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Abstract
Within the realm of social networks, most research efforts have concentrated on 
identifying crucial nodes in networks, with little attention paid to identifying critical 
edges. Nevertheless, edges, serving as conduits for information dissemination, hold 
significant importance. Mining critical edges in networks can serve as a valuable 
target for both network disassembly as an attack strategy and network preservation 
as a defensive measure. This paper introduces the k-sup structure by taking into 
account the strength of relationships between nodes and investigates the critical 
subgraph based on the k-sup structure. Furthermore, this paper distinguishes 
between the significance of inter-community edges and intra-community edges, 
proposing an importance indicator based on the k-sup structure. To validate the 
effectiveness of the proposed indicator, comparative experiments are conducted 
with seven classic edge importance indicators on eight real-world network datasets 
and three synthetic network datasets. The experimental results demonstrate that the 
proposed indicator assesses their importance, exhibiting superiority over alternative 
methods in terms of network connectivity.
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1 Introduction

With the rapid development of the Internet, social networks have become an 
essential part of everyday life. Due to the continuous evolution of the network 
and the rapid growth in the number of nodes, most researchers focus on the 
identification of critical nodes [1–3] and consider nodes with a high degree of 
importance as critical nodes. The earliest method used to identify the importance 
of nodes was node degree centrality [4], which is simple and easy to determine, 
but less accurate as only local information is considered. k-shell decomposition 
theory  [5] was proposed by Kitsak et  al. and was able to determine the core 
position of nodes in the network, but only a coarse-grained result was obtained. 
The importance of a node can also be measured based on paths, such as closeness 
centrality [6] and betweenness centrality [7], where closeness centrality considers 
the node that is closest on average to the rest of the nodes in the network to be 
the important node, while betweenness centrality considers the importance of a 
node to depend on how often the node appears on the shortest path of a node 
pair that does not contain that node. When addressing the problem of maximizing 
the influence of seed nodes through a node-based attack strategy, Wang et  al. 
[8] employed various indicators for evaluating node importance, as previously 
discussed. This underscores the utility of identifying critical nodes in tackling 
real-world issues.

The rapid growth in the number of nodes has led to a large increase in the 
number of edges. In comparison, there has been less research on critical edges. 
The earliest identification method was proposed by Granovetter in 1973, who 
argued that weakly connected edges might be more important than strongly 
connected edges, attracting the attention of many researchers [9–12]. Girvan and 
Newman [13] proposed the edge betweenness centrality based on betweenness 
centrality to represent the proportion of the shortest paths in the network that pass 
through the edge, with larger values indicating that the edge is more important 
in the network, but this method requires calculating the number of shortest paths 
for each pair of nodes, which is time-consuming. Barrat et al. [14] argued that the 
importance of an edge is related to the importance of the nodes at both edges, so 
the importance of an edge is expressed by the product of the node degrees at both 
edges, but the method is strongly influenced by the node degree values. In order 
to study the importance of edges through the densities of subgraphs, researchers 
have proposed many models such as k-truss [15], k-core [15], clique [16], and 
so on. A clique represents a complete subgraph formed by a subset of a set of 
vertices, i.e., there are edges between any vertices inside the subgraph. Since 
cliques have more stringent requirements for subgraphs, whereas k-core and k
-truss belong to relaxed clique structures with relatively simple requirements, 
they are widely used in practical applications. In comparison, k-truss is an 
extension of k-core based on triangles, which considers the degree of strength 
of edges by introducing support [15] and defines edges more strictly, whereas 
k-core is just a simple edge connection relation, and considers that the only 
factor affecting the dense subgraph is the degree of nodes, without emphasizing 
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whether the relationship between any two nodes is tight or not. Kanwar et al. [17] 
introduced an edge centrality metric, BCDCN, which is derived from a synthesis 
of betweenness centrality, degree, and common neighborhood. However, this 
metric may inadvertently undervalue the significance of intra-community edges. 
Wang et al. [18] posit that the diffusion capability of an edge can be quantified by 
the influence exerted by the nodes at its termini. Consequently, they introduced 
an index, denoted as Inf, to measure edge importance based on node influence. 
Nevertheless, this index is disproportionately swayed by the influence of the 
nodes at both ends. The edge-based attacks have been proven to be disruptive 
to the process of information diffusion [19]. Therefore, Wang et al. [20] applied 
edge-based attack metrics in the process of measuring the influence of seed nodes 
to maximize influence. This illustrates that the detection of critical edges is of 
paramount importance.

The above researchers studied critical nodes and critical edges independently, 
ignoring the mutual influence between nodes and edges in the network. Since 
there are often correlations between critical nodes and critical edges in real 
networks, this paper introduces the k-sup structure and k-sup-based critical 
subgraph to identify both critical nodes and critical edges. Furthermore, the paper 
proposes an importance indicator termed supEI based on k-sup structure and 
substantiates the rationality and effectiveness of the indicator through empirical 
verification.

This paper is organized as follows. In Sect. 2, we introduce the basic concepts 
of social networks. The k-sup structure and the definition of critical subgraphs are 
presented in Sect. 3. In Sect. 4, we propose a critical edge detection method based 
on critical subgraphs. And we compare the effectiveness of the proposed method 
through experiments in Sect. 5. Finally, a summary and some prospects are stated 
in Sect. 6.

2  Basic concepts of social networks

First, we introduce a set of fundamental concepts that will form the basis of our 
analysis.

Definition 1 A subgraph of a graph G = (V ,E) is defined as a graph G� =
(
V �,E�

)
 , 

satisfying E′ ⊆ E and V ′ ⊆ V .

Triangular relationship structure is often found in social networks, indicating 
that two connected nodes are related with other nodes and reflecting the strength 
of the relationship between the two nodes.

Definition 2 ([15]) The support of an edge e ∈ E in a graph G = (V ,E) , denoted by 
sup(e,G) (or simply written as sup(e) ), is defined as the number of triangles contain-
ing e in G.



19799

1 3

Assessing edge importance in social networks: an importance…

In social network, the support of an edge measures the strength of the 
relationship between two persons by emphasizing the number of friends they 
have in common.

Example 1 A social network G is shown in Fig. 1.

The support of each edge can be computed as follows.
sup

(

e4,7
)

= sup
(

e7,8
)

= sup
(

e4,8
)

= sup
(

e6,9
)

= sup
(

e2,9
)

= sup
(

e5,6
)

= sup
(

e2,3
)

= sup
(

e3,5
)

= 1, sup
(

e2,6
)

= sup
(

e2,5
)

= 2
Finding the k-truss structure in a social network helps to find the cohesive 

groups in that network.

Definition 3 ([15]) Given an unweighted undirected graph G , Tk is called the k-truss 
of G ( k ≥ 2 ), denoted by Tk =

(
VTk

,ETk

)
 , if Tk satisfies the following conditions: 

1. sup(e,Tk) ≥ (k − 2) for every edge e ∈ ETk
.

2. Tk is the maximal subgraph that satisfies condition 1, i.e., any supergraph T ′ ⊃ Tk 
is not a k-truss.

3. no isolated code can be found in Tk.

The k-truss subgraph with the largest value of k in G is denoted as kmax-truss.
The k-truss subgraph ensures that the relationship between any two nodes in 

this subgraph reaches a certain strength.

Fig. 1  A social network G 

Fig. 2  2-truss

Fig. 3  3-truss



19800 M. Zhao et al.

1 3

Example 2 Figures 2 and 3 show the k-truss subgraphs for all k values of the social 
network G in Fig. 1.

As shown in Fig. 3, when k = 3 , all the edges satisfy the condition of k-truss, 
so these edges are retained. When k = 4 , there is no edge satisfying the condition 
1 of k-truss, so T4 does not exist. Therefore, the kmax-truss of Fig. 1 is 3-truss, and 
in this case, kmax = 3.

3  k‑sup and critical subgraph

In Example 2, edged e2,6 and e2,5 are significantly more important in graph G in 
terms of support than the other edges, and therefore their intersecting node 2 is 
also more important than the other nodes in G . However, the 3-truss does not 
reflect the importance of node 2 and edges e2,6 and e2,5 . Thus, the k-truss structure 
fails to capture certain important nodes and edges, because the k-truss structure 
diminishes the importance of edges in the original graph.

In fact, it is easy to verify that the supports of the edges in the original graph 
and subgraph have the following connection.

Property 1 Given an unweighted undirected graph G and a subgraph T  , we have 
sup(e,G) ≥ sup(e,T) for any edge e in G.

According to Property 1, the support of an edge in a subgraph is always less 
than or equal to its support in the original graph; therefore, the k-truss diminishes 
the importance of the edge in the original graph. For this reason, we propose the 
k-sup structure.

Definition 4 Given an unweighted undirected graph G , Sk is the k-sup of G ( k ≥ 2 ), 
denoted by Sk =

(
VSk

,ESk

)
 , if Sk satisfies the following conditions. 

1. sup(e,G) ≥ (k − 2) for every edge e ∈ ESk
.

2. Sk is the maximal subgraph that satisfies condition 1, i.e., any supergraph S′ ⊃ Sk 
is not a k-sup.

3. no isolated node can be found in Sk.

The k-sup structure with the largest value of k in G is denoted as kmax-sup.
By Definition  4, we can see the k-sup structure only modifies the condition 

1 of k-truss, i.e., the supports are calculated in the original graph instead of the 
subgraphs, ensuring that the supports do not change with the subgraphs and 
maintain the importance of edges in the original graph. In social networks, k-sup 
can better discover the critical edges that have strong relationships and possess 
the potential to form groups.
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Example 3 The corresponding k-sup structures of Fig. 1 are shown in Figs. 4, 5, and 
6.

As shown in Fig. 6, edges e2,5 and e2,6 satisfy condition 1 of Definition4 when 
k = 4 , i.e., sup

(
e2,6,G

)
= sup

(
e2,5,G

)
= 2 , so they are retained. When k = 5 , S5 

does not exist because there is no edge in G with support greater than or equal to 3. 
Therefore, the kmax-sup is 4-sup, where kmax = 4.

Combining Figs. 1 and 6, it can be seen that edge e2,6 forms part of two cliques 
{2,6,9} and {2,5,6}, i.e., 2 and 6 share two friends 5 and 9, and thus e2,6 is 
stronger and less likely to be broken compared to the other relationships. In fact, 
the relationships between 2 and 5 and between 2 and 6 in Fig.  6 also have such 
characteristics.

As can be seen from Example 3, k-sup solves the problem of k-truss without los-
ing any information on critical edges and identifies the strongest relationships in 
the social network. Therefore, the k-sup structure quantifies the strength of relation-
ships between nodes by considering the support of edges in the graph. The support 
refers to the number of triangles that the given edge participates in, representing 
the number of common nodes between the two endpoints of the edge. Thus, edges 
with higher support indicate stronger connections between nodes. By preserving the 
largest subgraph that satisfies the support condition, the k-sup method helps identify 
the strongest relationships without losing critical information, thereby enabling the 

Fig. 4  2-sup

Fig. 5  3-sup

Fig. 6  4-sup
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analysis of graphs with different relationship strengths while retaining the relation-
ships between nodes in the original network.

Similar to k-truss, k-sup has the following properties.

Property 2 The k-sup of G is a subgraph of the ( k − 1)-sup.

Proof Based on the definition of k-sup, for any edge e in the k-sup, we have 
sup(e,G) ≥ (k − 2) ≥ (k − 1) − 2 . Thus, by condition 2 of k-sup, any edge e must 
also be an edge of the ( k − 1)-sup, i.e., the k-sup is a subgraph of the ( k − 1)-sup.  
 ◻

Property 2 indicates that the larger k , the fewer edges in k-sup and the stronger 
the relationship.

Example 4 Comparing Figs.  4 with 6, it can be seen that 3-sup is a subgraph of 
2-sup, and 4-sup is a subgraph of 3-sup.

Property 3 shows the relationship between k-truss and k-sup.

Property 3 The k-truss of G is a subgraph of the k-sup.

Proof According to Definition 3, any edge e in the k-truss satisfies 
sup(e,T) ≥ (k − 2) . By Property 1, we have sup(e,G) ≥ sup(e,T) ≥ (k − 2) . Thus, 
the edge e satisfies condition 1 of the k-sup. From condition 2 of the k-sup, it follows 
that e must be an edge of the k-sup. Consequently, the k-truss is a subgraph of the k
-sup.   ◻

Property 3 illustrates that k-sup is able to retain more information than k-
truss. In social network analysis, the stability of a social network refers to the 
ability of the social network to resist attacks. At present, most of the network 
attack strategies concentrate on node and edge attacks [8, 18, 20–25], but with 
the diversification and sophistication of online network attacks, network attack 
strategies also include various other attack strategies, such as hybrid network 
attacks. Hybrid network attacks have become the biggest security risk faced in 
social network analysis. Hybrid attack measures the importance of all edges 
ranked in descending order and attacks the highest ranked edge, thus completely 
destroying the connectivity between the two endpoints corresponding to the edge 
and preventing it from forming a pathway through other paths. In order to identify 
the key edges in social networks and determine the key groups, the k� critical 
subgraph is defined as follows.

Definition 5 Given a threshold � ∈ [0, 1] , the k� critical subgraph of a graph 
G = (V ,E) is defined as the k�-sup of G , where k� represents the smallest integer k 
that satisfies � ≤ k∕|V|.



19803

1 3

Assessing edge importance in social networks: an importance…

Example 5 As shown in Example 3, a hybrid attack on edge e4,7 or other edges may 

cause less impact on the network than edges e2,5 or e2,6 . When � ∈
(

1

4
,
3

8

]
 , we have 

k� = 3 and the corresponding k� critical subgraph is shown in Fig.  5; when 
� ∈

(
3

8
,
1

2

]
 , we have k� = 4 and the corresponding k� critical subgraph is shown in 

Fig. 6.

4  Critical edge detection based on critical subgraph

4.1  Edge importance and critical edge detection

To verify the rationality of critical subgraphs, a critical edge detection method based 
on critical subgraph is proposed in this section. Firstly, Zachary’s Karate Club net-
work, shown in Fig. 7, is used as an example [16] for a case analysis.

As shown in Fig. 7, Zachary’s Karate Club comprises of 34 nodes and 78 edges. 
The coach and the founder are nodes 1 and 34, respectively, and interestingly there 
is no direct edge linking the two. However, two groups eventually emerge around 
these two individuals, which unfortunately lead to the collapse of the club.

By utilizing k� critical subgraphs on Zachary’s Karate Club, the k� can be cal-
culated for different values of � . Figure 8 displays how the number of edges in k� 
changes as � varies.

It can be seen from Fig. 8 that as � increases, the number of edges in the network 
gradually decreases, which means that as the requirement for support increases, 
some members are gradually excluded from k� critical subgraphs due to insufficient 

Fig. 7  Zachary’s Karate Club network
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strength of relationships with other members. Particularly, if there is a sudden drop 
in the number of edges (as in Fig. 8), a large number of members are excluded due 
to their relationship’s insufficient strength, and the others tend to stabilize. Since the 
excluded memberships have weak relationships with others, they can be considered 
as peripheral members, whereas the stable relationships can be considered as core 
members. Intuitively, core memberships, instead of peripheral memberships, can 
provide a more deep understanding of community changes. In our situation, when 
� ∈

(
3

34
,

4

34

]
 and k� = 4 , the number of edges significantly drops, resulting in the 

extraction of a critical subgraph, as shown in Fig. 9a. In addition, Fig. 9b shows the 
4-truss structure of Karate.

As depicted in Fig.  9a, the support for each edge within the 4-sup precisely 
matches the support in the original image, ensuring that the informational content 

Fig. 8  The number of edges in k�

Fig. 9  4-sup versus 4-truss
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of every edge is fully retained. In contrast, Fig. 9b reveals that the 4-truss structure, 
acting as a subgraph of the 4-sup, entails the removal of certain edges during its 
extraction, consequently discarding their significance. Moreover, the very density of 
the 4-truss structure tends to obscure the edges, creating an illusion of uniformity 
where the importance of each edge appears identical when viewed solely through 
the lens of connectivity. This perceived uniformity can significantly impede our ana-
lytical process and may even prove to be an irrelevant consideration for our current 
research focus. In light of these considerations, we have made a deliberate choice to 
employ the k-sup structure for this study, favoring its ability to maintain the distinct 
importance of each edge and provide a more nuanced framework for our analysis.

Figure 9a verifies the fact that when the edge between nodes 3 and 9 is broken, 
the two groups are no longer connected and the club is formally disintegrated.

In order to identify such critical edges as the edge between nodes 3 and 9 based 
on k-sup, we will discover the distinguishing characteristics of the critical edges. 
One distinguishing characteristic of the edge between nodes 3 and 9 is its vital role 
in preserving the integrity of the social network in Fig. 9. Bridgeness [26], an indi-
cator measuring the importance of edges, is very effective in maintaining network 
connectivity. The bridgeness of edge ei,j is defined as [26]

where Ci denotes the size of the maximum clique containing node vi and Cei,j
 denotes 

the size of the maximum clique containing ei,j . The larger the bridgeness
(
ei,j

)
 value, 

the greater the influence of ei,j on network connectivity.
The bridgeness of each edge in Fig. 9 is shown in Table 1.
From Fig. 9, the removal of edges in indexes 1-4 in Table 1 would disrupt the 

connectivity of the network. However, deleting edge e3,9 would result in the network 
being divided into two disconnected components, while removing edge e1,5 would 
only isolate node 5 as an individual node. It is thus crucial to consider communities 
when discerning between e3,9 and the edges in indexes 2-4.

(1)bridgeness(ei,j) =

√
CiCj

Cei,j

Table 1  Bridgeness Index e Bridgeness (e)

1 e3,9 2.24
2 e1,5, e1,11 1.58
3 e32,34 1.41
4 e1,6, e1,7 1.29
5 Others 1.0
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4.2  Proposed method

Communities can help us understand the structure and function of social networks, 
as well as the ways in which information spreads within them. Clearly, the 
importance of edges within a community and those outside a community is not 
the same due to the different roles they play in the network. Therefore, this paper 
distinguishes between edges internal and external to communities, determining the 
communities to which the endpoints of each edge in the network belong, thereby 
better differentiating the importance of edges. Thus, let’s review the following 
definitions.

Modularity [27] is an important metric used to measure the effectiveness of 
the community discovery algorithm. The larger the modularity, the better the 
community partition. The Louvain community discovery algorithm [28, 29] is a 
heuristic algorithm based on modularity maximization, and its community clas-
sification outperforms other basic algorithms. The algorithm can be primarily 
divided into two steps. In the first step, each node is considered as an independ-
ent community. For each node i , the algorithm calculates the modularity gain 
ΔQi if it were to join the community where its neighboring nodes are currently 
located. The algorithm keeps track of the community that yields the largest ΔQi , 
denoted as ΔQmax

i
 . If ΔQmax

i
> 0 , the algorithm records the node as belonging to 

the community of its neighboring nodes. This process continues until all nodes no 
longer change their community assignments. In the second step of the algorithm, 
the graph is compressed, meaning that nodes belonging to the same community 
are merged into a new single node. This compression reduces the complexity of 
the graph by collapsing multiple nodes into a single representative node for each 
community. After the compression, the first step of the algorithm is repeated on 
the compressed graph. Each compressed node represents a community, and the 
algorithm calculates the modularity gain for each compressed node joining the 

Fig. 10  The findings of the Louvain Community Discovery
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community of its neighboring compressed nodes. The process continues until the 
modularity of the entire graph no longer changes.

According to the Louvain algorithm, all the nodes in Figure 9 were classified, 
and the results are shown in Figure 10.

By Fig.  10, it becomes apparent that among the four bridges, i.e., e3,9 , e1,5 , 
e1,11 , and e32,34 , only the two end nodes of e3,9 (nodes 3 and 9) are assigned to 
different communities, and the two end nodes of the remaining three bridges ( e1,5 , 
e1,11 , and e32,34 ) belong to the same community. Thus, after the edges between 
different communities are removed, the dissemination of information between 
communities may be blocked, requiring connectivity to be reflected across 
communities. For this purpose, the importance of edge ei,j should be reduced 
when its two end nodes vi and vj are in the same community, and the penalty term 
is established as follows.

where Ci denotes the number of nodes in the community where node vi is located; 
Ei,j denotes the number of connected edges between the communities where nodes vi 
and vj are located, which together maintain the communication between the two 
communities and are therefore equally distributed by 1

Ei,j

 ; (Ci + Cj)∕V  means the 
ratio of the number of nodes affected in the network when two communities break; 
min(Ci,Cj)∕max(Ci,Cj) represents the ratio of the number of nodes between two 
communities, reflecting the uniformity of the two community sizes. If vi and vj are in 
the same community, the community has the same number and then let p

(
ei,j

)
= 1.

Combined with the overall connectivity of social networks, the k-sup structure-
based importance indicator for ei,j , called supEI (k-sup-based Edge Importance indi-
cator), is defined as follows.

Clearly, the larger the value of supEI(ei,j) , the greater the impact caused by ei,j on 
network connectivity.

(2)p(e
i,j) =

⎧
⎪⎨⎪⎩

−
1

E
i,j

C
i
+ C

j

V

min(C
i
,C

j
)

max(C
i
,C

j
)
,v
i
and v

j
are in different communities

1,v
i
and v

j
are in the same community

(3)supEI(ei,j) = bridgeness(ei,j) − p(ei,j)

Table 2  supEI Index e Bridgeness (e) p(e) supEI(e)

1 e3,9 2.24 −0.50 2.74
2 e1,4, e1,2, e1,3, e1,8, e1,14 1.0 −0.12 1.12
3 e1,5, e1,11 1.58 1.0 0.58
4 e32,34 1.41 1.0 0.41
5 e1,6, e1,7 1.29 1.0 0.29
6 Others 1.0 1.0 0.0
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The supEI(ei,j) values for each edge in the Karate club’s 4-sup (Fig. 9) are shown 
in Table 2.

An interesting and surprising result can be seen in Table 2 that the edges after 
index 2 all have lower values of supEI because they are in the intra-community. 
It can also be seen that the values of p(e) of edges in indexes 1 and 2 correspond 
to negative numbers, indicating that the edges in indexes 1 and 2 are community-
to-community connected edges that have a greater impact on the dissemination of 
information in the network after deletion, while the remaining edges all correspond 
to positive numbers, indicating that they are all intra-community edges that have a 
smaller impact on the dissemination of information in the network after deletion. 
Combining the results of bridgeness(e) and supEI(e) , the importance of the edge in 
index 1 increase greatly because the nodes at the ends of the edge are in different 
communities.

If the edge attack is conducted based on the importance indicated in Table  2, 
when edge e3,9 are removed from the network, the network is divided into two 
disconnected communities. This division blocks the flow of information between 
these two communities. Furthermore, if the network continues to be attacked 
and all the edges in index 2 are removed, the network will be divided into three 
disconnected communities. Consequently, there is no longer any information 
dissemination among the communities.

In summary, the workflow for detecting critical edges using the critical subgraph-
based Algorithm 1 is outlined as follows.

Algorithm 1  The detection of critical edges based on supEI

In Algorithm 1, one needs to determine the proper k� by computing the maximal 
difference maxk(|ESk

| − |ESk−1
|) , and then compute supEI(e) for all the edges in ESk�

 . 
Algorithm 1 returns the ranked edges according to supEI(e).

4.3  Case analysis and comparison

In this Section, to verify the reasonableness of the critical subgraphs obtained from 
the k-sup structure, we compare the supEI with some other indicators for edge sig-
nificance on Zachary’s Karate Club network, namely bridgeness(BR) [26] (see 
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Sect. 4.1), reachability(RE) [30], the edge betweenness centrality(BC) [13], degree 
product(ED) [14], the Jaccard coefficient(JC) [31], the hybrid edge centrality(BC_
DCN) [17], and the significance of edges in the diffusion process(Inf) [18].

The reachability of an edge e(vi, vj) is defined as [30]

where |V| is the total number of nodes in the network; Ge(vi,vj)
 represents the 

subnetwork obtained by removing e(vi, vj) from the original network G; R
(
s;Ge(vi,vj)

)
 

represents the number of nodes that can be reached from node s within the modified 
network Ge(vi,vj)

.
The edge betweenness centrality of an edge e(vi, vj) is defined as [13]

where �
(
vi, vj

)
 is the number of shortest paths from node vi to vj , and �(E) represents 

the number of shortest paths from node vi to vj that pass through edge e(vi, vj).
The degree product of an edge e(vi, vj) is defined as [14]

where wij represents the edge weight between nodes vi and vj , dvi and dvj are the 
degrees of nodes vi and vj respectively.

The Jaccard coefficient of an edge e(vi, vj) is defined as [31]

where Γi represents the set of neighbors of node vi , i.e., the set of nodes directly 
connected to vi.

The hybrid edge centrality of an edge e(vi, vj) is defined as [17]

where |Γi ∩ Γj| represents the common neighbors of node vi and vj.
The significance of edges in the diffusion process of an edge e(vi, vj) is defined 

as [18]

where Infi represents the influence [32] of node vi.
The importance ranking of the edges in the 4-sup (Fig.  9) based on the above 

indicators is shown in Table 3, where the important values are calculated in brackets.

Re(vi,vj)
=

1

|V|
∑
s∈V

|R(s;Ge(vi,vj)
)|

CB =
∑

vi≠vj∈V

�(e(vi, vj))

�(vi, vj)

ED = wij = dvidvj

Je(vi,vj) =
|Γi ∩ Γj|
|Γi ∪ Γj|

BC_DCNe(vi,vj)
=

CB ∗ ED

|Γi ∩ Γj|

Infe(vi,vj) =
√

Infi ∗ Infj
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In Table 3, the fewer the edges in the same index, the wider the range of edge 
importance and the higher the resolution. Among the compared indicators, the 
edge betweenness centrality, degree product, Jaccard coefficient and hybrid edge 
centrality show a higher resolution. The degree product, Jaccard coefficient and 
hybrid edge centrality differ more from each other, as the Jaccard coefficient con-
siders the similarity of both end nodes, and the more similar both end nodes, the 
higher the edge’s importance. For instance, since the nodes at both ends of e3,9 
have a similarity of zero, they are at the bottom.

The degree product ranks e3,9 in index 6 because it is more influenced by the 
degree values of the end nodes, which leads to a greater difference from the 
other methods. Since the hybrid edge centrality BC_DCN integrates the degree 
product, betweenness centrality, and common neighbors, the resultant rankings of 
BC_DCN are fundamentally aligned with those derived from the degree product 
and betweenness centrality. This congruence also elucidates why BC_DCN’s 
outcomes are markedly distinct from those of alternative methodologies.

Although the closeness centrality ranks e3,9 at index 1, all the edges in indexes 
3-11 are within the intra-community; since the intra-community has strong 
connections, the probability of a break leading to a blockage of information within 
the community is small and does not cause much impact on the network.

Reachability, bridgeness, Inf, and supEI identify the e3,9 as the most significant 
edges, as supported by Fig. 9. The edges in index 2 for reachability are the same 
as those identified in indexes 2-3 for bridgeness. This is because both indicators 
consider these edges to be essential for maintaining the connectivity of the network. 
However, this connectivity is primarily significant within the intra-community, and 
its impact on the entire network is relatively minor. Similarly, in the identification 
results of Inf, only the edge with index 2 spans across communities, whereas the 
remaining edges are confined within a single community. The deletion of these 
intra-community edges is anticipated to exert minimal impact on the overall network 
integrity.

The supEI emphasizes that the connectivity between communities is more 
important than the connectivity within each individual community. Thus, the 
deletion of the edges in indexes 1-2 will disconnect all the communities in the 
network, blocking communication between them.

Therefore, from the analysis above, it is evident that supEI , the proposed edge 
importance indicator, is reasonable.

5  Experiments and analysis

5.1  Experimental datasets

To assess the effectiveness of the proposed methodology presented in this paper, 
experiments are conducted on eight publicly available real-world network datasets 
and three randomly generated synthetic networks. Among the real-world network 
datasets considered in this study, we have included the following:
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• Karate: A social network contains 34 members of a karate club in the USA 
during the 1970 s [16];

• Contiguous_USA: An infrastructure network among US states [33];
• Football: A social network represents the American football games played 

between various colleges during the fall season of 2000 in the USA [34];
• PDZBase: A metabolic network of protein-protein interactions from PDZBase 

[33];
• Netscience: A collaboration network among researchers in the fields of network 

theory and experimental science [34];
• Jazz: A collaboration network among jazz musicians [34];
• Euroroads: An international E-road network that connects various cities across 

Europe [33];
• Yeast: A metabolic network of protein-protein interactions [33].

The basic statistical information for the eight datasets is presented in Table  4, 
where |V| and |E| are the total number of nodes and edges, respectively; ⟨ks⟩ denotes 
the average degree of support; ks_max represents the maximum degree of support; 
⟨k⟩ represents the average node degree; kmax denotes the maximum degree, and c 
represents the average clustering coefficient.

5.2  Evaluation strategy

The stability of a network reflects its resistance to various types of attacks. This 
paper primarily discusses two commonly used evaluation criteria for network 
resilience: the maximum connectivity coefficient [35] and the decline rate of 
network efficiency [35].

The maximum connectivity coefficient � can be calculated as follows [35]

where R represents the number of nodes in the maximum connected component 
after attack and |V| is the total number of nodes in the network. The faster � falls, 
the greater the change in network stability and the more efficient the attack strategy.

� = R∕|V|

Table 4  Basic statistical 
information of eight networks

Network |V| |E| ⟨k
s
⟩ k

s_max ⟨k⟩ kmax c

Karate 34 78 1.73 10 4.59 17 0.571
Contiguous_USA 49 107 1.60 2 4.37 8 0.497
Football 115 613 3.96 8 10.66 12 0.403
PDZBase 212 244 0.01 1 2.30 21 0.005
Netscience 379 914 3.02 20 4.82 34 0.741
Jazz 198 2742 19.58 69 27.70 100 0.617
Euroroads 1174 1417 0.07 2 2.41 10 0.017
Yeast 1870 2277 0.30 12 2.44 56 0.067
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The decline rate of network efficiency can be calculated as follows [35]

where |V| is the total number of nodes in the network, �0 is the efficiency of the 
original network, and dij denotes the shortest distance between nodes vi and vj . 
The larger the value of � , the more pronounced the decrease in network efficiency, 
highlighting the increasing importance of the corresponding edge.

5.3  Results analysis

To validate the effectiveness of the proposed method in this study, the importance 
of edges is evaluated using seven distinct indicators detailed in Sect.  4.3, in 
comparison with the method proposed in this paper. Then, edge attacks are 
performed on eight real-world networks and three randomly generated synthetic 
networks by removing these critical edges in turn. The stability changes of the 
network after an edge is removed will reflect the importance of the edge; the 
greater the stability change of the network, the more important the removed 
edges are. As observed in Table  4, the maximum support is notably small for 
some networks, thus all experiments are conducted with k� = 2.

5.3.1  Analysis of experimental results on the maximum connectivity coefficient

Figure  11 illustrates the changes in the maximum connectivity coefficient 
when removing edges, where the horizontal axis p represents the proportion of 
removed edges and the vertical axis represents the maximum connectivity coef-
ficient. The faster the maximum connectivity coefficient drops, the greater the 
impact on network connectivity, and the higher the identification accuracy of the 
corresponding method.

As evident from Fig. 11, the proposed supEI exhibits the most rapid decline 
in the maximum connectivity coefficient compared to other indicators on all 
the eight social networks. In the case of Netscience (Fig.  11e), the maximum 
connectivity coefficient experiences a rapid decline as edge removal begins. 
When the removal ratio reaches 0.045, all communication between communi-
ties is effectively blocked. If the attack persists, it starts to affect the internal 
structure of the communities. Notably, during the removal ratio range of 0.045 
to 0.1, the proposed method in this paper demonstrates the fastest and lowest 
drop in the maximum connectivity coefficient; Similarly, for the Contiguous_
USA (Fig. 11b), PDZBase (Fig. 11d) Euroroads (Fig. 11g) and Yeast (Fig. 11h), 
there is a marked decrease in the maximum connectivity coefficient when the 
proportion of removed edges is relatively low. In the case of other networks, the 
decline in the maximum connectivity coefficient initiates at different proportions 
of removed edges. For instance, in Fig.  11a, the decline begins at a removal 
ratio of 0.13, whereas in Figs. 11c and f, it starts at 0.14 and 0.08, respectively. 

� = 1 −
1

�0

1

|V|(|V| − 1)

∑
i≠j

1

dij
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Fig. 11  The maximum connectivity coefficients for different indicators on eight real networks
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This discrepancy is due to the presence of a higher number of connected edges 
between communities in these networks.

Overall, the proposed indicator in this paper demonstrates a rapid decline in 
the maximum connectivity coefficient with the removal of a smaller proportion 
of edges. In contrast, the corresponding curves of other methods exhibit a slower 
decline. This observation validates the effectiveness of the proposed method in 
capturing the impact of edge removal.

5.3.2  Analysis of experimental results on the decline rate of network efficiency

Figure 12 illustrates the network connectivity coefficient as edges are removed. The 
horizontal axis represents the proportion of edges removed ( p ), while the vertical 
axis indicates the decline rate of network efficiency ( � ). A higher decline rate indi-
cates a more pronounced decrease in network efficiency, which correlates with a 
higher recognition accuracy of the corresponding method.

As observed in Fig. 12, the method proposed in this paper consistently exhibits 
the highest rate of decrease in network efficiency. This result suggests that the 
proposed method is capable of identifying edges that have the most significant 
impact on network efficiency. As illustrated in Figs. 12b, d, e, g, and h, when the 
proportion of removed edges is minimal, the network damage reaches its maximum; 
in the case of the other networks depicted in Figs. 12a, c, and f, the rate of decline 
in network efficiency starts to increase significantly only when the proportion of 
removed edges reaches 0.1, 0.2, and 0.2, respectively. This discrepancy is likely due 
to the presence of a higher number of connections between communities in these 
networks. Moreover, the other methods exhibit minimal impact on the network when 
removing a certain percentage of connected edges. This is because these connected 
edges may exist within communities, and their removal diminishes internal 
connectivity but has a limited effect on the network as a whole.

Whether comparing the experimental results of the maximum connectivity 
coefficient or the decline rate of network efficiency, we found that the newly added 
networks are more prone to collapse than the original social networks (karate, 
football, and jazz). This may be because transportation networks and biological 
networks have more pronounced community structures and generally stronger 
modular characteristics, whereas the community structure in social networks may be 
looser and more diverse.

5.3.3  Analysis of experimental results on the synthetic networks

In addition to the real-world network datasets, the experimental analysis 
encompassed the utilization of artificial datasets, specifically the ErdÖs-Rényi (ER) 
model [36], Scale-Free (SF) network [37], and Small-World (SW) network [38]. 
A size of 400 nodes is considered in the experiment. The corresponding statistical 
information is presented as follows (Table 5).

The experimental outcomes pertaining to the synthetic networks are delineated in 
Figs. 13 and 14, respectively, they depict the maximum connectivity coefficient and 
the decline rates of network efficiency upon the removal of edges.



19817

1 3

Assessing edge importance in social networks: an importance…

(a) Karate (b) Contiguous USA

(c) Football (d) PDZBase

(e) Netscience (f) Jazz

(g) Euroroads (h) Yeast

Fig. 12  The decline rates of network efficiency for different indicators on eight real networks
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As depicted in Fig. 13, the supEI generally outperforms other existing indicators 
in terms of overall effectiveness. However, in the initial phase of edge removal, as 
presented in Figs. 13a and b, the performance of other indicators surpasses that of 
the supEI . Nevertheless, when the edge deletion ratio hits 0.4, the supEI can induce 
a total collapse of the network. In contrast, other algorithms exhibit a maximum 
connectivity coefficient that remains around 0.8, with a decline that is progressively 
moderating. This comparative analysis demonstrates the effectiveness of the method 
proposed in this study.

Figure  14 illustrates the changes in the decline rates of network efficiency 
when removing edges. Figure  14a demonstrates that when the ratio of removed 
edges is below 0.4, the method introduced in this paper exhibits the lowest rate of 
network efficiency decline, indicating that the network’s efficiency suffers minimal 
degradation. As shown in Fig.  14b, for edge removal ratios less than 0.4, the 
performance of our method is comparable to that of other methods. However, it is 
Fig. 14c that highlights the distinctive advantage of our approach; even at very low 
ratios of removed edges, our method effectively disrupts the network, showcasing its 
ability to identify edges that significantly impact network integrity.

Table 5  Basic statistical 
information of three synthetic 
networks

Network |V| |E| ⟨k
s
⟩ k

s_max ⟨k⟩ kmax c

ER 400 826 0.06 2 4.17 12 0.013
SF 400 796 0.20 2 5 3.98 0.065
SW 400 800 1.298 2 4 6 0.435

(a) ER (b) SF (c) SW

Fig. 13  The maximum connectivity coefficients for different indicators on three synthetic networks

(a) ER (b) SF (c) SW

Fig. 14  The decline rates of network efficiency for different indicators on three synthetic networks
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Since the connections between nodes in a random network are random and the 
community structure is not obvious, our method has the worst effect in the initial 
stage of edge deletion, as demonstrated in Figs. 13a and 14a. This reflects the limita-
tions of the method presented in this article.

Experiments conducted on both real-world and synthetic networks have revealed 
limitations associated with the supEI indicator. As the design of supEI relies on 
community detection algorithms, the effectiveness of supEI is contingent upon 
the choice of community detection algorithm. If connections within a community 
are very strong, the community’s internal connectivity remains high, and the 
removal of inter-community connections has a minimal impact on the overall 
network connectivity because internal connections can uphold the integrity of the 
community. Additionally, if there are numerous edges between communities, subtle 
changes in connectivity may occur during the initial stages of edge removal. This 
is because edges between communities are considered more important than edges 
within a community. Nevertheless, it has been observed that supEI can significantly 
disrupt networks by removing a smaller proportion of edges in many cases, 
indicating the high practical value of the algorithm proposed in this paper.

5.3.4  Robustness analysis in real‑world and synthetic networks

The robustness of networks is defined as their resistance against destructions. In 
the edge-based attacks, the most destructive attack is supposed to destroy the most 
“important” edges in the networks [39]. Therefore, it is necessary to compare the 
edge importance metric supEI , as proposed in this paper, with other metrics to 
observe the robustness of the network.

The link-robustness index can be calculated as follows [8]

Table 6  The obtained R
l
 values of different edge importance measures on networks

The best result for each test case is highlighted

Network BR JC BC RE ED BC_DCN Inf supEI

Karate 0.399 0.692 0.616 0.584 0.570 0.636 0.549 0.353
Contiguous_USA 0.581 0.629 0.588 0.574 0.607 0.555 0.551 0.322
Football 0.377 0.861 0.446 0.659 0.814 0.860 0.711 0.328
PDZBase 0.255 0.273 0.158 0.309 0.170 0.273 0.204 0.131
Netscience 0.128 0.684 0.169 0.327 0.332 0.255 0.218 0.072
Jazz 0.509 0.927 0.666 0.656 0.914 0.719 0.850 0.395
Euroroads 0.338 0.359 0.258 0.386 0.197 0.359 0.187 0.086
Yeast 0.284 0.352 0.182 0.288 0.198 0.353 0.247 0.106
ER 0.608 0.622 0.620 0.582 0.603 0.622 0.622 0.423
SF 0.616 0.634 0.559 0.643 0.587 0.635 0.638 0.420
SW 0.171 0.663 0.253 0.518 0.392 0.526 0.226 0.125
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where |E| is the total number of edges in the network, s(p) indicates the fraction of 
current largest connected component when p edges are disconnected. Apparently, if 
a network is robust against edge attacks, its Rl should be relatively large.

That is to say, if the Rl value is comparatively low, it indicates that the network 
is susceptible to attacks, implying that its capacity to withstand attacks on its edges 
is relatively weak. Table 6 shows the Rl value under different edge attack strategies.

As depicted in Table 6, our method is associated with the lowest Rl values across 
both real-world and synthetic networks. This result implies that our method is 
highly effective at compromising network integrity. Consequently, it is a valuable 
consideration for the development of network defense strategies.

6  Summary and prospects

Analyzing the relationships between nodes in social networks is a crucial basis for 
understanding network structures. In this paper, we introduce the concept of the k
-sup structure, which takes into account the strength of relationships between nodes, 
and investigate the critical subgraphs based on the k-sup structure. Building upon 
this, a novel importance indicator called supEI , based on the k-sup, is proposed. 
This indicator not only distinguishes between the importance of internal and 
external community edges but also provides a fresh perspective on how to maintain 
network connectivity amidst the complex interactions inherent in social networks. 
By integrating these two critical factors: the bridgeness and community affiliation 
of nodes, the supEI presents a comprehensive framework that enhances our ability 
to understand and analyze the structural integrity and informational flow within 
networks.

Experiments are conducted on eight real-world network datasets and three 
synthetic network datasets to evaluate the performance of our method. The 
experimental results demonstrate that supEI effectively identifies the importance of 
edges. It exhibits a remarkable ability to identify critical edges, causing substantial 
disruption to the network within a limited number of attacks. Furthermore, in terms 
of network connectivity, the supEI indicator outperforms other existing methods by 
demonstrating a heightened sensitivity to edge attacks. In the majority of networks, 
a minimal number of targeted edge disruptions can significantly impair network 
connectivity. Even in scenarios where our method may not immediately excel during 
the initial phase of such attacks, it becomes increasingly effective as the extent of 
edge removal escalates, ultimately leading to the most substantial damage to the 
network’s integrity.

Additionally, the method holds significant implications in real-life scenarios. 
For instance, from a defensive perspective, it can be utilized to identify critical 
edges and subsequently enhance network resilience by protecting those crucial 
connections. From an offensive standpoint, the method can aid in identifying the key 

Rl =
1

|E|
|E|∑
p=1

s(p)
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edges of adversary networks, allowing for targeted destruction with minimal cost 
and maximum gain. Overall, the method offers practical and strategic insights for 
both defensive and offensive operations, contributing to the advancement of network 
security and optimization in various real-world contexts.

However, in order to improve the effectiveness of our method, it would be 
valuable to extend our method and apply it to other social network problems, such as 
link prediction and community detection, etc. Considering the relationship between 
nodes and edges, we hope to further extend supEI in the future to make it applicable 
to node attack strategies, with the expectation of achieving better attack effects. 
Additionally, the analysis in this paper is limited to unweighted undirected networks, 
and cannot be applied to other types of networks. Therefore, further research will be 
conducted to address these aspects mentioned above.
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