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Abstract
Memory-based collaborative filtering schemes are among the most effective rec-
ommendation technologies in terms of prediction quality, despite commonly facing 
issues related to accuracy, scalability, and privacy. A prominent approach suggests 
an intuitively reasonable modification to the similarity function, which has been 
proven to provide more accurate recommendations than those generated by state-
of-the-art memory-based collaborative filtering methods. However, this scheme 
exacerbates the scalability problem due to additional computational costs and fails 
to protect individual privacy. In this study, we recommend using a preprocessing 
method to eliminate relatively dissimilar items from the prediction estimation pro-
cess, thereby enhancing the scalability of the proposed approach. We explore how 
to provide recommendations based on the previously proposed similarity function 
while preserving privacy and propose privacy-preserving schemes to accomplish 
this task. Additionally, we apply our preprocessing approach to our proposed pri-
vacy-preserving schemes to improve both scalability and accuracy. After analyzing 
our schemes with respect to privacy and additional costs, we conduct experiments 
with real data to examine the impact of our schemes on scalability and accuracy. 
The empirical outcomes indicate that our preprocessing scheme significantly allevi-
ates scalability issues in both conventional and privacy-preserving environments and 
enhances accuracy within privacy-preserving frameworks.
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1 Introduction

The seamless integration of Internet services into our daily lives has revolution-
ized how we consume entertainment, shop, and interact with the world. This 
transformation has led to a significant shift from traditional means of entertain-
ment and shopping to digital platforms. People now prefer watching movies and 
listening to music on renowned streaming services, and online shopping has 
become a more convenient alternative to brick-and-mortar stores. This shift is 
largely due to the convenience, variety, and personalized experiences that these 
digital services offer. However, the proliferation of these services has also intro-
duced a new challenge: information overload, or as it is increasingly known, 
infobesity [1]. In response to this challenge, recommender systems have become 
indispensable. These sophisticated systems sift through vast amounts of data to 
provide tailored recommendations, guiding customers to products and services 
that align with their unique preferences and interests.

Among the various technologies powering recommender systems, Collabo-
rative Filtering (CF) stands out for its effectiveness and widespread adoption. 
CF distinguishes itself by leveraging collective user behavior to filter and rank 
products, drawing on the “wisdom of crowds” and the “law of large numbers” 
[2]. These principles enable CF systems to predict what users might like in the 
future based on past preferences, a feature that has proven beneficial across vari-
ous domains. From e-commerce giants like Amazon.com to streaming platforms 
like YouTube, Spotify, and Booking.com, CF has been instrumental in enhancing 
user engagement and driving sales [3–5]. The success of CF is not just anecdotal; 
a wealth of research corroborates its effectiveness in delivering personalized con-
tent and recommendations [6, 7].

However, the data-driven nature of CF systems raises significant privacy con-
cerns. The collection and analysis of personal preferences necessary for CF to 
function can lead to invasive user profiling, threatening individual privacy [8]. 
As public awareness of these privacy risks has increased, a tension has emerged 
between the desire for personalized experiences and the imperative to protect 
personal information. This has led to a growing interest in Privacy-Preserving 
Collaborative Filtering (PPCF), which aims to maintain the benefits of CF while 
safeguarding user privacy [9, 10].

PPCF systems, despite their considerable appeal, confront significant chal-
lenges related to efficiency and scalability. These systems are required to func-
tion in real-time, and the continual growth of user bases and product catalogs 
places immense pressure on their scalability capabilities [11]. Scalability issues 
extend beyond mere technical obstacles; they crucially affect the efficiency, accu-
racy, and viability of the recommendations provided [12]. With the user and 
item numbers on the rise, CF systems increasingly struggle to process extensive 
datasets efficiently, resulting in delays and potentially diminished recommenda-
tion quality. Such growth not only poses a challenge to system performance but 
also heightens privacy risks, as larger datasets increase the likelihood of privacy 
infringements unless carefully managed. Moreover, the intricate task of managing 
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vast user-item matrices calls for advanced computational resources, presenting a 
substantial barrier for smaller entities aiming to adopt CF technologies. Address-
ing these scalability challenges is thus essential for enhancing CF system perfor-
mance and ensuring their ability to meet real-world demands while safeguarding 
user privacy.

In addition to scalability concerns, the integration of privacy measures intro-
duces added complexity and necessitates greater resource allocation, which could 
impair the system’s responsiveness and the accuracy of its predictions. Therefore, 
maintaining the timeliness and relevance of predictions becomes a delicate balanc-
ing act. Any deviation from accuracy can lead to user dissatisfaction and, in certain 
instances, notable financial losses.

The quest for improved predictive accuracy has led to innovations in similarity 
functions, such as the one proposed by [13], which refines the way items are com-
pared and ranked within CF systems [14, 15]. By adjusting the weighting of item 
similarities, this function aims to enhance the relevance of recommendations. How-
ever, this approach increases the computational burden, exacerbating existing scal-
ability challenges without addressing the underlying privacy concerns. In this study, 
we examine the method proposed by [13] and introduce a preprocessing approach 
to speed up the prediction production process, which filters out items not strongly 
correlated to the target item. We also implement privacy-preserving measures on 
both the original and enhanced schemes to assess the effects of the new similarity 
function and preprocessing on the scalability and accuracy of both non-private and 
privacy-preserving frameworks. The major contributions of our work can be sum-
marized as follows:

• We propose a novel preprocessing method aimed at eliminating relatively dis-
similar items from the prediction process using the similarity function, thereby 
addressing scalability challenges. This approach significantly enhances the sys-
tem’s efficiency without compromising on prediction accuracy.

• In our investigation of the formerly proposed similarity function within a pri-
vacy-preserving environment, we integrate our preprocessing scheme to further 
optimize both scalability and accuracy. This dual application demonstrates the 
method’s adaptability and effectiveness in maintaining high performance under 
privacy constraints, underscoring our contribution toward achieving a balance 
between computational efficiency and data privacy in predictive modeling.

• We perform different sets of experiments using real data sets to evaluate our pro-
posed schemes with respect to scalability and accuracy.

The rest of the paper is organized, as follows. Related research is summarized in 
Sect.  2 and preliminaries are given in Sect. 3. We deeply analyze applicability of 
similarity function in privacy-preserving environment and propose preprocessing 
method to enhance scalability in Sect. 4. After analyzing the proposed schemes by 
means of overhead costs and privacy in Sect. 5, we present real data-based experi-
mental evaluations and their results in Sect. 6. The gained insights from the experi-
mental studies and the limitations regarding the study are given in Sect. 7. We finally 
conclude the paper and give future research directions in Sect. 8.
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2  Related work

Recommender systems primarily utilize content-based filtering or CF techniques [6, 
16]. Additionally, there are hybrid approaches that combine content-based and col-
laborative methods to enhance accuracy [17]. CF systems can be categorized into 
memory-based or model-based approaches. Memory-based systems rely on the 
entire collection to calculate similarities using metrics such as Pearson’s correlation 
coefficient, cosine similarity, or distance-based similarity [13]. For practical deploy-
ments covering a large number of products, item-based similarity calculations are 
preferred, whereas user-based similarities are employed for better accuracy in other 
instances [18]. Model-based techniques employ various data processing methods 
like clustering [19], dimensionality reduction [20], and classifiers [11, 21] to cre-
ate a model of the collection. This model aids in making faster prediction estimates. 
However, these methods typically involve many parameters that require tuning and 
periodic updates. Hybrid applications also exist, performing different parts of the 
prediction process to achieve improved performance [22, 23].

Although today’s recommender systems are very popular and widely used, they 
face with various challenges. Firstly, there is a need to make them more robust to 
rapidly growing nature of data. Thus, researchers have studied scalability problem 
in recommender systems and proposed solutions adopting data reduction tech-
niques. For example, a principal component analysis through standard singular value 
decomposition-based and hierarchical nonlinear methods is applied to improve scal-
ability of CF systems [24]. Also, by employing Singular Value Decomposition for 
dimensionality reduction and ontology for enhancing recommendation accuracy, 
a recent study effectively improves the trade-off between accuracy and computa-
tional efficiency [25]. Additionally, a recent method leverages dimensionality reduc-
tion and clustering techniques, specifically employing the k-means algorithm and 
Singular Value Decomposition, to cluster similar users and reduce dimensionality 
[26]. It proposes a two-stage recommender system designed to generate accurate 
and efficient recommendations, aiming to enhance the performance of existing algo-
rithms within the bustling ecosystem of e-commerce and Internet-based companies. 
Another work proposes a novel collaborative filtering method, CBE-CF, which inte-
grates information entropy and bi-clustering to address the challenges of data spar-
sity and computational efficiency in traditional recommendation algorithms [27]. By 
clustering both rows and columns of the user-item-rating matrix, CBE-CF identifies 
dense rating modules, using information entropy to quantify similarity between new 
users and these modules, thereby optimizing predictions through a blend of item-
based global generalization and local module similarity. Also, a novel bio-inspired 
clustering ensemble is introduced in [28], which combines swarm intelligence and 
fuzzy clustering models, to enhance user-based collaborative filtering in recom-
mender systems, addressing the issue of information overload in the digital age. 
Another method incorporates a time decay function for preprocessing user ratings, 
utilizes project attribute and user interest vectors for characterization, and employs 
clustering and enhanced similarity measures to identify users’ nearest neighbors and 
recommend project candidates [29].
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However, these approaches are computationally inefficient, which limits their 
benefits. Furthermore, they tend to be ineffective with extremely large data sets. 
Secondly, another challenge of recommender systems is to produce accurate pre-
dictions. Inaccurate referrals may get customers angry and reduce sales of online 
vendors. The most successful implementations are memory-based solutions in 
which whole database is utilized supporting wisdom of crowds principle. A promi-
nent study [13] propose a new similarity function to improve quality of predictions 
by ranking item votes according to their similarity to the target item. Thirdly, CF 
systems are expected to preserve confidentiality as online amenities become more 
popular [10, 30]. This motivates providing accurate predictions without violating 
individual privacy.

Initial solutions were first proposed by [31, 32] relying on a distributed archi-
tecture to form an aggregate data via cryptographic techniques. However, today’s 
recommender systems mostly operate on a central server. Therefore, rather than con-
cealing preference data, researchers proposed users to submit obfuscated vectors. 
Cryptographic methods are often employed in such systems to safeguard individual 
privacy [33, 34]. For instance, a recent study developed an unsynchronized secure 
multi-party computation protocol that allows for the incremental computation of 
item similarities without the need for individuals to participate in the computation 
process [35]. Similarly, a distributed recommendation system is introduced by [36] 
where encrypted information is exchanged between vendors and a mediator using 
secure protocols, enabling the generation of recommendations or item rankings 
without compromising security. Additionally, recent research has explored the use 
of homomorphic encryption to securely encrypt Quality of Service metrics, facilitat-
ing the recommendation of personalized, high-quality web services that respect user 
and location privacy [37]. A recent study also introduced an effective strategy for 
group recommender systems that protects user privacy during the recommendation 
process [34]. Also the computation of item similarities is treated as a probabilis-
tic inference problem and presented a semi-distributed belief propagation network 
approach for item-based PPCF systems, which safeguards user preferences by only 
involving a select group of individuals in the network at any given time [38].

Anonymization stands out as another essential technique for ensuring user privacy 
by severing the identifiable link between users and their rating data. For instance, 
a recent study advocates for a PPCF approach that employs microaggregation to 
create k-anonymity masks, thereby safeguarding user privacy [39]. Another work 
delves into achieving k-anonymity for databases that are both large-scale and sparse, 
such as recommender systems, proposing a clustering-based k-anonymity heuris-
tic method for privacy protection in data exchange [40]. Another work introduces 
a (p, l, a)-diversification strategy to enhance the efficacy of traditional k-anonymity 
techniques, where p represents prior knowledge of users’ rating profiles and (l, a) 
symbolizes user diversity to augment privacy levels [41]. Finally, as an exemplar 
of anonymization in practice, a prominent study implements this approach within 
the context of privacy-conscious smart cities, framing urban privacy concerns as a 
PPCF challenge [42].

Differential privacy stands as a key effective strategy utilized in CF-based meth-
ods to evaluate the potential privacy loss incurred when incorporating a user’s 
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personal preferences into generating recommendations. The seminal work intro-
duced the concept of differential privacy [43], which was later applied in the realm 
of recommender systems, where it is employed randomization of actual user pref-
erences via a private covariance matrix [44]. A Subsequent research developed a 
distance-based differential privacy approach, modifying real user profiles by swap-
ping elements at certain distances within the profile [45]. Additionally, an alterna-
tive technique focused on noise calibration to balance privacy and utility, enabling 
the fine-tuning of noise levels injected into users’ preference profiles [46]. In a more 
specialized application [47], a dual-phase strategy is introduced for ensuring dif-
ferential privacy in neighborhood-based recommendations, particularly within the 
medical recommendation sphere, through the secure selection of private neighbors.

In CF systems, strategies such as data obfuscation and randomized perturbation 
are prominently employed for privacy preservation, as extensively discussed in the 
literature. Specifically, the technique of data obfuscation seeks to shield sensitive 
details while permitting access to necessary data for recommendation generation. 
For example, [48] detail a permutation-based data obfuscation method designed for 
use in CF applications that depend on a central server. Furthermore, [49] describe 
a user-based PPCF recommender that involves semi-honest intermediaries to carry 
out supplementary computations for enhancing privacy. For scenarios involving 
distributed recommendations, [50] advocate for the use of obfuscated user profiles 
with coarse granularity as a means to protect personal information. Moreover, [51] 
improve upon traditional single-level obfuscation methods by employing variable 
obfuscation degrees to more effectively pinpoint target users.

Randomized Perturbation Techniques (RPTs) offer an alternative method for pre-
serving user privacy by altering actual user preferences before their transmission to 
the recommendation server, as discussed by [30, 52, 53]. For instance, [54] intro-
duce a scalable PPCF approach that employs bisecting k-means clustering along 
with randomized perturbations. In a separate study by [55], the combination of RPTs 
with secure multi-party computation methods is used to secure the privacy of user 
profiles distributed across various databases during the recommendation process. 
Polatidis et al. [56] propose the use of varying levels and spectrums of random val-
ues to improve the process of RPT-based PPCF. Additionally, [57] present a hybrid 
model that merges RPTs with differential privacy, providing a more comprehensive 
protection of user preferences compared to existing RPT methods. Lastly, [58] dem-
onstrate the application of RPTs in safeguarding privacy within the multi-criteria 
recommender systems sphere.

The literature review highlights various privacy protection methods for CF rec-
ommenders, including anonymization, homomorphic encryption, differential pri-
vacy, and RPTs. In this study, we have chosen to implement RPTs to safeguard user 
privacy for several reasons outlined below. Each privacy protection method is suited 
to particular types of recommendation scenarios and comes with its own set of limi-
tations. For instance, methods other than RPTs, notably homomorphic encryption 
and secure multi-party computation mechanisms, are typically tailored for distrib-
uted systems. Given our focus on a centralized recommendation framework, these 
approaches are not apt for our purposes. Additionally, methods based on cryptog-
raphy tend to demand more computational resources due to the complexity of their 
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encryption processes [37]. Conversely, while differential privacy offers a commend-
able level of privacy, it often compromises the accuracy of recommendations by 
introducing noise that can mask crucial patterns needed for precise recommendation 
generation [46].

With the primary goal of enhancing system efficiency in privacy without sacri-
ficing predictive accuracy, these alternative methods do not align with our objec-
tives. Moreover, although various perturbation schemes exist to protect individual 
privacy in CF systems, opportunities remain to mitigate accuracy degradation 
resulting from perturbation. Thus, our research aims to improve the scalability of 
the CF framework proposed by [13], incorporating privacy safeguards through rand-
omization techniques, all the while ensuring minimal impact on the accuracy of the 
recommendations.

3  Preliminaries

3.1  Collaborative filtering and similarity function

CF systems collect ratings from users and form a user-item matrix Un×m , which con-
sists of n users’ votes about m items. A typical CF prediction estimation process 
includes three steps: (i) An active user (a) sends her available ratings and requests 
a prediction on a target item (q). (ii) Her neighbors are determined by calculating 
similarities between a and all other users. (iii) A weighted average of neighbors’ rat-
ings on q, referred to as paq , is estimated and returned to a.

According to results presented in [13], the best similarity measure to calculate 
weight between users a and u is Pearson’s correlation coefficient (PCC) given in 
Eq. (1).

where vai and vui are the votes for item i by users a and u, respectively. Similarly, 
va and vu are the average votes of users a and u, respectively and m′ is the number 
of co-rated items by both a and u. After calculating similarities, k of the users are 
marked as neighbors according to calculated similarity values. Finally, paq can then 
be estimated using Eq. (2) [59].

in which wau is the similarity weight between a and u.
As seen from Eq. (1), each co-rated item has equal effect on similarity measure. 

[13] propose to modify the similarity metric so that each co-rated item’s effect is 
also ranked with the item similarity between corresponding item and the target item. 

(1)PCCau =

∑m�

i=1
[(vai − va)(vui − vu)]

�∑m�

i=1
(vai − va)

2

�∑m�

i=1
(vui − vu)

2

,

(2)paq = va +

∑k

u=1
[(vuq − vu) × wau]
∑k

u=1
�wau�
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In other words, if an item is very similar to the target item, then it will have a supe-
rior influence on estimated prediction. Therefore, they propose to apply adjustments 
on several similarity metrics. We present the best performing user-user similarity 
measure in Eq. (3) [13].

where PCCq
au

 denotes PCC between users a and u for q and ISiq denotes the item 
similarity between co-rated items i and q. The best measure to calculate ISiq might 
vary for different data sets; however, PCC (Eq. 1) and Cosine similarity (Eq. 4) are 
shown to be the most feasible ones [13].

3.2  Preserving individual privacy by randomized perturbation

Widespread usage of the Internet services also leads misusage of personal data. 
People are getting more conscious about privacy risks like profiling, price discrimi-
nation, unsolicited marketing, and so on. Therefore, they refuse to submit authen-
tic preferences in order to avoid privacy violations. However, accurate predictions 
can only be produced through qualified collections. PPCF schemes aim to dissipate 
worries of users’ by collecting disguised ratings instead of pure votes and produce 
dependable predictions upon such perturbed preferences. Due to distortion on input 
data, accuracy losses are inevitable. Therefore, such systems must be well-tuned to 
keep such losses insignificant.

According to [30], privacy in the context of CF systems has two key features; 
keeping (i) true ratings and (ii) the exact list of rated products private. In order to 
preserve such information, randomized perturbation techniques (RPTs) are useful 
tools to adjust required privacy levels and letting the server to calculate qualified 
predictions without jeopardizing privacy of the individual much. Data disguising 
protocol employing RPTs is described in Procedure 1 as applied in [30].

(3)PCCq
au

=

∑m�

i=1
[IS2

iq
× (vai − va) × (vui − vu)]

�∑m�

i=1
[ISiq × (vai − va)]

2

�∑m�

i=1
[ISiq × (vui − vu)]

2

,

(4)Cosineiq =

∑n�

u=1
(vui × vuq)

�∑n�

u=1
v2
ui

�∑n�

u=1
v2
uq

.
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Procedure 1  Data Disguising Protocol

According to Procedure 1, a genuine vote value v is disguised by adding a ran-
dom number r onto it, where r is drawn from either uniform or Gaussian distri-
bution with zero mean ( � ) and a standard deviation ( � ). Note that �max is one of 
the controlling parameters for provided confidentiality level because the higher 
the �max is, the more the distortion on input data users have. Additionally, users 
forge some fake ratings into their profiles to conceal truly rated items. The num-
ber of unrated items in profiles to be forged can be associated with �max param-
eter, which is another controlling parameter for privacy. After the central server 
sets �max and �max values, users choose individual � and � values from the permit-
ted interval and disguise each of their votes according to Procedure 1. The central 
server collects such perturbed values and forms disguised user-item matrix, U�

n×m
 , 

and operates on this matrix to produce recommendations.

4  A more precise and scalable PPCF scheme

In this section, we describe our schemes, which are proposed to enhance scal-
ability of CF and PPCF schemes based on formerly proposed similarity function. 
We first define our preprocessing scheme to eliminate dissimilar items from pre-
diction process to alleviate scalability issues and possibly enhance accuracy of 
referrals in non-private scheme. Then, we introduce modifications to apply the 
similarity function on masked data to improve recommendation quality. Finally, 
we discuss applying proposed preprocessing scheme onto the proposed privacy-
enhanced environment to further improve scalability and accuracy of privacy-pre-
serving scheme.
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4.1  A preprocessing scheme to eliminate irrelevant items

The similarity function proposed by [13] utilizes item similarities between a com-
monly rated item and the target item in user similarity function. Since user-similar-
ity calculation becomes more complicated due to new function, such computational 
overhead also affects online performance of the recommender system. Moreover, 
memory-based CF applications already suffer from scalability issue due to con-
stantly growing size of data. Inspired from the idea of ranking preferences accord-
ing to item similarity, we propose an additional preprocessing step to eliminate 
relatively dissimilar items from prediction estimation process. Such preprocessing 
scheme is aimed to enhance scalability of CF system because it focuses on reduc-
ing online response time significantly by eliminating irrelevant items to each cor-
responding target item.

According to the scheme proposed in [13], similarities between items are calcu-
lated using either Eq. (1) or Eq. (4) in off-line time can be used in the online pre-
diction estimation process, as outlined in Procedure 2. Item similarities rank each 
rating’s effect on the estimation of prediction. This way co-rated items resembling 
more similarity to the target item have a superior effect on the estimation. How-
ever, all items still join to the process no matter they have a dissimilar manner to 
the target item. Therefore, we propose to eliminate such items from the prediction 
estimation process so that the process speeds up due to the reduction of dimensions 
in original user-item matrix.

Procedure 2  Off-line Item Similarity Calculation

According to the CF recommendation estimation process explained in Sect. 3.1, 
the bottleneck in the process is the calculation of similarities between a and all users 
in the system. Therefore, we base our proposed preprocessing scheme to handle such 
bottleneck. If relatively dissimilar items are removed from the matrix for that par-
ticular target item, then a significant reduction can be obtained in dimensions of the 
original user-item matrix. Such dissimilarity can be determined relying on a pre-
determined similarity threshold value ( � ), so that the items having smaller similar-
ity than the threshold value are eliminated. Then, a temporary user-item matrix can 
be formed for each corresponding target item, which is to be used in neighborhood 
formation process. Since similarity calculations are performed in the compact and 
reduced form of original user-item matrix, it will take much less time to calculate 
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user similarities online. Pseudo code of the prediction estimation process relying on 
our preprocessing scheme is given in Procedure 3.

Procedure 3  Online Prediction Estimation via Preprocessing

4.2  A PPCF scheme using target item‑based similarity function

Due to privacy concerns, people prefer to submit their disguised vectors instead 
of explicit expressions. Therefore, the central server needs to estimate predictions 
based on such disguised collections with decent accuracy. We explain how formerly 
proposed target item-based similarity function can be applied onto private predic-
tion generation algorithm in the following.

4.2.1  Neighborhood formation

The PCC equation (Eq. 1) can be represented as the covariance of two z-score trans-
formed user vectors [59]. PPCF schemes typically employ such similarity calcula-
tion method due to perturbation scheme. To employ target item-based similarity 
function onto such similarity calculation method, we propose to utilize item simi-
larities as a factor to covariance calculation, as shown in Eq. (5).

where wq
au denotes covariance-based PCC weight between a and u for q, zai and zui 

represent z-score transformations of users’ ratings on item i, respectively. However, 
as explained in Sect. 3.2, users submit their disguised z-scores, Z′ , due to privacy 

(5)wq
au

=

∑m

i=1
ISiq × zai × zui

m
,
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concerns. Hence, similarities between users in an RPT-based PPCF scheme are esti-
mated on masked data, as in Eq. (6).

Notice that Ra and Ru vectors are noise data drawn from a zero-mean distribution, 
which are generated to disguise original z-score values. Similarly, the expected 
means of z-scores are zero, as well. Thus, the expected value of the last three sum-
mations in Eq.  (6) converges to zero, which helps the server estimate similarities 
with decent accuracy relying on perturbed aggregate data.

Off-line item similarity calculations are also performed on perturbed data. 
Without privacy concerns, it is trivial to calculate such similarities using PCC 
or cosine similarity. However, since users send their disguised z-scores, the data 
collector should be able to estimate weights between items from masked data, as 
well. Due to disguising mechanism, the server can utilize covariance-based PCC 
similarly for item similarities, as shown in Eq. (6). The server can estimate simi-
larities between co-rated item i and target item q, as explained in the following: In 
Eq. (4), the nominator part performs multiplication between co-rated users, which 
can be treated as a dot product in privacy-preserving scheme because unrated 
items have a zero rating value. With increasing number of users in the system, 
as can be followed from Eq. (5), such dot product calculations can be performed 
with sufficient accuracy due to zero-mean nature of random number distribution. 
The denominator holds magnitude calculation of two vectors. The server can esti-
mate such magnitudes for an item vector, as shown in Eq. (7).

where T is the set of users who rated corresponding item and R represents the distri-
bution of such users’ random perturbing factors added onto genuine ratings. Equa-
tion (7) can be rewritten without square roots, as follows:

Equation (8) holds as number of users submitting a vote for the item increases due to 
generated random numbers distribution with zero mean. However, to get rid of the 
second summation, the server can subtract its contribution relying on the maximum 
allowed standard deviation of the random numbers, as follows:

(6)

wq�

au
=

IS(q) ⋅ Z�
a
⋅ Z�

u

m
=

∑m

i=1
ISiq × z�

ai
× z�

ui

m
=

∑m

i=1
ISiq(zai + rai)(zui + rui)

m

=

∑m

i=1
ISiqzaizui +

∑m

i=1
ISiqzairui +

∑m

i=1
ISiqzuirai +

∑m

i=1
ISiqrairui

m

≈

∑m

i=1
ISiq × zai × zui

m
.

(7)||Z�||2 = ||(Z + R)||2 =
√∑

u∈T

(zu + ru)
2,

(8)
∑

u∈T

(zu + ru)
2 =

∑

u∈T

z2
u
+ 2

∑

u∈T

zuru +
∑

u∈T

r2
u
≈
∑

u∈T

z2
u
+
∑

u∈T

r2
u
.
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After computing the summation, the server can take the square root and estimate 
magnitudes of vectors and similarity weights between items based on masked data. 
Then, the most similar k of such users are labeled as neighbors to be used in predic-
tion production process.

4.2.2  Prediction estimation

The server estimates a prediction based on masked data and replies back to a with 
such estimation. Each active user de-normalizes received prediction via her ratings 
mean and standard deviation. Since predictions are generated relying on masked 
z-scores data, Eq. (2) can be rewritten for producing a private prediction for a on q, 
as follows [60]:

where k is the number of neighbors utilized in the prediction production process, va 
and �a represent a’s mean vote and standard deviation, respectively. Therefore, the 
server estimates P′

aq
 and sends it back to a, where she de-normalizes provided aggre-

gation and obtains the final prediction. The server can estimate P′
aq

 based on masked 
data, as follows:

Equation (11) holds because expected values of the last three summations in nomi-
nator and the second one in denominator converge to zero due to zero-mean random 
number distributions. In other words, the server can estimate P′

aq
 on masked data 

and still can produce accurate predictions.

4.3  Improving PPCF referrals via preprocessing

We finally propose to employ the preprocessing idea proposed in Sect.  4.1 onto 
PPCF framework described in Sect. 4.2, which utilizes the target item-based similar-
ity function. In this proposed framework, PPCF referrals are aimed to be produced 
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in less amount of time to enhance scalability. In addition, it is possibly expected to 
obtain more qualified private referrals. This way, accuracy-enhanced traditional CF 
scheme via target item-based similarity function will be further improved to pro-
vide private referrals with better accuracy and in scalable time. To do so, the private 
framework defined in Sect. 4.2 utilizes Procedures 2 and 3 along with privacy-pre-
serving similarity calculation (Eqs. 5 and 9) and prediction estimation (Eqs. 10 and 
11) equations.

5  Performance and privacy analysis

It is imperative to analyze our preprocessing scheme, which is employed in both 
non-private and privacy-preserving CF schemes with respect to off-line and online 
costs. In addition, a detailed privacy analysis is provided in order to evaluate the 
privacy preservation procedure to investigate how and to what extent it is effective. 
During such analysis and experimental examination, we denote traditional recom-
mendation approach as CF, similarity function-enhanced CF method as CF+ pro-
posed by [13], and preprocessing applied ultimate model as CF++.

5.1  Overhead costs analysis

Overhead costs due to introduced preprocessing scheme must be analyzed by means 
of three cost-related phases, i.e., (i) communication, (ii) storage, (iii) and computa-
tional phases. An overview of the analysis is presented in Table 1.

Compared to the traditional CF approach, CF+ approach and our item reduction 
preprocessing-based CF++ approach scheme does not cause any extra communica-
tion overheads. All three schemes require a transfer of 1-by-m user vector, which 
introduces an O(1) complexity in terms of communications costs. Hence, we can 
conclude that both the number of communications and amount of data to be trans-
mitted in online and off-line phases remain the same for all three schemes.

CF scheme requires a storage cost in the order of O(nm) to record preferences 
of n users on m items. However, CF+ and CF++ schemes utilize item similari-
ties in user-user similarity computations. Therefore, CF+ requires a total storage 
area in the order of O(nm) + O(m2) to also hold item similarities. However, CF++ 

Table 1  Overview of overhead costs

Communication Storage costs Computational costs

Off-line Online

CF O(1) O(nm) – O(k + nmP)

CF+ O(1) O(nm) + O(m2) O(nm2) O(k + nmP�)

CF++ O(1) O(nm) + O(2m2) O(nm2) + O(m logm) O(k + nmP�)

P and P′ : number of calculations in Eq. (1) and Eq. (3), respectively
m : reduced number of items for corresponding target item
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approach also eliminates some items from the collection relying on item similarities, 
which requires to hold sorted item similarity index values in addition to item simi-
larities that results in a storage cost of O(nm) + O(2m2) in total.

Computation costs should be analyzed separately for off-line and online phases. 
Although off-line computations are not critical for recommender systems, it is bet-
ter to provide a report on off-line work overload. Traditional CF scheme solely runs 
online and does not perform any off-line computations. However, CF+ and CF++ 
schemes calculate item-item similarities in off-line phase in the order of O(nm2) , 
where CF++ scheme also sorts such similarities, which requires an additional 
O(m logm) time using quick sort algorithm.

The important component of recommender systems’ performance is determined 
by how fast queries are responded online. CF scheme runs in O(k + nmP) time, 
where k represents the number of neighbors to be utilized and P is the complex-
ity of computations performed in user-user similarity calculation via a similarity 
measure. CF+ scheme also produces predictions in a similar manner; however, 
drawback of CF+ scheme is that it further complicates online similarity calculation 
step by assembling item-similarity factors into similarity formulas. Such increased 
computational complexity is denoted with O(k + nmP�) in Table  1, where P′ rep-
resents the increased complexity of calculations and P′ > P all the time. Our pro-
posed preprocessing, on the other hand, reduces the number of items to be utilized 
in similarity calculation step and requires an online computation time in the order of 
O(k + nmP�) , where the size of m is determined for each corresponding target item 
separately, but making sure that m ≪ m to relieve scalability issues. Data disguising 
procedure allows PPCF systems to collect and store preference data similar to the 
non-private schemes and produce predictions in an identical way, as well. Therefore, 
such overhead costs analysis is also valid for privacy-preserving conjugates of CF, 
CF+, and CF++.

5.2  Privacy analysis

Data disguising protocol focuses on preventing the central server to deduce about (i) 
if a rating is genuine or forged and (ii) actual values of the genuine ratings. Accord-
ingly, these two considerations are analyzed to evaluate the privacy level provided 
by the system.

User profiles contain fake ratings about �% of empty cells, where such value is 
chosen uniformly randomly from the interval (0, �max] . Let us denote the probability 
of guessing � over (0, �max] with Pr(�) . Uncertainty caused by Pr(�) can be measured 
using Shannon entropy [61] of masked vector. Recall that the entropy of a random 
variable X = {x1, x2,… , xn} distributed by a probability mass function p is defined 
as H(X) = −

∑n

i=1
p(xi) log2 p(xi) . We can model users of a PPCF system as random 

variables associated with normal distribution N(x;0, �2) or uniform distribution 
U(x;2�

√
3) . Let g and e represent the numbers of genuine votes and empty cells of a 

user, respectively. Correspondingly, let P = {p1, p2,… , pg} and R = {r1, r2,… , re×�} 
define the probability distribution of genuine ratings and forged items, respectively. 
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Hereafter, a user’s distribution can be modeled as S = (#P + #R)∕(g + (e × �max)) 
and provided privacy can be quantified by H(S) . An example scenario is presented 
in Fig. 1, where the user is assumed to have 50 genuine ratings on 500, 1000, and 
2000 ratable items and �max is varied from 5 to 100%.

We also present the unlikelihood of locating genuine votes besides their values 
with a probabilistic approach. The server does not know the numbers of actual rat-
ings (g) and empty cells (e) in a user profile. Instead, it has g′ and e′ due to the Pro-
cedure 1. However, g can be calculated as g = m − e , where e = e�∕(1 − �%) . Thus, 
combining the possibilities of (i) choosing � over (0, �max] and (ii) determining the 
exact list of g out of g′ disguised values, we can conclude that discriminating genu-

ine ratings out of a disguised user vector is Pr(�) × g�

g
 , where g

′

g
 stands for the num-

ber of combinations of g′ objects chosen g at a time.

5.2.1  Privacy obtained by individual perturbations of elements

Even if the central server distinguishes genuine votes from forged entries, it still 
needs to extract real values from their masked z-score forms. Additionally, the pri-
vacy obtained by adding random noise on ratings must also be quantified. Agrawal 
and Aggarwal [62] propose a differential entropy-based metric to quantify privacy 
of an additive noise-based perturbed variable, where such metric is utilized in PPCF 
context by [30, 60, 63]. Let random variables P and R represent the original user 
vector and perturbing random data, respectively yielding D = P + R . Then aver-
age conditional privacy of P is defined as Π(P|D) = 2H(P|D) , where 2H(P|D) repre-
sents conditional differential entropy of P given D. Recall that P and R are inde-
pendent random variables. Thus, privacy level of P after disclosing D is given by 
Π(P|D) = Π(P) × (1 − Pr(P|D)) , where Pr(P|D) = 1 − 2H(D|P)−H(D) . Assuming that 

Fig. 1  Privacy levels for varying �
max

 values
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P distributes normally, privacy levels, Π(P|D) , for various perturbation levels are 
presented in Fig. 2. Recall that the distribution of R is determined by coin tosses. As 
seen from Fig. 2, provided privacy levels enhance with increasing level of perturba-
tion as expected and Gaussian distribution provides slightly better privacy.

Finally, as Eq.  (10) demonstrates, the server needs to de-normalize extracted 
z-score values, which requires deducing mean and standard deviation of each user’s 
original rating profiles.

6  Experiments

We performed several experiments on two benchmark data sets to scrutinize the 
effects of applying the similarity function in privacy-preserving systems and 
employing our proposed preprocessing scheme on non-private and privacy-preserv-
ing schemes.

6.1  Data sets and evaluation criteria

Experiments were performed on two well-known benchmark data sets. MovieLens 
data set (ML) was collected by GroupLens at the University of Minnesota (http:// 
www. group lens. org) and Netflix provided a training data set of 100,480,507 ratings 
that 480,189 users gave to 17,770 movies. We used a subset of Netflix data set (NF), 
where we sampled 10,000 users from differing density ranges. Data sets are suitable 

Fig. 2  Privacy levels for varying �
max

 values

http://www.grouplens.org
http://www.grouplens.org
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to show effects of preprocessing schemes as they both are extremely sparse and 
large. Detailed information about the data sets is given in Table 2.

Like [13] did, we utilized mean absolute error (MAE) to measure quality of pre-
dictions. MAE basically measures how precise the predictions are compared to the 
actual ratings as an average of absolute errors, i.e., 

∑
N(ei∕n) =

∑
N(�pi − ri�∕N) , 

where pi is the estimated prediction, ri is the actual rating value, and N is the number 
of produced predictions. Thus, the smaller the MAE is, the better the results are. 
Since the proposed preprocessing method aims to improve scalability, total elapsed 
time (T) in seconds spent on producing online recommendations is also recorded.

6.2  Experimentation methodology

Experiments were realized on uniformly randomly chosen train and test sets. The 
original data set (U or U′ ) was divided into two, where uniformly randomly chosen 
30% of all users are assigned to be test users and remaining ones as train users. After 
training and test sets were constructed, five rated items’ actual votes were withheld 
for each test (active) user. Such entries were replaced with null, their values were 
tried to be predicted, and estimations were compared with actual values. User-user 
similarities were computed via PCC on both data sets and item-item similarities 
are calculated by PCC in ML and by Cosine similarity in NF as shown by [13] to 
the best performing measures on those data sets. We also set k to 10. Trials were 
performed in MATLAB 8.0 environment using a computer with an Intel Core i7 
2.8 GHz dual-core processor and 4 GB RAM.

6.3  Results and discussion

We utilized four sets of experiments. Firstly, we evaluated how the similarity values 
between users differ when random error is introduced into similarity calculations. 
Secondly, we experimented on CF++ scheme by employing proposed preprocess-
ing method to see its effects on accuracy and scalability compared to CF and CF+ 
schemes. Thirdly, we derived PPCF+ scheme by implementing the similarity func-
tion onto privacy-preserving scheme and investigated how it performs in terms of 
accuracy. Finally, we obtain PPCF++ scheme by preprocessing PPCF+ and exam-
ined its performance in terms of quality of predictions and online performance. 
Details of experimental procedures and results of conducted tests are explained in 
the following.

Table 2  Descriptions of data 
sets

Name User × Item Rating scale Total votes Density (%)

ML 6040 × 3952 5-star 1 M 4.25
NF 10,000 × 17,700 5-star 2,337,295 1.32
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6.3.1  Evaluating the impact of random error on similarity calculation accuracy

In this section, we examine the impact of introducing random error into similar-
ity calculations. Specifically, we investigate the extent to which the manipulation of 
vectors, through the addition of noise, affects the accuracy of these calculations. To 
this end, we compute the similarities between a designated active user and all other 
users across various levels of induced noise. These computed values are then com-
pared with the similarity calculations obtained in the absence of perturbation. This 
process is repeated for each user, and the resulting average deviations from the origi-
nal similarity values are quantified as percentages and presented in Table 3.

The results in Table  3 clearly demonstrates that as the level of random error 
increases, so too does the deviation in similarity values. These deviations, while 
unavoidable, are a necessary compromise to achieve the desired level of privacy 
through the implementation of perturbations. It’s important to note that although 
these deviations tend to reduce toward zero over a series of trials, the results from a 
single trial are highlighted in this study. This is done to provide a clear perspective 
on the immediate impacts of such perturbations on the accuracy of similarity assess-
ments, an aspect crucial for evaluating the trade-offs between privacy enhancement 
and computational accuracy in real-world scenarios.

6.3.2  Evaluating preprocessing technique in non‑private schemes

In order to examine the effects of the proposed preprocessing scheme by means 
of scalability and accuracy, we applied such preprocessing on non-private scheme 
first. As [13] demonstrated, applying the similarity function onto traditional CF 
schemes improves accuracy. However, they do not perform any online performance 
test, which is vital for recommender systems. We demonstrated experimental results 
of accuracy and online performance for both similarity function enhanced CF+ 
scheme and preprocessing enhanced CF++ scheme. While utilizing � for CF++ 
scheme, although PCC takes values in the interval [ − 1.0, +1.0] for item similarity 
calculations, we transformed such values to [0, +1.0] interval to form a common 
base with cosine similarity, which also takes values in the interval [0, +1.0]. Then, 
we varied � from 0.05 to 0.5 in order to eliminate dissimilar items. To present a 
more clear comparison, we presented improvements of CF+ and CF++ schemes 
over traditional CF scheme in percentage. Comparison of the quality of predictions 
for ML and NF datasets is given in Figs. 3 and 4 respectively. Similarly, the com-
parison of online performance for ML and NF datasets is presented in Figs. 5 and 6, 
respectively.

Table 3  The percentages of 
average deviations in similarity 
values

Dataset �
max

 values

0.5 0.75 1 2 3 4

ML − 1.95 − 7.57 − 11.52 − 15.60 − 17.58 − 20.39
NF − 2.56 − 8.43 − 13.57 − 17.08 − 19.38 − 23.34
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As seen from Figs. 3 and 4, CF+ scheme achieves better accuracy improvements 
(around 4%) compared to our CF++ scheme (around 3%). Especially for ML data 
set, such improvements can be obtained even for very high � values. For ML data 
set, the best improvement is obtained at � = 0.5 with 2.96%, where CF+ scheme 
achieves 3.7%. Due to its extreme sparse nature, increasing � affects accuracy 
adversely for NF data set. Therefore, the best improvement for NF is obtained at 
� = 0.1 with 3.2%, where CF+ scheme achieves 3.8%.

Fig. 3  Improvements on quality of predictions by varying � values for CF+ and CF++ schemes on ML 
dataset

Fig. 4  Improvements on quality of predictions by varying � values for CF+ and CF++ schemes on NF 
dataset
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Improvements in online performance, on the other hand, are vast. As can be 
followed from Figs.  5 and 6, CF+ scheme introduces extra burden compared 
to traditional CF scheme and degrades performance by −  5.5% in ML data set. 
However, losses due to integration of the similarity function is negligible in 
NF data set due to extreme sparsity. Also, improvements due to preprocessing 
are significant for both data sets. As � grows, online performances enhances for 
CF++ scheme, as expected. Improvements are about 98 and 77% for ML and NF 

Fig. 5  Improvements on online performance by varying � values for CF+ and CF++ schemes on ML 
dataset

Fig. 6  Improvements on online performance by varying � values for CF+ and CF++ schemes on NF 
dataset
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data sets, respectively, where the highest quality of predictions are obtained, i.e., 
� = 0.5 for ML and � = 0.1 for NF. We can conclude that employing the proposed 
preprocessing, at a level of satisfactory quality of predictions is obtained, is also 
beneficial for improving scalability.

6.3.3  Evaluation in privacy‑preserving schemes

After examining the effects of the proposed preprocessing scheme on non-private 
CF schemes and determining optimum threshold values for different data sets, we 
experimented on privacy-preserving environment. We first investigated the effects 
of applying the similarity function onto traditional PPCF algorithm, which is 
called PPCF+ scheme during experiments. We then implemented the preprocess-
ing method onto PPCF+ and derive PPCF++ scheme. Similar to the experiments 
in non-private environment, we scrutinized the success of PPCF+ and PPCF++ 
schemes against traditional PPCF approach by varying � from 0.05 to 0.5. For data 
disguising procedure, we kept standard deviation of produced random values ( �max ) 
constant because there is no need to investigate such parameter’s effects as it obvi-
ously deteriorates accuracy inline with the distortion amount, as shown in Fig.  2. 
Effects of different distortion values on quality of predictions is studied in [30, 
60]. However, due to the results of [64, 65], utilizing � ≤ 1 may permit recovery 
of original data from perturbed values. Thus, we kept �max = 1.5 during the experi-
ments. Also, we kept maximum forgery rate ( �max ) constant at 25% as investigating 
its effects is out of scope of this study. Likewise, effects of varying �max values on 
accuracy can be found in [60]. In addition, due to randomized selection of � and � 
by each user, the experiments were repeated 100 times and average of the outcomes 
are demonstrated. Overall comparison results in privacy-preserving environment for 
ML and NF datasets are presented in Figs. 7 and 8, respectively.

Fig. 7  Improvements on quality of predictions by varying � values for PPCF, PPCF+, and PPCF++ 
schemes on ML dataset
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As demonstrated in Figs. 7 and 8, the similarity function is effective in privacy-
preserving algorithms, as well. PPCF+ scheme manages to reduce the error values 
by 3.42% (from 0.818 to 0.790) in ML data set and 3.53% (from 0.881 to 0.849) 
in NF data set compared to original PPCF scheme. Such improvements are simi-
lar to the ones achieved in non-private schemes. In addition, applying preprocess-
ing causes further improvements in quality of predictions. For � = 0.05 and � = 0.1 
values, PPCF++ scheme performs better than PPCF+ in both data sets. However, 
increased � values like � = 0.5 cause too much loss of information; and therefore, 
accuracy diminishes. However, we can conclude that for � ≤= 0.2 , PPCF++ 
scheme is able to perform at least as good as PPCF+ scheme in terms of accu-
racy for both data sets. Although improvements are similar to non-private schemes’ 
experimental results, in order to present a clear overview, we demonstrated elapsed 
time to produce predictions in Table 4.

Table 4 presents elapsed time to produce five predictions for each active user in 
any data set, i.e, 9060 predictions for ML data set and 15,000 predictions for NF 
data set. It is clearly seen that PPCF+ scheme brings extra online computational 
cost and the proposed PPCF++ scheme enhances scalability with increasing � val-
ues. Combining these experimental results with the ones presented in Figs. 7 and 8, 

Fig. 8  Improvements on quality of predictions by varying � values for PPCF, PPCF+, and PPCF++ 
schemes on NF dataset

Table 4  Online performance by varying � for PPCF, PPCF+, and PPCF++ schemes

PPCF PPCF+ PPCF++

� = 0.05 � = 0.1 � = 0.2 � = 0.3 � = 0.4 � = 0.5

ML 1285 1351 416 171 70 37 28 26
NF 18,822 18,891 5247 4235 2964 1740 1019 838
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we can conclude that applying the preprocessing technique with � = 0.2 provides 
an optimal performance in terms of both accuracy and scalability. Since in such 
arrangement, quality of predictions is very close to the values achieved by PPCF+ 
scheme, yet online performance is enhanced by about 94% for ML and 84% for NF 
data sets.

7  Insights and limitations

Our study has introduced a novel preprocessing scheme integrated with a target 
item-based similarity function to enhance the scalability and accuracy of PPCF 
systems. The development of this approach was motivated by the challenges 
faced in memory-based collaborative filtering schemes, particularly those related 
to scalability, privacy, and the accuracy of recommendations. By applying a pre-
processing method that eliminates relatively dissimilar items from the prediction 
estimation process, we achieved significant improvements in both conventional 
and privacy-preserving environments, enhancing system efficiency without com-
promising prediction accuracy. In a nutshell, the following summarizes the gained 
insights from the performed extensive set of experiments.

• The proposed preprocessing approach effectively addresses the scalabil-
ity issues traditionally associated with memory-based collaborative filtering 
schemes by focusing on reducing the online response time significantly. This 
is achieved through the elimination of items that show relatively low similar-
ity to the target item, thereby reducing the dimensions of the original user-
item matrix and enhancing system performance.

• Our experiments, conducted on real datasets, have demonstrated that our pre-
processing scheme significantly alleviates scalability problems in both con-
ventional and privacy-preserving settings, while also improving accuracy 
within the privacy-preserving frameworks. These findings underscore the 
adaptability and effectiveness of our method in maintaining high performance 
under privacy constraints.

• The introduction of a target item-based similarity function, alongside our pre-
processing scheme, showcases a promising direction for enhancing the quality 
of PPCF recommendations. This approach not only improves prediction accu-
racy by considering the relevance of items to the target item but also demon-
strates the potential for scalable PPCF recommendations.

On the other hand, our study presents two significant limitations. Firstly, the 
experimental evaluation was carried out using specific datasets, and although the 
results are promising, the applicability of our preprocessing scheme and similar-
ity function might differ across various domains and datasets. This necessitates 
further research to examine the generalizability of our approach to diverse CF 
applications and to evaluate its performance under different scenarios. Secondly, 
our study recognizes the challenge of balancing the trade-offs between privacy, 
accuracy, and computational efficiency. Although our approach contributes 
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to the field by improving scalability and accuracy, finding an optimal equilib-
rium among these factors remains a complex challenge that warrants continued 
investigation.

In conclusion, our study provides valuable insights into enhancing the scal-
ability and accuracy of PPCF systems through a novel preprocessing scheme and 
a target item-based similarity function. However, we recognize the limitations of 
our experimental evaluation and the need for further research to explore the full 
potential and applicability of our approach across different collaborative filtering 
scenarios.

8  Conclusions and future work

We investigated how to apply a target item-based similarity function on privacy-pre-
serving collaborative recommender systems, which previously was adapted on non-
private schemes and performed well. We theoretically examined how to integrate 
such similarity function onto privacy-preserving collaborative filtering architecture 
and showed its applicability. We also studied how individual privacy is preserved 
by following such scheme and quantified provided privacy levels due to the per-
turbation protocol. However, applying the similarity function introduces slight extra 
computational costs to the existing schemes. In order to alleviate this problem, we 
utilized item similarities, which were already computed for the similarity function. 
Motivating from the same idea of ranking item ratings with target item similarities, 
we proposed to eliminate relatively dissimilar items from the original matrix before 
calculating user similarities. Such elimination reduces the size of user-item matrix, 
which helps scaling the system. After analyzing our proposed preprocessing scheme 
with respect to overhead costs, we performed several experiments to scrutinize the 
effects of the scheme in both non-private and privacy-preserving environments. 
According to overall empirical outcomes, implementing the similarity function 
onto privacy-preserving framework results promising as the quality of predictions 
are enhanced like in non-private schemes. Moreover, the proposed preprocessing 
scheme achieves slightly better accuracy in privacy-preserving framework. On the 
other hand, improvements in terms of online performance are major, where tradi-
tional and accuracy-enhanced collaborative filtering and privacy-preserving collabo-
rative filtering schemes are significantly outperformed.

Although improvements are similar in both MovieLens and Netflix data sets, 
the preprocessing scheme performs slightly better in MovieLens data set because 
it is more than three-times dense than Netflix data set. Since Netflix is extremely 
sparse, it is expected that there is already limited number of co-rated items between 
users, which makes harder to improve online response time by eliminating dissimi-
lar items. Moreover, improvements in quality of predictions are also less than the 
values achieved in MovieLens data set. The same reason applies here, as well. Since 
the likelihood of finding co-rated items between users gets harder, item elimination 
causes too much loss of information, which result in worse accuracy. It was shown 
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that combining the similarity function with the preprocessing achieves better accu-
racy and online performance in privacy-preserving framework.

In addition to numerical ratings, collaborative filtering systems also deal with 
binary preference data obtained by market-basket analysis and web logs. We are 
planning to modify the similarity function and the preprocessing method to be 
applied in binary rating-based systems, as well. Moreover, rather than memory-
based prediction schemes, we are considering to build such improvement methods 
on model-based recommendation techniques and study their challenges in comput-
ing the similarity function as future research goals.
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