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Abstract

In this work, we study the coupled system of fractional integro-differential equa-
tions, which includes the fractional derivatives of the Riemann—Liouville type and
the fractional g-integral of the Riemann—Liouville type. We focus on the utilization
of two significant fixed-point theorems, namely the Schauder fixed theorem and the
Banach contraction principle. These mathematical tools play a crucial role in inves-
tigating the existence and uniqueness of a solution for a coupled system of fractional
g-integro-differential equations. Our analysis specifically incorporates the fractional
derivative and integral of the Riemann-Liouville type. To illustrate the implications
of our findings, we present two examples that demonstrate the practical applications
of our results. These examples serve as tangible scenarios where the aforementioned
theorems can effectively address real-world problems and elucidate the underlying
mathematical principles. By leveraging the power of the Schauder fixed theorem
and the Banach contraction principle, our work contributes to a deeper understand-
ing of the solutions to coupled systems of fractional g-integro-differential equations.
Furthermore, it highlights the potential practical significance of these mathematical
tools in various fields where such equations arise, offering a valuable framework for
addressing complex problems.

Keywords Fractional derivative - g-Integro-differential equation - Existence and
uniqueness of solution - Applications

Mathematics Subject Classification 35-XX - 65-XX

1 Introduction

The topics of g-calculus and fractional calculus have received a lot of interest in
view of their role in describing some real-world problems in numerous fields.
It is worth noting that both fractional calculus and g-calculus are generalizations
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of classical calculus for any order. Note that the field of fractional calculus has a
large number of fractional operators, but in our paper, we are interested in studying
the equations that contain the fractional derivative of the Riemann—Liouville type.
Mathematics modeling is used to convert a range of applied problems into a set of
fractional differential and integral equation [1-3]. The study of theoretical aspects
of g-calculus and fractional calculus has been the focus of many studies, and it is
now considered a significant area of research. There are numerous papers on the
solvability of nonlinear fractional differential equations. At the same time, the study
of coupled systems of nonlinear fractional differential equations is also important
due to their numerous applications. In Ahmad and Nieto [4] studied the existence of
result for the following coupled system:

DUL) =fE ,wk),D'wk)), Dwk)=g¢k UL)Dwk), L 1),
UO)=0, UD)=cUE), wO0)=0, wl)=cw(®),

where a, A, 1, {, v, andg satisfy certain conditions. In [5], Zhang et al. applied a vari-
ety of fixed-point theorems to the following coupled system of nonlinear fractional
differential equations to investigate the existence and uniqueness of solutions:

D"URL) =g, <L ,UR ), wk ), DM URL ), D2w(L )>, L €(0,1),

Dwk) =g, <L ,UER ), wk), DM UR ), D2w(L )> , L €(1),

U0) = U'(0) = 0, w(0) = w'(0) = 0,
U =y, P Uy ), w(l) = P wpy),

where D and D% represent the standard Riemann-Liouville fractional derivative,
2<p;<3,0<e;<1,0< ;< 1,y;, 0, > 0,i =1,2. For more details, see [6—19].

In contrast, several studies have been written about the existence and uniqueness
of solutions for fractional g-integro-differential equations; for further information,
see [20-24]. In [25, 26], the authors discussed the numerical and analytical solu-
tions of the Fredholm and Fredholm—Volterra integro-differential equations of the
first and second orders, respectively. In addition, they study the numerical solution
using a merge of finite difference with Simpson’s and finite difference with trapezoi-
dal methods. In [27], they discussed the existence and uniqueness of a solution for
the nonlocal fractional g-integro-differential equation:

u'k) = 9<L,U(L ), FDP UL ) IFE W' (R ))>, b €(0,1],
under the g-nonlocal condition:

A =qv Y UGV =p, WO)=a, veO,I).
=0
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where “FDPU(L ) is the fractional derivative of Caputo—Fabrizio type, I;‘ is the Rie-
mann-Liouville fractional g-integral, and p,, &, are constants, g, f € (0, 1). In addi-
tion, they solved it numerically by using two methods: the finite-trapezoidal method
and the cubic-trapezoidal method.

Inspired by the aforementioned results, we examine in this work the following
coupled system of a nonlocal fractional g-integro-differential equation:

DhURL) = F, <L,u(L ), wk ), DU ), Duw(k ), I UL ),I(‘Zw(L)), L €00,

Dhwt) = F, (L,u(L ), wk.), D UE ), D>w(k ),Ig;u(L ),I;;ML)), L €(0,1),

ey
considering the g-nonlocal conditions:
V1
(I —g)n QUG ) =p. UO)=U©0)=0, z €(0.1),
" @

V2
(I =g)x Z (g5 1) = pyy W) =w'(0)=0, x,€(0,1),
k=0
where D” and D% represent the standard fractional derivative of the Riemann—Liou-
ville type, 15[%' represent the Riemann-Liouville fractional g-integrals of the order
6;>0,2<p,<3,0<a; <1,p;areconstants, and g;,; € (0,1),i = 1,2.

This is how the essay is organized: We list several lemmas and definitions that are
indeed in this work in Sect. 2. The existence and uniqueness of the solution to the
nonlocal coupled system of a fractional g-integro-differential equation (1)—(2) were
examined in Sect. 3. Section 4 contains applications. In Sect. 5, the conclusion is
presented.

2 Preliminaries

We now go through some fundamental ideas in g-calculus and fractional calculus, as
well as some lemmas that will be applied in this article.

Definition 2.1 [20, 21] Let z be a function that is defined on the interval [0, 1]. The
Riemann—-Liouville fractional g-integral of order ¢ > 0 can be defined as

Io L _ Z(L )’ 0 = O’
( qZ)( ) = %/OL & - qs)(o—l)z(s)dqs, S

where
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¢—1
€ -g9”"=1, & -g)?=]]€ -¢"9.0€N,
j=0
€ =gt
k& — g9 = H m, QeR.

J=0
Lemma 2.2 [20] As a result of g-integration by parts, we obtain

L@

(151)(L) = m,

0> 0. 4)

Definition 2.3 [28] The Riemann-Liouville fractional derivative of order # > 0 of a
function F : (0, ) — R can be defined as

] _ 1 dy’ i pvv—p—1
D]—'(L)_—F(V_ﬁ)<dt) /0 X — 60)" P~ F0)do.

where v = [f] + 1, [f] represents the integer part of number f, provided that the
right-hand side is pointwise defined on (0, c0).

Definition 2.4 [28] The Riemann-Liouville fractional integral of order f > 0 of a
function F : (0, 0) — R is given by

L
r'(p)

Lemma 2.5 [28] Suppose that f > 0,v—1< p <v,v € N.Then

L
PFL) = / & - 0y~ Fo)de.
0

1. Foranyz€ LY(c,d),DP(IP7) = z.
2. Iflv_ﬂz e ACY[c,d], then

PDPzE) =28 ) + kB P + B P2 4 e+ kB,

where k; € R(i = 1,2, ..., v), vis the lowest integer smaller than or equal to S.
Lemma 2.6 [28]

1. IfFelLl(c,d),oc > @ >0,then
PIPFL)=1""*F ), DI°FL)=I"°FL), D°I°FL)=FkL).
2. Ifo > @>0,then

L Ip+1)

_ oto oo _ I'e+1)
INg+1+0)

, =——"}77% DL?=0.
I'e+1-9)

Lemma 2.7 [29] Suppose thato > 0,U € L'([c,d], R). Then, we have
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I'MU®) < [PUE)| LB € e, d].
For the convenience, we set
1

A = _ . i=1,2.
A =aq)x X, a5 (g x) PV

Lemma 2.8 Suppose that U € AC?[0, 1], and 2 < p, < 3. Therefore, we can get a
unique solution to the following nonlocal problem:

DIUR) = F, (L,u(L ) w(k ), DY UL ), D=w(k. ), [ UE ),I‘%w(L)), L €(0,1),

A=q)n X0 d Mg ) =p. UO)=W(©0)=0, x €(0.D),
Q)

as
Uk)=ULk)=1"F, (L JUE), k), DURE), Dw(k ), I UR ), 2wk ))

V1
+ A= =q)n D gIMF, <f11”)(1 - U(gy 1) wigh 1), D U 1)

k=0

Dow(gy 2 12 UG 1), I;EW(qu])) ] EATL
(6)
Proof Considering the lemma (), we can get the solution of (5) as follows:
uk) =117, (L UR ), Wk ), DI UL ), D2w(k ), [ UL ), 2wk )>
+ b ATk A2 g A3,

Using the condition 2U(0) = U’(0) = 0, we get k, = k3 = 0. Therefore,

UE) =1"F, (L ,UE), wk), DM URL ), D2w(E.), 12: UEL), Ij;w(L )) + kAL

(N
Using the g-nonlocal condition (1 — g,) v, ZZ‘:O qyU(g7 x1) = py, We obtain

Vi Vi
(I -qg)n Z g Uy ) = —q)x 2 1 F, <qfxl,11(qfﬂn), w(gy 1), D Ug) 1)),

k=0 k=0

Vi
5 ) -
D2w(g} x1) 1! u(qul),lqiwwf)n)) +hk(l=q)n D, af@ )"
k=0

Therefore,
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Vi
ky =A, [pl - -q)xn Z a1 F, <q’fx1, U(gy xp), wigy 1), D UG 1),
k=0

Dw(q} x1), I,‘j; U(g} 1) 1§§W(qf m)] .
Substituting &, into (7), we obtain

UE)=1"F, <L LUR ), wE), D UE ), Dw(L), 13: UEL), lj;w(L ))

Vi
+A [pl —~(l=q)n Y, 4" F <q’f;n, (g 1), wgy x). D Ulgy ),
k=0

Dw(q’ x1)s Igll (g} 11)s IS;w(q'f;m))]L hi-1
The proof is finished. O

In the same way, the solution of

Dﬂlw(L)z]-'z(L,l[(L ) w(k ), DY UR ), D2w(k ), [ Uk ),Ij§w(L)>, L €(0,1),

!
(=)0 X2 owldhin) = p1 w0 =w'(0) =0, x, € (0,1),
is
wk)=1"F, <L JURE), wk), DUUR), Duw(k ), [ UR ), [P w(k ))

V2
+ A, [ﬂz (=g Y. 51" F, (qf a0 Mgy ) wigy x0), D U(g) 1),

k=0

D2w(q’ x1)s Ij: (g} x1)s Ijjw(q’f;m))]L Bl
Denote that L'([0, 1], R) is the Banach space of Lebesgue integrable functions from
[0, 1] — R with the norm [|26]| = /' |2(L )|dE .
3 Main results

The spaces X and Y should now be introduced as follows:
X = {U|U € C[0,1], DU € C[0, 1] and I:j;u € ([0, 1]} equipped with the norm
12| = maxy, ¢fp [UE )| + maxy 1 DA UR)| + maxy ¢o.1 |IZ: UEL ), and
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also Y = {w|w € C[0, 1], D"w € C[0, 1] and Igiw € ([0, 1]} equipped with the

norm [Iwll = maxy o1y IWE )|+ maxy g0 | DPw(k. )| + maxy ¢o.1 |]§§W(L )|.
Evidently, (&X,]||.]|) and (), ||.]|) are Banach spaces. Therefore, the product
space (XX Y, [|U, w)|| 1) is also a Banach space equipped with the norm
QLW sy = 1 U 2 + [IW]l5. Now, we define the operator G : XX )Y — A'x Y by

GUwE) = (GI(U,W)(L ), GL (U, W)(L)>, ®)
where
G UwE) =IMIE) + A, [pl - =q9)xn VZIOCITII"&(Q’M])]L”‘_I,
and

Vo
@wwMA=ﬂ%LHA2m—uﬂmeﬁ?%myﬂhkﬁ

k=0

Conveniently, we set

A = <1 + M = g) g Zqu) WP byl i=1,2, j=1,....7.

1. K=o
IAIT(B)
B = 1P~ bl + ———(1 = g)x; ¥ g NP bl
5=l i+ Fg =g~ 9% 2 A byl
2.
l=1,2’ ]=1’ ’7
C.= 1+; A.+B,i=1,2, j=1 7
i\, G )T I T e IR e
3.
(8
E=(te—t s TB VoA iz
L,6+1) T —-a)
4,
S D; = max{C;,Cp, Ci3,Cy, Cis, Cie},  i=1,2.

Theorem 3.1 Suppose that F; are continuous for almost every L. € (0, 1) and meas-
urable in L for any wi,w,, ws, w,,ws,ws € R. There exist nonnegative functions
b;k) e L'([0,1],R,),i=1,2,j=1,2,...,7, such that
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(a) 6
| FE Wy Wy W, Wy ws, we)l < ) byE)|w,|% + b)), 7, € (0,1).
J=1

Consequently, there is at least one solution for the nonlocal coupled system
(1-(2).
Proof To demonstrate that the operator G defined by (8) has a fixed point, we shall
employ the Schauder fixed-point theorem.

First, let 0, C Xx V= {QU,w)(t) € R? : L, W)l 4y < T}, where

1 1 1 1
t > max{(16C;) "=, (16C) =2, (16C;3) =5, (16Cy) == ,
1 1
(16C;5) =75, (16C;g) =76 , 16C;, i = 1,2}.

It is obvious that Q, is nonempty, bounded, closed and convex subset of C[0, 1]. We
demonstrate G : Q, — Q,.For any Q, w)(L ) € Q,, we use Lemma () and condition
(a), to obtain

1G QL w)(ER)| < F (R UR ), wk ), D UR ), Dew(k ), D UR ) I2wE))] + oAy

V1
+IAN =g Y a5 1P 1 F (G a0 WG ) w(gh 1) DG 1)
k=0

Dw(q) ) 1 Uigy ). 17 w(gs 10)]
6

< ( Y by E)IR + by (E )) +1p Al

J=1

2 6
+IA I =g Y 41 ( Y by(gs xR + b”(q’f)n))

k=0 =1

<

Vi
[(1 + A =g 2‘1’;) ||Iﬁ'_1b1j||Ll]RT" + oA

k=0

-

V1
+(1+IM10 =g Y, qf) [P

k=0

/

M=

AljRT” + A17 + |p]A1 |

~.
I

Similarly, by using Lemma (), we get
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D™ Gy QL w)E )| =/ Fy( UE ), wik ), DI UR ), D2wk ), [ UE ), [ wik. )
AT(B)) Bi—ay—1 < Y )
— T P PhiH —(1 - K 1h1 K K K
TG —ay) 1 —(-q)x ;:Oql Filgy x> Wgy x)-wigy 21

D UlgT 1), D2wiqy x1)s 1y, gy x 1 W(q’f)m ))H

< 1hia

FuE UE ), wE ), DUUR ), D2w(E ), [ UE ), 12 w(E.)
+ o1 ALITBY) 1M IT(By)

— K 1 K K K
TG —ap TG = )(1 qx Kz(,)qll 1'-7:1(‘11 x1, W), wilgy x),

&
DM ulgy 1), D2wig x1)s g W 1) I,,; w(gy 1 ))‘

6
_ ) o1 A DB INIT(BY)
pr1—a X T
< 1</§ by;(E)R 1/+b]7(L)>+ TG, —ap) +F(ﬂ1—a1)

(I =g)n qulﬁ' <z byj(qy x1)R™Y +b17(t11)(1)>

k=0 Jj=1
6

- IALIT(B)) _ .
;[nlﬂl oyl + F(ﬂ‘ l)u—qlqul (1771 lbUnu]R“

—ay- 1A ITCAY)
+[||1/’1 "l + fp s (- o a1l

k=0

" [p1 A IT(BY)

Lpy —ap)
6
- [p1 A IT(BY)
= Y B RV + By + L1
le Y T - a))

&)

Analogously, we get

5! G, QL w) )| <o P | F, (L UL ), wk), DU URL),
D2w(k ), [ UR ), qzw(L M+ oA |
+ IZ} A1 =g Z a5 | F (g 0 UG ). wigh 1) DY U(GS 1))
k=0

D”ZW(ql)n), o ll(qlxl), qZW(qlzl))l

) .
< ( ZAUR’U F AL+ 0 A |>.

J=1

Using lemma (), we get

6
) — 1 Tj
11, G, QL w)(E )| = m<;A1jR i+ A+ |P1A1|>-

Therefore,
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1G, QLW < 3 CURY +Cry+ By < o1+ v+ S o1
- = / 16 16 16 16
+ ! —r+ ! T+ ! T+ ! T = !
16 16 16 16 2
Similarly, we have
d I T T U B (N SR B
T2j —_— —_— —_— —_— —_— —_— —
1GQU Wl < 3 CyR™ + Cop + By S ev+ o+ v+ oxd geet feu+ fovt for= 5.

Jj=1
Thus,
IGQL W) a5y = G AULW)|| 3 + |G AU W)ly, < 1.

Then, G : O, = Q,, and also, the class of functions {GQI, w)(L )} is uniformly
bounded in Q Observe that G,AU,w)L ), G,U,w)EX),D"G, U, w)L),

DG, w)(EL ), ]

T

5 G QAL w)(L ),I§2G2(u w)(L ) are continuous on [0, 1]. Clearly,
G is also continuous. Next, we demonstrate that G isequicontinuous. Let

Np = max. {|J—'(L UE ), wk ), DY UR ), D2w(k ), 1) Uk), I w(L))|},V(u,w)th,i=l,2.

Fort |,L, €[0,1],L |, <L ,, we obtain

G AL w(E ) = G AL WE D] <17 ’ﬂ <L 2, Uk ), wk ), DM UR ), D2w(k 5),

19 Uk ). 12wk 2)> -F (L LUE Wk ), DI UR ), D2wE (), [0 UL (), 2wk 1))‘

+ [|A101| + M —gDx qulﬂ‘ '-7:1(1}1}(1 U(gY x)swigy ), D UG 1),
k=0

5 3 -1 -1
D"2w<qf;m,Iq;u(qu,lq;w(qul»”&? )

i@, —sfi-l -, —s)h-! /L2(L2_s)ﬁl_l ]
<N, ds —
= ‘[/o ) L Trey ©

V1

q’l(){l (qkll _S)ﬂl_l —1 —1
+ [lAll’ll +NAA = g1 Zq’f/ 1—ds](tg‘ S T
k=0 0 L)

g
T, + 1)

N,
F(ﬂ +1)( ﬂl)"’ [|P1 1+ NIA A =g qu
Y EN

In contrast, we obtain
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DG, (U w)E ,) — DG AU wE )| < ’Iﬂ'fa' [}—1 (L 2, U ), wk ), DY UE ,), Dw(k ,),

Ij; Uk 2)7122w(L 2)> -F <L LUE D, wE ), DYUR ), D2w(E 1),lj;u(L s Ijiw(L 1))] ‘
lp1 AL T8y -
+ [T + A1 =g Z_:,)f]llﬂ

|f1 (a7 21 W(g ), wigy 1), D U(qy xy), D™wigy 1))

](L gl_‘ll_l —L fl_al_l)

b, (L 5= S)ﬂlftn*l _ (L - S)ﬂ,*ll,*l /L2 (L , - s)ﬂlfalfl ]
N d. —d
< l[</0 I, —a) o L L —ap) *

loi A IT(BY) < /q gy —S)ﬂ'_l]
—— + N||A (1 = s -
+ [ TG, —a) + N A (=g Z_Oql TN
(L 51*“1*1 _Lfﬁ"l*)

M e g hmey [l AT B
SF(ﬂl—al+1)( 2 BT+ TG, —ay) + NN =g
(ql/h) ﬂl—al—l Br—a,—1
Z 1F(ﬂ]+1)]( 2 _Ll )

and also,

121G, U, w)(E ) — 12 G, (U, w)(E. )] YL [P
: QT + 1) 2 1)y,

. @y P
4 L, + 1)

Nl B B L(Sl L5]
<1 g h_gh + A
ST+ PR G an T, 6 |

-1 -1
+ Ny 1A (1 = ql))nZ AR R

(g1 x
+N1|A1|(1 1)){12 IF(;I_IFD]( ﬂl Lﬂl )

< Nl (Lﬂl _Lﬂ1)+ 1 [lp A |
_F(ﬂ1+1)Fql(61+1) 2 o, e +n !
(g5 )P

rg+1

-1 -1
+ Ny A (1= ql)xlqu ](Lg‘ —L’l" ).

Similar to that, we can demonstrate

N,

GaAUWIE 2) = GAUWIE | < =5 (E S A
2
@) -1 -1
+ [|P2A2| + N, A1 = g2) s ;‘12 m]@z L),
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N2 Pr—a Br—a
DG, U, w)E ) — DG, AUWEL )| < ——= (R _p 70
| AU W) ,) LU w)E )| F(ﬂ2—02+1)( > 1 )
F(ﬁz) 2 (qEXZ)ﬂZ ﬂ —a,—1 ﬂ —a—1
+ [l M ==+ NI (U =gy ) @5 ——— |k —L77),
24% T, — ay) 21439 2 2% 2F(ﬂ2+1) 5 1
I12G,QU,w)(E ,) — I2G,QALw)E )| < #(Lﬁz —EPyp— L 19, A, |
92 2 ’ 2 4y 2 ) 1= F(ﬁ2+1)rqz(62+1) 2 1 Fq2(62+1) 2432

V2

+ N |As (1= g2) 7, Z 95
k=0

K o P
(4, )" ] 1 )

T+ D] 2
Letting L. ;, — L ,, then
1G,QALw)(E ) - G AU wWE )| > 0, [ DYG,QAULw)E ) - DG AU w)E )| - 0,
| G AL W) ) — [ G AU w)E )] = 0,
|G, wW)(E ) = GAULwW)E D] = 0, [D2G,QAULw)(E ) = D2GU w)k )| — 0,
112G, U W) ) =[2G w)(E ()] = 0.

Therefore,
1G,QAULw)E ) — GRALWIE DIy — 0, IG,AULw)(E ) — GQRALW)E DIly — 0.
Thatis,ast | = L ,,
IGQALwW)E ) — GALW)(E DIl sy = 0.

As a result, we establish that the operator G is equicontinuous. Then, using the
Arzela—Ascoli theorem, we conclude that G is a completely continuous operator. So,
it follows from the Schauder fixed theorem that (1)—(2) possesses at least one solu-
tion (U, w) € Q,. This proof has been established. O

Now, we demonstrate the uniqueness of solutions using the Banach contraction
principle.

Theorem 3.2 Suppose that F; are continuous for almost all &. € (0,1) and meas-
urable in t for any wi, w,, w3, wy, ws,Ws € R. There exist nonnegative functions
bij(L) e L'(]0, 1], Ry).i=1,2,j=1,2,...,7, such that the following requirements
are fulfilled:

(H))  |F®  wywy, waawyo wsawe) — Fik L 20,200 230 241 25:26)] < Zle by®)Iw; —zl,i=1,2.
(H)) 3D,+3D, < 1.

Following that, the coupled system (1)—(2) possesses a unique solution.
Proof Let sup; clo.1] F(£.,0,0,0,0,0,0) = y; < o0,i = 1,2 and take
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My +
R> —— |
1-3D, - 3D,
r_ A T(B) Al 1 U+ (=g 7 X0 a) 1
where p; = [p;A;| + TGy T T, 641 bl sy, TG+1) 1+ rqi(a,+1))

A=)z 2o, a
L(gi—a)l'(Bi+1)
XX Y |(U W)l x5y < R}. For any U, w)(E ) € Qp, we can obtain

+ ],u,-.First, we prove that G(Qg) C Qp, where Qp = {U, w)|(U, w) €

G, QU w)E)| <1 [ F (L UE), Wk ), DI UR ), D2w(k ), [ U ), I wik ))

-7 <L,0,0,0,0,0,0>‘ + |F1(L,0,0,0,0.0,0)I] + oAl
V]

+IAI = gD Y, g1 '-7:1 <qf;n L Ulgy x0). wigh ), D U(g] 1), D2 wigy 1),
k=0

5 i
' U(g 7, )Jjjgw(q’fx.)) -7 <q’f;(1,0, 0,0,0, 0,0>‘ +1F1(¢" 11,0,0,0,0,0, 0)|]

<mh by E)+DsE)+bsENDIU| L+ BB )+ b,(E) + bR ))”W”y + Uy

Vi
+ oAl + I =g Zq'flﬂl [(bu(L )+ b))+ bsE U
k=0

+ (&) + by E) + D)Wy + Ml]
SAG + A+ ADIU y+ (A + Ay + Ailiwlly + 1o Ay

A +IM 1A = g0 Xy dDm
Tp +1) '

As an alternative, using (9), we may get

DG AU, w)L)| By + Bz + B U+ By + By + 816)||w||y
N Hy oy AITB) 1IN =g 2, qfﬂ
T —ay+1) TP —a)  T@—apl(f+1) "

Also,
1 1
PG AUWE) € =———(A; + A3 + Uly+ ———
[, G U w)(E )| < lﬂq](5l_i_l)(-411 A + AU FG,+D
A AN —g)x X0 aDm

Therefore,
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1G,ALWYE)| <(Cyy + Cp3 4+ CilIU[ 4+ (Ciy + Cry + Cip)lwlly + 1
<3D\R+ uj.

Similarly, we can get

|G, QUL W)E)|| <(Cyy + Coz + Cos) U]l + (Coy + Coy + Cop)lIwllyy + 15

Thus,
I1GQRLW)llxyy = 1G QL W)l + 1GL (U, w)lly, <3(Dy + Dy)R + ) + py < R.
Second, for any (U, w)(L ), AU, wy)(L ) € Ok, we have

|G, Uy, W)k ) = G UL, w)E)| < (A + A3+ Ajs)
12, = Uy [l + (A + Ay + Aillwy = wyllys

and
D" G Uy, wy)(E ) — DU G Uy, wy)(E)]|
S By + By + Bis)lUy = Uyl y + (Byy + By + Bio)llwy — wylly,
also,
1
51 — 61 —_— —
|Iq| G (U, wy)E) Iqul(ule)(LN < rql(él n 1)(Au + A+ AU, = Uy
1
+ W(An + A+ Ajp)llwy —willy.

Therefore,

[1G; Uy, wy) = Gy U, w)Il S (Cpy + Ci3 4+ Ci)l| Uy = Uy [l + (Crp + Cry + Cr)llwy —willy
< 3Dy 1My = Uyl + 3Dy llwy — wylly-

Similarly, we can get

|G, (Uy, wy) — G Uy, w)ll < 3D, || U, — Uy ||y + 3D, |lwy —wy ”y

Thus,
IGAU,, wy) — G(u1,W1)||X><y < (BDy +3Dy) (11U = Ul x + llwy = wy ||y .

Since 3D, + 3D, < 1, G is a contraction operator. This implies that G has a unique
fixed point, and thus, (1)—(2) has a unique solution. O
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4 Applications

We now give the two examples below to demonstrate our findings.
Test problem 1: Consider the following coupled system:

DIUE ) = by, )YUER )™ + by (R YWE ) + by YDIUE)) - + by )DiwE))

+ b5k )(If UL)) +bE )(Ifw(L )) ! +b,(£),E €(0,1),

DIW(L) = byy (B )QAUE )™ + by (. )YWE ) + byyEYDIUR ) + by (kYD W)

+bys(R)ITUR))  + by )T IwE))  +byE).E €0,1),

A —g)n X aiU@ ) =p, UO)=W©O)=0, z €©O,D),

k=0

V2
A=) Y aswids ) = wO)=W(©0)=0, 1, €(0,1),
k=0

1

_9 _ _ 1 ! _ 1 1
where ﬂ1—1, br=3 a= H=35 =3 D=3 51—1, 52—5,

=05 1rn=04 v=1 vw=2, 0<g<I(=L2..,6, i=12)
and b,-j(L W=1,2,...,7, i=1,2)are nonnegatlve functions. The test problem 1
must have at least one solution, according to Theorem ().

Test problem 2: Consider the following coupled system:

4
DIURL) = —u(L)+L—w(L)+ED u(L)+—5Dsw(L)
7 1 5 1
+ S U@ + Tl )+ (=R E €.,
7 _(-L) (1-LY
Diw(k) = = Uk ) + — (L)+WD u(L)+—D w(k.)
Lg i SUR)+ =— £ (L)+—(1—L)8L € (0, 1),
50 %2 100 705" 100
A —g)n D, UG ) =p. UO) =W O)=0,  €.1)

k=0

V2
(=g ). a5wds 1) = py, WO =W (0)=0, z,€(0,1),
k=0
5 1 1 1 1
Whereﬂl = 5’ ﬁZ = 3, o) = 5, oy = g, q, = 02, q, = 05, 61 = Z, 52 = 5,
=05 =04 v, =v,=

Then, we have
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B> L4 B¢
IJTI(L ’WI’W23W39W49W57W6)| =_|W1| |W2| +— O |W3| + =

30 |W4|

25
L’ L5
+ 55 sl + =g sl + 0(1—L)5,

(1-v) (1-Lv) L’ 3
[Tk, wi, wo, wy, wy, ws, W)l STWH + 100 [wy| + m|w3| + = 30 [wyl
p8 g
—_— 1-L
+35 [ws| + 100|W6| + 100( )%

and

L’ L L4
[FrE, wi, wy, wa, wy, ws, we) — F (R, 20,20, 235 245 255 26)| < %|W1 —-zl+ %Wz - 2|+ %|W3 -zl

L° L’ 1 5
+ -zl + + +=—=(-L),
5 Wy — 24l 5| = zs] 50| = 7] 50( )
(1-L) (1-L)
| Fye  wy, wy, wy, wy, ws, we) — Fo (kL 20,20, 23024 255 26)| £ ———— 1w — 7| + —————|w, — 25|
150 100
v’ L’ p8 L8 1 s
+—1w + AR + —z6l+ ——=(1—L)*,
1003 ~ 3l + gy Iwa — 2l + Slws =3l + oI — 6l + 50 - E)
where
L’ L* L* L© L’ £’ By
b,==—, b,==—, b,==—, b,=—=—, b:=—-—, b ,=—=—
17 30> 127 g2 V137 490 V14T o5 TIST 450 P60 T 500
b = UL’ _ -ty _ (-by _ L7 _ i
17 S0 21 . 150 ” 22 . 100 ’ 237 100’ 247 g0
_Lr° _L° _ (-t)
bas = 50° by = 50 by = 100 °

direct calculation, we get
A, =0.0095576, A, =0.0062124, A,;;=0.0093187, A, =0.0091753,

Ay =0.00419785, A, =0.0057346, A, =0.0155236, A, =0.0108042,
Ay, =0.0110885, Ay, = 0.00381566, A, = 0.0069399, A5 = 0.0065411,
Ay =0.0032706, Ay, =0.0075244, B, =0.0154193, B, = 0.00974474,
By, =00146171, B, =00151834, B,s=0.00711007, B,, = 0.00925156,
B,, = 0.01935415, B, =0.0118813, B,, =0.0121674, B,, =0.00452789,
B,, = 000814884,  B,s = 0.00779734, By, = 0.0038987, B,, = 0.008244,
C,, =0.0195134, C,, =0.0126837, Cy5 = 0.0190256, C,, = 0.0339163,
Cys = 0.0156807, C,s =0.0209596, C,, =0.0510482,C,, = 0.0343762,

Cy, = 0.0352543, C,3 =0.0124723, C,, = 0.022598, C,s = 0.0214163,
Cys = 0.0107081, C,; =0.0239103. Thus, D, =0.051048, D, =0.03525.

Therefore, 3D, + 3D, = 0.258907 < 1. The coupled system (1)—(2) must have at
least one solution, according to Theorem ().
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5 Conclusion

In the present work, we have discussed the existence of solutions for a coupled
system of Riemann—Liouville fractional g-integro-differential equations. We have
established the conditions under which these solutions exist. Furthermore, we have
demonstrated the uniqueness of the solution by utilizing the contraction principle.
By employing the powerful tools of fixed-point theorems, specifically the Schauder
fixed theorem and the Banach contraction principle, we have provided a rigorous
analysis of the coupled system. These theorems have allowed us to establish the
existence and uniqueness of solutions, showcasing their effectiveness in address-
ing complex mathematical problems. Additionally, we have presented two illustra-
tive examples that highlight the practical applications of our results. These exam-
ples serve to demonstrate how the findings of our work can be applied to real-world
scenarios, further emphasizing the relevance and significance of our research. In
conclusion, this work contributes to the understanding of coupled systems of Rie-
mann-Liouville fractional g-integro-differential equations by discussing the exist-
ence and uniqueness of solutions. Our findings provide a solid foundation for future
research in this area and offer practical insights for solving similar problems in vari-
ous fields of study.
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