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Abstract
Mobile Edge Computing (MEC) represents a novel paradigm dedicated to address-
ing the challenge of facilitating rapid access to an immense volume of content over 
mobile networks. However, improper cache placement and usage, coupled with fluc-
tuating requests for cached data at diverse timeframes, exhibits considerable vari-
ability. Despite the abundance of optimization techniques, a majority of them lack 
the adaptive capacities needed to navigate dynamic caching environments efficiently. 
Furthermore, many studies employ online deep learning methodologies, but a slow 
convergence speed during the training process can potentially compromise caching 
performance and hinder dynamic goal adjustment in alignment with realistic pro-
vider requirements. We propose an integrative utility function encapsulating the 
worth of cached content and the cost associated with transmission links. By dynami-
cally modifying weight values, this function can concurrently meet the performance 
and link cost demands of edge computing caching systems. To enhance the real-
time response of the caching policy and the efficiency of deep learning, we intro-
duce a Collaborative two-stage Deep Reinforcement Learning (CDRL) framework 
for devising the caching policy model. CDRL utilizes Double Deep Reinforcement 
Learning (DDQN) for pre-training in the caching environment to make pre-caching 
decisions and employs a Deep State-Action-Reward-State-Action (SARSA) algo-
rithm for online training and caching decision-making. Experimental results con-
vincingly demonstrate the proposed method’s efficacy in improving the cache hit 
rate, service latency, and link cost.
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1 Introduction

In recent years, the widespread popularity of 5  G networks and the massive data 
generated by mobile devices (such as short videos, images, and mobile games) have 
given rise to many new issues [1]. In conventional cloud computing, while storage 
and computational services are extended to mobile devices, orchestrating data col-
lection and processing within the cloud can induce significant and erratic network 
latencies. Recognizing the constraints of standard cloud computing within the IoT 
domain, scholars have conceptualized a refreshed computing framework denoted as 
MEC. As depicted in Fig. 1, a typical MEC architecture is delineated across three 
levels: the end-user level, the proximal edge server level, and the overarching cloud 
data center level. Given the inherent constraints in computing and storage capabili-
ties of terminal apparatuses to satisfy a multitude of application demands, the task 
of storage and computation is frequently relegated to adjacent edge servers. These 
edge servers, essentially diminutive storage and computational nodes situated in 
proximity to terminal devices, are tethered through established wired connections 
[2]. They offer cloud-analogous environments at the network’s frontier, facilitating 
the caching and computational exigencies of the terminal devices.

MEC holds significant importance across various domains, encompassing 
smart urban developments, telehealth services, expansive manufacturing units, 
and cohesive business sectors. Within the confines of classic cloud computing, 
cloud data centers are often burdened with supplying extensive cache data. Yet, 
constraints associated with network throughput and bandwidth can detrimentally 
impact the Quality of Service (QoS) extended to users. Given that edge servers 
are strategically positioned nearer to users compared to cloud servers, it’s feasible 

Fig. 1  MEC architecture that supports caching



22887

1 3

A collaborative cache allocation strategy for performance…

to handle data processing at the edge, sidestepping the need for cloud-centric 
operations. This approach curtails back-and-forth data transmissions, minimizes 
latency, and enhances the QoS for end-users. The extensive storage and computa-
tion demands ushered in by mobile devices introduce nuanced challenges to the 
prevailing MEC landscape. The escalating adoption of mobile devices coupled 
with the influx of data traffic exerts pronounced pressure on edge servers, espe-
cially those grappling with constrained caching capabilities [3]. Concurrently, 
age-old caching methodologies struggle to keep pace with today’s fluid tech 
milieu. Consequently, suboptimal caching resource distribution on edge servers 
emerges as a prevalent issue, necessitating a shift towards cooperative caching 
[4].

The domain of academic research has delved deeply into the realm of collabora-
tive caching. Within the context of cloud computing, the role of collaborative cache 
is multifaceted: it seeks to curtail energy expenditure within data centers [5], bolster 
user access velocities [6], and diminish the overarching computational burden [7]. A 
predominant portion of extant literature on edge collaborative caching portrays the 
content caching conundrum as a linear programming quandary, which anchors its 
strategies on content popularity. Such methodologies further seek to augment energy 
efficacy by minimizing data redundancies via cooperative caching measures [8–10]. 
Yet, this popularity-centric methodology is riddled with challenges. For instance, 
it often neglects considerations such as the constraints of edge cache storage while 
hoarding highly sought-after content, the costs associated with supplanting cached 
data, or the infrastructural costs linked to user requests. To rectify these oversights, 
our approach holistically contemplates the merits of caching in tandem with the 
infrastructural costs, aiming to dynamically harmonize cache utility.

Furthermore, traditional methods, whether based on common protocols or 
advanced strategies, struggle with adapting to the environment, mainly because 
of the changing and unpredictable nature inherent to users. Online methods sup-
ported by learning techniques offer the flexibility to adjust caching strategies in line 
with changing environmental needs. As a result, researchers have promoted deep 
learning-based predictive caching methods [11, 12], cooperative deep reinforce-
ment learning for edge caching [13], and caching systems based on Q-learning [14]. 
These learning-focused approaches mainly use models that are trained and then 
sent to the cloud/edge, meeting immediate operational needs. However, challenges 
remain, especially in achieving effective real-time methods in a short time, mostly 
due to the extended learning times during training. To address these problems, we 
propose a new cache utility model that can be adjusted according to the needs of 
the service provider. To match the dynamic caching environment in real-time, we 
propose a two-stage Collaborative Deep Reinforcement Learning (CDRL) caching 
mechanism. The model is deployed on the cache controller to update the caching 
strategy in real-time. Our contributions are as follows:

• In order to balance the efficiency of edge caching and communication costs in 
MEC environments and enable cache policies to meet actual performance/link 
cost requirements in specific environments, the edge collaborative caching prob-
lem is modeled, and a new dynamic cache utility function is proposed. The util-
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ity function can be changed according to the needs of service providers/actual 
environments.

• To address the real-time and efficient requirements of edge caching, a two-
stage CDRL mechanism is proposed to dynamically optimize the edge caching 
problem. Due to the fact that the CDRL algorithm shares a neural network in 
both pre-training and online training, and uses a Double Deep Reinforcement 
Learning (DDQN) in pre-training to achieve the current best caching policy 
and a State-Actor-Reward-State-Actor (SARSA) algorithm in online training to 
improve learning efficiency, better caching results can be achieved in delay-sen-
sitive edge computing environments.

• The performance of the strategy based on dynamic cache utility and CDRL is 
evaluated through simulation experiments. The simulation results show that, 
compared with traditional cache replacement algorithms and other deep rein-
forcement learning (DRL) algorithms, this optimization method can effectively 
increase cache hit rate, reduce cache cost, and latency.

This paper is organized as follows: Sect. 2 summarizes the current work progress, 
and Sect. 3 describes the system model and NP-complete proof. In Sect. 4, CDRL 
and cache algorithms are introduced. Section  5 analyzes the experimental results 
and gives conclusions. Finally, we summarized the article and looked forward to it.

2  Related work

Contemporary research in this domain is normally divided into three primary 
streams, including the conventional methods (e.g., linear programming, heuristic 
strategies), the deep/reinforcement learning methods and the DRL methods.

2.1  Conventional methods

Challenges like transmission link overloads and limited buffer capacity have 
emerged as pressing concerns in the caching optimization problem. Vo et  al. [6], 
for instance, proposed a collaborative caching scheme tailored for eNBs to chan-
nel video content requisitions. This effort frames the optimization issue as a broad 
integer linear programming problem, proposing a distributed approach that matches 
the simpler version of the problem and includes nearby request routing with effi-
cient collaborative eviction strategies. However, this scheme lacks real-time perfor-
mance. Echoing this sentiment, Xie et al. [7] worked on improving network router 
content caching against the background of traffic management, separating collabora-
tive caching from traffic patterns and creating a set of collaborative caching meas-
ures to design effective caching plans. Going further, Ostovari et al. [8] presented 
a guided real-time collaborative caching method to handle cache cost challenges. 
Looking at timing, Ferragut et al. [15] explored a time-based (TTL) cache approach. 
Broadening the scope, Ioannidis et  al. [16] introduced a distributed adaptive con-
tent placement method, using gradient rise on a predictable cache output while 
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arranging content chances aimed at the expected best result. In subsequent studies, 
many research projects [17–21] strengthened these basic concepts. Somesula et al. 
[22] proposed a greedy submodular optimization method which incorporates user 
preference prediction and clustered mechanism for cooperative content caching. In 
addition, they [23] jointly optimized the service placement and the request routing 
to maximize the time utility and presented a greedy rounding-based service caching 
method and a randomized rounding-based request routing method. Hu et  al. [24] 
employed a many-objective evolutionary cooperative caching method which jointly 
optimizes delay, load balance, offloaded traffic and prediction accuracy for cloud-
edge-end collaborative IoT networks.

While many of these traditional methods can provide real-time cache instruc-
tions, making accurate decisions in large-scale networks becomes difficult for these 
conventional caching approaches given the rapid expansion and constant evolution 
of multimedia service demands within MEC.

2.2  Deep/reinforcement learning methods

Recently, the academic community has delved deeply into cache optimization strate-
gies, leveraging both machine learning and deep learning for MEC cache enhance-
ment. For instance, Li et al. [10] employed a neural network for anticipating subse-
quent user requests, preloading these onto the optimal edge node to mitigate issues 
of latency and operational costs in video caching. Another study by Li et  al. [11] 
introduced the Edge Collaborative Cache (CVC) framework, integrating a request 
prediction tool grounded in federated learning along with a cooperative cache deci-
sion strategy to boost hit rates and trim user latency. Anselme et  al. [12] devised 
a deep learning-based cache decision method, focusing on reducing content down-
load delays by capturing passenger attributes. Somesula et al. [25] focused on the 
cache placement problem considering the mobility and velocity of user devices and 
random contact duration, and proposed a reinforcement learning-enabled caching 
approach to tackle the problem.

While these methodologies, which preload content based on historical data or 
specific characteristics, enhance cache efficiency, they often lean on intricate rule-
based caching directives within real-time frameworks and lack efficiency in solving 
complex problems.

2.3  DRL methods

Transitioning towards DRL-driven real-time cache strategies can further optimize 
the problem-solving efficiency by combining the perception ability of deep learning 
and decision ability of reinforcement learning. Wang et al. [13], for instance, high-
lighted a real-time caching approach rooted in federated deep reinforcement learning 
(FADE) for IoT settings, aiming to slash network delays. Chien et al. [14] harnessed 
Q-learning to craft a caching system, formulating action-selection approaches for 
caching challenges and pinpointing optimal cache states. In similar veins, Sun et al. 
[26] deployed Deep Reinforcement Learning (DRL) for holistic edge resource 
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management, and Wan et al. [27] actualized collaborative caching via layered aggre-
gated federated learning. The potency of these online, learning-centric caching 
strategies is markedly bolstered by their profound environmental interaction capa-
bilities. Somesula et al. [28] adopted multi-agent DRL for solving cooperative cache 
replacement problem to minimize delay with resource and deadline constraints. 
Beside, they developed a DRL-based mechanism [29] for cooperative caching which 
adopts deep deterministic policy gradient (DDPG) to enhance the long term time-
saving performance and accelerated the learning process.

While numerous collaborative caching mechanisms exist, only a handful of opti-
mization strategies account for balancing cache value against link costs based on 
real-world demands. Furthermore, learning-driven caching methods often struggle 
to meet immediate performance benchmarks since the learning process consumes a 
certain amount of time and resources. In this study, we introduce a novel two-stage 
learning-centric approach which first utilize rich cloud resources to obtain an effec-
tive and stable initial DDQN model via pre-training in the cloud and then enable 
each UE to rapidly adjust the model to environmental fluctuations via SARSA-based 
local online training.

3  System model

This section introduces the network structure of MEC systems bolstered by collabo-
rative edge caching and elaborates on the cache utility model that factors in both 
cache value and link costs. We then delineate the cache placement optimization 
challenge within MEC. Conclusively, we demonstrate that the cache optimization 
issue in MEC is NP-Complete. Table 1 lists some key parameters.

3.1  Network model

As illustrated in Fig. 2, we propose the overall architecture of our system. The left 
side of the figure includes an introduction to the network architecture, where all 
cached contents are sourced from the cloud, which is the fundamental support of the 
entire system and also the part we aim to optimize. The right side of the figure con-
tains a description of the CDRL approach.

Figure 2 showcases the CDRL framework’s interaction with a standard edge sys-
tem. CDRL’s primary goal is to offer a control framework attuned to both perfor-
mance and cost. This framework dynamically manages cache operations and utility 
setups within the edge system, striving for an optimal balance between performance 
and connectivity costs. Hence, CDRL employs a two-tier control framework, lev-
eraging reinforcement learning to make informed resource management decisions 
in real-time. The CDRL encompasses four primary segments: a bi-level learning 
model, caching controller, caching operations, and utility adjustments.

• MEC: MEC consists of edge, and User Equipments (UEs), where the edge 
servers as the carriers of content caching. The cloud and edge are connected 
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via a backhaul link. The edge comprises a set of base stations (BSs) connected 
by optical fibers. For simplicity, we use the term BSs to refer to edge serv-
ers, base stations, and nodes. The BSs provide direct caching services for UEs 
through wireless links. It should be noted that the UEs are dynamic and can 
change over time.

• BS: let N = {1, ..., n, ...,N} represent the set of BSs. Each BS has the storage 
capacity Cn to cache contents and the bandwidth Bn to communicate with the 
UE. Due to the limited capacity of BS, it is necessary to cache the most valu-
able content within its service scope. Cache replacement can be performed 
when the capacity of BS is insufficient.

Table 1  Summary of notations

Notation Description

N = {1,… , n,… ,N} Set of BSs
U = {1,… , u,… ,U} Set of UEs
F = {1,… , f ,… ,F} Set of contents
T = {1,… , t,… ,T} Set of time slots
Wn(t) Utility of the BSn

valuen,t Cache value of BSn when caching content f
costu,t Transmission cost of BSn when caching content f
RePn(t) The cache replacement rate of BSn

�(t) Popularity of content f
Vn(t) Available cache size of BSn

Cf Size of content f
Cn Cache capacity of BSn

dc,n(t) Cloud-edge link cost
de,n(t) Edge-edge link cost
du,n(t) Edge-User link cost
Bn Network bandwidth of BSn

Fig. 2  The overall network architecture of the proposed system
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• UEs: let U = {1, ..., u, ...,U} represent the set of UEs, randomly distributed 
within the service range of each BS. The set of requested contents is denoted as 
F = {1, ..., f , ...,F} , for clarity, each piece of content, represented by f, has a size 
denoted as Cf  . We consider this size as an integer, using megabits (Mbit) as the unit 
for simplicity.

• Cache strategy: given a BS set N and a content set F, the caching strategy operates 
as a many-to-many relationship. This means items from set F must be positioned 
within portions of the base station set N. Depending on the specifics of an edge 
network, there are multiple potential caching strategies. The BS must retrieve the 
content, sourcing data from its local storage, neighboring BSs, or directly from the 
cloud.

• Cache controller: this pivotal element of the edge caching setup gathers data about 
the system’s varied resources and directly governs the caching operations. It con-
veys cache and timing details to the learning model, directly affecting the caching 
system by adjusting cache operations and utility settings. Facilitating to capture 
and serve the dynamic content requests, we consider a discrete time-slotted system 
where the timeline is discretized into time slots T = {1,… , t,… , T} and enable 
time-slotted caching operations in each t ∈ T.

• Two-stage learning model: this part integrates two reinforcement learning architec-
tures. The initial phase is an offline learning model utilizing DDQN, which pro-
cesses past cache data to craft an introductory caching strategy. Subsequently, an 
online training system, grounded in the principles of SARSA and building upon the 
insights from the DDQN model, consistently acquires data to dynamically update 
the caching strategy.

• Utility configurator: this module fine-tunes the computation methodology of cache 
utility in alignment with learning outcomes, relaying the evolved utility computa-
tion back to the cache controller.

• Cache action: the caching activity is segmented into three operations: retrieving 
from the cloud, saving to the local BS, and transferring to other BSs. Actions related 
to caching are derived from the learning outcomes, and the resultant cache activity 
matrix is forwarded to the caching controller.

3.2  Cache value and link cost

In much of the existing literature, cache value is predominantly linked to content popu-
larity. Yet, considering the limited capacity of edge servers and the regular cache turno-
ver at BSs, the cache value can be influenced. As such, this paper offers the subsequent 
characterization for cache value:

(1)
Valuen,f (t) =

�f (t) × Vn(t)

Repn(t)

s.t. �f (t) ∈ (0, 1)
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where �f (t) , Vn(t) and Repn(t) represent the popularity of content f for BSn, the 
available cache size, and the cache replacement rate before time slot t of the BSn, 
respectively.

The content’s popularity is defined as the probability distribution of content 
requests across all UEs within the network. The f − th element can be derived by 
determining the proportion of requests for content f relative to the total content 
requests in the MEC. The �f (t) is generated by Mandelbrot–Zipf (MZipf) distribu-
tion as [30]:

The MZipf distribution is more in line with the distribution of users’ actual resource 
requests in the cache system, and it is widely used in the simulation of cache algo-
rithms [31]. In the above formula, at time slot t, the resource popularity ranking 
of content f is rf (t) , and the parameters q ≤ 0 is the plateau factor, and a < 0 is the 
skewness factor. Moreover, we assume that the content popularity changes slowly.

When the residual cache Vn(t) of a BS falls below a designated threshold, prompt-
ing proactive caching, it initiates a cache replacement. Given the diverse character-
istics of BSs, many may experience regular content substitutions in their cache. This 
recurrent cache turnover can induce increased overheads. Thus, content should ide-
ally be proactively cached on BSs exhibiting reduced cache replacement frequen-
cies. Denote Repn(t) as the cache replacement rate of BSn. A high value of Repn(t) 
signifies considerable costs associated with substituting the cached content on BSn, 
while a lower value suggests that caching content on that particular server is more 
advantageous. The cache replacement rate is defined as:

where Cn,i represents the content size of caches to be replaced in i − th cache replace-
ment on BSn. The total number of cache replacements on BSn that occurred before 
time slot t is denoted as kn(t) , whereas Cn − Vn represents the amount of used cache 
space on BSn. Repn(t) serves as an indicator of the level of cache space contention 
on BSn, signifying that content cached on edge servers with high cache replacement 
rates is more prone to experience frequent replacements.

Considering that minimizing link cost is crucial in deciding the source of con-
tent acquisition, it’s essential to rank content acquisition sources in the cache deci-
sion-making process. Based on the model’s assumptions, link costs are ordered in 
ascending sequence, with the priority being local BSs, followed by other BSs, and 
then cloud servers. In determining the link cost for obtaining a specific resource, the 
content placement strategy can guide the caching decision according to this hierar-
chy, allowing for the respective link cost to be identified.

(2)

�f (t) =
(rf (t) + q)a

F∑
f=1

(rf (t) + q)a

.

s.t. f ∈ F

(3)Repn(t) =
1

Cn − Vn

kn(t)∑
i=1

Cn,i,
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As depicted in Fig. 3, within the collaborative caching framework of MEC, users 
can potentially retrieve requested content from local BS, other BSs, or directly from 
the cloud. It’s vital to consider the link cost associated with each retrieval source. In 
our model, the link cost symbolizes the network’s transmission cost, derived not from 
a direct physical measurement but from a combination of delay and bandwidth fac-
tors. We can gauge link quality by assessing these delay and bandwidth values, and our 
model operates under the assumption that this link quality is known. Notably, a rise in 
link cost corresponds to increased delay, reduced bandwidth, and decreased network 
stability. Thus, we can obtain the link cost when a user requests content f,

where � is a positive constant coefficient, introduced for the purpose of standardiz-
ing units and magnitudes. dc,n(t) represents the transmission delay from the cloud to 
BSn for content f, de,n(t) denotes the transmission delay from other BS to BS n for 
content f, and du,n,f (t) represents the average transmission delay between all UEs and 
the BS n up to time slot t for content f [13, 29]. When a user request arrives at the 
local BS and results in a cache miss, the system needs to determine whether to per-
form cache replacement and where to retrieve the content f from. Due to the lower 
delay of retrieving content from other BSs compared to the cloud, we propose a 
decision variable x(e)

f
 , where x(e)

f
= 1 indicates that the content f is stored in other 

(4)

costu,f (t) = 𝛼((1 − x
(e)

f
)dc,n(t) + x

(e)

f
de,n(t) + du,n,f (t)),

s.t.

⎧
⎪⎨⎪⎩

x
(e)

f
∈ {0, 1},

de,n(t) ≪ dc,n(t),

f ∈ F,

n ∈ N.

Fig. 3  MEC system topology supporting cache
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BSs, otherwise x(e)
f

= 0 and the content needs to be retrieved from the cloud. We can 
obtain the average latency of UEs requests for content f prior to time slot t:

where Uf  denotes the set of UEs that have requested content f, and the wireless trans-
mission delay between BS and UE is computed using Shannon’s formula [13].

3.3  Problem definition

When a user seeks particular content via BSn, potential sources encompass the local 
BS, neighboring BSs, and cloud repositories. Assuming efficient content search-
ing, request dispatch, and reception processes, user preferences can typically be 
discerned by examining past content requests or using real-time online techniques. 
Typically, resource discovery and transmission leverage buffer exchange protocols 
and GPRS tunneling methods.

BSs are usually deployed in commercial or industrial sites; we consider an MEC 
scenario in a city’s commercial area containing a set of N BSs. These BSs are scat-
tered in the city’s commercial area, and each BS has a cache utility value Wn(t) . At 
a specific time, all BSs need to cache a total of Fm contents, which are distributed 
within the range of N BSs, and there are Um users in the area. Where Fm is a subset 
of F and Um is a subset of U.

This paper centers around harmonizing cache value and link cost, leading to the 
introduction of an integrated utility function. It merges content popularity, cache 
capacity, and BS cache replacement frequency to define cache value, which is then 
offset against the link cost. This utility function offers adaptability based on specific 
needs. The overarching aim of this caching framework is to optimize the aggregate 
cache utility, ensuring compliance with standard caching prerequisites and attaining 
peak caching efficiency within MEC. When a BS is requested to cache content, set 
the cache utility of the server as Wn(t) , the cache value as Valuen,f(t), and the link 
cost as costn,f(t). The cache utility model of a single BS is obtained as follows,

where xn,f = 1 represents the content f needs to be cached in BSn, xn,f = 0 otherwise. 
Parameter � represents the weight of proactive caching link cost. An elevated weight 
value typically reduces the total link cost but might compromise the aggregate hit 
rate, steering the system away from proactive caching. The weight factor offers 

(5)
du,n,f (t) =

1
|||Uf

|||

∑
t�≤t

∑
u∈Uf

du,n,f (t
�),

s.t. Uf ∈ U.

(6)

Wn(t) = xn,f ((1 − 𝜎)Valuen,f (t) − 𝜎costu,f (t)),

s.t.

⎧⎪⎪⎨⎪⎪⎩

xn,f ∈ {0, 1},

𝜎 ∈ [0, 1],

f ∈ Fm,

Fm ⊂ F,

n ∈ N
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tangible benefits in real-world scenarios by facilitating the adjustment of caching 
system performance. For example, in settings characterized by rapid content turn-
over, such as sporting events or holiday shopping locales, diminishing the weight 
value could enhance caching efficiency. On the flip side, in scenarios with minimal 
caching demands, augmenting the weight can minimize proactive caching. Given 
that the link burden is insubstantial, sourcing content outside of the local base sta-
tion can maintain satisfactory user experience, simultaneously curbing both link and 
energy consumption. According to formula (6), the high caching utility of the BSn 
indicates that the BSn has a higher caching value and a lower link cost when caching 
content. Therefore, in the MEC environment, the primary objective of caching is to 
maximize the caching utility of all BSs,

3.4  NP‑complete proof

If the Set Cover (SC) problem, known to be NP-complete, can be mapped to the 
cache placement challenge, it would establish the decision problem of cache place-
ment as NP-complete. Initially, we identify two sets: Set G = g1, g2, .., gI and its 
counterpart, Set H = h1, h2, .., hJ , which contains subsets of G. Each member of H, 
denoted hj , is associated with a weight. The SC problem’s goal is to choose a subset 
from H such that its union encompasses all elements in G while either minimizing 
or maximizing the cumulative weight.

To adapt the SC problem to our cache placement scenario, proceed as follows: 
first, fix the number of content items at 1. Allow G = g1, g2, ..., gI to symbolize all 
BSs, while H = h1, h2, ..., hJ captures the distinct configurations of content caching 
across BSs. For instance, if h1 = 1, 3, 5 , it implies content is cached at BSs g1 , g3 , 
and g5 . Similarly, h2 = 2, 4, 6 signifies caching at g2 , g4 , and g6 . Now, equate the 
weights in the SC problem to our cache value and link cost.

Therefore, our problem can be formulated as a SC problem. Let’s use 
V = v1, v2, ..., vN to represent all edge servers. Each member of the set 
C = c1, c2, ..., cK denotes potential caching decisions for content across all BSs. Each 
caching decision ck , carries an associated cache value and link cost. The net ben-
efit from a caching decision ck is the difference between its cache value and link 
cost. The goal is to pinpoint a subset C� = c1, c2, ..., c

�
K

 from C such that the union 
of all members in C′ captures V, aiming to optimize the aggregate content caching 
benefits.

The set cover problem can be mapped to the data caching placement dilemma 
using the aforementioned transformation. By weaving real-world parameters into the 
set cover problem’s structure, it’s clear that these parameters align with the set cov-
er’s generic variables. At its core, our challenge mirrors the elements of the set cover 
problem, making it a variant of the same. As a result, the data caching placement 
issue is deemed NP-complete.

(7)max
∑
n∈N

∑
f∈fm

Wn(t)
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4  Collaborative two‑stage learning strategy for cache algorithms

4.1  Two‑stage learning for state, action and reward

The proposed two-stage learning framework integrates the pre-training capabili-
ties of the DDQN algorithm with the online adaptability of the Deep SARSA 
algorithm to tackle proactive caching challenges in BSs. By merging these two 
DRL methodologies, the framework capitalizes on the distinctive advantages of 
each. Specifically, DDQN aids in mitigating overestimations of Q-values and sen-
sitivity to miscalculations, whereas SARSA bolsters model stability by empha-
sizing the current policy over historical ones. The utilization of DDQN in the 
pre-training phase not only speeds up the learning process but also lays a solid 
foundation for model performance. In contrast, deploying SARSA for online 
training equips the model to adjust to environmental fluctuations, thanks to its 
emphasis on present policies and adaptability to evolving scenarios. Collectively, 
the integration of DDQN’s pre-training with SARSA’s online training enhances 
the model’s efficacy and resilience, ensuring superior adaptability and broader 
application potential.

We model the content cache placement process in BSs as Markov decision 
process (MDP) [13]. The state of caches, cache action, utility configuration, and 
feedback rewards are as follows.

State of caches: During each decision epoch i, the cache status of the content 
is represented by sf

i,n
 , and sf

i,n
= 1 means that BSn caches content f, otherwise. 

Furthermore, we use sfi,u to denote the request state from UE u. Similarly, sf
i,u

= 1 
means UE u sends a request for content f, sf

i,u
= 0 otherwise. At each decision 

epoch i, the cache state of BSn and the set of request states within its service 
range are combined as its state si,

Fn and Fu denote the sets of cached contents in BSn and content requests from UEs, 
respectively.

Cache action: in order to adapt to the continuous changes in a dynamic envi-
ronment, a BS may choose which content to replace and decide where to process 
the request. The first option is to process the request at the local BS, 
alocal
i

= {alocal
i,0

, alocal
i,1

, ..., alocal
i,F

} denoted by a local function. If alocal
i,f

= 1 , it indicates 
that the content f requested by the UE needs to be replaced in the local BS, and 
the content request is executed locally at the BS. The second option is to route the 
UE’s request to a neighboring BS if the requested content f is not cached locally 
at the BS. This is achieved through a neighboring processing function denoted by 
aneibour
i

= {aneibour
i,1

, aneibour
i,2

..., aneibour
i,N

 }. If aneibour
i,n

= 1 , it indicates that the BSn is 
processing the current user request. The third option is to process the request in 
the cloud, denoted by aicloud. If the UE is unable to obtain the content f from the 
local and neighboring BSs, then acloud

i
= 1 , indicating that the request is processed 

in the cloud,

(8)si,n = {s
Fn

i,n
, s

Fu

i,u
}
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Feedback reward: when the local BS takes action A, the system receives feedback 
rewards, which are composed of two components: the overall cache value and the 
link cost. To this end, we designed two reward functions, aimed at maximizing the 
system’s total reward and ensuring maximum utility in the dynamic process.

Formula (10) proposes two rewards for the system. The first is a positive cache value 
function defined by Eq.  (1), indicating that caching proactively to increase cache 
value provides positive rewards. The second is a negative link cost function defined 
by Equation (4), indicating that caching should not be performed blindly and should 
be combined with link cost considerations.

As illustrated in Fig.  4, the blue rectangles denote the shared lower-level net-
work module, while the squares represent branches in the higher-level network. The 
shared network module is a Long Short-Term Memory (LSTM) with internal unit 
size of 512. The high-level network branches consist of two fully-connected layers, 
each approximating Qn,value and Qn,cost , respectively.

4.2  Pre‑training and online training process

Pre-training aims to enhance the initial performance and consistency of the DRL 
model. For this purpose, we employ the DDQN algorithm, a refined version of the 
Q-learning algorithm. It utilizes dual Q-networks to decrease bias in Q-value esti-
mations: one for determining actions and another for evaluating action values. This 

(9)�(si
n
) = {alocal

i
, aneibour

i
, acloud

i
}

(10)

⎧
⎪⎨⎪⎩

Rn,value(si,n,�(si,n)) =
∑
f∈Fn

valuen,f

Rn,cost(si,n,�(si,n)) = −
∑
f∈Fn

costu,f

Fig. 4  Proposed dual reward architecture
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setup circumvents the instability stemming from overestimating Q-values in the ini-
tial phase. Notably, DDQN proves effective when pre-trained on the cloud, given the 
accessibility to comprehensive cache information [30].

For online training at the edge nodes, we adopt the SARSA algorithm. This 
method stands out due to its on-the-fly learning of the optimal policy, paired with 
its minimal computational and memory demands. Additionally, SARSA offers com-
mendable convergence and consistency, adeptly sidestepping issues like unsteady 
learning from biased value functions. Stationing the model at the edge minimizes 
communication exchanges between the edge and cloud, thus promoting efficient and 
unwavering online learning [32].

Figure  5 illustrates the collaborative two-stage learning framework. During the 
DDQN pre-training phase, global historical data provides the state matrix, action 
matrix, and reward matrix. By training both the primary and secondary networks 
of DDQN, and by reducing the loss function L across each iteration, an initial cach-
ing strategy is formulated in the cloud. Once this strategy is established, both the 
devised caching strategy and the primary DDQN network are dispatched to every 
BS. Each BS, equipped with this neural network, employs the SARSA algorithm 
for dynamic caching, aiming to achieve an optimal real-time caching decision. In 
the online training phase powered by the SARSA algorithm, the system executes 
an action at+1 before recognizing the state st+1 and the associated reward rt+1 . This 
dynamic caching method, driven by the SARSA algorithm, can adaptively modify 
the edge cache state in real-time. To maintain data training integrity, the experience 
replay method stores all sample points, eliminating potential biases through rand-
omized sampling.

The SARSA algorithm dynamically shapes the caching strategy. In contrast to 
the DDQN algorithm, where the agent takes action at+1 based on state st+1 and 
then receives the reward rt+1 before updating the Q-function, the SARSA algo-
rithm’s approach to predicting future rewards relies on the real reward from the 
taken action. The SARSA algorithm consistently updates the policy and adjusts 
its approach for the Q-function. By using experience replay, the agent can 

Fig. 5  Collaborative two-stage learning frameworks
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effectively navigate through past states, avoiding sudden learning disruptions or 
deviations. Each learning step mirrors the weight of the online network, strength-
ening the neural network’s stability compared to traditional online Q-learning. 
The total reward value shifts when the server conducts a caching action. Based on 
(10), we can obtain the system’s reward as follows:

where � symbolizes the caching strategy, depicted as a blend of actions. Drawing 
from the formulas (10) and (11), the aim is to optimize the long-term reward starting 
from an initial cache state s1:

where R(si,�(si)) =
∑

n∈N Rn(si,n,�(si,n)) represents the over rewards of all BSs. 
Additionally, a single-agent infinite-horizon MDP using a discounted utility (12) is 
often used to estimate the expected infinite-horizon unrecognized value, especially 
when � is within the range [0, 1). We conduct the pre-training phase in the cloud 
with DDQN. As a result, the iterative formula for the Q-value can be expressed as:

where �i ∈ [0, 1) is the learning rate, � ×max
��

Qi(s
�,��) signifies the accumulated 

reward value achieved after executing strategy �(s) in the state s, transitioning to 
state s′ , and then choosing the optimal strategy � . The discount factor, denoted by � , 
can progressively reduce the value of forthcoming rewards. Once the server carries 
out the operation �(si) , the current state si transitions to si+1 , yielding an immediate 
reward R(si,�(si)) . This equation depicts the total reward value post operation �(s) 
subtracted from the previous period’s total reward value.

The hybrid Q-value structure proposed in this paper is used for caching policy 
selection, as shown in Fig. 4. The final Q-value is calculated by combining the 
Qvalue , Qcost , and network weight � , as shown in the following equation:

The approximate optimal Q-value can be obtained according to the following 
equation:

where �i denote the neural network weights. Given that the two neural networks 
have identical low-level weights (albeit for different Q-values), it’s more beneficial 
than starting training from scratch. In deep Q-networks, the Q-learning update pro-
cedure can be straightforwardly applied to a multi-layer neural structure. Here, the 
neural networks act as substitutes for the table of state-action pairings. It should be 
noted that the pre-training of DDQN is done by taking random minibatches from the 

(11)Rn(si,n,�(si,n)) = �Rn,value(si,n,�(si,n)) + (1 − �)Rn,cost(si,n,�(si,n)),

(12)R(s,�) = max
�

E

[
lim
I→∞

1

I

I∑
i=1

R(si,�(si))|s1 = s

]
,

(13)Qi+1(s,�) = Qi(s,�) + �i(R(s,�) + � ×max
��

Qi(s
�
,�

�) − Qi(s,�))

(14)Q(s,�) ∶= �Qvalue(s,�) + (1 − �)Qcos t(s,�)

(15)Q(s,�) ≈ Q((s,�);�i)
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experience replay pool, including the current si, ai,Ri , and then using a target net-
work to calculate the maximum Q-value under si + 1 , thus reducing the overestima-
tion problem. The online training of SARSA is done by taking random minibatches 
from the experience replay pool, including the current si, ai,Ri, si + 1, ai + 1 , and 
then using the current network to calculate the Q-value under si+1 , thus achieving 
on-policy learning. The loss function of DDQN and SARSA are mean squared error 
(MSE). The traditional TD error is adapted into a revised loss function, denoted as 
L(�i) . Subsequently, the Q-networks are trained by aiming to minimize this loss 
function.

The original target in DDQN is YQ

i
:

where �−
i
 denotes target network weights. Unlike the conventional DDQN, which 

maintains two value functions and updates each function using a value from the 
alternate function for the subsequent state, this study introduces an innovative origi-
nal Q function by structuring the neural networks in layers. This newly proposed Q 
function is then updated collaboratively with the target Q function. Moreover, we 
can obtain the gradient updates of �i by ∇

�i
L(�i) as follows:

To curb the overestimation in every episode during both pre-training and online 
training and to reduce the loss function L(�i) , we introduce the “Two-stage DRL 
algorithm for caching,” delineated in Algorithm  1. This method doesn’t merely 
employ DDQN for pre-training followed by SARSA for dynamic training. Instead, 
after the DDQN pre-training phase, an action is chosen with a probability � dur-
ing dynamic training, where � is set to 0.1. This means there’s a chance of taking 
a random action, as well as a likelihood of opting for an action that maximizes the 
Q-value.

Procedure 1 (Pre-training process): Firstly, Begin with the initialization of the 
pertinent DDQN parameters within the experience replay, facilitating the acquisi-
tion of weights for both the primary and target networks. (lines 1–3). Then, using 
comprehensive historical data, both primary and target networks are trained to 
determine the foundational caching policy. Capture and store the identified states, 
actions, rewards, and value functions within the experience replay (lines 4–6). 
Finally, dispatch the initial neural network parameters and the foundational cach-
ing policy to every BS.

Procedure 2 (Online training process): Upon receiving a content request at the 
BS, determine the caching action through the � − greedy method initially. Fol-
lowing this, reset and record both the cache state and the associated policy within 
the experience replay (lines 9–13). While the online network assesses the greedy 

(16)L(�i) = E(s,�)

[
Y
Q

i
− Q(s,�;�i)

2
]
.

(17)Y
Q

i
= R + � Q(s, argmax

��

Q(s�,��;�i);�
−
i
),

(18)∇
�i
L(�i) = E(s,A)[(Y

Q

i
− Q(s,A;�i))∇wi

Q(s,A;�i)].
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action, the target network is employed for its value approximation. Then, SARSA 
is executed to train the caching process and update all parameters (lines 14–16).

The complexity of Algorithm 1 primarily considers the number of state transi-
tions and backpropagation steps in dual-depth reinforcement learning [31]. The dif-
ference from [31] is that we employ the DRL network twice to optimize the learning 
objectives. Pre-training can be conducted before the deployment of the strategy, as it 
only requires historical information, and its training process does not interfere with 
actual cache execution. Therefore, the execution efficiency of the online SARSA 
strategy executed after deployment is not significantly different from that of other 
DRL methods.

Algorithm 1  Two-stage deep reinforcement learning algorithm for caching

4.3  Cache placement algorithms

The problem of edge cache placement is an NP-complete problem. Taking into 
account the value of cached content and link costs, we designed an Online caching 
placement algorithm starting from user requests. The key to the algorithm lies in the 
decision-making process of caching, which must ensure the long-term increase in 
the target value of global cache utility.

Algorithm 2 presents the pseudo-code of the cache placement algorithm based on 
dual-depth DRL. Firstly, we construct reward functions Rvalue and Rcost , initialize an 
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empty hash map to store cache decisions, and initialize the Q network (as shown in 
lines 1–2). If BS n receives a request for content f and has cached it, the content is 
directly provided (as shown in lines 4–6). In the case where BS n has not cached the 
requested content, if the capacity of BS n that needs to cache the content is not full, 
the content f is directly cached, and then provided to UE, and the status si is updated 
synchronously (as shown in lines 7–9). If BS n has not cached the requested content 
and the capacity is full, an online policy is executed to train the cache process and 
update the cache policy (as shown in lines 11–12). Finally, the caching strategy is 
put into the hash map (as shown in lines 15–16). 

Algorithm 2  Optimize placement results

5  Experiment analysis

In this section, the proposed algorithm will be evaluated from the perspective of 
comprehensive utilization of edge servers. Four base stations (BSs) were consid-
ered for simulation, with a maximum coverage radius of 250 m. The channel gain 
was modeled as gu,n = 30.6 + 36.7lglu,n , lu,n is the distance of the UE u and BSn, 
the channel bandwidth Bn was 20 MHz, and the transmission power was 40W. The 
learning model construction was based on Python 3.8 and Pytorch 1.13.0, The 
model uses a shared bottom layer network of 512-size LSTM, with two additional 
fully connected layers of size 512 and two decision layers of size 5 for different 
Q-value outputs. The Adam optimizer is used for optimization. Other experimental 
parameters are presented in Table 2. The parameters are set according to [13].
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The simulation environment consisted of a primary Dell server acting as the 
cloud. This server was equipped with a 20-core CPU, 128 GB RAM, and 2TB of 
storage capacity. In addition, we utilized four Dell edge servers, each boasting a 
4-core CPU, 8 GB RAM, and 500 MB storage capacity. Throughout the simulation, 
pertinent details for every request were diligently logged: this encompassed request 
category, the entire completion duration, associated link expenses, and the deter-
mination of a cache hit or miss. Such recorded metrics facilitate the computation 
of essential performance indicators like the cache hit ratio, mean latency, count of 
backhauls, and overall link costs.

Our experiments employed a comprehensive offline dataset sourced from the 
Xender application, a prominent content-sharing platform extensively adopted in 
India. The dataset spanned the month of May 2018, specifically from the 1st to the 
31st. Within this timeframe, the dataset revealed activities from 472 to 833 distinct 
user pathways, encompassing the sharing of approximately 149,262 files and gener-
ating between 291,255 and 1021 requests [33].

5.1  Experimental value of weight parameter

In this experiment, we manipulated the number of episodes and content to investi-
gate how these parameters impact the overall cache performance of each algorithm. 
As stated in [14], the delay between the edge server and the user is directly propor-
tional to the Euclidean distance. In our simulation, we assume that each kilometer 
introduces a one-millisecond delay, given that the user and edge server locations are 
known.

Our initial analysis focused on the weight � of link cost. Specifically, we varied 
the number of contents (10,000 and 100,000), and the value of � (ranging from 0 

Table 2  Experimental 
parameters

Parameter name Value

Content numbers F 10,000 100,000
BSs numbers N 4
BS radius 250
Channel bandwidth 20 MHz
UE fluctuations 0.8 1.2
Noise power −95 dBm
Content size Cf (0, 10] Mbit
Delay of BS-Cloud dc,n 200 ms
Delay of BS-BS de,n 20 ms
Pre-training epoch 200
Capacity of replay memory 1000
Minibatch 32
Reward decay � 0.9
State transition probability � 0.1
Learning rate � 0.01
The period of replacing target Q network 200
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to 1). We evaluated the average cache hit rate and overall link cost over 10 periods 
(1000 online iterations). Figure 6a, b indicates that the hit rate and link cost decrease 
with increasing. We found that changes to the value have a significant impact on 
cached results. Consequently, our proposed dual learning framework was used to 
determine the final experimental outcomes.

5.2  Comparison and analysis of experimental results

To appraise the efficacy of our suggested cache placement methodology, we bench-
marked it against several sophisticated caching strategies, detailed as follows: 

1. Least Recently Used (LRU): this scheme prioritizes the removal of content that 
hasn’t been accessed for the longest duration.

2. Least Frequently Used (LFU): under this strategy, content that is least accessed 
or fetched gets earmarked for replacement.

3. Local greed for content popularity (GREEDY): in this approach, the content 
exhibiting the lowest popularity metrics is the primary candidate for replacement.

4. Deep Q-network (DQN): this caching mechanism hinges on decisions derived 
from a singular deep Q-network.

5. Federated deep-reinforcement-learning-based cooperative edge caching (FADE) 
[13]: treat each BS as a client, regard the cloud as a central aggregator, and 
generate caching strategies to minimize content access delay using the federated 
learning approach.

6. Fuzzy reinforcement learning based cache placement (FRCP) [25]: a reinforce-
ment learning-based caching placement strategy focusing on saving delay.

7. Deep deterministic policy gradient (DDPG) [29]: an optimized DRL caching 
method model focusing on long-term time-saving.

Figures 7 and 8 provide illustrative comparisons regarding average content access 
latency, hit rate, backhaul traffic, and cumulative link cost. A visual examination of 
the graphs suggests that both GREEDY, DQN, FADE, FRCP and DDPG outpace 

Fig. 6  Performance evaluation when a the content number is 10,000, and b the content number is 
100,000
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traditional methods like LRU and LFU in terms of performance. However, when 
juxtaposed against these, the merits of CDRL become even more discernible and 
pronounced.

The manuscript delineates the symbol � as equivalent to fj(t) , where the determi-
nation of fj(t) is contingent on real-world circumstances. Specifically, we character-
ize f1(t) to follow a distribution reminiscent of the Poisson distribution:

where the value of t is [1, 10].
Figure  7 illustrates the temporal evolution of caching strategy performance. 

As the duration increases, the overall system tends to become stable. The CDRL 
strategy is compared with classic caching methods such as LFU, LRU, GREEDY, 
DQN, DDPG and FRCP. From the Fig. 7, it can be observed that the CDRL strat-
egy outperforms other methods in terms of cache hit rate, delay, backhaul traf-
fic, and overall link cost. This is because CDRL has a better real-time caching 
strategy when dealing with dynamically changing requests. The GREEDY strat-
egy is a local greedy algorithm based on content popularity. Although it is more 

(19)f1(t) = 1 −
5.5t

t!
5.5−8

Fig. 7  Performance evaluation of the a hit rate, b average delay, c traffic with respect to time, and d link 
cost respect to time
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advantageous than traditional LFU and LRU, it still has a significant gap com-
pared to the DQN and CDRL strategies based on real-time policies. The CDRL 
strategy is superior to DQN in two aspects: firstly, the CDRL pre-training process 
can obtain a better initial policy through DDQN, and secondly, the SARSA algo-
rithm has stronger real-time interactivity during online caching. The reason why 
CDRL outperforms DDPG and FRCP is that the pre-training in the cloud ena-
bles the CDRL model to achieve better performance, and it quickly infers online 
caching strategies in the BS through the SARSA algorithm. Furthermore, the 
weight � Poisson-like distribution matches the dataset better. the CDRL approach, 
a higher number of requests find a match in the cache node, which leads to a 
decrease in the average resource access link cost and subsequently enhances the 
user experience. As evident from Fig. 7a b, the CDRL approach exhibits a nota-
ble enhancement in hit rate when juxtaposed with the other methodologies (LRU, 
LFU, GREEDY, DQN, FADE, DDPG and FRCP) is 22.1, 28.8, 19.6, 7.4, 6.9, 
2.9, and 3.9% respectively. The delay reduction is 35.1, 31.3, 29.5, 22.0, 20.5, 8.5 
and 6.9%. As illustrated in Fig.  7c, our proposed method is adept at offloading 
a greater amount of backhaul services, exhibiting improvements of 14.2, 21.1, 
10.1, 6.3, 3.1, 1.9, and 1.5% over the other algorithms. The computation of the 
comprehensive link cost for each cache, as highlighted in Fig. 7d, reveals an aver-
age decline in the overall link cost by 9.4, 9.3, 3.3, 1.9, 1.2, 0.9, and 0.8% respec-
tively when compared to the other strategies.

Fig. 8  Performance evaluation of the a hit rate, b average delay, c traffic with respect to time, and d link 
cost respect to content number
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Figure 8 delineates the performance trajectory of the BS when juxtaposed with 
policies like LFU, LRU, and GREEDY, over a spectrum of content quantities from 
10,000 to 100,000. Observations from Fig. 8a–d highlight the pronounced suprem-
acy of the CDRL strategy over its counterparts in latency metrics. Figure 8a reveals 
that when content count is on the lower end, the CDRL algorithm stands out in 
performance against LRU, LFU, GREEDY, and DQN. Yet, an uptrend in content 
numbers-with a static server count-correlates with a dip in the overall hit rate. Under 
such circumstances, the hit rate of CDRL burgeons by 32.9, 53.9, 25.1, 11.8, 10.4, 
7.8 and 8.3% respective to the other methods. Figure 8b underscores that in scenar-
ios of limited content, latency across algorithms remains minimal. But, as content 
swells, the need for frequent content rotation intensifies under diverse policies, esca-
lating latency. Herein, the CDRL approach trims the average latency by margins of 
26.4, 29.2, 21, 18.6, 14.8, 5.3, 4.8% when stacked against other methods. In Fig. 8c, 
a surge in backhaul traffic emerges as an inevitable consequence of augmenting con-
tent numbers. Within this context, the CDRL approach curtails backhaul traffic by 
7.9, 14.3, and 6.6, 5.8, 0.2, 0.5, and 0.2% in relation to other strategies. Figure 8d 
posits that during phases of scant content, disparities in link costs across algorithms 
are negligible. However, with a rising content count, every algorithm’s link cost ele-
vates due to amplified link burdens. Contrarily, the CDRL algorithm’s link expense 
diminishes by 10.1, 9.1, 7.7, 2.9, 2.7, 0.9 and 0.1% when paralleled with its peers. 
Although other reinforcement learning-based caching strategies also achieve good 
results, they lack the capability to fully utilize cloud-edge computing resources. The 
proposed algorithm, CDRL, has already established a better initial strategy in the 
cloud, and can quickly update its caching policy using the SARSA algorithm when 
facing more complex environments, giving CDRL a distinct advantage. In essence, 
these insights affirm the robustness and efficiency of the CDRL strategy across 
diverse content volume scenarios.

Finally, the values of exploration probability � and scene function f(t) are dis-
cussed. Figure 9 shows the performance comparisons for CDRL in terms of the hit 

Fig. 9  Performance of the hit rate under different exploration probabilities
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rate with different exploration probabilities � = 0.1 , � = 0.6 , and � = 0.9 . Explora-
tion probabilities can greatly affect caching efficiency, so a wide range of experi-
ments are needed to determine the best exploration probabilities before deploying a 
caching policy. Moreover, we consider three different scenarios, which are shopping 
malls, factories, and schools. And accordingly, we propose three different scenario 
functions: f1(t) denotes cache request rate model for malls scenario. The factory is 
distinctly different from the commute, so the cache request rate model for the factory 
scenario is defined as

Assuming a typical commute window from 3 to 10, there’s a surge in cache request 
rates during working hours, while it drops considerably during off-peak times. In the 
context of schools, this paper defines the cache request rate to oscillate randomly 
within a specified time frame, as:

We conducted experiments to evaluate the cache hit rate and link cost across three 
fj(t) functions under identical scenarios, as depicted in Fig. 10.

As shown in Fig. 10, changing the weights � results in increased fluctuations in 
cache hit rate and link consumption, which do not comply with the special scenar-
ios proposed in Eqs. (19) and (20). Therefore, it is necessary to examine the local 
characteristics of different scenarios to develop better weights that ensure cache 
performance.

From the aforementioned experimental outcomes, it’s evident that the system’s 
overall performance and link cost metrics can be dynamically tuned based on real-
world conditions. For demanding performance scenarios, the parameter � can be 
decreased, while it can be increased when there’s a preference for reduced link 

(20)f2(t) =

⎧
⎪⎨⎪⎩

0.1 sin
�

�

2
t
�
+ 0.4, 3 ≤ t ≤ 10,

0.1 sin
�

�

2
t
�
+ 0.12, otherwize.

(21)f3(t) =
1

3

(
sin

(
�

2
t
)
+ 0.5

)
.

Fig. 10  Hit rate (a) and link cost (b) for different scenarios and scene functions
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costs. Given the holistic accounting of caching costs in performance evaluation, 
our method yields superior results compared to other prominent cache replacement 
algorithms.

6  Conclusion and outlook

In this study, we present a novel cache placement methodology tailored for MEC. 
Our approach hinges on an integrated system framework that leverages global varia-
ble utility and a two-tier DRL mechanism. We delve deeply into the intricacies of the 
general utility function and the nuances of the two-stage DRL paradigm. The utility 
metric amalgamates cache value, link costs, and variable parameters, while our rein-
forcement learning model interweaves elements of DDQN and SARSA. Empirical 
evaluations underscore the potency of our approach in the edge computing milieu, 
particularly when juxtaposed against other established caching techniques.

Yet, as promising as our findings are, there remains a swath of areas ripe for 
refinement. Key among these is the enhancement of the utility model. Currently, 
content popularity leans on the Zipf distribution. However, the mercurial nature of 
content popularity, influenced by time and evolving events, demands more nuanced 
treatment. Enriching our model by harnessing machine learning and deep learn-
ing methodologies to predict content popularity with heightened precision could 
usher in marked improvements in overall cache utility. Further, the link cost model 
requires recalibration. The paper’s link cost estimation rests partly on a streamlined 
predefined value, which doesn’t fully encapsulate the intricacies of real-world net-
works, particularly those entwined with bandwidth allocation and fluid network traf-
fic. Thus, devising a more robust framework to ascertain link costs remains a press-
ing priority.
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