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Abstract
Since the introduction of differential evolution (DE) algorithms, they have achieved 
remarkable success in the field of evolutionary algorithms and engineering applica-
tions. In single-objective DE algorithms, most researchers tend to focus on improv-
ing mutation operators and parameter control, while overlooking the study of selec-
tion operators. However, the study of selection operators still holds great potential 
in enhancing the performance of DE algorithms. This study proposes a fitness-
distance-based selection (FDS) strategy and a new scaling factor control method. 
FDS is divided into two stages. The first stage is to determine whether an individual 
needs to accept discarded trial vectors. The second stage involves selectively accept-
ing these discarded trial vectors, which is based on the information related to the 
discarded trial vectors and the corresponding target vector. A new setting for the 
scaling factor parameter is proposed, designed to more effectively assist FDS in 
enhancing algorithm performance. Based on these strategies, an improved variant 
of the DE algorithm, called fitness-distance-based DE (FDDE) algorithm, is further 
proposed by this study. To verify the performance of FDDE, we conducted an in-
depth study comparing it with six other advanced DE variants and four famous evo-
lutionary algorithms using the CEC 2017, CEC 2022, and CEC 2011 benchmark 
sets. The experimental results demonstrate that the FDS strategy and the new scal-
ing factor can significantly improve the performance of DE algorithms, and FDDE 
is significantly better than other advanced algorithm.
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1  Introduction

Storn and Price [1] introduced a population-based optimization technique known 
as Differential Evolution (DE). It can widely solve various optimization prob-
lems, including continuous optimization [2], discrete optimization [3], con-
strained optimization [4], and unconstrained optimization problems [5]. DE has 
also achieved success in practical applications [6–9]. However, like other evo-
lutionary algorithms, DE is prone to get stuck in local optima [10, 11], and its 
performance still needs improvement.

Mutation, crossover [12, 13], and selection operators are prominent features 
of the DE algorithm. These three operations greatly influence DE’s efficiency. 
Among them, the mutation operation has garnered significant attention from 
researchers and undergone extensive investigation. Typically, the mutation opera-
tion guides population evolution by using difference information generated by 
different individuals.

Many researchers have recently introduced various mutation strategies to fur-
ther enhance the algorithm’s performance. such as DE/rand/1, DE/best/1 [14], DE/
current-to-rand/1, and DE/current-to-pbest/1 [15]. These algorithms have greatly 
improved the performance of DE. For example, DE/rand/1 can thoroughly explore 
the entire search space, while DE/best/1 can converge quickly based on superior 
solutions. The DE/current-to-pbest/1 algorithm proposed by Zhang and Sanderson 
strikes a good balance between exploration and convergence speed, and it has found 
widespread use in subsequent research [16, 17]. Based on the advantages of differ-
ent mutation operations in solving various problems, some researchers have com-
bined multiple mutation strategies to achieve certain effects [18–21]. In summary, 
the choice of mutation strategy directly determines the exploratory and exploitative 
performance of individuals. However, the impact of mutation strategies on the deter-
mination of individual stagnation remains an unexplored area.

Parameter settings play a crucial role in algorithm performance. In the DE algo-
rithm, the main parameters include the scaling factor (F), crossover rate (CR), and 
population size (NP). The scaling factor F and the crossover rate CR primarily 
control the magnitude of disturbances during the evolutionary process, which sig-
nificantly impacts the algorithm’s exploratory and exploitative capabilities. Tradi-
tionally, F and CR are often set to fixed values. However, to better adapt to diverse 
optimization problems, researchers have begun to explore adaptive or dynamic 
adjustment strategies based on the characteristics of the problem. For example, 
dynamically adjusting the F value based on feedback information during the evo-
lutionary process can achieve better performance balance during the execution of 
the algorithm [22–24]. Additionally, researchers are also exploring fixed or adap-
tive population size strategies to accommodate the population’s needs at different 
stages of iteration, aiming to balance the diversity and convergence of the popu-
lation [25–29]. In summary, by conducting in-depth studies on parameter settings, 
researchers aim to enhance the population’s search performance. However, as far 
as the author is aware, there are currently no studies on using parameter settings to 
improve the algorithm’s performance in detecting local optima.
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In DE algorithms, the selection strategy has a significant influence on algorithm 
performance. Most existing DE algorithms adopt a greedy selection strategy based 
on fitness values. However, some researchers attempt to enhance algorithm perfor-
mance by modifying the selection strategy in various ways [30, 31]. For instance, 
Das et al [32] introduced a novel selection strategy, which calculates the likelihood 
of an individual accepting an inferior trial vector by considering the fitness value 
ratio between the target vector and the trial vector. This approach can prevent popu-
lation stagnation but overlooks the impact of the iteration phase, which may affect 
population evolution, the process where individuals in the population gradually 
approach the optimal solution. Moreover, Yu et al. [33] introduced a survivor selec-
tion method inspired by the simulated annealing algorithm. This approach calculates 
the survival probability of the trial vector based on factors such as the temperature 
and the fitness difference between the trial vector and the parent vector. Abbas et al 
[34]. introduced a DE algorithm based on tournament selection. The tournament 
selection strategy is more conducive to enhancing the diversity of the population 
during the selection process. However, each evaluation criterion only considers the 
fitness value of the individual, which may lead to inefficient searching. Ghosh et al. 
[35]. determine the survival probability of failed trial vectors based on the fitness 
difference between the trial vector and the target vector, as well as the Manhattan 
distance between them. Despite its ability to dynamically fine-tune the explora-
tion and exploitation capabilities of the population, it does not consider the impact 
of individual update status, which may also affect the evolution of the population. 
Finally, Zeng et  al [36], based on the aforementioned considerations, proposed a 
new selection strategy based on evolutionary status. Unlike previous methods, this 
approach does not use fitness as the criterion for accepting worse individuals but 
adjusts the probability of accepting discarded trial vectors using individual update 
states and iteration states. This method bolsters the population’s capability to escape 
local optima, boosting variety in the initial phases and promoting convergence in 
subsequent stages. In summary, although some researchers have conducted studies 
on selection strategy, the current research in this area remains insufficient.

Based on the foregoing discussion, we have identified that selection strategy 
that accept discarded individuals with inferior fitness under certain conditions can 
enhance the performance of the DE algorithm. The existing research on selection 
strategy primarily falls into three categories: 

1.	 Acceptance probability based on fitness or Euclidean distance differences between 
trial and parent vectors: This method enhances the diversity of the population and 
prevents evolutionary stagnation from accepting overly inferior trial individuals. 
However, it entirely neglects the individual’s inherent potential for exploration 
and exploitation, thus failing to implement targeted selection strategies for indi-
viduals.

2.	 Optimal individual selection from subsets of generated trial individuals and the 
original population: This approach transforms the comparison between trial indi-
viduals and target individuals into a comparison among all individuals within 
subsets, allowing the entire population to select the most fitness-optimized indi-
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viduals from these subsets. Nevertheless, this strategy solely relies on fitness 
values for selection, which could lead to a rapid decline in population diversity. 
Moreover, it overlooks the individuals’ potential for exploration and exploitation, 
thereby affecting further optimization of individuals.

3.	 Selection strategy based on iteration phases and individual update status:: Not 
only does this method consider the update status of individuals, enhancing the 
algorithm’s capability to escape local optima, but it also adjusts the focus on 
exploration and exploitation based on the iteration phase. However, it overlooks 
the individuals’ exploration and exploitation potential, hindering the enhancement 
of these capabilities in the population. Furthermore, the acceptance of inferior 
individuals is solely based on the quality of trial individuals generated in the cur-
rent iteration phase, and such randomness impedes the individuals’ rapid escape 
from local optima.

In this paper, a fitness-distance-based selection (FDS) strategy is proposed to 
address the above issues. In particular, individuals are categorized to utilize dif-
ferent selection strategies. Individuals with exploration potential utilize a selec-
tion strategy that considers the Euclidean distance between the target vector and 
trial vectors, while individuals with higher exploitation potential employ a fit-
ness-based selection strategy. This approach ensures that each individual chooses 
the most appropriate selection strategy based on their own characteristics. Moreo-
ver, this paper for the first time introduces a novel approach, namely improving 
the scaling factor (F), to enhance the selection strategy’s ability to accept dis-
carded trial individuals and escape local optima. At last, this paper presents a 
new DE variant, called fitness-distance-based DE (FDDE). Numerous experimen-
tal tests were conducted based on the CEC 2017 benchmark set [37], the CEC 
2022 benchmark set [38], and the CEC 2011 benchmark set [39], and the FDDE 
algorithm is compared with six state-of-the-art DE algorithms and four recent 
and competitive evolutionary algorithms. The experimental findings indicate that 
FDDE surpasses the other algorithms in terms of performance. The primary key 
points of this paper are as follows: 

1.	 A new selection strategy, FDS, is proposed, which implements different selec-
tion ways for individuals with exploration potential and exploitation potential. 
This strategy leverages the concept that discarded trial vectors, although not 
immediately successful, still contain valuable information that can be harnessed 
to enhance the evolutionary process. The theoretical basis of the FDS strategy is 
rooted in the premise that these discarded vectors are not merely failures but are 
a source of untapped potential that, if properly integrated, can provide critical 
insights into the solution space.

2.	 A novel scaling factor control method is introduced within the mutation strategy 
to assist the FDS strategy in detecting stagnation during local searches, conse-
quently enhancing the algorithm’s performance. Moreover, the theoretical basis of 
this proposed scaling factor control method lies in its ability to adjust the search 
range of the mutation strategy. This adjustment optimizes the balance between 
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exploration during population evolution and the detection of local optima, thereby 
significantly improving the algorithm’s effectiveness.

3.	 The FDS strategy and the new scaling factor control formula are applied to the 
DISH algorithm [40], and a novel DE variant, FDDE, is introduced, which has 
been proved effective through a series of benchmark tests.

The rest of this paper is structured as follows: Sect. 2 provides an introduction to the 
DE algorithm and its various variants. Section 3 introduces the motivation and spe-
cific working principles of the FDS strategy, as well as the new scaling factor F con-
trol formula, and proposes the FDDE algorithm based on this. Section 4 conducts 
comprehensive experiments using the proposed algorithm and conducts a detailed 
analysis of the experimental results, comparing them with six state-of-the-art DE 
algorithm variants and four competitive evolutionary algorithms. Lastly, Sect.  5 
summarizes the paper and discusses future research directions.

2 � Related work

In this section, we will review the relevant literature on the DE algorithm and pro-
vide detailed introductions to several DE variants that are related to this paper.

2.1 � Preliminary knowledge

DE algorithm is an efficient and versatile population-based optimization algo-
rithm, renowned for its simplicity and robustness. It operates through mechanisms 
of mutation, crossover, and selection to iteratively improve a population of candi-
date solutions. In DE, new candidate solutions are generated by adding the weighted 
difference between several population individuals to a base member. This process 
creates a diverse pool of potential solutions, and through crossover and selection 
procedures, the crossover strategy combines elements from parent vectors to create 
trial vectors, introducing diversity into the population. The selection strategy in DE 
compares trial vectors with their corresponding target vectors, retaining only those 
that provide a fitness improvement. The mutation strategy of DE/current-to-pbest/1 
proposed by Tanabe has been proved to be effective. Moreover, most DE algorithms 
still employ binomial crossover and greedy selection strategies, as illustrated specifi-
cally in Eqs. (1),  (2),  (3).
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where Vg

i
 is the mutation vector of the target vector Xg

i
 in the gth generation, Ug

i
 is 

the trial vector. Xg

pbest
 denotes the best individual among the top p% individuals in 

the gth generation. ra is a randomly generated integer from the set 1, 2,… ,NP + |A| , 
where A represents the archive of parent vectors that have failed in the selection 
strategy. X is the union of the archive A and the population. The indices r1 are ran-
domly generated integers from the set {1, 2,… ,NP} , and they are all distinct from 
each other. rand(0,1) is a uniformly distributed random number within the interval 
[0,1], D represents the dimension of the problem, jrand is a randomly generated inte-
ger ranging from [1, D], and CR is a crossover rate that spans from 0 to 1. f(x) repre-
sents the value of the objective function for solution x.

Current improvements in the DE algorithm focus primarily on three areas: mutation 
strategy, parameter adjustments, and selection strategy. In terms of mutation strategy, 
research predominantly utilizes two approaches: employing a single mutation strategy 
and combining multiple mutation strategies. For example, the strategy DE/current-to-
pbest/1 proposed by Tanabe achieves a good balance between exploration and exploita-
tion within the population. Other studies aim to merge mutation strategies with strong 
exploratory capabilities with those that excel in exploitation to enhance the overall 
evolutionary capacity of the population [41]. Regarding parameter improvements, 
these include adjustments to the scaling factor, crossover rate, and population size. Cur-
rently, improvements to scaling factors and crossover rates mainly utilize two strate-
gies: a population-based adaptive parameter strategy and an individual-based adaptive 
parameter strategy. For instance, Zhu [42] proposed a multipopulation DE algorithm 
with dynamic parameter settings for each population, while Brest and Greiner [43] 
introduced the JDE algorithm, which employs adaptive parameter settings to adjust 
the population parameters F and CR. Qin [44] introduced an adaptive parameter con-
trol DE algorithm, SaDE, which records the parameters of superior individuals in each 
generation during the iteration process and uses these parameters to generate offspring 
parameters. Meng [45] proposed a method using wavelet basis functions to generate 
the scaling factor F for each individual. Research on population size has shown that 
dynamically adjusting the size can significantly enhance the performance of the DE 
algorithm. For example, Tanabe and others proposed a new strategy, LPSR [46], based 
on the SHADE algorithm [47], which controls the evolutionary process by linearly 
reducing the population size. Under this strategy, individuals with the worst fitness val-
ues in the population are discarded. Based on this strategy, they introduced a new type 
of DE mutation called LSHADE. To meet the needs of different evolutionary stages 
for population size, Zhang [48] proposed a DE algorithm with nonlinear population 
size reduction, AGDE-MPP. Zeng [49] proposed a method of periodically adding and 
removing individuals from the population, which improves the population’s ability to 
escape local optima and enhances convergence. In terms of selection strategy improve-
ments, recent studies have shown that selection strategies can significantly enhance the 
performance of the DE algorithm. Current research is mainly divided into three cat-
egories: 1) strategies based on the differences between trial individuals and original 
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individuals, which increase population diversity; 2) merging all trial individuals with 
target individuals into a subset and selecting superior individuals within the subset to 
proceed to the next generation, thereby accelerating population convergence; and 3) 
selection strategies based on the state of individuals, accepting suboptimal solutions to 
help stagnant individuals escape local optima. These strategies attempt to fully utilize 
the information of discarded trial individuals to enhance the performance of the DE 
algorithm.

2.2 � Success‑history‑based DE variants

2.2.1 � Success‑history‑based DE

SHADE [47] is a further improvement based on JADE algorithm [15]. SHADE intro-
duces a new historical memory, including MCR and MF . This archive retains successful 
CR and F values from past evolutionary stages, and it influences the derivation of sub-
sequent crossover rates and scaling factors by referencing this stored data. Tanabe and 
Fukunaga proposed a linear population size reduction (LPSR) method, which adjusts 
the population size based on the number of fitness evaluations as a criterion. The spe-
cific adjustment formula is as follows:

where NG represents the population size of the G generation, Ninit represents the 
initial population size, Nmin represents the minimum population size, fes represents 
the number of fitness evaluations, and maxnfes represents the maximum number of 
fitness evaluations. When NG+1 < NG , the ( NG −N

G+1 ) individuals with the worst 
fitness values will be removed from the population. Based on the LSPR strategy and 
the SHADE algorithm, LSHADE algorithm was proposed.

Based on LSHADE, the techniques for regulating the scaling factor and crossover 
rate were further enhanced by Brest et al. [50], leading to the proposal of iLSHADE. At 
the same time, iLSHADE also calculates the p in Eq. (7) which is used to generate the 
X
g

pbest
 . The upper bound of p, pmax , is set to 0.25, and the lower bound of p, pmin , is set 

to half of pmax . Moreover, based on iLSHADE, Brest [51] improved Eq. (1), introduced 
a new mutation strategy DE/current-to-pbest-w/1, and proposed a new algorithm called 
jSO. The specific mutation strategy formula is shown in Eq. (5), and the calculation of 
Fw is shown in Eq. (6).
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In order to enhance the exploration ability of the population in high-dimensional 
spaces, Viktorin [40] introduced distance-based parameter adaptation for SHADE 
and subsequently presented a DE variant known as DISH. The DISH algorithm 
improves the original weight updating formulas of the scaling factor and crosso-
ver rate. Instead of computing weights wi from the fitness difference between the 
trial vector and the parent vector, the DISH algorithm calculates weights based on 
their Euclidean distance. The specific formula is depicted in Eq. (8). The generated 
weight is then applied to Eq. (9) and Eq. (10) to generate new scaling factors and 
crossover rates.

In this context, meanWL denotes the weighted lehmer mean, where wi represents the 
weight corresponding to individual i. Additionally, SCR and SF denote the sets con-
taining values of crossover rate and scaling factor, respectively.

2.2.2 � ESDE

The ESDE algorithm introduces a novel selection strategy (ESS) aimed at assist-
ing individuals in breaking free from local optima. By adopting specific strategies, 
the algorithm can accept discarded trial vectors in certain situations. However, 
blindly accepting suboptimal solutions in any situation is infeasible, as it may lead 
to individual stagnation. Therefore, the ESS strategy considers two key factors when 
accepting inferior solutions: 1) the update status of the individual [52–54] and 2) the 
evolutionary stage of the individual. The update status of the individual reflects the 
probability of the individual being trapped in a local optimum. The more the genera-
tions an individual stops updating, the higher the chance it is stuck in a local opti-
mum. The iteration stage is used to control when to accept inferior individuals. In 
the early stages of iteration, the algorithm considers accepting inferior trial vectors, 
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while in the later stages, in order to accelerate convergence, the algorithm does not 
accept trial vectors worse than the target vector.

As discussed above, ESDE allows individuals to accept inferior solutions with a 
certain probability, which enhances their ability to escape local optima. As shown in 
Eq. (11), � signifies the upper limit of accepting inferior individuals, � regulates the 
influence of an individual’s non-update count on Ac_rate , stop_gen denotes the con-
secutive generations without target vector updates, � governs the effect of function 
evaluation count on Ac_rate,and maxnfes represents the predetermined maximum 
number of function evaluations.

3 � Fitness‑distance‑based DE algorithm

3.1 � Motivation

Greedy selection operators have been extensively studied and implemented in sin-
gle-objective DE algorithms. Despite their widespread use, these strategies often 
lead individuals to become trapped in local optima. Studies on the ESDE algo-
rithm reveal that it probabilistically accepts discarded trial vectors based on both 
the individual’s update status and the current stage of iteration, assisting individu-
als in escaping local optima. However, ESDE does not thoroughly assess how the 
acceptance of these discarded vectors influences the individuals’ ability to escape 
local optima. This oversight could lead to algorithmic instability or a reduction in 
exploration within promising regions, thereby diminishing the algorithm’s overall 
performance. Furthermore, since individuals exhibit varying levels of exploration 
and exploitation capabilities within the search space, tailored selection strategies 
should be applied when accepting inferior individuals.

In traditional DE algorithms and their variants, the setting of the scaling factor 
F is primarily aimed at facilitating a balance between exploration and exploitation 
for individuals. However, research on the impact of the scaling factor on individual 
local optimum detection remains very limited, and this lack of study could lead to 
inaccuracies in the determination of local optima. Given this research gap, this study 
aims to deeply analyze the nature of individual local optimum detection and, based 
on this, specifically set a reasonable scaling factor to effectively balance exploration 
and local optimum detection during the evolutionary process. Detailed analysis and 
methodology will be introduced in Sect. 3.2.

To address the above issues, a fitness-distance-based selection strategy and a new 
scaling factor control are proposed. With this approach, we expect to select trial vec-
tors based on their characteristics, so as to enhance the algorithm’s ability to escape 
local optima, and reduce the impact of misjudgment on population evolution. Based 

(11)
Ac_rate = � ×

1

1 + exp(� − stop_gen)

×
1

1 + exp(fes − � × maxnfes)
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on the above strategies, a new DE variant, FDDE is proposed. We will provide a 
comprehensive overview of the FDDE algorithm in the subsequent sections.

3.2 � Fitness‑distance‑based selection strategy

In our proposed FDDE, the algorithm performs an ascending fitness-based sorting of the 
population. The top 100elite_rate % of individuals are considered as exploitation layer 
individuals with higher exploitation potential, while the remaining individuals are con-
sidered as exploration layer individuals with higher exploration potential. The algorithm 
initially employs Eq. (11) to compute the acceptance probability of an individual for a 
discarded trial vector. When an individual is determined to accept a discarded vector, then 
the algorithm employs the fitness-distance-based selection (FDS) strategy.

In the exploration layer, individuals with lower fitness are more inclined to explore 
new areas. Once these individuals encounter local optima, it indicates that their surround-
ing area lacks potential for further exploration, making it crucial for them to quickly move 
away from these regions to seek new possibilities. As illustrated in Fig. 1, in such situa-
tions, traditional greedy selection strategies often fail to propel individuals forward in their 
evolutionary journey. Consider an individual that has generated trial vector points a and 
b in the last two generations; if we only consider the most recent trial vector, we might 
be inclined to choose vector b, which is more similar to the original individual. How-
ever, this similarity could lead to stagnation. In contrast, selecting the trial vector a, which 
bears less resemblance to the original individual, can more effectively help the individual 
escape from local optima and explore new domains. This approach could evolve vector a 
into vector c, achieving breakthroughs that vector b could not. Not only does this strategy 
aid individuals in escaping local optima, but it also fosters exploration of unknown areas, 
thereby enhancing the diversity of the population. Since the distance between individuals 
often reflects the similarity of their fitness landscapes, we propose that when individuals 

Fig. 1   Mechanism of FDS strategy in helping exploration layer individuals escape local optima
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in the exploration layer need to accept inferior trial individuals, they should select the trial 
individual from the past K generations that is farthest from the original individual in terms 
of Euclidean distance.

In the exploitation layer, since its individuals already has better fitness, accepting too 
inferior individuals will hardly help it find better solutions. Therefore, while ensuring 
that the algorithm does not accept too inferior trial vectors, the individual accepts slightly 
worse individuals with a certain probability. However, it is difficult to define what consti-
tutes “too inferior” individuals. As shown in Fig. 2, after an individual falls into a local 
optimum, the individual in the stagnant stage may generate two trial vectors: X2 and 
X1. However, due to the inferior fitness value of vector X1, the individual will choose 
to accept vector X2, which is more likely to be perturbed to individual X3, thus help-
ing the individual escape the local optimum and find a better solution. It is worth noting 
that when misjudgment occurs, this method of selecting trial vectors based on fitness can 
also ensure that individuals stay in better areas; as a result, it preserves the information 
of promising regions. thereby reducing the impact of misjudgment to some extent. By 
employing this approach, not only can the individual’s ability to escape local optima be 
enhanced, but it also improves the exploitation capability of elite individuals within the 
population. In this study, k = 2 is adopted based on a series of experiments.

In this paper, a fitness-distance-based DE algorithm is proposed. This algorithm 
divides the population into an exploration layer and an exploitation layer to enhance 
the ability of different individuals to break out of local optima. A larger exploita-
tion layer is advantageous for the population to exploit the excellent regions, while 
a larger exploration layer is beneficial for the population to explore more areas. And 
as the iterations progress, the population will gradually transition from exploration 
to exploitation. Therefore, we need to dynamically adjust the size of the layers. As 
mentioned previously, the value of elite_rate influences the size of layers. To better 

Fig. 2   Mechanism of FDS strategy in helping exploitation layer individuals escape local optima
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meet the population’s needs for exploration and exploitation at different stages, the 
formula for calculating elite_rate is as follows:

In the above formula, nfes represents the current number of function evaluations, 
while maxnfes represents the maximum number of function evaluations. The setting 
of � is consistent with the setting in Eq. (11).

3.3 � Improved parameter settings

Existing studies often overlook the crucial role of parameters in optimizing the perfor-
mance of selection strategies. At the heart of the selection strategy is the accurate determi-
nation of individual stagnation, which relies on tracking changes in an individual’s fitness 
over a series of iterations. If an individual does not show an improvement in fitness within 
a certain number of iterations, it is considered to have stagnated. However, this method 
is highly dependent on the search area within the mutation strategy. If the individual’s 
mutation strategy fails to explore around the evolving individual or if the search step is too 
large, it is fundamentally impossible to effectively determine whether the individual is in 
a local optimum area. The DE/current-to-pbest/1 mutation strategy used in this paper can 
effectively explore the area around an individual, yet inappropriate search step sizes may 
also lead to inaccuracies in the detection of individual stagnation.

To minimize the chances of incorrectly identifying individuals ensnared in local 
optima, we introduce a new approach to controlling the scaling factor (F) by imposing 
restrictions on excessively large scaling factors, and both the search capability of individu-
als and the stability of the mutation strategy around individuals are ensured. This restric-
tion allows for an appropriate mutation step size and prevents excessive fluctuations or 
jumps. As a result, the accuracy of determining whether an individual is stagnant based 
on the number of stagnation instances is improved. Therefore, restricting excessively large 
scaling factors helps ensure the accuracy of stagnation detection, thereby enhancing the 
performance of the DE algorithm. The formula is shown in Eq. (13).

3.4 � Framework of FDDE

A new DE variant FDDE is proposed, which is based on FDS and the new scaling 
factor. The pseudocode of FDDE is shown in Algorithm 1.

From Algorithm 1, there are four differences between DISH and FDDE: (1) K 
and count values are initialized in line 3; (2) a new scaling factor formula is used 
in lines 22–24; (3) sorting of the population and calculation of elite_rate are done 
in lines 28–29; and (4) the fitness-distance-based selection strategy is introduced in 
lines 35–41. 

(12)elite_rate =
nfes

� × maxnfes

(13)F =

{
min(F, 0.6) if nfes ≤ 0.6 × maxnfes

F otherwise
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4 � Experiments and discussions

4.1 � Experiment environment

In this section, to assess the FDDE algorithm’s performance, this study delves into 
the proposed FDS strategy and the new scaling factor setting, and further tests the 
effectiveness of the algorithm on CEC 2017, CEC 2022, and CEC 2011.

CEC 2017 consists of 30 benchmark functions that cover various types of optimi-
zation problems, including unimodal functions (F1-F3), simple multiobjective func-
tions (F4-F10), hybrid functions (F11-F20), and composite functions (F21-F30). 

Table 1   Complexity of FDDE Dimension Algorithm T
0

T
1 T̄

2
(T̄

2
− T

1
) / T

0

10D DISH 0.018 0.522 0.675 8.500
ESDE 0.652 7.111
FDDE 0.781 14.389

30D DISH 0.675 0.744 3.833
ESDE 0.826 8.389
FDDE 0.914 13.278

50D DISH 0.923 1.072 8.278
ESDE 1.147 12.444
FDDE 1.335 22.889

100D DISH 2.038 2.859 45.611
ESDE 2.921 49.056
FDDE 2.948 50.556

Fig. 3   Comparison between FDDE and FDDE-1
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Each test function includes four instances corresponding to 10D, 30D, 50D, and 
100D, totaling 120 instances. Detailed information about CEC 2017 can be found in 
reference [37]. The optimal values for all test functions are predetermined, and the 
evaluation criterion is based on the disparity between the values achieved by each 
algorithm and the established optima. The mean value and standard deviation of the 
function error values are denoted as Mean and Std, respectively. In the CEC 2017 
benchmark set, we set the maximum number of algorithm evaluations to 10,000 × 
D, and the algorithm runs 51 times on each instance, thereby avoiding inaccuracies 
due to algorithmic randomness. For each algorithm, if the error value falls below 
10−8 , it is adjusted to 0.

The CEC 2022 test suite includes 12 test functions, covering four types of func-
tions: unimodal functions (F1), basic functions (F2-F5), hybrid functions (F6-F8), 
and composition functions (F9-F12). In this experiment, we set the dimension of 
the CEC 2022 benchmark test suite to 20, tested each algorithm on each function 30 
times, and took the average. Detailed information about the CEC 2022 test suite can 
be found in reference [38].

In the CEC 2011 benchmark set suite, seven problems are selected for testing to 
demonstrate the superiority of the FDDE algorithm in handling real-world problems. 

Fig. 4   Comparison between FDDE and FDDE-2

Table 2   Average rankings 
among FDDE algorithm 
variants according to the 
Friedman test

The best-ranked algorithm is emphasized in bold

Algorithm 10D 30D 50D 100D

FDDE-K1 2.1500 2.4000 2.4500 2.2700
FDDE-K2 1.6300 1.7200 1.6500 1.6700
FDDE-K3 2.2200 3.9833 1.9000 2.0700
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The maximum number of evaluations was set to 150,000, and for each instance, 25 
runs were conducted for every algorithm. The specific settings are described in ref-
erence [39]. To ensure the effectiveness of the algorithm performance, this study 
utilized the Wilcoxon rank-sum test, with a significance level set at 0.05.

4.2 � Analysis of algorithmic complexity

The complexity of the algorithm in this paper is determined according to the method 
in reference [37]. The specific steps are as follows: Firstly, the test code in reference 
[37] is run to obtain the time T0 ; secondly, the function 18 in the CEC 2017 test set 
is evaluated 200,000 times to obtain the time T1 ; and lastly, the test algorithm is 
evaluated 200,000 times in function 18 and repeated five times to calculate the aver-
age value as time T̄2 . The time complexity is then evaluated by the formula ( ̄T2 − T1 ) 
/ T0.

Table 1 indicates that the FDDE algorithm’s complexity closely resembles that 
of ESDE and DISH. Notably, the complexity of the FDDE algorithm does not sig-
nificantly increase with the increase in dimension. All time complexity tests are 
executed on the following computer configuration: The programming language is 
MATLAB; it is compiled with MATLAB 2021; CPU is AMD Ryzen 7 5800 H with 
Radeon Graphics 3.20 GHz; and RAM is 16 G.

4.3 � Ablation experiment

To verify the effectiveness of the FDS strategy and the new scaling factor con-
trol formula, we compared the following three methods: (1) FDDE algorithm; (2) 
FDDE algorithm without using the new scaling factor control formula (FDDE-1); 
and (3) FDDE algorithm without using the FDS strategy (FDDE-2). Figures 3 and 
4 show the performance differences between FDDE, FDDE-1, and FDDE-2. The 
outcomes reveal that FDDE outperforms FDDE-1 across all scales (10D, 30D, 50D, 
and 100D), demonstrating that the FDS strategy can significantly enhance algorithm 
performance, especially in the 30D, 50D, and 100D. Figure 3 further illustrates the 
improvement of algorithm performance brought by the new scaling factor. It can be 
observed that the new scaling factor brings significant performance improvement in 
all dimensions (10D, 30D, 50D, and 100D).

Table 3   Average rankings 
among FDDE algorithm 
variants according to the 
Friedman test

The best-ranked algorithm is emphasized in bold

Algorithm 10D 30D 50D 100D Average

FDDE 2.5333 2.7667 2.4667 2.4000 2.5417
FDDE-P2 3.2833 2.7333 2.6667 2.5333 2.8042
FDDE-P3 3.3500 2.4833 2.0000 2.5000 2.5833
ESDE 2.9333 3.3333 3.8000 3.2833 3.3375
DISH 2.9000 3.6833 4.0667 4.2833 3.7333
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4.4 � Parameter analysis

4.4.1 � Sensitivity of K values

In this paper, we propose a selection strategy based on fitness distance, where the 
parameter K plays a significant role in enabling individuals to specifically accept 
inferior trial individuals to escape local optima. To better investigate the setting of 
K, we employ the Friedman test to rank the performance of the FDDE algorithm 
under the settings of K=1, K=2, and K=3. The FDDE variants corresponding to 
these settings are FDDE-K1, FDDE-K2, and FDDE-K3, as detailed in Table 2.

As shown in Table 2, when comparing the three settings of K values, the setting 
of K=2 demonstrated the best performance across all four dimensions, while K=1 
showed the least desirable effect. This indicates that relying solely on trial individu-
als generated in the current generation of an individual might limit the capability to 
overcome local optima. In the comparison between K=3 and K=2, selecting indi-
viduals based on the furthest Euclidean distance or the optimal fitness distance did 
not fully leverage the potential of the FDS strategy. Nevertheless, the performance 
under K=3 still surpasses that of the K=1 setting.

4.4.2 � Sensitivity of population size

Population size has a significant impact on the performance of the DE algorithm. 
Recognizing the popularity of various population settings, this study compares 
the FDDE algorithm described in this paper with two FDDE variants that employ 
widely used initial population sizes. These two variants are: FDDE-P2, which sets 
the population size to 18 × D , and FDDE-P3, which determines the population size 
based on the formula 25 × log(D) × sqrt(D) . We use the statistical method Friedman 
test to rank these algorithms in order to assess the impact of different population size 
settings on performance.

As shown in Table 3, the parameters set in this paper achieved the best ranking 
in both 10D and 100D dimensions. Additionally, the FDDE algorithm demonstrated 
superior performance across these four dimensions, reflecting the advantages of this 
algorithm in terms of population size settings. Furthermore, FDDE-P3 achieved the 
best ranking in the 30D and 50D dimensions. Notably, on the 30D, 50D, and 100D 
dimensions, the FDDE algorithm and its variants were among the top three, showing 
that even with three different population size setting strategies, the FDDE algorithm 
consistently outperformed the DISH and ESDE algorithms in all scenarios. These 
results not only highlight the excellent performance of the FDDE algorithm but also 
demonstrate its flexibility and robustness in adjusting population size parameters. 
The performance of the FDDE algorithm further confirms its low sensitivity to dif-
ferent population sizes, allowing it to maintain stable high performance across a 
wide range of applications.
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4.5 � Comparison results

4.5.1 � Comparison results with six recent DE variants on CEC 2017

In this section, we compare the performance of the FDDE algorithm with six state-
of-the-art DE algorithms, including JADE [15], LSHADE [46], jSO [51], DISH 
[40], ESDE [36], and HIP-DE [55]. To faithfully represent the performance of the 
original algorithms, the parameter settings for each algorithm are kept the same as 
those in the corresponding literature. As shown in Table 4, for the JADE algorithm, 
the population size NP is set to 100 for 10D, 120 for 30D, 150 for 50D, and 200 for 
100D. The � in ESDE and FDDE is set to 0.5, � is set to 48 for 10D and 30D, and 32 
for 50D and 100D, and � is set to 0.4 for 10D and 30D, and 0.5 for 50D and 100D. 
The parameter settings in CEC 2011 are the same as those in the 30D setting.

Table  5 presents the performance of the FDDE algorithm in comparison with 
other algorithms on the CEC 2017 test set, and statistical analysis was conducted 
on the results of each algorithm independently run 51 times on each function, based 
on the Wilcoxon rank-sum test at a significance level of 0.05. The specific informa-
tion of the detailed data, including the mean error values and standard deviations 
obtained through each algorithm, is provided in Tables 16, 17, 18, and 19. The sym-
bols "+" (FDDE performs significantly better), "–" (FDDE performs significantly 
worse), and "=" (FDDE and the comparison algorithm do not show a significant 
difference) indicate whether the performance of the FDDE algorithm is significantly 
different from that of the other algorithms based on the Wilcoxon rank-sum test on 
the mean error values. The integer corresponding to "+,—,=" represents the num-
ber of functions that are significantly better, significantly worse, or not significantly 
different between the FDDE algorithm and the compared algorithm on the test set 
based on the statistical analysis.

Table  5 shows that FDDE is significantly better than other advanced DE algo-
rithms. the performance difference between FDDE and JADE was the largest. FDDE 
has improved in 85 instances and only significantly underperformed in 9 instances 
when compared with JADE. When compared with LSHADE, 77 instances showed 
significant improvement, while only 11 instances significantly underperformed. In 
comparison with jSO, FDDE achieved significant improvement in 68 instances, with 
only 7 instances significantly underperformed. We paid particular attention to the 
performance of FDDE against ESDE and DISH. When compared to DISH, FDDE 
showed significant improvement in 63 instances and significantly underperformed in 
11 instances, the improvement rate is 52.5% and the degradation rate is 9.2% . FDDE 
performed significantly better than ESDE in 50 instances, with only 5 instances sig-
nificantly underperformed, the improvement rate is 41.7% and the degradation rate is 
only 4.2% . It is evident that, compared to these two algorithms, FDDE has achieved 
substantial improvement and fewer instances of degradation. Of note, FDDE shows 
significant improvements compared to both ESDE and DISH, with very few func-
tions where FDDE significantly underperformed. the HIP-DE algorithm is the clos-
est to FDDE. FDDE performed significantly better than HIP-DE in 68 instances, 
with 23 instances significantly underperformed.
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The results in Tables  6, 7, 8, and 9 are derived from statistical analysis using 
the Wilcoxon rank-sum test at a significance level of 0.05. As shown in Tables 6, 
7, 8, and 9, in comparison with other algorithms in different dimensions and types 
of functions, we have observed that our method has varying degrees of advantages 

Table 4   Parameter settings

Algorithm Year Parameters’ initial settings

JADE 2009 N = 100,c = 0.01, p = 0.5, CR = 0.5, F = 0.5
LSHADE 2014 Nmax = 18 × D,Nmin = 4,H = 6, rarc = 2.6,MF = 0.5,MCR = 0.5

jSO 2017 Nmax = 25 × log(D) × sqrt(D),H = 5,MF = 0.3,MCR = 0.8, rarc = 2.6,

pmin = 0.125, pmax = 0.25

DISH 2019 Nmax = 25 × log(D) × sqrt(D),H = 5,MF = 0.5,MCR = 0.8, rarc = 2.6,

pmin = 0.125, pmax = 0.25

HIP-DE 2021 Nmax = 15 × D,Nmin = 4,MF = 0.6,MCR = 0.8, �F = �CR = 0.9,K = 6,

rarc = 5, pmin = 0.05, pmax = 0.2

ESDE 2022 Nmax = 6 × D + 43 × log(D) + 15,Nmin = 4,H = 5,MF = 0.5,MCR = 0.8

FDDE - Nmax = 6 × D + 43 × log(D) + 15,Nmin = 4,H = 5,MF = 0.5,MCR = 0.8,

K = 2

Table 5   Comparison of FDDE and six other DE variants

Metric 10D 30D 50D 100D Total

JADE + 14 22 24 25 85
– 5 2 1 1 9
= 11 6 5 4 26

LSHADE + 9 21 22 25 77
– 6 1 2 2 11
= 15 8 6 3 32

jSO + 6 17 21 24 68
– 2 1 2 2 7
= 22 12 7 4 45

DISH + 8 17 20 18 63
– 2 2 3 4 11
= 20 11 7 8 46

ESDE + 6 13 18 13 50
– 0 2 2 1 5
= 24 15 10 16 65

HIP-DE + 6 16 20 26 68
– 12 6 4 1 23
= 12 8 6 3 29

Total + 49 106 125 131 411
– 27 14 14 11 66
= 104 60 41 38 243
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in different types of functions. For 10D, specifically, our algorithm shows signifi-
cant enhancements in multimodal functions with 22 instances of improvements 
and no instances showing a decline. Moreover, in unimodal functions, all meth-
ods in our experiments converge to the global optimum. Additionally, our algo-
rithm demonstrates similar performance compared to other algorithms. For 30D, 
our algorithm achieves substantial improvements in multimodal functions, hybrid 
functions, and composition functions. In multimodal functions, 23 instances show 
significant improvements without any instances showing a decline. In hybrid func-
tions, 49 instances exhibit significant enhancements, while 2 instances show signifi-
cant deterioration. For composition functions, 33 instances demonstrate significant 
improvements, while 7 instances show significant deterioration. For 50D, our algo-
rithm achieves significant improvements in multimodal functions and hybrid func-
tions with 31 instances and 53 instances of improvement, respectively, without any 
instances showing significant deterioration. Moreover, in composition functions, 
our algorithm shows significant improvements in 42 instances and significant dete-
riorations in 12 instances. For 100D, our algorithm achieves significant improve-
ments in multimodal functions and composition functions with 29 instances and 45 
instances of significant enhancements, respectively, without any instances showing 

Table 6   Comparison of FDDE and six other DE variants under different function types for 10D

Algorithm Metric Unimodal 
functions

Multimodal 
functions

Hybrid func-
tions

Composition 
functions

JADE + 0 4 7 3
– 0 0 1 4
= 3 3 2 3

LSHADE + 0 4 3 2
– 0 0 4 2
= 3 3 3 6

jSO + 0 4 1 1
– 0 0 1 1
= 3 3 8 8

DISH + 0 4 2 2
– 0 0 2 0
= 3 3 6 8

ESDE + 0 3 2 1
– 0 0 0 0
= 3 4 8 9

HIP-DE + 0 3 2 1
– 0 0 7 5
= 3 4 1 4

Total + 0 22 17 10
– 0 0 15 12
= 18 20 28 38
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a significantly decline. In hybrid functions, there are 49 instances of significant 
improvements and 2 instances of significant deteriorations. In unimodal functions, 8 
instances demonstrate significant improvements, while 4 instances show significant 
deteriorations. It is noted that our algorithm shows varying degrees of improvement 
over ESDE and DISH algorithms in all dimensions and function types.

To delve deeper into the analysis of the FDDE algorithm’s performance, we con-
ducted an analysis of the average error values for each algorithm using the Friedman 
test. The obtained average rankings are presented in Table 10, where smaller average 
ranks indicate better algorithm performance and the best ranking is highlighted in 
bold. Our algorithm achieved the best rankings in dimensions 30, 50, and 100. For 
30D, ESDE ranks second, and DISH ranks fourth. In particular, for 50D, the FDDE 
algorithm exhibited a significant lead over the second-ranked ESDE algorithm, 
ESDE ranks second, and DISH ranks third. Furthermore, for 100D, our algorithm 
attained the lowest average rank among the four dimensions, ESDE ranks second, 
and DISH ranks third. For 10D, our algorithm ranked third, and HIP-DE ranks first. 
In comparison with the DISH and ESDE algorithms, our algorithm demonstrated 
improved performance in all dimensions.

The convergence curves can reflect the convergence characteristics of the algo-
rithm. In this study, an analysis was conducted on some functions in 30D, 50D, 

Table 7   Comparison of FDDE and six other DE variants under different function types for 30D

Algorithm Metric Unimodal 
functions

Multimodal 
functions

Hybrid func-
tions

Composition 
functions

JADE + 1 4 10 7
– 0 0 0 1
= 2 3 0 2

LSHADE + 0 3 10 8
– 0 0 0 0
= 3 4 0 2

jSO + 0 4 8 5
– 0 0 0 1
= 3 3 2 4

DISH + 0 5 6 6
– 0 0 1 1
= 3 2 3 3

ESDE + 0 4 6 3
– 0 0 1 1
= 3 3 3 6

HIP-DE + 0 3 9 4
– 0 0 0 3
= 3 4 1 3

Total + 1 23 49 33
– 0 0 2 7
= 17 19 9 20
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and 100D on CEC 2017. F10 was selected as the test function from the simple 
multimodal functions, F20 was chosen as the test function for hybrid functions, 
and F26 was selected for composition functions. The convergence curves are 
shown in Figs.  5, 6, and 7. It can be observed that the proposed algorithm in 
this study significantly outperforms all advanced DE algorithms. In comparison 
with DISH and ESDE, we observed that FDDE achieved a similar convergence 
rate in the early stages and was able to converge to a better value in the later 
stages. This is because when individuals with exploitation potential get trapped in 
local optima, the FDDE algorithm continues to explore the regions with exploita-
tion potential by accepting the fitness values of discarded trial individuals that 
have been filtered, which is advantageous for finding better solutions in the early 
stage. In the later stage, due to the thorough exploration in the early stage that 
identifies regions with development potential, the FDDE algorithm still maintains 
good convergence speed. Therefore, it can be observed that the FDDE achieves 
a good balance between exploration and exploitation. In summary, the research 
found that in 10D functions, this paper does not significantly differ from other 
algorithms, but in high-dimensional test functions such as 30D, 50D, and 100D, 
this paper performs excellently, outperforming the other six comparison algo-
rithms. Upon further study, it was found that in multimodal functions, the FDDE 

Table 8   Comparison of FDDE 
and six other DE variants under 
different function types for 50D

Algo-
rithm

Metric Unimodal 
functions

Multi-
modal 
functions

Hybrid 
func-
tions

Composition 
functions

JADE + 1 5 10 8
– 0 0 0 0
= 2 2 0 2

LSHADE + 0 6 10 6
– 0 0 0 2
= 3 1 0 2

jSO + 0 6 9 6
– 0 0 0 2
= 3 1 1 2

DISH + 0 5 8 7
– 0 0 0 3
= 3 2 2 0

ESDE + 0 5 6 7
– 0 0 0 2
= 3 2 4 1

HIP-DE + 0 4 10 6
– 0 0 0 3
= 3 3 0 1

Total + 1 31 53 40
– 0 0 0 12
= 17 11 7 8
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algorithm achieved significant improvement in 10D, 30D, 50D, and 100D, with 
no instances of degradation. In hybrid functions and composition functions, the 
number of instances in which the FDDE algorithm improved and underperformed 
in 10D was fairly close, but in 30D, 50D, and 100D, significant improvement was 
achieved, significantly outperforming the six comparison algorithms.

To demonstrate the algorithm’s robustness, applicability, and scalability, we uti-
lized four distinct types of functions from the CEC2017 benchmark for our analysis. 
The FDDE algorithm’s performance was showcased across a variety of problems 
using box plots. Specifically, we selected function F3 for unimodal challenges, F10 
for simple multimodal problems, and functions F13 and F17 for hybrid scenarios, as 
well as functions F22 and F26 for composite problems. These functions were chosen 
because they present significant optimization challenges, providing a rigorous test of 
the algorithm’s ability to manage uncertainty and sustain performance.

Box plots are statistical charts that illustrate data distribution effectively. They 
provide a five-number summary: the minimum, first quartile (Q1), median (Q2), 
third quartile (Q3), and maximum. The central box represents the interquartile 
range, with the median marked by a central line. The boundaries of the box, Q3 and 
Q1, delineate the upper and lower quartiles, respectively. In this study, outliers are 

Table 9   Comparison of FDDE 
and six other DE variants under 
different function types for 
100D

Algo-
rithm

Metric Uni-
modal 
functions

Multi-
modal 
functions

Hybrid 
func-
tions

Composition 
functions

JADE + 2 5 9 9
– 0 0 0 0
= 1 2 1 1

LSHADE + 1 6 10 8
– 1 0 0 0
= 1 1 0 2

jSO + 1 5 10 8
– 1 0 0 0
= 1 2 0 2

DISH + 1 5 6 6
– 1 0 1 0
= 1 2 3 4

ESDE + 2 2 4 5
– 0 0 1 0
= 1 5 5 5

HIP-DE + 1 6 10 9
– 1 0 0 0
= 1 1 0 1

Total + 8 29 49 45
– 4 0 2 0
= 6 13 9 15
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Table 10   Average rankings between FDDE and six other DE variants according to the Friedman test

The best-ranked algorithm is emphasized in bold

Algorithm 10D 30D 50D 100D

FDDE 3.7500 2.5500 2.1500 1.8667
ESDE 3.8500 2.8500 3.2500 2.3833
DISH 4.0833 3.9833 3.8667 3.8833
jSO 3.7167 4.2000 4.0500 4.0167
LSHADE 4.3167 4.6667 4.0333 4.4833
JADE 5.0333 5.9167 6.2833 6.2167
HIP-DE 3.2500 3.8333 4.3667 5.1500

Fig. 5   Convergence curves of the mean fitness on certain test functions in 30D

Fig. 6   Convergence curves of the mean fitness on certain test functions in 50D

Fig. 7   Convergence curves of the mean fitness on certain test functions in 100D
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indicated with a red "+" to emphasize deviations, ensuring clarity in data interpreta-
tion and analysis.

As shown in Figs. 8, 9, 10, and 11, for unimodal functions, most algorithms sta-
bly converged to a satisfactory value across 10D, 30D, 50D, and 100D, except for 
JADE, which displayed numerous outliers and poorer convergence in 30D, 50D, and 
100D. For simple multimodal problems, which feature many local optima, FDDE 
significantly outperformed other algorithms in terms of median values and dem-
onstrated higher stability (smaller interquartile range). In hybrid functions, FDDE 
showed superior stability and convergence performance compared to others, notably 
in 100D where FDDE had more outliers but still outperformed other algorithms. 

Fig. 8   Boxplot results for different function types in 10D

Fig. 9   Boxplot results for different function types in 30D
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The presence of numerous outliers suggests that while FDDE can navigate local 
optima in high-dimensional settings, its improvement still depends on the explora-
tory scope of the population, and escaping local optima does not guarantee find-
ing better solutions. Composite functions combine multiple function types, and here, 
FDDE not only maintained high stability and convergence but also showed signifi-
cantly better performance than other algorithms, which struggled with convergence. 
This highlights FDDE’s strong global search capability and effective convergence 
in scenarios with multiple local optima and extensive suboptimal regions. In sum-
mary, FDDE exhibits robust performance across various problem types, maintaining 
stability through multiple runs. This further attests to FDDE’s excellent applicability 
and scalability across a diverse range of function types and dimensions.

Fig. 10   Boxplot results for different function types in 50D

Fig. 11   Boxplot results for different function types in 100D
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4.5.2 � Comparison results with four famous evolutionary algorithms on CEC 2017

In this section, we compare the proposed FDDE algorithm with four of the latest 
advanced evolutionary algorithms: the PSO-sono [56], LEA [57], LPO [58], and 
WOA algorithms [59]. The parameter settings for these four algorithms are the same 
as those in the original texts, as detailed in Table 11. PSO-sono represents the latest 
variant of the particle swarm optimization algorithm, while LEA, LPO, and WOA 
are innovative meta-heuristic algorithms. For each algorithm, the mean and stand-
ard deviation of fitness error values are recorded after 51 independent runs on each 
function. The recorded data are then subjected to statistical analysis and comparison 
using the Wilcoxon rank-sum test with a significance level set at 0.05.

In this paper, the experimental results presented in Table 12 demonstrate a compre-
hensive performance enhancement of our proposed FDDE algorithm when compared 
with four advanced evolutionary algorithms: PSO-sono, LEA, WOA, and LPO. Spe-
cifically, in the 10D dimension, FDDE showed significant improvements in 22, 26, 30, 
and 21 test functions respectively against PSO-sono, LEA, WOA, and LPO, but signif-
icantly underperformed in 4, 4, and 1 test problems respectively. In higher dimensions 
of 30D, 50D, and 100D, FDDE’s performance was exceptionally strong, significantly 
outperforming all test functions compared to PSO-sono, LEA, and WOA. Compared 
to LPO, FDDE was significantly better in 27, 28, and 29 functions in these dimen-
sions, with only 1, 0, and 0 functions where it underperformed respectively.

The analysis of the data indicates that the FDDE algorithm has made significant 
progress in all tested dimensions. Although the improvements at 10D were relatively 
modest, enhancements in the dimensions of 30D, 50D, and 100D were markedly 
greater. This phenomenon reflects the increased complexity of problem-solving as 
the number of dimensions increases, leading to more local optima. Thanks to the 
FDS strategy in the FDDE algorithm, which is particularly suited for selectively dis-
carding inferior solutions, the algorithm exhibits robustness against multiple local 
optima, making FDDE more effective at handling high-dimensional problems.

4.5.3 � Comparison results on CEC 2022

To further explore the performance and robustness of the FDDE algorithm across dif-
ferent function types, we continued to use the CEC 2022 test suite to test the algorithm. 
The characteristics of the functions in the CEC 2022 test suite include nonlinearity, 
multimodality, non-convexity, non-differentiability, and high complexity, which impose 

Table 11   Parameter settings of four advanced evolutionary algorithms

Algorithm Year Parameters’ initial settings

PSO-sono 2022 N = 100, iw ∈ {0, 0.4, 0.9}, � =
D

N
× 0.01, r = 0.5

LEA 2024 N = 50, hmax = 0.7, hmin = 0, �c = 0.5, �p = 0.5

LPO 2024 N = 30,Ne = 5

WOA 2016 N = 50
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high demands on the algorithm’s performance. The parameter settings of the compari-
son algorithms are the same as those used in the CEC 2017 30D test set. As shown in 
Table 13, "±/=" represents significant improvement, significant underperformance, or 
no significant difference based on the Wilcoxon rank-sum test compared to other algo-
rithms. "Rank" indicates the average ranking obtained from the Friedman test.

Unimodal functions are used to assess the convergence capability of algorithms. 
In comparison with advanced algorithms such as ESDE, DISH, jSO, LSHADE, and 
HIP-DE, the FDDE algorithm proposed in this paper demonstrated outstanding per-
formance, ranking first, while the JADE algorithm ranked last. This result clearly 
demonstrates FDDE’s capability for rapid and effective convergence.

For basic functions, which are characterized by their multimodality, there is a 
high demand for the algorithm’s exploration ability. The FDDE algorithm ranked 
second in this category. According to the Wilcoxon rank-sum test results, FDDE 
performed comparably to the ESDE algorithm. Compared to the DISH and jSO 
algorithms, FDDE was significantly better in 1 instance and showed no significant 
difference in 3 instances. Against the JADE and HIP-DE algorithms, FDDE was 
significantly better in two instances and showed no significant difference in two 
instances. These findings indicate that the FDDE algorithm can effectively explore 
extensive search spaces and accurately locate potential optimization areas.

Hybrid functions are created by combining various basic test functions to mimic 
the diversity and complexity of real-world problems and demand more from the 
adaptability and robustness of optimization algorithms. Based on Friedman test 
results, the FDDE algorithm ranked first, significantly outperforming other algo-
rithms. According to the Wilcoxon rank-sum test, compared to the ESDE algorithm, 
FDDE performed significantly better in 2 instances but underperformed in one. 
When compared with DISH, jSO, and LSHADE, FDDE was significantly better 
in one instance and showed no significant difference in three. In comparison with 
JADE and HIP-DE, FDDE was significantly better in 3 instances. Overall, the FDDE 
algorithm maintained robust performance when dealing with hybrid functions, 

Table 12   Comparison of 
FDDE and other evolutionary 
algorithms

Algorithm Metric 10D 30D 50D 100D

PSO-sono + 22 30 30 30
– 4 0 0 0
= 4 0 0 0

LEA + 26 30 30 30
– 4 0 0 0
= 0 0 0 0

WOA + 30 30 30 30
– 0 0 0 0
= 0 0 0 0

LPO + 21 27 28 29
– 1 0 0 1
= 8 3 2 0
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showing a stable improvement over other DE variants, with only a few instances of 
poor performance. This indicates that the fitness-distance selection strategy can reli-
ably assist the algorithm in exploring the entire search space.

Composition functions combine multiple different test functions into a single 
optimization problem. Each basic function in the composite maintains its independ-
ence and impacts different regions of the entire search space. These functions often 
have multiple local optima. According to the results of the Friedman test, the FDDE 

Table 13   Comparison of algorithm performance on different function types according to Wilcoxon rank-
sum test and Friedman test rankings

Types of 
Functions

Index FDDE ESDE DISH jSO LSHADE JADE HIP-DE

Uni-
modal 
func-
tion

±/= – 0/0/1 0/0/1 0/0/1 0/0/1 1/0/0 0/0/1

Rank 3.50 3.50 3.50 3.50 3.50 7.00 3.50
Basic 

func-
tions

±/= – 0/0/4 1/0/3 1/0/3 2/0/2 2/0/2 2/0/2

Rank 3.50 2.75 3.75 4.00 4.50 5.50 4.00
Hybrid 

func-
tions

±/= – 2/1/0 2/0/1 2/0/1 2/0/1 3/0/0 3/0/0

Rank 1.33 3.00 3.67 4.00 5.00 7.00 4.00
Composi-

tion 
func-
tions

±/= – 1/0/3 1/0/3 1/0/3 1/0/3 2/1/1 1/0/3

Rank 3.25 4.50 3.25 3.50 3.75 5.00 4.75
Overall ±/= – 3/1/8 4/0/8 4/0/8 5/0/7 8/1/3 6/0/6

Rank 2.87 3.46 3.54 3.79 4.29 5.83 4.21

Table 14   Description of the real-world problems

Problem Dimension introduction

problem1 6 Parameter Estimation for Fre-
quency Modulated (FM)

problem2 30 Lennard–Jones Potential Problem
problem5 30 Tersoff Potential for model Si (B)
problem6 30 Tersoff Potential for model Si (B)
problem7 20 Spread Spectrum Radar Polly 

phase Code Design
problem12 26 Messenger:Space craft Trajectory 

Optimization Problem
problem13 22 Cassini 2:Spacecraft Trajectory 

Optimization Problem
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and DISH algorithms ranked joint first. Based on the Wilcoxon rank-sum test results, 
compared to the ESDE, DISH, jSO, LSHADE, and HIP-DE algorithms, FDDE per-
formed significantly better on one instance and showed no significant differences on 
3 instances. Compared to the JADE algorithm, FDDE performed significantly better 
on two instances but was significantly worse on one, demonstrating that FDDE’s 
superior selection strategy and improved scaling factor parameters enhance the algo-
rithm’s performance in handling local optima challenges.

In comprehensive comparisons across all function types, the FDDE algorithm 
ranked first and maintained significant performance improvements compared to six 
other excellent DE variants. Overall, the FDDE algorithm demonstrated outstanding 
exploration and exploitation capabilities, maintained stability in handling complex 
problems with multiple local optima, and showed high robustness across tests of 
various function types.

4.5.4 � Comparison results on CEC 2011

To validate the effectiveness of FDDE in practical problems, CEC 2011 was 
selected as the testing platform to evaluate FDDE and six comparative DE vari-
ants algorithms. Seven bounded function problems were chosen. The specific 
problem description and dimension settings are shown in Table 14. The param-
eter configurations for each algorithm are consistent with their settings in the 
30-dimensional space within CEC 2017.

Table  15 shows that FDDE exhibits significant performance differences com-
pared to the JADE algorithm. In six out of the seven problems, FDDE outperforms 
JADE algorithm, with only one problem showing slightly inferior performance. 

Table 15   Comparison results for the real-world problems

Problem JADE LSHADE jSO DISH ESDE HIP-DE FDDE

problem1 2.07E−01 4.34E−04 1.36E+00 1.22E+00 8.13E−01 7.25E−05 0.00E+00
(+) (+) (=) (=) (=) (+)

problem2 − 2.30E+01 − 2.61E+01 − 2.57E+01 − 2.58E+01 − 2.63E+01 − 2.63E+01 − 2.63E+01
(+) (=) (+) (+) (=) (=)

problem5 − 3.54E+01 − 3.64E+01 − 3.60E+01 − 3.62E+01 − 3.60E+01 − 3.64E+01 − 3.62E+01
(+) (=) (=) (=) (=) (=)

problem6 − 2.90E+01 − 2.92E+01 − 2.91E+01 − 2.92E+01 − 2.87E+01 − 2.91E+01 − 2.90E+01
(−) (−) (−) (−) (+) (=)

problem7 1.17E+00 1.15E+00 1.14E+00 1.15E+00 1.05E+00 1.17E+00 1.03E+00
(+) (+) (+) (+) (=) (=)

problem12 1.74E+01 1.54E+01 1.51E+01 1.50E+01 1.50E+01 1.78E+01 1.50E+01
(+) (+) (=) (=) (=) (+)

problem13 1.75E+01 1.33E+01 1.33E+01 1.38E+01 1.40E+01 1.40E+01 1.46E+01
(+) (=) (=) (=) (=) (=)

Total ±/= 6/1/0 3/1/3 2/1/4 2/1/4 1/0/5 2/0/4
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When compared to DISH and ESDE algorithms, FDDE shows similar performance, 
surpassing DISH algorithm in two problems while being slightly inferior in one, and 
outperforming ESDE algorithm in one problem. These results indicate the potential 
of the FDDE algorithm in solving real-world problems, with its overall performance 
being comparable to or better than advanced DE algorithms.

5 � Conclusion

In this paper, we proposed a novel fitness-distance-based selection (FDS) strat-
egy and introduce a new scaling factor formula. Specifically, FDS selects and 
accepts appropriate discarded trial vectors based on individual exploration and 
exploitation potential under certain conditions. Furthermore, the adjusted scal-
ing factor enhances the identification of individual stagnation in the FDS strat-
egy, leading to the improvement of the algorithm performance. The experimental 
results demonstrate that FDS significantly enhances algorithm performance, and 
the new scaling factor further improves the algorithm’s effectiveness. When com-
pared with six advanced DE algorithms, the proposed fitness-distance-based DE 
(FDDE) algorithm shows remarkable superiority from CEC 2017, CEC 2022, and 
CEC 2011, and FDDE shows great potential in real-world optimization problems. 
Furthermore, when FDDE is compared against four other advanced evolutionary 
algorithms on the CEC 2017 benchmark, the results consistently reveal its signifi-
cant advantages over competing algorithms.

While this study has contributed valuable insights into the application of dif-
ferential evolution strategies, it also uncovers several limitations that point 
towards avenues for future research: 

1.	 The study primarily uses fitness values to assess individual potential for explora-
tion and exploitation. This straightforward approach does not consistently ensure 
precise identification, especially in complex scenarios where fitness landscapes 
are deceptive.

2.	 The feasibility of the proposed selection strategy in other evolutionary algo-
rithms remains to be fully explored. The results of this study are promising, but 
the applicability of the strategy across different evolutionary frameworks could 
further validate its effectiveness.

3.	 The current method for detecting local optima requires further refinement to 
improve its accuracy. As the detection of local optima is crucial for the timely 
adjustment of search strategies in evolutionary algorithms, enhancing the preci-
sion of this detection mechanism could significantly impact the overall perfor-
mance of the algorithm.

Appendix

See Tables 16, 17, 18 and 19.
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