost of the CyberShake workflow
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two tiers (FL and CL) are now divided into three tiers (TL, FL and CL). Makespan 
values have decreased because more VMs are being used to perform the same number 
of tasks. This facilitates task scheduling across an increasing number of VMs. This ten-
dency may be seen as a slight decline in RUF.

Fig. 23  Average Makespan of the Epigenomics workflow

Fig. 24  Average Cost of the Epigenomics workflow
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6  Conclusion

In this paper, a fuzzy dominance-based task clustering and offloading technique 
(FDTCO) along with a hybrid optimization-based resource scheduling algorithm 
(HORSA) is proposed for workflow applications in FCI having heterogeneous 
resources with different communication costs. HORSA is based on hybridization of 
GA and HS. We have simulated five different workflow datasets: Montage, Cyber-
Shake, epigenomics, LIGO (inspiral) and SIPHT and calculated average makespan, 
average cost, average RUF and average energy consumption. We have evaluated our 
proposed MOTORS algorithm, which is a combination of FDTCO and HORSA, 

Fig. 25  Average Makespan of the Inspiral workflow

Fig. 26  Average Cost of the Inspiral workflow
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against existing resource management techniques such as ACO, HPSOGWO and 
MAA algorithm. The proposed MOTORS algorithm effectively optimizes the task 
offloading and resource scheduling solution in terms of makespan, cost, resource 
utilization, and energy consumption. To maximize its ability to collaborate, the FL 
and CL have an optimal number of VMs.

In the future work, we will present an approach that support mapping the tasks 
on resources for communication intensive applications with more efficient out-
comes. Further we will simulate our proposed method by scaling up the size of 

Fig. 27  Average Makespan of the SIPHT workflow

Fig. 28  Average Cost of the SIPHT workflow
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workflows for a larger number of tasks and other types of workflows datasets. We 
can also include the deadline and cost constraint. We can even utilize machine 
learning or deep learning techniques for efficient task offloading and optimal 
resource scheduling in FCI.
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