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Abstract
Contemporary synthetic aperture radar (SAR) image processing techniques face 
various challenges, particularly in ship detection, background noise reduction, and 
information preservation. To address these issues, this paper introduces a novel 
model we called SAR-ShipSwin, which combines the swin transformer and feature 
pyramid network as the backbone network structure, specifically designed for ship 
detection in SAR images. The backbone network optimizes computational efficiency 
and handles occlusion and overlap issues in SAR images successfully by introducing 
the improved window multi-head self-attention module. To further enhance recogni-
tion accuracy, we design the background modeling network, which efficiently iden-
tifies and eliminates complex background features. Additionally, we introduce the 
spatial intensity geometric pooling technique, a novel pooling strategy that preserves 
geometric and structural information of the original region of interest, significantly 
reducing information loss and distortion. Considering the diverse ship shapes in 
SAR images, we specially design the dynamic ship shape adaptive convolution mod-
ule, which dynamically adjusts the shape of convolution kernels to better match the 
targets. The proposed model is validated on the SSDD and HRSID datasets, achiev-
ing state-of-the-art performance.
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1  Introduction

Synthetic aperture radar (SAR) [1] has emerged as a pivotal technology in mari-
time surveillance, offering all-weather, all-day imaging capabilities with strong 
penetration through adverse conditions such as clouds and fog [2]. However, 
SAR images of ships exhibit varying scales, and the complex background in SAR 
images, including interference from sea surfaces, ground clutter, and speckle 
noise, often leads to false negatives and higher false alarms during the detection 
process [3]. Therefore, achieving accurate positioning and recognition of ship tar-
gets in SAR images holds promising applications.

Traditional SAR ship target detection algorithms primarily rely on contrast differ-
ences between targets and background clutter. These methods encompass techniques 
such as constant false alarm rate (CFAR) detection [4], template matching algo-
rithms [5], and trace-based detection algorithms [6]. CFAR detection is one of the 
most commonly used techniques, and literature [7] has successfully balanced accu-
racy and speed in estimating CFAR parameters. Literature [8] introduced a bilateral 
CFAR algorithm for ship detection, reducing the impact of SAR image ambiguity 
and background clutter. These methods rely on handcrafted features, exhibit lim-
ited efficiency, poor generalization performance, and are unsuitable for complex 
detection scenarios. With the rapid development of deep learning in optical image 
object detection and recognition [9–14], ideas like single-stage [15], two-stage [16], 
anchor-free [17], and Transformers [18] have been condensed in the field of object 
detection, and deep learning concepts have started to be applied to SAR images, 
yielding significant results [19, 20]. Chen et al. [21] employed deformable convo-
lutional neural networks to enhance feature extraction by altering the convolutional 
kernel’s sampling points. Bai et  al. [22] proposed a shallow feature enhancement 
network structure, employing the Inception structure along with dilated convolution 
to expand the feature map’s visual receptive field, improving the network’s adapt-
ability to small-scale ship targets.

Features constitute the primary basis for iterative learning in object detection 
algorithms. Thus, optimizing the features fed into the detection network can most 
directly improve various algorithm aspects. Widely used modules include attention 
mechanisms to focus on key features and feature pyramid networks (FPN) for fus-
ing multi-scale features. In terms of attention mechanisms, Li et al. [23] used chan-
nel attention mechanisms to convert spatial information in the image into masks, 
score them to extract crucial information, and provide references for the detection 
network. Zheng et al. [24] introduced transferable attention mechanisms, designing 
an attention mask that covers all positions for each attention module, highlighting 
the correct semantic feature regions. Regarding FPN, Zhao et al. [25] constructed a 
four-level scale feature pyramid network in a top-down manner. This network lev-
eraged candidate regions and their surrounding contextual information to provide 
higher-quality classification confidence and final target scores, thereby enhancing 
semantic information extraction for small targets. Mei et al. [26] extended FPN into 
four parts, highly integrating features of different scales extracted by the backbone 
network, thereby improving the network’s ability to detect small ship targets.
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Although the above-mentioned methods have improved ship target detection in 
SAR images in various aspects, certain shortcomings remain. Firstly, these methods 
may lack precision or generate more false alarms when dealing with extremely small 
targets, such as distant ships or lifeboats, possibly due to limitations in target reso-
lution. Secondly, when targets closely resemble the color and texture of the back-
ground, such as in the presence of sea waves, islands, or other ships, these methods 
may face challenges [27]. Moreover, these methods may not be robust enough, espe-
cially when dealing with noisy, missing data, or other interference in SAR images 
[28].

To address these issues, this paper introduces the SAR-ShipSwin (synthetic aper-
ture radar ship detection with swin transformer integration) algorithm, building 
upon the faster R-CNN framework. Our main contributions include: 

1.	 A novel backbone architecture that merges the swin transformer with a feature 
pyramid network (FPN), enhanced by an advanced W-MSA module. This combi-
nation is specifically designed to tackle occlusion and overlap challenges inherent 
in SAR imagery.

2.	 The design of the background modeling network (BMN), primarily for identifying 
and eliminating complex background features. It comprises background feature 
extraction layers, background attention modules, and background weakening 
modules, effectively reducing background-related false alarms.

3.	 The introduction of spatial intensity geometric pooling, a unique pooling tech-
nique that incorporates both spatial and intensity information from the region of 
interest (ROI). This approach is tailored to preserve the geometric and structural 
integrity of the original ROI, minimizing loss of information and distortion.

4.	 The design of the dynamic ship shape adaptive convolution (DSAC) module, 
which dynamically modifies the shape of the convolution kernel to more accu-
rately conform to the observed target. This method proves more adept at captur-
ing the true shape of ships, especially given their variable forms and potential 
irregularities in SAR images, compared to conventional convolution techniques.

We have conducted multiple experiments, and the results demonstrate the excellent 
performance of the proposed algorithm in various scenarios and conditions, effec-
tively improving ship target detection performance and generalization capabilities.

2 � Preliminary

This section elaborates on the basic mathematical concepts and theories foundational. 
It focuses on specialized aspects of synthetic aperture radar (SAR) image processing, 
advanced neural network architectures, and specific innovations in convolutional opera-
tions, providing a direct underpinning for the methodologies developed in this research.
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2.1 � SAR image processing

SAR imaging involves complex signal processing techniques to resolve features in 
images, particularly for ship detection.

where Id represents the denoised image, Is is the speckled SAR image, K denotes the 
kernel for convolution embodying the feature enhancement, ⊗ signifies the convolu-
tion operation, and N is the residual noise.

2.2 � Swin transformer for SAR images

The swin transformer is a pivotal innovation in the field of deep learning, introduc-
ing a hierarchical structure that significantly enhances the processing of synthetic 
aperture radar (SAR) images. Its design is tailored to capture the inherent multi-scale 
nature of SAR images, making it exceptionally suited for tasks requiring fine-grained 
feature extraction across various scales, such as ship detection in complex maritime 
environments.

At its core, the swin transformer operates by partitioning the input image into non-
overlapping patches, which are then treated as the basic units for the initial layer of the 
transformer. This patch-based processing reduces the computational complexity, ena-
bling the model to scale to large images efficiently. The key to its hierarchical structure 
lies in its ability to merge patches progressively at deeper layers of the network, effec-
tively building a pyramid of features with increasing semantic levels and decreasing 
spatial resolutions. The hierarchical representation can be mathematically formulated 
as:

where Pl represents the set of non-overlapping patches or their feature representa-
tions at layer l , and M denotes the patch merging operation that combines adjacent 
patches to form Pl+1 , the input for the next layer.

The swin transformer introduces the shifted window multi-head self-attention 
(SW-MSA) mechanism as a means to efficiently compute self-attention within local 
windows while also facilitating cross-window connection in subsequent layers. This 
approach significantly reduces the computational demands of traditional self-attention 
mechanisms, making it feasible to apply transformers to high-resolution images. The 
SW-MSA can be described as follows:

where Zl is the input feature map to layer l , SHIFT is an operation that cyclically 
shifts the window partitions to enable cross-window connections, and W-MSA 
denotes the window-based multi-head self-attention.

The adaptive representation of features within SAR images by the swin trans-
former is achieved through the combination of hierarchical structuring and the 

(1)Id = f (Is)⊗ K + N

(2)Pl+1 = M(Pl)

(3)SW-MSA(Zl) = W-MSA(SHIFT(Zl))



20797

1 3

SAR‑ShipSwin: enhancing SAR ship detection with robustness…

SW-MSA mechanism. This dual approach allows the model to maintain high-resolu-
tion details in early layers while aggregating more abstract semantic information in 
deeper layers. The process of feature extraction and representation is encapsulated in 
the equation:

where Norm represents layer normalization, and MLP denotes a multi-layer percep-
tron that is applied to the output of the SW-MSA block, followed by a residual con-
nection that adds the input feature map Zl to the output. This formula underscores 
the iterative refinement of features through self-attention and nonlinear transforma-
tions, enabling the model to capture complex dependencies and features relevant for 
SAR image analysis.

3 � Methodology

3.1 � Overall framework

In this work, we propose the SAR-ShipSwin (Synthetic Aperture Radar Ship Detec-
tion with Swin Transformer Integration) model, built upon the Faster R-CNN 
framework. The model comprises a backbone network structure and a background 
modeling network (BMN). The backbone network structure combines the swin 
transformer and feature pyramid network (FPN) to effectively address ship detec-
tion challenges in SAR images, especially when it comes to resolving the resolution 
requirements for small targets.

Furthermore, to tackle issues related to target occlusion and overlap in SAR 
images, we introduce the occlusion perceptive window multihead self-attention 
(OPW-MSA). In order to better capture the features of irregularly shaped ships, the 
model also employs the spatial intensity geometric pooling method and the dynamic 
ship shape adaptive convolution module. The overall architecture of the SAR-Ship-
Swin model is depicted in Fig. 1.

3.2 � Backbone network structure

To efficiently address ship detection in SAR images, we propose a backbone net-
work that combines the swin transformer and the feature pyramid network (FPN). 
This design takes into full consideration the multi-scale nature of images and the 
resolution requirements for small ship targets.

Traditional feature pyramid networks (FPN) [29] enhance feature representations 
by combining low-level positional information with high-level semantic informa-
tion. By incorporating FPN, we can significantly enhance the feature map reso-
lution for small targets, which is crucial for small ship detection in SAR images. 
Considering the various model options of Swin Transformer, we employ the light-
weight Swin-T as the basic unit in this paper. Swin-T consists of four stages, and 
the features generated in each stage undergo initial feature adjustment with a 1 × 1 

(4)Zl+1 = SW-MSA(Norm(Zl)) +MLP(Norm(SW-MSA(Zl))) + Zl
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convolution. Subsequently, they are fused with features from other stages through 
upsampling. The fused feature maps then go through a 3 × 3 convolution for further 
feature extraction and output, as illustrated in Fig. 2.

Swin transformer based on the ViT architecture [30] introduces prior hierarchies, 
locality, and translational invariance, optimizing model computation efficiency and 
performance [31]. Its unique mobile window operation ensures information inter-
action between adjacent windows, granting the model the ability to model global 
information while significantly reducing computation.

The core structure of swin transformer blocks is depicted in Fig. 3. To enhance 
the model’s information exchange capability without increasing computational 
complexity, we make improvements on the original W-MSA module. To address 
the issue of target occlusion and overlap in SAR images, we propose the occlu-
sion perceptive window multihead self-attention (OPW-MSA).

Before performing multi-head self-attention computation, a small neural net-
work is used to generate an occlusion score for each pixel. This score represents 
the degree to which the pixel is occluded, helping us identify areas where overlap 
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Fig. 1   Model architecture of SAR-ShipSwin
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or occlusion of targets may occur. We refer to this step as occlusion perceptive 
mapping (OPM). To assess the degree of occlusion for a region or pixel, this 
paper employs local gradient information from the image. High gradients may 
indicate the presence of boundaries, and boundaries may signify target occlusion 
or overlap. The computation formula for occlusion perceptive mapping (OPM) is 
as follows:

where ∇x represents the gradient of pixel value x, wopm and bopm are learnable 
parameters adjusted during training to maximize occlusion recognition.

Based on the output of OPM, weights are dynamically assigned to each pixel. 
These weights are proportional to the occlusion scores, meaning that highly 
occluded areas receive higher weights:

where DAW(x) represents dynamically allocated weights.
The primary stage consists of two layer normalizations (LN), a window multi-

head self-attention (W-MSA) mechanism, and a multiLayer perceptron (MLP). In 
this stage, the W-MSA module segments the image into non-overlapping windows, 
effectively reducing the model’s computational burden. To overcome information 
exchange barriers caused by non-overlapping windows, the advanced stage replaces 
the W-MSA module with a sliding window multihead self-attention (OPW-MSA) 
mechanism. The remaining parts maintain LN and MLP to construct the residual 
connection. The specific computation process is as follows:

(5)OPM(x) = ∇x ⋅ wopm + bopm

(6)DAW(x) =
OPM(x)∑
i OPM(xi)

W-MSA LN MLP

LN OPW-MSA LN MLP

Zl-1

Zl

Zl+1Z l+1

Z l

Fig. 3   Swin transformer blocks structure
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3.3 � Background modeling network (BMN)

This sub-network focuses on identifying and eliminating complex background 
features, allowing the RPN to concentrate more on target extraction. BMN com-
prises a background feature extraction layer, a background attention module, and 
a background weakening module.

The background feature extraction layer consists of 2–3 convolutional layers, 
each followed by Batch Normalization [32] and ReLU [33] activation functions. 
These layers are primarily used to extract low-level background features. The 
computation formula for the background feature extraction layer is as follows:

where X ∈ ℝ
H×W×C represents the input feature map, where H and W are the height 

and width of the feature map, and C is the number of channels. Xb ∈ ℝ
H×W×C� rep-

resents the output feature map, where C′ is the new number of channels. ∗ denotes 
the convolution operation, and W1, W2, W3, b1, b2, b3 represent the convolution 
weights and biases, and BN denotes Batch Normalization.

The background attention module, a core component, employs spatial attention 
mechanisms to help the network focus on prominent background features:

where ⊙ represents element-wise multiplication, and Wa and ba are the weights and 
biases of the attention module; while, � is the sigmoid activation function.

The background weakening module employs a strategic formulation to modu-
late the background intensity, thereby facilitating a more focused target extraction 
by the region proposal network (RPN). It ingeniously incorporates a mask layer 
designed to generate a binary-like mask, which aligns with the spatial dimensions 
of the feature pyramid network (FPN) output. This mask layer is realized through 
a convolutional operation followed by a sigmoid activation function, � , which 
maps the input feature space into a [0,1] range. In this context, values approach-
ing 0 are indicative of background regions; whereas, values nearing 1 delineate 
the foreground, thus achieving a discriminative representation of the scene ele-
ments. The mathematical expression encapsulating the operation of the back-
ground weakening module can be articulated as follows:

(7)

Ẑl = W-MSA
(
LN(Zl−1)

)
+ Zl−1,

Zl = MLP(LN(Ẑl)) + Ẑl,

Ẑl+1 = OPW-MSA
(
LN(Zl)

)
+ Zl,

Zl+1 = MLP(LN(Ẑl+1)) + Ẑl+1

(8)
X1 = ReLU(BN(W1 ∗ X + b1))

X2 = ReLU(BN(W2 ∗ X1 + b2))

Xb = ReLU(BN(W3 ∗ X2 + b3))

(9)
A = 𝜎(Wa ∗ Xb + ba)

Xa = Xb ⊙ A
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where Wm and bm are the weights and biases of the mask generation layer. Xf  repre-
sents the feature map after weakening the background (multiplied by 1 −M ); while, 
the foreground regions remain unchanged (multiplied by M).

Finally, the output mask from the background weakening module is element-
wise multiplied with the output of FPN to obtain a feature map with weakened 
background. This fused feature map serves as the input to RPN for region proposal 
generation.

3.4 � Spatial intensity geometric pooling

The fast R-CNN architecture employs ROI (region of interest) Pooling to extract 
region proposal features, generating fixed-size feature maps that are then passed to 
fully connected layers for classification and bounding box regression to complete 
object detection [34]. However, since the sizes of region proposals generated by the 
RPN (region proposal network) can vary, performing ROI Pooling with block-wise 
pooling to obtain fixed 7 × 7-sized feature maps can disrupt the structural informa-
tion of the original image, leading to imprecise object localization. Additionally, the 
feature maps generated by the multi-scale fusion FPN (feature pyramid network) in 
this paper can have inconsistent sizes, resulting in extreme aspect ratios. This can 
lead to significant mapping discrepancies, causing feature loss. Particularly in SAR 
(synthetic aperture radar) images, forcing ROIs of different sizes and shapes into 
uniform fixed-size feature maps through ROI Pooling may destroy or distort the 
structural information of small objects, such as small vessels.

To address the aforementioned issues, this paper proposes a geometrically pre-
serving sampling method that avoids the use of traditional max or average pooling. 
Instead, it introduces a new operation called spatial intensity geometric pooling 
(SIG-pooling), which takes into account both the spatial distribution and intensity 
information within ROIs to calculate pooling values.

Consider an ROI region R with dimensions h × w , which is divided into an m × n

grid of sub-region cells. For each sub-region cell gij , a geometric weighting factor 
Gij is defined, calculated based on the spatial distribution and intensity information 
of the ROI.

where I(x, y) is the intensity value of the ROI at coordinates (x, y), and is the recip-
rocal of the distance from the center of sub-region cell gij to coordinates (x, y). This 
ensures that the central portion of the ROI is given a higher weight.

For each sub-region cell gij , its geometrically preserved pooling value Pij is com-
puted as follows:

(10)
M = 𝜎(Wm ∗ Xa + bm)

Xf = Xa ⊙ (1 −M) + X ⊙M

(11)Gij =
1

h × w

h∑
x=1

w∑
y=1

I(x, y) × Dij(x, y)
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After the SIG-Pooling operation, the ROI region R is transformed into a new fea-
ture map of size m × n , where each element represents the geometrically preserved 
pooling value of its corresponding sub-region cell. This geometrically preserved 
pooling method, by combining spatial and intensity information, better retains the 
geometric and structural information of the original ROI, reducing information loss 
and distortion, especially for small objects like small vessels in SAR images.

3.5 � Dynamic ship shape adaptive convolution

Considering that vessels in SAR (synthetic aperture radar) images have variable and 
often irregular shapes, this paper introduces the dynamic ship shape adaptive con-
volution (DSAC) module to adapt to different vessel shapes and sizes in a specific 
manner. Unlike traditional convolutional kernels with fixed shapes, DSAC dynami-
cally adjusts the shape of the convolutional kernel to fit the current target, allowing 
for more accurate capturing of irregular vessel features. The dynamic ship shape 
adaptive convolution module comprises three sub-modules: shape recognition, 
shape-adaptive convolution, and convolution operations.

(1) Shape Recognition Sub-module
For precise object detection, considering the shape information of the target can 

greatly benefit feature extraction. In SAR images where vessel shapes vary, recog-
nizing their shapes can assist subsequent convolutional operations in extracting fea-
tures more effectively. This module is a classification task and can be defined as:

where x is the feature representation of the input ROI, and Wshape and bshape are the 
weights and biases, respectively.

(2) Shape-Adaptive Convolution
To ensure that convolutional operations are more tailored, we need to take into 

account the specific shape of the input ROI. Therefore, we propose a dynamic kernel 
selection strategy that chooses the most suitable convolutional kernel based on the 
predicted shape of the input ROI. Based on the output of the shape recognition sub-
module, we select a convolutional kernel set that best matches the predicted shape:

where g is a function that selects the appropriate convolutional kernel based on the 
output of the shape recognition sub-module. If fshape(x)long > fshape(x)flat , Klong is cho-
sen; otherwise, Kflat is chosen. Klong and Kflat are predefined sets of convolutional 
kernels suitable for “elongated” and “flat” shapes, respectively. For elongated ves-
sels, we can define a convolutional kernel Kflat that is suitable for capturing vertical 
edges:

(12)Pij =
1

h × w

h∑
x=1

w∑
y=1

I(x, y) × Gij

(13)fshape(x) = Softmax
(
Wshape × x + bshape

)

(14)K = g(fshape(x))
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For flat-shaped vessels, we can define a convolutional kernel Kflat that is suitable for 
capturing horizontal edges:

(3) Convolution Operations
After determining the most appropriate convolutional kernel, convolution opera-

tions are performed to extract features:

where p represents a pixel position in the feature map, q represents a position in the 
kernel K. Wconv and bconv are the weights and biases of the convolution operation.

3.6 � Loss function

Similar to the faster R-CNN model, the loss consists of two components: regression 
loss and classification loss. The classification loss employs the cross-entropy loss 
function as the classification loss function. Given a true label y for the target cat-
egory and the model’s predicted class probability distribution p, the cross-entropy 
loss can be defined as:

where C is the number of categories, yi is the ith element of the true label, with a 
value of 1 (if the target belongs to the ith class) or 0 (otherwise). pi is the probability 
of the model’s prediction for the ith class.

For the regression loss, the Smooth L1 loss is adopted to reduce the impact of 
outliers when predicting bounding boxes. Given the true bounding box coordinates 
t ∗ and the model’s predicted coordinates t, the Smooth L1 loss can be defined as:

where x = t − t∗ represents the difference between predicted and true coordinates.
Furthermore, a Geometric Pooling Loss is designed specifically for SIG-Pooling 

to ensure that the feature map after pooling effectively preserves the geometric and 

(15)Klong =

⎡
⎢⎢⎣

−1 2 − 1

−1 2 − 1

−1 2 − 1

⎤
⎥⎥⎦

(16)Kflat =

⎡
⎢⎢⎣

−1 − 1 − 1

2 2 2

−1 − 1 − 1

⎤
⎥⎥⎦

(17)y(p) =
∑
q∈K

Wconv ⋅ x(p + q) + bconv

(18)
Lcls = −

i = 1

C∑
yi log (pi)

(19)Lreg =

{
0.5x2 if |x| < 1

|x| − 0.5 otherwise
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structural information of the original ROI. This is achieved by computing the cosine 
similarity between the features before and after pooling:

The objective of this loss function is to minimize the cosine distance between the 
two feature vectors, ensuring that the post-pooling feature aligns directionally with 
the pre-pooling feature, thus preserving the geometric and structural information 
of the original ROI. featurepre−pooling and featurepost−pooling represent feature vectors 
before and after the pooling operation, respectively. ‖‖⋅‖‖denotes the norm operation.

The overall loss L can be defined as:

where �vreg and �geo are weighting factors used to balance the various loss 
components.

4 � Experiments

4.1 � Experimental setup

Datasets To validate the effectiveness of the model proposed in this paper, experi-
ments were conducted on the SSDD dataset [35] and the HRSID dataset [36]. The 
SSDD dataset comprises a total of 1160 images, with an average of 2.12 ships per 
image. It includes SAR images from three different sensors: Sentinel-1, Terra SAR-
X, and RadarSAT-2, captured in HH, VV, VH, and HV imaging modes. The SAR 
image data have resolutions ranging from 1 to 15 m and cover large maritime areas 
as well as coastal regions with various ship targets. The HRSID dataset, released in 
January 2020, is a large dataset for object detection based on synthetic aperture radar 
(SAR). It contains 16951 instances of ships and 5604 high-resolution SAR images 
from Sentinel-1B, TerraSAR-X, and Tan DEM-X sensors. The dataset is designed 
for applications such as semantic segmentation, ship detection, and instance seg-
mentation. Based on the COCO remote sensing image dataset, the HRSID dataset 
includes multi-source remote sensing images with different resolutions, polariza-
tions, sea conditions, maritime areas, and coastal ports, with image resolutions rang-
ing from 1 to 5 m.

Hardware and software environment The experimental hardware environ-
ment consists of an Intel Core i9-11900K CPU, 32GB of memory, and an NVIDIA 
GeForce RTX 3080 GPU. The operating system used is Ubuntu 20.04, and the deep 
learning framework employed is PyTorch.

Hyperparameters The stochastic gradient descent (SGD) algorithm is used to 
train our network with a batch size of 16. For our ablation experiments, the network 
undergoes a total of 300 epochs. A learning rate of 0.01, weight decay of 0.0005, 
and SGD momentum of 0.937 are set. Other unspecified hyperparameters are kept 

(20)Lgeometric = 1 −
featurepre prooling ⋅ featurepost−prooling

∥ featurepree proding ∥∥ featureprost−prooling ∥

(21)L = Lcls + �regLreg + �geoLgeometric
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consistent with YOLOv5. Additionally, when comparing with other methods, we 
configure parameters similarly to ensure a fair comparison.

Evaluation metrics In this experiment, we utilize three metrics, namely Preci-
sion, Recall, and mean Average Precision (mAP), to analyze and verify the detection 
performance of the proposed method. mAP can be calculated from the Precision and 
Recall metrics.

4.2 � Comparative experimental results

Table 1 presents a performance comparison of SAR-ShipSwin with other models on 
the SSDD dataset. In terms of the mAP metric, both LS-SSDD and SAR-ShipSwin 
exhibit outstanding performance, surpassing other methods. Notably, SAR-Ship-
Swin achieves the highest performance with a mAP of 98.02%. Regarding precision 
(P), SAR-ShipSwin leads with a value of 96.53%, followed by LS-SSDD at 96.10%, 
reaffirming SAR-Ship Swin’s superior detection accuracy. Additionally, Quad-FPN 
achieves a relatively high P value of 95.77%, but its recall (R) is lower, resulting in 
a slightly lower overall mAP. HR-SDNet achieves the highest R value at 96.49%, but 
its P value is slightly lower, leading to an overall mAP of 90.82%. SAR-ShipSwin 
ranks third in terms of R value at 94.57%, but its higher P value places it in the lead 
in terms of overall mAP.

Table 2 provides a performance comparison of SAR-ShipSwin with other mod-
els on the HRSID dataset. The comparison results on the HRSID dataset demon-
strate that SAR-ShipSwin exhibits outstanding performance across different sce-
narios, including overall scenes, nearshore scenes, and scenes far from the shore. 
Particularly noteworthy are its achievements in overall scenes and scenes far from 
the shore, where SAR-ShipSwin achieves the highest mAP values of 92.35% and 
97.92%, respectively, outperforming all other models.

SAR-ShipSwin leverages a combination of Swin Transformer and FPN to handle 
complex SAR images, providing robust feature extraction capabilities. The inclu-
sion of the W-MSA module, in particular, enhances the model’s ability to address 

Table 1   Comparison with other 
SAR ship detection methods on 
the SSDD dataset

Methods P (%) R (%) mAP (%)

Faster R-CNN [37] 85.37 90.07 89.15
Quad-FPN [38] 95.77 89.52 95.29
Cascade R-CNN [39] 90.81 94.1 90.5
PANET [40] 91.91 86.81 91.15
DAPN [41] 91.36 85.54 90.56
HR-SDNet [42] 90.99 96.49 90.82
LS-SSDD [43] 96.1 94 97.8
Double-Head R-CNN [44] 91.91 86.96 91.1
GRid R-CNN [45] 89.71 87.77 88.92
SER Faster R-CNN [46] 92.28 86.11 91.52
SAR-ShipSwin 96.53 94.57 98.02
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occlusion and overlapping challenges prevalent in SAR images, thereby improving 
detection accuracy in complex scenarios. Complex backgrounds pose a significant 
challenge in SAR ship detection. BMN ensures the effective removal of complex 
background features, thereby reducing the impact of background noise on detec-
tion. The Spatial Intensity Geometric Pooling and Dynamic Ship shape Adaptive 
Convolution modules guarantee that the model retains the structural information of 
ROIs effectively during ship detection, adapting to various ship shapes and sizes, 
ultimately enhancing detection accuracy.

4.3 � Ablation study results

In this paper, four core modules were designed within the Faster R-CNN framework: 
the backbone network structure, background modeling network (BMN), spatial 
intensity geometric pooling, and dynamic ship shape adaptive convolution (DSAC). 
To better evaluate the contributions of these modules to the SAR-ShipSwin model’s 
performance, ablation experiments were conducted on the SSDD dataset, and the 
results are presented in Table 3.

Table 2   Comparison with other SAR ship detection methods on the HRSID dataset

Method Entire scenes (%) InShore scenes (%) Offshore scenes (%)

P R mAP P R mAP P R mAP

Faster R-CNN 68.1 81.5 80.98 47.3 63.7 57.34 88.7 95.6 95.91
Cascade R-CNN 80.9 81.6 82.65 64.4 64 61.21 93.6 95.6 96.27
Libra R-CNN 74.3 89.3 82.58 55.5 66.1 60.41 92.2 95.5 96.21
RetinaNet 71.8 88.8 87.64 53.1 78.4 69.18 92.7 97 97.72
Swin-RetinaNet 69.6 87.1 85.94 50.2 75 65.43 91.2 96.7 97.32
FSAF 74.3 89.1 89 67.8 80.6 73.42 93.8 96.6 96.66
FreeAnchor 81.2 90.2 90 67.8 80.6 77.86 93.3 97.8 97.73
FCOS 83.4 88 88.35 70.1 77.4 73.71 95 96.3 97.17
TOOD 86 87.3 89.67 74.1 76.2 76.1 95.6 96.2 97.33
GFECI-Net 87.1 88.6 91.28 75.6 79 79.64 95.8 96.2 97.74
SAR-ShipSwin 88.5 90.4 92.35 76.9 82 80.65 96.3 96.5 97.92

Table 3   Ablation study Module combination Precision (P) Recall (R) mAP

+ Faster R-CNN Base Model 85.37 90.07 89.15
+ Backbone Network Structure 87.52 91.32 90.45
+ BMN 89.68 92.17 92.02
+ SIG-Pooling 92.23 93.04 93.65
+ DSAC (SAR-ShipSwin) 96.53 94.57 98.02
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We initially used the Faster R-CNN base model as the evaluation starting point, 
which already achieved a relatively high mAP of 89.15% on the SSDD dataset. 
Upon incorporating the backbone network structure, which combines the Swin 
Transformer and FPN, the model’s performance improved, resulting in an mAP of 
90.45%. This increase underscores the superiority of the backbone network in fea-
ture extraction. Subsequently, the Background Modeling Network (BMN) was intro-
duced to assist the model in accurately identifying targets in SAR images with com-
plex backgrounds, further increasing the mAP to 92.02%. This highlights BMN’s 
contribution to enhancing detection accuracy in complex scenarios. Finally, with 
the application of Spatial Intensity Geometric Pooling (SIG-Pooling), we observed 
a further increase in mAP to 98.02%. This indicates that when the model considers 
spatial and intensity information within ROIs, it can better retain the geometric and 
structural information of the original ROIs, resulting in more accurate detections, 
with the most significant performance improvement observed.

To validate the loss function designed in this paper, ablation experiments were 
conducted to compare the performance of the SAR-ShipSwin model under different 
loss function configurations. Initially, the SAR-ShipSwin model was trained using 
the Faster R-CNN loss. Subsequently, the model was trained using two different loss 
function configurations: classification loss + regression loss, and classification loss 
+ regression loss + Geometric Pooling Loss. To ensure the reliability of the results, 
experiments were conducted on the SSDD dataset using various configurations of 
loss functions, and repeated five times. The experimental results are shown in Fig. 4.

As can be seen from the figure, although the performance of all loss function 
configurations exhibits certain fluctuations, the complete loss function configura-
tion (including classification, regression, and geometric pooling losses) overall 

Fig. 4   Comparative experiments of different loss functions
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demonstrates higher and more stable performance. This validates the effective-
ness of our designed loss function in enhancing the accuracy and stability of the 
SAR-ShipSwin model in detecting ships in complex SAR images.

4.4 � Visualization results

Figure 5 displays the visualization results for the SSDD dataset. As seen, our pro-
posed ship detection method exhibits strong performance both near the shore and 
in offshore areas.

Figure  6 showcase the visualization results for the HRSID dataset. It is evi-
dent that the ship detection method proposed in this paper performs well in both 
nearshore and offshore areas.

Fig. 5   Visualization of SAR-ShipSwin on the SSDD dataset
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5 � Conclusion

SAR ship detection has long been a hot research topic in maritime target detection. 
Facing the current major challenges: first, the increased difficulty in distinguish-
ing ship targets from complex backgrounds in SAR images, especially under vari-
ous meteorological and sea conditions; second, the variability in the shape of ship 
targets in SAR images, along with severe occlusion and overlap [47]. In response 
to these issues, this paper proposes the SAR-ShipSwin model. This model, tailored 
to the unique characteristics of ship targets in SAR images, introduces a backbone 
network structure that combines Swin Transformer and FPN, effectively extracting 
features and optimizing model computational efficiency.

Furthermore, we propose a Background Modeling Network designed specifically 
to identify and eliminate complex background features, thereby improving the accu-
racy of target detection. Finally, considering the variability in ship shapes in SAR 
images, we design the Dynamic Ship shape Adaptive Convolution module, which 
dynamically adjusts the shape of convolutional kernels, further enhancing detection 
accuracy.

Through extensive comparative experiments, ablation studies, and generaliza-
tion experiments, our SAR-ShipSwin demonstrates superior detection performance 
compared to existing baselines and some state-of-the-art algorithms. This confirms 
that our algorithm not only exhibits efficient detection performance but also dem-
onstrates excellent generalization capabilities. In the future, efforts will be directed 
toward improving the performance of the SAR-ShipSwin model in detecting 
extremely small or highly occluded targets. Moreover, integrating reputation man-
agement mechanisms could further enhance our model’s robustness and reliability 

Fig. 6   Visualization of the HRSID dataset
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in dynamic environments [48]. Additionally, the adoption of ConvLSTM-based 
approaches for improving signal processing may refine our model’s ability to handle 
complex noise patterns and thus improve detection accuracy in challenging scenar-
ios [49].
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