
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:22885–22912
https://doi.org/10.1007/s11227-024-06310-7

1 3

A collaborative cache allocation strategy for performance
and link cost in mobile edge computing

Hui Xiao1 · Xinyu Zhang1 · Zhigang Hu1 · Meiguang Zheng1 · Yang Liang1,2

Accepted: 17 June 2024 / Published online: 29 June 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Mobile Edge Computing (MEC) represents a novel paradigm dedicated to address-
ing the challenge of facilitating rapid access to an immense volume of content over
mobile networks. However, improper cache placement and usage, coupled with fluc-
tuating requests for cached data at diverse timeframes, exhibits considerable vari-
ability. Despite the abundance of optimization techniques, a majority of them lack
the adaptive capacities needed to navigate dynamic caching environments efficiently.
Furthermore, many studies employ online deep learning methodologies, but a slow
convergence speed during the training process can potentially compromise caching
performance and hinder dynamic goal adjustment in alignment with realistic pro-
vider requirements. We propose an integrative utility function encapsulating the
worth of cached content and the cost associated with transmission links. By dynami-
cally modifying weight values, this function can concurrently meet the performance
and link cost demands of edge computing caching systems. To enhance the real-
time response of the caching policy and the efficiency of deep learning, we intro-
duce a Collaborative two-stage Deep Reinforcement Learning (CDRL) framework
for devising the caching policy model. CDRL utilizes Double Deep Reinforcement
Learning (DDQN) for pre-training in the caching environment to make pre-caching
decisions and employs a Deep State-Action-Reward-State-Action (SARSA) algo-
rithm for online training and caching decision-making. Experimental results con-
vincingly demonstrate the proposed method’s efficacy in improving the cache hit
rate, service latency, and link cost.

Keywords  Mobile edge computing (MEC) · Cache strategy · Collaborative two-
stage deep reinforcement learning (CDRL) · Double deep reinforcement learning
(DDQN) · State-action-reward-state-action (SARSA)

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06310-7&domain=pdf

22886	 H. Xiao et al.

1 3

1  Introduction

In recent years, the widespread popularity of 5 G networks and the massive data
generated by mobile devices (such as short videos, images, and mobile games) have
given rise to many new issues [1]. In conventional cloud computing, while storage
and computational services are extended to mobile devices, orchestrating data col-
lection and processing within the cloud can induce significant and erratic network
latencies. Recognizing the constraints of standard cloud computing within the IoT
domain, scholars have conceptualized a refreshed computing framework denoted as
MEC. As depicted in Fig. 1, a typical MEC architecture is delineated across three
levels: the end-user level, the proximal edge server level, and the overarching cloud
data center level. Given the inherent constraints in computing and storage capabili-
ties of terminal apparatuses to satisfy a multitude of application demands, the task
of storage and computation is frequently relegated to adjacent edge servers. These
edge servers, essentially diminutive storage and computational nodes situated in
proximity to terminal devices, are tethered through established wired connections
[2]. They offer cloud-analogous environments at the network’s frontier, facilitating
the caching and computational exigencies of the terminal devices.

MEC holds significant importance across various domains, encompassing
smart urban developments, telehealth services, expansive manufacturing units,
and cohesive business sectors. Within the confines of classic cloud computing,
cloud data centers are often burdened with supplying extensive cache data. Yet,
constraints associated with network throughput and bandwidth can detrimentally
impact the Quality of Service (QoS) extended to users. Given that edge servers
are strategically positioned nearer to users compared to cloud servers, it’s feasible

Fig. 1   MEC architecture that supports caching

22887

1 3

A collaborative cache allocation strategy for performance…

to handle data processing at the edge, sidestepping the need for cloud-centric
operations. This approach curtails back-and-forth data transmissions, minimizes
latency, and enhances the QoS for end-users. The extensive storage and computa-
tion demands ushered in by mobile devices introduce nuanced challenges to the
prevailing MEC landscape. The escalating adoption of mobile devices coupled
with the influx of data traffic exerts pronounced pressure on edge servers, espe-
cially those grappling with constrained caching capabilities [3]. Concurrently,
age-old caching methodologies struggle to keep pace with today’s fluid tech
milieu. Consequently, suboptimal caching resource distribution on edge servers
emerges as a prevalent issue, necessitating a shift towards cooperative caching
[4].

The domain of academic research has delved deeply into the realm of collabora-
tive caching. Within the context of cloud computing, the role of collaborative cache
is multifaceted: it seeks to curtail energy expenditure within data centers [5], bolster
user access velocities [6], and diminish the overarching computational burden [7]. A
predominant portion of extant literature on edge collaborative caching portrays the
content caching conundrum as a linear programming quandary, which anchors its
strategies on content popularity. Such methodologies further seek to augment energy
efficacy by minimizing data redundancies via cooperative caching measures [8–10].
Yet, this popularity-centric methodology is riddled with challenges. For instance,
it often neglects considerations such as the constraints of edge cache storage while
hoarding highly sought-after content, the costs associated with supplanting cached
data, or the infrastructural costs linked to user requests. To rectify these oversights,
our approach holistically contemplates the merits of caching in tandem with the
infrastructural costs, aiming to dynamically harmonize cache utility.

Furthermore, traditional methods, whether based on common protocols or
advanced strategies, struggle with adapting to the environment, mainly because
of the changing and unpredictable nature inherent to users. Online methods sup-
ported by learning techniques offer the flexibility to adjust caching strategies in line
with changing environmental needs. As a result, researchers have promoted deep
learning-based predictive caching methods [11, 12], cooperative deep reinforce-
ment learning for edge caching [13], and caching systems based on Q-learning [14].
These learning-focused approaches mainly use models that are trained and then
sent to the cloud/edge, meeting immediate operational needs. However, challenges
remain, especially in achieving effective real-time methods in a short time, mostly
due to the extended learning times during training. To address these problems, we
propose a new cache utility model that can be adjusted according to the needs of
the service provider. To match the dynamic caching environment in real-time, we
propose a two-stage Collaborative Deep Reinforcement Learning (CDRL) caching
mechanism. The model is deployed on the cache controller to update the caching
strategy in real-time. Our contributions are as follows:

•	 In order to balance the efficiency of edge caching and communication costs in
MEC environments and enable cache policies to meet actual performance/link
cost requirements in specific environments, the edge collaborative caching prob-
lem is modeled, and a new dynamic cache utility function is proposed. The util-

22888	 H. Xiao et al.

1 3

ity function can be changed according to the needs of service providers/actual
environments.

•	 To address the real-time and efficient requirements of edge caching, a two-
stage CDRL mechanism is proposed to dynamically optimize the edge caching
problem. Due to the fact that the CDRL algorithm shares a neural network in
both pre-training and online training, and uses a Double Deep Reinforcement
Learning (DDQN) in pre-training to achieve the current best caching policy
and a State-Actor-Reward-State-Actor (SARSA) algorithm in online training to
improve learning efficiency, better caching results can be achieved in delay-sen-
sitive edge computing environments.

•	 The performance of the strategy based on dynamic cache utility and CDRL is
evaluated through simulation experiments. The simulation results show that,
compared with traditional cache replacement algorithms and other deep rein-
forcement learning (DRL) algorithms, this optimization method can effectively
increase cache hit rate, reduce cache cost, and latency.

This paper is organized as follows: Sect. 2 summarizes the current work progress,
and Sect. 3 describes the system model and NP-complete proof. In Sect. 4, CDRL
and cache algorithms are introduced. Section 5 analyzes the experimental results
and gives conclusions. Finally, we summarized the article and looked forward to it.

2 � Related work

Contemporary research in this domain is normally divided into three primary
streams, including the conventional methods (e.g., linear programming, heuristic
strategies), the deep/reinforcement learning methods and the DRL methods.

2.1 � Conventional methods

Challenges like transmission link overloads and limited buffer capacity have
emerged as pressing concerns in the caching optimization problem. Vo et al. [6],
for instance, proposed a collaborative caching scheme tailored for eNBs to chan-
nel video content requisitions. This effort frames the optimization issue as a broad
integer linear programming problem, proposing a distributed approach that matches
the simpler version of the problem and includes nearby request routing with effi-
cient collaborative eviction strategies. However, this scheme lacks real-time perfor-
mance. Echoing this sentiment, Xie et al. [7] worked on improving network router
content caching against the background of traffic management, separating collabora-
tive caching from traffic patterns and creating a set of collaborative caching meas-
ures to design effective caching plans. Going further, Ostovari et al. [8] presented
a guided real-time collaborative caching method to handle cache cost challenges.
Looking at timing, Ferragut et al. [15] explored a time-based (TTL) cache approach.
Broadening the scope, Ioannidis et al. [16] introduced a distributed adaptive con-
tent placement method, using gradient rise on a predictable cache output while

22889

1 3

A collaborative cache allocation strategy for performance…

arranging content chances aimed at the expected best result. In subsequent studies,
many research projects [17–21] strengthened these basic concepts. Somesula et al.
[22] proposed a greedy submodular optimization method which incorporates user
preference prediction and clustered mechanism for cooperative content caching. In
addition, they [23] jointly optimized the service placement and the request routing
to maximize the time utility and presented a greedy rounding-based service caching
method and a randomized rounding-based request routing method. Hu et al. [24]
employed a many-objective evolutionary cooperative caching method which jointly
optimizes delay, load balance, offloaded traffic and prediction accuracy for cloud-
edge-end collaborative IoT networks.

While many of these traditional methods can provide real-time cache instruc-
tions, making accurate decisions in large-scale networks becomes difficult for these
conventional caching approaches given the rapid expansion and constant evolution
of multimedia service demands within MEC.

2.2 � Deep/reinforcement learning methods

Recently, the academic community has delved deeply into cache optimization strate-
gies, leveraging both machine learning and deep learning for MEC cache enhance-
ment. For instance, Li et al. [10] employed a neural network for anticipating subse-
quent user requests, preloading these onto the optimal edge node to mitigate issues
of latency and operational costs in video caching. Another study by Li et al. [11]
introduced the Edge Collaborative Cache (CVC) framework, integrating a request
prediction tool grounded in federated learning along with a cooperative cache deci-
sion strategy to boost hit rates and trim user latency. Anselme et al. [12] devised
a deep learning-based cache decision method, focusing on reducing content down-
load delays by capturing passenger attributes. Somesula et al. [25] focused on the
cache placement problem considering the mobility and velocity of user devices and
random contact duration, and proposed a reinforcement learning-enabled caching
approach to tackle the problem.

While these methodologies, which preload content based on historical data or
specific characteristics, enhance cache efficiency, they often lean on intricate rule-
based caching directives within real-time frameworks and lack efficiency in solving
complex problems.

2.3 � DRL methods

Transitioning towards DRL-driven real-time cache strategies can further optimize
the problem-solving efficiency by combining the perception ability of deep learning
and decision ability of reinforcement learning. Wang et al. [13], for instance, high-
lighted a real-time caching approach rooted in federated deep reinforcement learning
(FADE) for IoT settings, aiming to slash network delays. Chien et al. [14] harnessed
Q-learning to craft a caching system, formulating action-selection approaches for
caching challenges and pinpointing optimal cache states. In similar veins, Sun et al.
[26] deployed Deep Reinforcement Learning (DRL) for holistic edge resource

22890	 H. Xiao et al.

1 3

management, and Wan et al. [27] actualized collaborative caching via layered aggre-
gated federated learning. The potency of these online, learning-centric caching
strategies is markedly bolstered by their profound environmental interaction capa-
bilities. Somesula et al. [28] adopted multi-agent DRL for solving cooperative cache
replacement problem to minimize delay with resource and deadline constraints.
Beside, they developed a DRL-based mechanism [29] for cooperative caching which
adopts deep deterministic policy gradient (DDPG) to enhance the long term time-
saving performance and accelerated the learning process.

While numerous collaborative caching mechanisms exist, only a handful of opti-
mization strategies account for balancing cache value against link costs based on
real-world demands. Furthermore, learning-driven caching methods often struggle
to meet immediate performance benchmarks since the learning process consumes a
certain amount of time and resources. In this study, we introduce a novel two-stage
learning-centric approach which first utilize rich cloud resources to obtain an effec-
tive and stable initial DDQN model via pre-training in the cloud and then enable
each UE to rapidly adjust the model to environmental fluctuations via SARSA-based
local online training.

3 � System model

This section introduces the network structure of MEC systems bolstered by collabo-
rative edge caching and elaborates on the cache utility model that factors in both
cache value and link costs. We then delineate the cache placement optimization
challenge within MEC. Conclusively, we demonstrate that the cache optimization
issue in MEC is NP-Complete. Table 1 lists some key parameters.

3.1 � Network model

As illustrated in Fig. 2, we propose the overall architecture of our system. The left
side of the figure includes an introduction to the network architecture, where all
cached contents are sourced from the cloud, which is the fundamental support of the
entire system and also the part we aim to optimize. The right side of the figure con-
tains a description of the CDRL approach.

Figure 2 showcases the CDRL framework’s interaction with a standard edge sys-
tem. CDRL’s primary goal is to offer a control framework attuned to both perfor-
mance and cost. This framework dynamically manages cache operations and utility
setups within the edge system, striving for an optimal balance between performance
and connectivity costs. Hence, CDRL employs a two-tier control framework, lev-
eraging reinforcement learning to make informed resource management decisions
in real-time. The CDRL encompasses four primary segments: a bi-level learning
model, caching controller, caching operations, and utility adjustments.

•	 MEC: MEC consists of edge, and User Equipments (UEs), where the edge
servers as the carriers of content caching. The cloud and edge are connected

22891

1 3

A collaborative cache allocation strategy for performance…

via a backhaul link. The edge comprises a set of base stations (BSs) connected
by optical fibers. For simplicity, we use the term BSs to refer to edge serv-
ers, base stations, and nodes. The BSs provide direct caching services for UEs
through wireless links. It should be noted that the UEs are dynamic and can
change over time.

•	 BS: let N = {1, ..., n, ...,N} represent the set of BSs. Each BS has the storage
capacity Cn to cache contents and the bandwidth Bn to communicate with the
UE. Due to the limited capacity of BS, it is necessary to cache the most valu-
able content within its service scope. Cache replacement can be performed
when the capacity of BS is insufficient.

Table 1   Summary of notations

Notation Description

N = {1,… , n,… ,N} Set of BSs
U = {1,… , u,… ,U} Set of UEs
F = {1,… , f ,… ,F} Set of contents
T = {1,… , t,… ,T} Set of time slots
Wn(t) Utility of the BSn

valuen,t Cache value of BSn when caching content f
costu,t Transmission cost of BSn when caching content f
RePn(t) The cache replacement rate of BSn

�(t) Popularity of content f
Vn(t) Available cache size of BSn

Cf Size of content f
Cn Cache capacity of BSn

dc,n(t) Cloud-edge link cost
de,n(t) Edge-edge link cost
du,n(t) Edge-User link cost
Bn Network bandwidth of BSn

Fig. 2   The overall network architecture of the proposed system

22892	 H. Xiao et al.

1 3

•	 UEs: let U = {1, ..., u, ...,U} represent the set of UEs, randomly distributed
within the service range of each BS. The set of requested contents is denoted as
F = {1, ..., f , ...,F} , for clarity, each piece of content, represented by f, has a size
denoted as Cf  . We consider this size as an integer, using megabits (Mbit) as the unit
for simplicity.

•	 Cache strategy: given a BS set N and a content set F, the caching strategy operates
as a many-to-many relationship. This means items from set F must be positioned
within portions of the base station set N. Depending on the specifics of an edge
network, there are multiple potential caching strategies. The BS must retrieve the
content, sourcing data from its local storage, neighboring BSs, or directly from the
cloud.

•	 Cache controller: this pivotal element of the edge caching setup gathers data about
the system’s varied resources and directly governs the caching operations. It con-
veys cache and timing details to the learning model, directly affecting the caching
system by adjusting cache operations and utility settings. Facilitating to capture
and serve the dynamic content requests, we consider a discrete time-slotted system
where the timeline is discretized into time slots T = {1,… , t,… , T} and enable
time-slotted caching operations in each t ∈ T.

•	 Two-stage learning model: this part integrates two reinforcement learning architec-
tures. The initial phase is an offline learning model utilizing DDQN, which pro-
cesses past cache data to craft an introductory caching strategy. Subsequently, an
online training system, grounded in the principles of SARSA and building upon the
insights from the DDQN model, consistently acquires data to dynamically update
the caching strategy.

•	 Utility configurator: this module fine-tunes the computation methodology of cache
utility in alignment with learning outcomes, relaying the evolved utility computa-
tion back to the cache controller.

•	 Cache action: the caching activity is segmented into three operations: retrieving
from the cloud, saving to the local BS, and transferring to other BSs. Actions related
to caching are derived from the learning outcomes, and the resultant cache activity
matrix is forwarded to the caching controller.

3.2 � Cache value and link cost

In much of the existing literature, cache value is predominantly linked to content popu-
larity. Yet, considering the limited capacity of edge servers and the regular cache turno-
ver at BSs, the cache value can be influenced. As such, this paper offers the subsequent
characterization for cache value:

(1)
Valuen,f (t) =

�f (t) × Vn(t)

Repn(t)

s.t. �f (t) ∈ (0, 1)

22893

1 3

A collaborative cache allocation strategy for performance…

where �f (t) , Vn(t) and Repn(t) represent the popularity of content f for BSn, the
available cache size, and the cache replacement rate before time slot t of the BSn,
respectively.

The content’s popularity is defined as the probability distribution of content
requests across all UEs within the network. The f − th element can be derived by
determining the proportion of requests for content f relative to the total content
requests in the MEC. The �f (t) is generated by Mandelbrot–Zipf (MZipf) distribu-
tion as [30]:

The MZipf distribution is more in line with the distribution of users’ actual resource
requests in the cache system, and it is widely used in the simulation of cache algo-
rithms [31]. In the above formula, at time slot t, the resource popularity ranking
of content f is rf (t) , and the parameters q ≤ 0 is the plateau factor, and a < 0 is the
skewness factor. Moreover, we assume that the content popularity changes slowly.

When the residual cache Vn(t) of a BS falls below a designated threshold, prompt-
ing proactive caching, it initiates a cache replacement. Given the diverse character-
istics of BSs, many may experience regular content substitutions in their cache. This
recurrent cache turnover can induce increased overheads. Thus, content should ide-
ally be proactively cached on BSs exhibiting reduced cache replacement frequen-
cies. Denote Repn(t) as the cache replacement rate of BSn. A high value of Repn(t)
signifies considerable costs associated with substituting the cached content on BSn,
while a lower value suggests that caching content on that particular server is more
advantageous. The cache replacement rate is defined as:

where Cn,i represents the content size of caches to be replaced in i − th cache replace-
ment on BSn. The total number of cache replacements on BSn that occurred before
time slot t is denoted as kn(t) , whereas Cn − Vn represents the amount of used cache
space on BSn. Repn(t) serves as an indicator of the level of cache space contention
on BSn, signifying that content cached on edge servers with high cache replacement
rates is more prone to experience frequent replacements.

Considering that minimizing link cost is crucial in deciding the source of con-
tent acquisition, it’s essential to rank content acquisition sources in the cache deci-
sion-making process. Based on the model’s assumptions, link costs are ordered in
ascending sequence, with the priority being local BSs, followed by other BSs, and
then cloud servers. In determining the link cost for obtaining a specific resource, the
content placement strategy can guide the caching decision according to this hierar-
chy, allowing for the respective link cost to be identified.

(2)

�f (t) =
(rf (t) + q)a

F∑
f=1

(rf (t) + q)a

.

s.t. f ∈ F

(3)Repn(t) =
1

Cn − Vn

kn(t)∑
i=1

Cn,i,

22894	 H. Xiao et al.

1 3

As depicted in Fig. 3, within the collaborative caching framework of MEC, users
can potentially retrieve requested content from local BS, other BSs, or directly from
the cloud. It’s vital to consider the link cost associated with each retrieval source. In
our model, the link cost symbolizes the network’s transmission cost, derived not from
a direct physical measurement but from a combination of delay and bandwidth fac-
tors. We can gauge link quality by assessing these delay and bandwidth values, and our
model operates under the assumption that this link quality is known. Notably, a rise in
link cost corresponds to increased delay, reduced bandwidth, and decreased network
stability. Thus, we can obtain the link cost when a user requests content f,

where � is a positive constant coefficient, introduced for the purpose of standardiz-
ing units and magnitudes. dc,n(t) represents the transmission delay from the cloud to
BSn for content f, de,n(t) denotes the transmission delay from other BS to BS n for
content f, and du,n,f (t) represents the average transmission delay between all UEs and
the BS n up to time slot t for content f [13, 29]. When a user request arrives at the
local BS and results in a cache miss, the system needs to determine whether to per-
form cache replacement and where to retrieve the content f from. Due to the lower
delay of retrieving content from other BSs compared to the cloud, we propose a
decision variable x(e)

f
 , where x(e)

f
= 1 indicates that the content f is stored in other

(4)

costu,f (t) = 𝛼((1 − x
(e)

f
)dc,n(t) + x

(e)

f
de,n(t) + du,n,f (t)),

s.t.

⎧
⎪⎨⎪⎩

x
(e)

f
∈ {0, 1},

de,n(t) ≪ dc,n(t),

f ∈ F,

n ∈ N.

Fig. 3   MEC system topology supporting cache

22895

1 3

A collaborative cache allocation strategy for performance…

BSs, otherwise x(e)
f

= 0 and the content needs to be retrieved from the cloud. We can
obtain the average latency of UEs requests for content f prior to time slot t:

where Uf denotes the set of UEs that have requested content f, and the wireless trans-
mission delay between BS and UE is computed using Shannon’s formula [13].

3.3 � Problem definition

When a user seeks particular content via BSn, potential sources encompass the local
BS, neighboring BSs, and cloud repositories. Assuming efficient content search-
ing, request dispatch, and reception processes, user preferences can typically be
discerned by examining past content requests or using real-time online techniques.
Typically, resource discovery and transmission leverage buffer exchange protocols
and GPRS tunneling methods.

BSs are usually deployed in commercial or industrial sites; we consider an MEC
scenario in a city’s commercial area containing a set of N BSs. These BSs are scat-
tered in the city’s commercial area, and each BS has a cache utility value Wn(t) . At
a specific time, all BSs need to cache a total of Fm contents, which are distributed
within the range of N BSs, and there are Um users in the area. Where Fm is a subset
of F and Um is a subset of U.

This paper centers around harmonizing cache value and link cost, leading to the
introduction of an integrated utility function. It merges content popularity, cache
capacity, and BS cache replacement frequency to define cache value, which is then
offset against the link cost. This utility function offers adaptability based on specific
needs. The overarching aim of this caching framework is to optimize the aggregate
cache utility, ensuring compliance with standard caching prerequisites and attaining
peak caching efficiency within MEC. When a BS is requested to cache content, set
the cache utility of the server as Wn(t) , the cache value as Valuen,f(t), and the link
cost as costn,f(t). The cache utility model of a single BS is obtained as follows,

where xn,f = 1 represents the content f needs to be cached in BSn, xn,f = 0 otherwise.
Parameter � represents the weight of proactive caching link cost. An elevated weight
value typically reduces the total link cost but might compromise the aggregate hit
rate, steering the system away from proactive caching. The weight factor offers

(5)
du,n,f (t) =

1
|||Uf

|||

∑
t�≤t

∑
u∈Uf

du,n,f (t
�),

s.t. Uf ∈ U.

(6)

Wn(t) = xn,f ((1 − 𝜎)Valuen,f (t) − 𝜎costu,f (t)),

s.t.

⎧⎪⎪⎨⎪⎪⎩

xn,f ∈ {0, 1},

𝜎 ∈ [0, 1],

f ∈ Fm,

Fm ⊂ F,

n ∈ N

22896	 H. Xiao et al.

1 3

tangible benefits in real-world scenarios by facilitating the adjustment of caching
system performance. For example, in settings characterized by rapid content turn-
over, such as sporting events or holiday shopping locales, diminishing the weight
value could enhance caching efficiency. On the flip side, in scenarios with minimal
caching demands, augmenting the weight can minimize proactive caching. Given
that the link burden is insubstantial, sourcing content outside of the local base sta-
tion can maintain satisfactory user experience, simultaneously curbing both link and
energy consumption. According to formula (6), the high caching utility of the BSn
indicates that the BSn has a higher caching value and a lower link cost when caching
content. Therefore, in the MEC environment, the primary objective of caching is to
maximize the caching utility of all BSs,

3.4 � NP‑complete proof

If the Set Cover (SC) problem, known to be NP-complete, can be mapped to the
cache placement challenge, it would establish the decision problem of cache place-
ment as NP-complete. Initially, we identify two sets: Set G = g1, g2, .., gI and its
counterpart, Set H = h1, h2, .., hJ , which contains subsets of G. Each member of H,
denoted hj , is associated with a weight. The SC problem’s goal is to choose a subset
from H such that its union encompasses all elements in G while either minimizing
or maximizing the cumulative weight.

To adapt the SC problem to our cache placement scenario, proceed as follows:
first, fix the number of content items at 1. Allow G = g1, g2, ..., gI to symbolize all
BSs, while H = h1, h2, ..., hJ captures the distinct configurations of content caching
across BSs. For instance, if h1 = 1, 3, 5 , it implies content is cached at BSs g1 , g3 ,
and g5 . Similarly, h2 = 2, 4, 6 signifies caching at g2 , g4 , and g6 . Now, equate the
weights in the SC problem to our cache value and link cost.

Therefore, our problem can be formulated as a SC problem. Let’s use
V = v1, v2, ..., vN to represent all edge servers. Each member of the set
C = c1, c2, ..., cK denotes potential caching decisions for content across all BSs. Each
caching decision ck , carries an associated cache value and link cost. The net ben-
efit from a caching decision ck is the difference between its cache value and link
cost. The goal is to pinpoint a subset C� = c1, c2, ..., c

�
K

 from C such that the union
of all members in C′ captures V, aiming to optimize the aggregate content caching
benefits.

The set cover problem can be mapped to the data caching placement dilemma
using the aforementioned transformation. By weaving real-world parameters into the
set cover problem’s structure, it’s clear that these parameters align with the set cov-
er’s generic variables. At its core, our challenge mirrors the elements of the set cover
problem, making it a variant of the same. As a result, the data caching placement
issue is deemed NP-complete.

(7)max
∑
n∈N

∑
f∈fm

Wn(t)

22897

1 3

A collaborative cache allocation strategy for performance…

4 � Collaborative two‑stage learning strategy for cache algorithms

4.1 � Two‑stage learning for state, action and reward

The proposed two-stage learning framework integrates the pre-training capabili-
ties of the DDQN algorithm with the online adaptability of the Deep SARSA
algorithm to tackle proactive caching challenges in BSs. By merging these two
DRL methodologies, the framework capitalizes on the distinctive advantages of
each. Specifically, DDQN aids in mitigating overestimations of Q-values and sen-
sitivity to miscalculations, whereas SARSA bolsters model stability by empha-
sizing the current policy over historical ones. The utilization of DDQN in the
pre-training phase not only speeds up the learning process but also lays a solid
foundation for model performance. In contrast, deploying SARSA for online
training equips the model to adjust to environmental fluctuations, thanks to its
emphasis on present policies and adaptability to evolving scenarios. Collectively,
the integration of DDQN’s pre-training with SARSA’s online training enhances
the model’s efficacy and resilience, ensuring superior adaptability and broader
application potential.

We model the content cache placement process in BSs as Markov decision
process (MDP) [13]. The state of caches, cache action, utility configuration, and
feedback rewards are as follows.

State of caches: During each decision epoch i, the cache status of the content
is represented by sf

i,n
 , and sf

i,n
= 1 means that BSn caches content f, otherwise.

Furthermore, we use sfi,u to denote the request state from UE u. Similarly, sf
i,u

= 1
means UE u sends a request for content f, sf

i,u
= 0 otherwise. At each decision

epoch i, the cache state of BSn and the set of request states within its service
range are combined as its state si,

Fn and Fu denote the sets of cached contents in BSn and content requests from UEs,
respectively.

Cache action: in order to adapt to the continuous changes in a dynamic envi-
ronment, a BS may choose which content to replace and decide where to process
the request. The first option is to process the request at the local BS,
alocal
i

= {alocal
i,0

, alocal
i,1

, ..., alocal
i,F

} denoted by a local function. If alocal
i,f

= 1 , it indicates
that the content f requested by the UE needs to be replaced in the local BS, and
the content request is executed locally at the BS. The second option is to route the
UE’s request to a neighboring BS if the requested content f is not cached locally
at the BS. This is achieved through a neighboring processing function denoted by
aneibour
i

= {aneibour
i,1

, aneibour
i,2

..., aneibour
i,N

 }. If aneibour
i,n

= 1 , it indicates that the BSn is
processing the current user request. The third option is to process the request in
the cloud, denoted by aicloud. If the UE is unable to obtain the content f from the
local and neighboring BSs, then acloud

i
= 1 , indicating that the request is processed

in the cloud,

(8)si,n = {s
Fn

i,n
, s

Fu

i,u
}

22898	 H. Xiao et al.

1 3

Feedback reward: when the local BS takes action A, the system receives feedback
rewards, which are composed of two components: the overall cache value and the
link cost. To this end, we designed two reward functions, aimed at maximizing the
system’s total reward and ensuring maximum utility in the dynamic process.

Formula (10) proposes two rewards for the system. The first is a positive cache value
function defined by Eq. (1), indicating that caching proactively to increase cache
value provides positive rewards. The second is a negative link cost function defined
by Equation (4), indicating that caching should not be performed blindly and should
be combined with link cost considerations.

As illustrated in Fig. 4, the blue rectangles denote the shared lower-level net-
work module, while the squares represent branches in the higher-level network. The
shared network module is a Long Short-Term Memory (LSTM) with internal unit
size of 512. The high-level network branches consist of two fully-connected layers,
each approximating Qn,value and Qn,cost , respectively.

4.2 � Pre‑training and online training process

Pre-training aims to enhance the initial performance and consistency of the DRL
model. For this purpose, we employ the DDQN algorithm, a refined version of the
Q-learning algorithm. It utilizes dual Q-networks to decrease bias in Q-value esti-
mations: one for determining actions and another for evaluating action values. This

(9)�(si
n
) = {alocal

i
, aneibour

i
, acloud

i
}

(10)

⎧
⎪⎨⎪⎩

Rn,value(si,n,�(si,n)) =
∑
f∈Fn

valuen,f

Rn,cost(si,n,�(si,n)) = −
∑
f∈Fn

costu,f

Fig. 4   Proposed dual reward architecture

22899

1 3

A collaborative cache allocation strategy for performance…

setup circumvents the instability stemming from overestimating Q-values in the ini-
tial phase. Notably, DDQN proves effective when pre-trained on the cloud, given the
accessibility to comprehensive cache information [30].

For online training at the edge nodes, we adopt the SARSA algorithm. This
method stands out due to its on-the-fly learning of the optimal policy, paired with
its minimal computational and memory demands. Additionally, SARSA offers com-
mendable convergence and consistency, adeptly sidestepping issues like unsteady
learning from biased value functions. Stationing the model at the edge minimizes
communication exchanges between the edge and cloud, thus promoting efficient and
unwavering online learning [32].

Figure 5 illustrates the collaborative two-stage learning framework. During the
DDQN pre-training phase, global historical data provides the state matrix, action
matrix, and reward matrix. By training both the primary and secondary networks
of DDQN, and by reducing the loss function L across each iteration, an initial cach-
ing strategy is formulated in the cloud. Once this strategy is established, both the
devised caching strategy and the primary DDQN network are dispatched to every
BS. Each BS, equipped with this neural network, employs the SARSA algorithm
for dynamic caching, aiming to achieve an optimal real-time caching decision. In
the online training phase powered by the SARSA algorithm, the system executes
an action at+1 before recognizing the state st+1 and the associated reward rt+1 . This
dynamic caching method, driven by the SARSA algorithm, can adaptively modify
the edge cache state in real-time. To maintain data training integrity, the experience
replay method stores all sample points, eliminating potential biases through rand-
omized sampling.

The SARSA algorithm dynamically shapes the caching strategy. In contrast to
the DDQN algorithm, where the agent takes action at+1 based on state st+1 and
then receives the reward rt+1 before updating the Q-function, the SARSA algo-
rithm’s approach to predicting future rewards relies on the real reward from the
taken action. The SARSA algorithm consistently updates the policy and adjusts
its approach for the Q-function. By using experience replay, the agent can

Fig. 5   Collaborative two-stage learning frameworks

22900	 H. Xiao et al.

1 3

effectively navigate through past states, avoiding sudden learning disruptions or
deviations. Each learning step mirrors the weight of the online network, strength-
ening the neural network’s stability compared to traditional online Q-learning.
The total reward value shifts when the server conducts a caching action. Based on
(10), we can obtain the system’s reward as follows:

where � symbolizes the caching strategy, depicted as a blend of actions. Drawing
from the formulas (10) and (11), the aim is to optimize the long-term reward starting
from an initial cache state s1:

where R(si,�(si)) =
∑

n∈N Rn(si,n,�(si,n)) represents the over rewards of all BSs.
Additionally, a single-agent infinite-horizon MDP using a discounted utility (12) is
often used to estimate the expected infinite-horizon unrecognized value, especially
when � is within the range [0, 1). We conduct the pre-training phase in the cloud
with DDQN. As a result, the iterative formula for the Q-value can be expressed as:

where �i ∈ [0, 1) is the learning rate, � ×max
��

Qi(s
�,��) signifies the accumulated

reward value achieved after executing strategy �(s) in the state s, transitioning to
state s′ , and then choosing the optimal strategy � . The discount factor, denoted by � ,
can progressively reduce the value of forthcoming rewards. Once the server carries
out the operation �(si) , the current state si transitions to si+1 , yielding an immediate
reward R(si,�(si)) . This equation depicts the total reward value post operation �(s)
subtracted from the previous period’s total reward value.

The hybrid Q-value structure proposed in this paper is used for caching policy
selection, as shown in Fig. 4. The final Q-value is calculated by combining the
Qvalue , Qcost , and network weight � , as shown in the following equation:

The approximate optimal Q-value can be obtained according to the following
equation:

where �i denote the neural network weights. Given that the two neural networks
have identical low-level weights (albeit for different Q-values), it’s more beneficial
than starting training from scratch. In deep Q-networks, the Q-learning update pro-
cedure can be straightforwardly applied to a multi-layer neural structure. Here, the
neural networks act as substitutes for the table of state-action pairings. It should be
noted that the pre-training of DDQN is done by taking random minibatches from the

(11)Rn(si,n,�(si,n)) = �Rn,value(si,n,�(si,n)) + (1 − �)Rn,cost(si,n,�(si,n)),

(12)R(s,�) = max
�

E

[
lim
I→∞

1

I

I∑
i=1

R(si,�(si))|s1 = s

]
,

(13)Qi+1(s,�) = Qi(s,�) + �i(R(s,�) + � ×max
��

Qi(s
�
,�

�) − Qi(s,�))

(14)Q(s,�) ∶= �Qvalue(s,�) + (1 − �)Qcos t(s,�)

(15)Q(s,�) ≈ Q((s,�);�i)

22901

1 3

A collaborative cache allocation strategy for performance…

experience replay pool, including the current si, ai,Ri , and then using a target net-
work to calculate the maximum Q-value under si + 1 , thus reducing the overestima-
tion problem. The online training of SARSA is done by taking random minibatches
from the experience replay pool, including the current si, ai,Ri, si + 1, ai + 1 , and
then using the current network to calculate the Q-value under si+1 , thus achieving
on-policy learning. The loss function of DDQN and SARSA are mean squared error
(MSE). The traditional TD error is adapted into a revised loss function, denoted as
L(�i) . Subsequently, the Q-networks are trained by aiming to minimize this loss
function.

The original target in DDQN is YQ

i
:

where �−
i
 denotes target network weights. Unlike the conventional DDQN, which

maintains two value functions and updates each function using a value from the
alternate function for the subsequent state, this study introduces an innovative origi-
nal Q function by structuring the neural networks in layers. This newly proposed Q
function is then updated collaboratively with the target Q function. Moreover, we
can obtain the gradient updates of �i by ∇

�i
L(�i) as follows:

To curb the overestimation in every episode during both pre-training and online
training and to reduce the loss function L(�i) , we introduce the “Two-stage DRL
algorithm for caching,” delineated in Algorithm 1. This method doesn’t merely
employ DDQN for pre-training followed by SARSA for dynamic training. Instead,
after the DDQN pre-training phase, an action is chosen with a probability � dur-
ing dynamic training, where � is set to 0.1. This means there’s a chance of taking
a random action, as well as a likelihood of opting for an action that maximizes the
Q-value.

Procedure 1 (Pre-training process): Firstly, Begin with the initialization of the
pertinent DDQN parameters within the experience replay, facilitating the acquisi-
tion of weights for both the primary and target networks. (lines 1–3). Then, using
comprehensive historical data, both primary and target networks are trained to
determine the foundational caching policy. Capture and store the identified states,
actions, rewards, and value functions within the experience replay (lines 4–6).
Finally, dispatch the initial neural network parameters and the foundational cach-
ing policy to every BS.

Procedure 2 (Online training process): Upon receiving a content request at the
BS, determine the caching action through the � − greedy method initially. Fol-
lowing this, reset and record both the cache state and the associated policy within
the experience replay (lines 9–13). While the online network assesses the greedy

(16)L(�i) = E(s,�)

[
Y
Q

i
− Q(s,�;�i)

2
]
.

(17)Y
Q

i
= R + � Q(s, argmax

��

Q(s�,��;�i);�
−
i
),

(18)∇
�i
L(�i) = E(s,A)[(Y

Q

i
− Q(s,A;�i))∇wi

Q(s,A;�i)].

22902	 H. Xiao et al.

1 3

action, the target network is employed for its value approximation. Then, SARSA
is executed to train the caching process and update all parameters (lines 14–16).

The complexity of Algorithm 1 primarily considers the number of state transi-
tions and backpropagation steps in dual-depth reinforcement learning [31]. The dif-
ference from [31] is that we employ the DRL network twice to optimize the learning
objectives. Pre-training can be conducted before the deployment of the strategy, as it
only requires historical information, and its training process does not interfere with
actual cache execution. Therefore, the execution efficiency of the online SARSA
strategy executed after deployment is not significantly different from that of other
DRL methods.

Algorithm 1   Two-stage deep reinforcement learning algorithm for caching

4.3 � Cache placement algorithms

The problem of edge cache placement is an NP-complete problem. Taking into
account the value of cached content and link costs, we designed an Online caching
placement algorithm starting from user requests. The key to the algorithm lies in the
decision-making process of caching, which must ensure the long-term increase in
the target value of global cache utility.

Algorithm 2 presents the pseudo-code of the cache placement algorithm based on
dual-depth DRL. Firstly, we construct reward functions Rvalue and Rcost , initialize an

22903

1 3

A collaborative cache allocation strategy for performance…

empty hash map to store cache decisions, and initialize the Q network (as shown in
lines 1–2). If BS n receives a request for content f and has cached it, the content is
directly provided (as shown in lines 4–6). In the case where BS n has not cached the
requested content, if the capacity of BS n that needs to cache the content is not full,
the content f is directly cached, and then provided to UE, and the status si is updated
synchronously (as shown in lines 7–9). If BS n has not cached the requested content
and the capacity is full, an online policy is executed to train the cache process and
update the cache policy (as shown in lines 11–12). Finally, the caching strategy is
put into the hash map (as shown in lines 15–16).

Algorithm 2   Optimize placement results

5 � Experiment analysis

In this section, the proposed algorithm will be evaluated from the perspective of
comprehensive utilization of edge servers. Four base stations (BSs) were consid-
ered for simulation, with a maximum coverage radius of 250 m. The channel gain
was modeled as gu,n = 30.6 + 36.7lglu,n , lu,n is the distance of the UE u and BSn,
the channel bandwidth Bn was 20 MHz, and the transmission power was 40W. The
learning model construction was based on Python 3.8 and Pytorch 1.13.0, The
model uses a shared bottom layer network of 512-size LSTM, with two additional
fully connected layers of size 512 and two decision layers of size 5 for different
Q-value outputs. The Adam optimizer is used for optimization. Other experimental
parameters are presented in Table 2. The parameters are set according to [13].

22904	 H. Xiao et al.

1 3

The simulation environment consisted of a primary Dell server acting as the
cloud. This server was equipped with a 20-core CPU, 128 GB RAM, and 2TB of
storage capacity. In addition, we utilized four Dell edge servers, each boasting a
4-core CPU, 8 GB RAM, and 500 MB storage capacity. Throughout the simulation,
pertinent details for every request were diligently logged: this encompassed request
category, the entire completion duration, associated link expenses, and the deter-
mination of a cache hit or miss. Such recorded metrics facilitate the computation
of essential performance indicators like the cache hit ratio, mean latency, count of
backhauls, and overall link costs.

Our experiments employed a comprehensive offline dataset sourced from the
Xender application, a prominent content-sharing platform extensively adopted in
India. The dataset spanned the month of May 2018, specifically from the 1st to the
31st. Within this timeframe, the dataset revealed activities from 472 to 833 distinct
user pathways, encompassing the sharing of approximately 149,262 files and gener-
ating between 291,255 and 1021 requests [33].

5.1 � Experimental value of weight parameter

In this experiment, we manipulated the number of episodes and content to investi-
gate how these parameters impact the overall cache performance of each algorithm.
As stated in [14], the delay between the edge server and the user is directly propor-
tional to the Euclidean distance. In our simulation, we assume that each kilometer
introduces a one-millisecond delay, given that the user and edge server locations are
known.

Our initial analysis focused on the weight � of link cost. Specifically, we varied
the number of contents (10,000 and 100,000), and the value of � (ranging from 0

Table 2   Experimental
parameters

Parameter name Value

Content numbers F 10,000 100,000
BSs numbers N 4
BS radius 250
Channel bandwidth 20 MHz
UE fluctuations 0.8 1.2
Noise power −95 dBm
Content size Cf (0, 10] Mbit
Delay of BS-Cloud dc,n 200 ms
Delay of BS-BS de,n 20 ms
Pre-training epoch 200
Capacity of replay memory 1000
Minibatch 32
Reward decay � 0.9
State transition probability � 0.1
Learning rate � 0.01
The period of replacing target Q network 200

22905

1 3

A collaborative cache allocation strategy for performance…

to 1). We evaluated the average cache hit rate and overall link cost over 10 periods
(1000 online iterations). Figure 6a, b indicates that the hit rate and link cost decrease
with increasing. We found that changes to the value have a significant impact on
cached results. Consequently, our proposed dual learning framework was used to
determine the final experimental outcomes.

5.2 � Comparison and analysis of experimental results

To appraise the efficacy of our suggested cache placement methodology, we bench-
marked it against several sophisticated caching strategies, detailed as follows:

1.	 Least Recently Used (LRU): this scheme prioritizes the removal of content that
hasn’t been accessed for the longest duration.

2.	 Least Frequently Used (LFU): under this strategy, content that is least accessed
or fetched gets earmarked for replacement.

3.	 Local greed for content popularity (GREEDY): in this approach, the content
exhibiting the lowest popularity metrics is the primary candidate for replacement.

4.	 Deep Q-network (DQN): this caching mechanism hinges on decisions derived
from a singular deep Q-network.

5.	 Federated deep-reinforcement-learning-based cooperative edge caching (FADE)
[13]: treat each BS as a client, regard the cloud as a central aggregator, and
generate caching strategies to minimize content access delay using the federated
learning approach.

6.	 Fuzzy reinforcement learning based cache placement (FRCP) [25]: a reinforce-
ment learning-based caching placement strategy focusing on saving delay.

7.	 Deep deterministic policy gradient (DDPG) [29]: an optimized DRL caching
method model focusing on long-term time-saving.

Figures 7 and 8 provide illustrative comparisons regarding average content access
latency, hit rate, backhaul traffic, and cumulative link cost. A visual examination of
the graphs suggests that both GREEDY, DQN, FADE, FRCP and DDPG outpace

Fig. 6   Performance evaluation when a the content number is 10,000, and b the content number is
100,000

22906	 H. Xiao et al.

1 3

traditional methods like LRU and LFU in terms of performance. However, when
juxtaposed against these, the merits of CDRL become even more discernible and
pronounced.

The manuscript delineates the symbol � as equivalent to fj(t) , where the determi-
nation of fj(t) is contingent on real-world circumstances. Specifically, we character-
ize f1(t) to follow a distribution reminiscent of the Poisson distribution:

where the value of t is [1, 10].
Figure 7 illustrates the temporal evolution of caching strategy performance.

As the duration increases, the overall system tends to become stable. The CDRL
strategy is compared with classic caching methods such as LFU, LRU, GREEDY,
DQN, DDPG and FRCP. From the Fig. 7, it can be observed that the CDRL strat-
egy outperforms other methods in terms of cache hit rate, delay, backhaul traf-
fic, and overall link cost. This is because CDRL has a better real-time caching
strategy when dealing with dynamically changing requests. The GREEDY strat-
egy is a local greedy algorithm based on content popularity. Although it is more

(19)f1(t) = 1 −
5.5t

t!
5.5−8

Fig. 7   Performance evaluation of the a hit rate, b average delay, c traffic with respect to time, and d link
cost respect to time

22907

1 3

A collaborative cache allocation strategy for performance…

advantageous than traditional LFU and LRU, it still has a significant gap com-
pared to the DQN and CDRL strategies based on real-time policies. The CDRL
strategy is superior to DQN in two aspects: firstly, the CDRL pre-training process
can obtain a better initial policy through DDQN, and secondly, the SARSA algo-
rithm has stronger real-time interactivity during online caching. The reason why
CDRL outperforms DDPG and FRCP is that the pre-training in the cloud ena-
bles the CDRL model to achieve better performance, and it quickly infers online
caching strategies in the BS through the SARSA algorithm. Furthermore, the
weight � Poisson-like distribution matches the dataset better. the CDRL approach,
a higher number of requests find a match in the cache node, which leads to a
decrease in the average resource access link cost and subsequently enhances the
user experience. As evident from Fig. 7a b, the CDRL approach exhibits a nota-
ble enhancement in hit rate when juxtaposed with the other methodologies (LRU,
LFU, GREEDY, DQN, FADE, DDPG and FRCP) is 22.1, 28.8, 19.6, 7.4, 6.9,
2.9, and 3.9% respectively. The delay reduction is 35.1, 31.3, 29.5, 22.0, 20.5, 8.5
and 6.9%. As illustrated in Fig. 7c, our proposed method is adept at offloading
a greater amount of backhaul services, exhibiting improvements of 14.2, 21.1,
10.1, 6.3, 3.1, 1.9, and 1.5% over the other algorithms. The computation of the
comprehensive link cost for each cache, as highlighted in Fig. 7d, reveals an aver-
age decline in the overall link cost by 9.4, 9.3, 3.3, 1.9, 1.2, 0.9, and 0.8% respec-
tively when compared to the other strategies.

Fig. 8   Performance evaluation of the a hit rate, b average delay, c traffic with respect to time, and d link
cost respect to content number

22908	 H. Xiao et al.

1 3

Figure 8 delineates the performance trajectory of the BS when juxtaposed with
policies like LFU, LRU, and GREEDY, over a spectrum of content quantities from
10,000 to 100,000. Observations from Fig. 8a–d highlight the pronounced suprem-
acy of the CDRL strategy over its counterparts in latency metrics. Figure 8a reveals
that when content count is on the lower end, the CDRL algorithm stands out in
performance against LRU, LFU, GREEDY, and DQN. Yet, an uptrend in content
numbers-with a static server count-correlates with a dip in the overall hit rate. Under
such circumstances, the hit rate of CDRL burgeons by 32.9, 53.9, 25.1, 11.8, 10.4,
7.8 and 8.3% respective to the other methods. Figure 8b underscores that in scenar-
ios of limited content, latency across algorithms remains minimal. But, as content
swells, the need for frequent content rotation intensifies under diverse policies, esca-
lating latency. Herein, the CDRL approach trims the average latency by margins of
26.4, 29.2, 21, 18.6, 14.8, 5.3, 4.8% when stacked against other methods. In Fig. 8c,
a surge in backhaul traffic emerges as an inevitable consequence of augmenting con-
tent numbers. Within this context, the CDRL approach curtails backhaul traffic by
7.9, 14.3, and 6.6, 5.8, 0.2, 0.5, and 0.2% in relation to other strategies. Figure 8d
posits that during phases of scant content, disparities in link costs across algorithms
are negligible. However, with a rising content count, every algorithm’s link cost ele-
vates due to amplified link burdens. Contrarily, the CDRL algorithm’s link expense
diminishes by 10.1, 9.1, 7.7, 2.9, 2.7, 0.9 and 0.1% when paralleled with its peers.
Although other reinforcement learning-based caching strategies also achieve good
results, they lack the capability to fully utilize cloud-edge computing resources. The
proposed algorithm, CDRL, has already established a better initial strategy in the
cloud, and can quickly update its caching policy using the SARSA algorithm when
facing more complex environments, giving CDRL a distinct advantage. In essence,
these insights affirm the robustness and efficiency of the CDRL strategy across
diverse content volume scenarios.

Finally, the values of exploration probability � and scene function f(t) are dis-
cussed. Figure 9 shows the performance comparisons for CDRL in terms of the hit

Fig. 9   Performance of the hit rate under different exploration probabilities

22909

1 3

A collaborative cache allocation strategy for performance…

rate with different exploration probabilities � = 0.1 , � = 0.6 , and � = 0.9 . Explora-
tion probabilities can greatly affect caching efficiency, so a wide range of experi-
ments are needed to determine the best exploration probabilities before deploying a
caching policy. Moreover, we consider three different scenarios, which are shopping
malls, factories, and schools. And accordingly, we propose three different scenario
functions: f1(t) denotes cache request rate model for malls scenario. The factory is
distinctly different from the commute, so the cache request rate model for the factory
scenario is defined as

Assuming a typical commute window from 3 to 10, there’s a surge in cache request
rates during working hours, while it drops considerably during off-peak times. In the
context of schools, this paper defines the cache request rate to oscillate randomly
within a specified time frame, as:

We conducted experiments to evaluate the cache hit rate and link cost across three
fj(t) functions under identical scenarios, as depicted in Fig. 10.

As shown in Fig. 10, changing the weights � results in increased fluctuations in
cache hit rate and link consumption, which do not comply with the special scenar-
ios proposed in Eqs. (19) and (20). Therefore, it is necessary to examine the local
characteristics of different scenarios to develop better weights that ensure cache
performance.

From the aforementioned experimental outcomes, it’s evident that the system’s
overall performance and link cost metrics can be dynamically tuned based on real-
world conditions. For demanding performance scenarios, the parameter � can be
decreased, while it can be increased when there’s a preference for reduced link

(20)f2(t) =

⎧
⎪⎨⎪⎩

0.1 sin
�

�

2
t
�
+ 0.4, 3 ≤ t ≤ 10,

0.1 sin
�

�

2
t
�
+ 0.12, otherwize.

(21)f3(t) =
1

3

(
sin

(
�

2
t
)
+ 0.5

)
.

Fig. 10   Hit rate (a) and link cost (b) for different scenarios and scene functions

22910	 H. Xiao et al.

1 3

costs. Given the holistic accounting of caching costs in performance evaluation,
our method yields superior results compared to other prominent cache replacement
algorithms.

6 � Conclusion and outlook

In this study, we present a novel cache placement methodology tailored for MEC.
Our approach hinges on an integrated system framework that leverages global varia-
ble utility and a two-tier DRL mechanism. We delve deeply into the intricacies of the
general utility function and the nuances of the two-stage DRL paradigm. The utility
metric amalgamates cache value, link costs, and variable parameters, while our rein-
forcement learning model interweaves elements of DDQN and SARSA. Empirical
evaluations underscore the potency of our approach in the edge computing milieu,
particularly when juxtaposed against other established caching techniques.

Yet, as promising as our findings are, there remains a swath of areas ripe for
refinement. Key among these is the enhancement of the utility model. Currently,
content popularity leans on the Zipf distribution. However, the mercurial nature of
content popularity, influenced by time and evolving events, demands more nuanced
treatment. Enriching our model by harnessing machine learning and deep learn-
ing methodologies to predict content popularity with heightened precision could
usher in marked improvements in overall cache utility. Further, the link cost model
requires recalibration. The paper’s link cost estimation rests partly on a streamlined
predefined value, which doesn’t fully encapsulate the intricacies of real-world net-
works, particularly those entwined with bandwidth allocation and fluid network traf-
fic. Thus, devising a more robust framework to ascertain link costs remains a press-
ing priority.

Author Contributions  Hui Xiao wrote the main manuscript text. Xinyu Zhang and Yang Liang helped
conduct the experiments. Zhigang Hu and Meiguang Zheng put forward research ideas. All authors have
reviewed the manuscript.

Declarations 

 Conflict of interest  The authors declare no conflict of interest.

References

	 1.	 Cisco annual internet report (2018–2023) white paper, [Online]. Available: https://​www.​cisco.​
com/c/​en/​us/​solut​ions/​colla​teral/​execu​tive-​persp​ectiv​es/​annual-​inter​net-​report/​white-​paper-​c11-​
741490.​html

	 2.	 Guo Y, Zou B, Ren J, Liu Q, Zhang D, Zhang Y (2019) Distributed and efficient object detection via
interactions among devices, edge, and cloud. IEEE Trans Multimedia 21(11):2903–2915

	 3.	 Ren J, Zhang D, He S, Zhang Y, Li T (2019) A survey on end-edge-cloud orchestrated network
computing paradigms: transparent computing, mobile edge computing, fog computing, and cloudlet.
ACM Comput Surv (CSUR) 52(6):1–36

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html

22911

1 3

A collaborative cache allocation strategy for performance…

	 4.	 Zhu Z, Peng J, Gu X, Li H, Liu K, Zhou Z, Liu W (2018) Fair resource allocation for system
throughput maximization in mobile edge computing. IEEE Access 6:5332–5340

	 5.	 Hou B, Chen F (2017) Gds-lc: a latency-and cost-aware client caching scheme for cloud storage.
ACM Trans Storage (TOS) 13(4):1–33

	 6.	 Vo PL, Tran NH (2019) Cooperative caching for http-based adaptive streaming contents in cache-
enabled radio access networks. Computing 101(5):435–453

	 7.	 Xie H, Shi G, Wang P (2012) Tecc: towards collaborative in-network caching guided by traffic engi-
neering. In: 2012 Proceedings IEEE INFOCOM. IEEE, pp 2546–2550

	 8.	 Ostovari P, Wu J, Khreishah A (2016) Efficient online collaborative caching in cellular networks
with multiple base stations. In: 2016 IEEE 13th International Conference on Mobile Ad Hoc and
Sensor Systems (MASS). IEEE, pp 136–144

	 9.	 Zhi J, Li J, Wu H et al (2017) Edge-first-based cooperative caching strategy in information centric
networking. J Commun 38(3):53–64

	10.	 Li C, Zhang Y, Sun Q, Luo Y (2021) Collaborative caching strategy based on optimization of
latency and energy consumption in MEC. Knowl-Based Syst 233:107523

	11.	 Li Y, Hu S, Li G (2021) Cvc: a collaborative video caching framework based on federated learning
at the edge. IEEE Trans Netw Serv Manage 19(2):1399–1412

	12.	 Ndikumana A, Tran NH, Kim KT, Hong CS et al (2020) Deep learning based caching for self-
driving cars in multi-access edge computing. IEEE Trans Intell Transp Syst 22(5):2862–2877

	13.	 Wang X, Wang C, Li X, Leung VC, Taleb T (2020) Federated deep reinforcement learning for inter-
net of things with decentralized cooperative edge caching. IEEE Internet Things J 7(10):9441–9455

	14.	 Chien W-C, Weng H-Y, Lai C-F (2020) Q-learning based collaborative cache allocation in mobile
edge computing. Futur Gener Comput Syst 102:603–610

	15.	 Ferragut A, Rodríguez I, Paganini F (2016) Optimizing ttl caches under heavy-tailed demands.
ACM SIGMETRICS Perform Eval Rev 44(1):101–112

	16.	 Ioannidis S, Yeh E (2018) Adaptive caching networks with optimality guarantees. IEEE/ACM Trans
Netw 26(2):737–750

	17.	 Wang Y, Wang W, Cui Y, Shin KG, Zhang Z (2018) Distributed packet forwarding and caching
based on stochastic network utility maximization. IEEE/ACM Trans Netw 26(3):1264–1277

	18.	 Yan B, Xu Y, Chao HJ (2018) Adaptive wildcard rule cache management for software-defined net-
works. IEEE/ACM Trans Netw 26(2):962–975

	19.	 Wu D, Zhou L, Cai Y, Qian Y (2018) Collaborative caching and matching for d2d content sharing.
IEEE Wirel Commun 25(3):43–49

	20.	 Breslau L, Cao P, Fan L, Phillips G, Shenker S (1999) Web caching and zipf-like distributions: evi-
dence and implications. In: IEEE INFOCOM’99. Conference on Computer Communications. Pro-
ceedings. Eighteenth Annual Joint Conference of the IEEE Computer and Communications Socie-
ties. The Future Is Now (Cat. No. 99CH36320), vol 1. IEEE, pp 126–134

	21.	 Wang L, Jiao L, He T, Li J, Mühlhäuser M (2018) Service entity placement for social virtual reality
applications in edge computing. In: IEEE INFOCOM 2018-IEEE Conference on Computer Com-
munications. IEEE, pp 468–476

	22.	 Somesula MK, Rout RR, Somayajulu DVLN (2023) Greedy cooperative cache placement for mobile
edge networks with user preferences prediction and adaptive clustering. Ad Hoc Netw 140:103051

	23.	 Somesula MK, Mothku SK, Annadanam SC (2023) Cooperative service placement and request
routing in mobile edge networks for latency-sensitive applications. IEEE Syst J 17(3):4050–4061

	24.	 Hu Z, Fang C, Wang Z, Tseng S-M, Dong M (2024) Many-objective optimization-based content
popularity prediction for cache-assisted cloud-edge-end collaborative iot networks. IEEE Internet
Things J 11(1):1190–1200

	25.	 Somesula MK, Kotte A, Annadanam SC, Mothku SK (2022) Deadline-aware cache placement
scheme using fuzzy reinforcement learning in device-to-device mobile edge networks. Mob Netw
Appl 27(5):2100–2117

	26.	 Sun Y, Peng M, Mao S (2018) Deep reinforcement learning-based mode selection and resource
management for green fog radio access networks. IEEE Internet Things J 6(2):1960–1971

	27.	 Wan Z, Li Y (2020) Deep reinforcement learning-based collaborative video caching and transcoding
in clustered and intelligent edge b5g networks. Wirel Commun Mob Comput 2020:1–16

	28.	 Somesula MK, Rout RR, Somayajulu DVLN (2022) Cooperative cache update using multi-agent
recurrent deep reinforcement learning for mobile edge networks. Comput Netw 209:108876

	29.	 Somesula MK, Mothku SK, Kotte A (2023) Deep reinforcement learning mechanism for deadline-
aware cache placement in device-to-device mobile edge networks. Wirel Netw 29(2):569–588

22912	 H. Xiao et al.

1 3

	30.	 Van Hasselt H, Guez A, Silver D (2016) Deep reinforcement learning with double q-learning. In:
Proceedings of the AAAI Conference on Artificial Intelligence, vol 30

	31.	 Chen B, Liu L, Sun M, Ma H (2019) Iotcache: toward data-driven network caching for internet of
things. IEEE Internet Things J 6(6):10064–10076

	32.	 Sutton RS, Barto AG (2018) Reinforcement learning: an introduction. A Bradford Book, Cambridge
	33.	 Li X, Wang X, Wan P-J, Han Z, Leung VC (2018) Hierarchical edge caching in device-to-

device aided mobile networks: modeling, optimization, and design. IEEE J Sel Areas Commun
36(8):1768–1785

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

Authors and Affiliations

Hui Xiao1 · Xinyu Zhang1 · Zhigang Hu1 · Meiguang Zheng1 · Yang Liang1,2

 *	 Zhigang Hu
	 zhiganghu666@163.com

	 Hui Xiao
	 huixiaoyt@163.com

	 Xinyu Zhang
	 zhangxinyu11014@163.com

	 Meiguang Zheng
	 zhengmeiguang@csu.edu.cn

	 Yang Liang
	 liangyang1987@tom.com

1	 School of Computer Science and Engineering, Central South University, 932 South Lu Shan
Road, Changsha 410083, Hunan, China

2	 School of Informatics, Hunan University of Chinese Medicine, 300 Scholars Road,
Changsha 410083, Hunan, China

	A collaborative cache allocation strategy for performance and link cost in mobile edge computing
	Abstract
	1 Introduction
	2 Related work
	2.1 Conventional methods
	2.2 Deepreinforcement learning methods
	2.3 DRL methods

	3 System model
	3.1 Network model
	3.2 Cache value and link cost
	3.3 Problem definition
	3.4 NP-complete proof

	4 Collaborative two-stage learning strategy for cache algorithms
	4.1 Two-stage learning for state, action and reward
	4.2 Pre-training and online training process
	4.3 Cache placement algorithms

	5 Experiment analysis
	5.1 Experimental value of weight parameter
	5.2 Comparison and analysis of experimental results

	6 Conclusion and outlook
	References

