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Abstract
In unreliable asynchronous distributed systems with failures, achieving a causal 
view of the system across all processes is a challenging task. The Causal Reliable 
Broadcast (CRB) abstraction is used to solve this task. When CRB is implemented 
with algorithms that use logical vector clocks to timestamp broadcast events, the 
causal relationships between broadcast events can be detected with maximal accu-
racy. However, this timestamping mechanism used by CRB might not be useful for 
systems that need to reason about the causal relationships among both broadcast and 
delivery events. To address this challenge, the paper proposes a Causal Timestamp 
System (CTS) based on vector clocks that timestamps broadcast and delivery events 
capturing with maximal accuracy the causal relationships among those events. CTS 
simplifies the formal verification and testing of implementations of CRB algorithms 
based on CTS. Additionally, a new Global State Monitoring (GSM) algorithm is 
proposed, tailored to a distributed system that uses CRB with CTS. GSM enables 
finer-grained assessment of global states and application-dependent predicates of 
that system. We clarify these concepts with an IoT example.
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1  Introduction

In unreliable asynchronous distributed systems with failures, getting a causal 
view of the system in all processes is a complex task. These systems are prone 
to perturbations such as process crashes, loss, duplicity or disordering of mes-
sages, or delays in processing and communication. The Causal Reliable Broad-
cast (CRB) abstraction [1] serves as a critical component for obtaining in each 
process a coherent causal view of the system, where all processes observe cause 
events that happened–before their corresponding effect events [2].

The CRB abstraction reliably disseminates messages in a group of processes 
and delivers them in causal order in every process of the group. CRB offers 
respectively the cBroadcast(m) and the cDeliver(m) events to broadcast and 
deliver in causal order a message m. If the cBroadcast of m′ was caused by the 
cBroadcast of m, we say that m causally precedes m′ . Also, the causal order 
delivery ensures that m′ is cDelivered after m in every process. However, if the 
cBroadcast of m′ is concurrent with the cBroadcast of m, we say that m is con-
current with m′ . Then m and m′ can be cDelivered in any order. We call CRB 
algorithm any algorithm that implements the CRB abstraction. CRB algorithms 
that implement the CRB abstraction differ in the degree of accuracy to which they 
capture the causal relation among cBroadcast messages.

We say that a CRB algorithm has maximal accuracy with respect to a given set 
of events if it entirely reflects the partial order defined by the causality relation 
among those events. That is, it reflects not only if events are causally related, but 
also if events are concurrent.

The maximal causal accuracy is valuable for applications that use the CRB 
abstraction such as geo-replicated data stores. In [3], update operations on rep-
licas are implemented using an underlying CRB service for causally ordering the 
updates along with scalar timestamps to totally order concurrent updates. Some 
authors use an implementation of the CRB abstraction that makes visible to the 
application layer the maximal accuracy information in order to identify and 
totally order concurrent messages as it is proposed in [4].

The causal history of a message m contains all messages that causally precede 
m. CRB algorithms with maximal causal accuracy can piggyback in a message m 
the causal history of m with either an unbounded list of all messages that caus-
ally precede m or a bounded and compact representation of the causal history of 
m [1].

A compact representation of the causal history of a message can be obtained 
with logical clocks defined by Lamport [2]. A logical clock is a software arti-
fact that assigns timestamps to process events. These timestamps capture the hap-
pened–before relation among events, implementing in that way a logical clock 
that is global to all processes. Vector clocks are logical clocks that timestamp 
events using vectors [5, 6]. In the CRB algorithm by Birman et al. [7], a global 
clock is implemented defining in every process a local vector clock that ticks just 
before a cBroadcast event happens. A message is cBroadcast piggybacking the 
process current local clock value as a timestamp.
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The causal relation among cBroadcast events is captured with the maximal accu-
racy when these events are timestamped with logical vector clocks that have at least 
the size of the group [8]. These logical clocks with maximal accuracy are said to 
characterize causality [5, 6]. The drawback of piggybacking timestamps is the com-
munication overhead that is not negligible for large groups. Indeed, CRB algorithms 
based on vector clocks that characterize causality are not scalable.

As far as we know, there are two families of techniques that could be used to 
improve the scalability of CRB algorithms based on vector clocks. The first one is 
the compression of causal information to be piggybacked in a message: incremen-
tal changes in vector timestamps [7, 9, 10], interval tree clocks [11], causal bar-
riers [12] and resettable encoded vector clocks [13]. Regardless of the technique 
employed, causality characterization requires the challenge of managing either the 
linear growth of causal information within messages or within process storage. In 
this family, we also consider the clocks of constant size that are scalable with respect 
to the number of processes, such as plausible clocks [14] and the probabilistic vector 
clocks known as Bloom clocks [15, 16]. Bloom clocks exhibit the best performance 
among vector clocks of any size for determining causality. However, both types of 
clocks may predict false causal relations among messages.

The second family of techniques takes advantage of overlay network topologies: 
process groups connected with FIFO channels [17, 18] and flooding in FIFO overlay 
network topologies [19, 20]. Unfortunately, none of these overlay network topology 
techniques characterize causality.

As a result, we have decided to use plain vector clocks to track causality, because 
they provide maximal accuracy. This solution is good enough in some distributed 
domains such as in geo-replicated, domotic or cloud systems that might not need 
scalability.

We have identified that CRB algorithms based on vector clocks [7, 21, 22] 
only capture with the maximal causal accuracy the causal relation among cBroad-
cast events and their corresponding messages. In this paper we propose to extend 
the causal tracking to cDeliver events. The CRB algorithm by Birman et al. [7] is 
the best-known CRB algorithm with maximal accuracy that uses vector clocks to 
timestamp globally cBroadcast events but not cDeliver events. Consequently, we 
claim that with Birman’s CRB algorithm it is not possible to determine the hap-
pened–before relation among cBroadcast and cDeliver events using its timestamp 
system.

Note that we do not claim that Birman’s CRB needs to associate additional times-
tamps to cDeliver events in order to ensure causal delivery but for other significant 
purposes, external and complementary to the distributed application, such as testing 
and verification. For example, as it was pointed out by [23], the lack of global times-
tamping of cDeliver events in Birman’s CRB algorithm makes it very difficult to 
systematically test and verify the properties of the CRB abstraction.

Regarding with testing difficulties, the correctness of a run of a library that imple-
ments the Birman’s CRB algorithm cannot be tested dynamically if the test is done 
with an external passive monitor [24]. The reason is because the monitor cannot 
obtain consistent global states from the causal ordering of cBroadcast and cDeliver 
events timestamps due to the lack of global timestamping of cDeliver events.
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Regarding to formal verification difficulties in Birman’s CRB libraries, the lack of 
cDeliver global timestamping can yield to implementations that differ in the inter-
pretation of cDeliver events. This fact causes that the verification of CRB properties 
[10] in these libraries has to depend on the implementation rather than on the defi-
nition of the algorithm. For example, these libraries need to define in each process 
when a self-cDeliver or cDeliver of a message happens, and check locally the causal 
delivery.

To sum up, although there are techniques for scaling vector timestamp mecha-
nisms, not all of them preserve the maximal causal accuracy. Moreover, CRB algo-
rithms based on vector clocks only capture the causal ordering of cBroadcast events. 
Not capturing with the maximal accuracy cDeliver events makes it more difficult the 
verification of CRB algorithms and the implementation of external passive monitors 
for testing properties of runs of those algorithms. Finally, we want to emphasize that 
implementing the CRB abstraction with techniques based on clocks for timestamp-
ing cDeliver events and implementing an external passive monitor is not trivial, as 
we will show in this paper.

Contributions In this paper we propose and formally define a new Causal Times-
tamp System (CTS) based on vector clocks that timestamps not only cBroadcast but 
also cDeliver events of the CRB abstraction. CTS simplifies the formal verification 
and testing of the CRB implementations. We also propose a new passive monitor 
system for testing those CRB implementations based on CTS. In particular, the con-
tributions of this paper are as follows:

•	 We define a new CRB algorithm and its corresponding timestamp system called 
CTS that timestamps cBroadcast and cDeliver events.

•	 We formally specify the CTS properties according to the timestamp framework 
of [14] and prove that the CTS respects the properties of a timestamp system and 
characterizes causality with respect to cBroadcast and cDeliver events. We also 
prove that CTS extends the maximal accuracy with cDeliver events.

•	 We present and prove the correctness of a new passive Global State Monitor-
ing (GSM) algorithm for monitoring distributed applications that use our CRB 
with CTS. A GSM algorithm is suitable for making global predicate evaluations 
required by applications such as detecting deadlocks and termination, or for test-
ing and debugging. This new GSM monitors cBroadcast and cDeliver events, 
hence it can generate a finer grained evaluation of consistent global states and 
predicates than other passive monitors that use Birman’s CRB algorithm [24]. 
This is because our CRB algorithm timestamps cDeliver events.

•	 We show a domotic application example that uses both our GSM and CRB with 
CTS, in order to show how they work and in order to compare them with a pas-
sive monitor that uses Birman’s CRB. Note that with the GSM algorithm and this 
example we show the usefulness of the CRB implemented with CTS due to its 
timestamping of cDelivers.
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Roadmap
Section  2 reviews in detail the Birman’s algorithm that implements the CRB 

abstraction and describes the motivation of our work. Section 3 details the system 
model and presents some definitions. Section  4 describes formally the primitives 
and properties of the CRB abstraction. Section 5 introduces a new Causal timestamp 
system (CTS) for the implementation of the CRB abstraction with vector clocks. 
Section 6 introduces a novel Global State Monitoring (GSM) algorithm for applica-
tions that communicate through CRB implementations based on our CTS. Section 7 
introduces an example of a distributed application implemented in two ways: (1) 
with our CRB with CTS and monitored by our GSM, and (2) with Birman’s CRB 
monitored by a global state monitor. Finally, this section compares the degree of 
event global resolution of both monitoring approaches. Section 8 reviews the related 
work. We conclude in Sect. 9.

2 � Problem statement

This section reviews in detail the Birman’s algorithm [7] that implements the CRB 
abstraction using logical vector clocks that timestamp cBroadcast events. We also 
describe the problems caused for not timestamping cDeliver events.

CRB abstraction [1] is an important group communication tool for reliably deliv-
ering in causal order the same set of messages to all correct processes of a group. 
CRB abstraction is formally defined by the cBroadcast and cDeliver events and a 
set of properties [25]. cBroadcast(m) reliably sends a message m to all processes 
of the group including the sender, and cDeliver(m) delivers m in causal order to the 
process application layer. If the cBroadcast of m′ could have been caused by the 
cBroadcast of m, we say cBroadcast of m potentially caused the cBroadcast of m′ 
( m

c
−→ m� ). The CRB causal order delivery property says that if the cBroadcast of 

a message m′ was caused by the cBroadcast of a message m, m must be delivered 
before m′ in all correct processes:

Figure 1 shows an example of a run of a distributed application made of three pro-
cesses that do not fail (correct processes) and that communicate using the CRB 
abstraction. Process p0 cBroadcasts m0 to all processes including itself in the event 
e00 and, according to the CRB validity property, self-cDelivers m0 in the event e01 . 
Process p1 cDelivers m0 in the event e10 and then cBroadcasts m1 in the event e11 . As 
m0 is a potential cause of m1 , all processes including the sender, have to cDeliver m0 
before m1 , according to the causal delivery property (1). Due to the asynchrony of 
the system, p2 receives m1 before m0 , delaying the cDeliver of m1 until the cDeliver 
of m0 . In process p1 , after the cDeliver of m1 , the messages m2 and m3 can be cDeliv-
ered in any order as the cBroadcast event e03 of m2 and the cBroadcast event e22 of 
m3 are concurrent events. Note that all processes cDeliver the same set of messages 
( m0 , m1 , m2 , m3 ) according to the CRB agreement property, because there are not 
faulty processes.

(1)m
c
−→ m�

⇒ cDeliver(m) → cDeliver(m�)
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Algorithms that implement the CRB abstraction need to determine the hap-
pened–before relation among cBroadcast events of the messages they send in order 
to cDeliver their corresponding messages in causal order. CRB Birman’s algorithm 
[7] is a well-known implementation of the CRB abstraction that offers the maximal 
accuracy with respect to cBroadcast events. It defines the causal delivery ordering 
for cBroadcast messages m and m′ on a process p according to the following rule:

The relation 
p
−→ is a local relation on process p that captures the event program order 

on p as follows: two events a and b are related as ( a
p
−→ b ) if they happen on p and a 

occurs before b.
Birman’s algorithm uses vector clocks of the size of the number of processes of 

the system [5, 6] to timestamp cBroadcast events. These timestamps are used to 
decide if a cBroadcast event occurs before another cBroadcast event. The mech-
anism of vector clocks assigns to an event a vector value called timestamp that 
respects the happened–before relation. As these vector clocks have one position for 
each process of the group, it is also possible to determine if two events are concur-
rent looking at their vector timestamps. Given two vector timestamps V and W in a 
system of P processes, the comparison of them is done according to the following 
rules:

Birman’s CRB algorithm captures causality among cBroadcast events precisely. 
That is, given two messages m and m′ and their corresponding timestamps VT(m) 
and VT(m�) assigned by this CRB algorithm, it is true that:

(2)m
c
−→ m�

⇒ cDeliver(m)
p
−→ cDeliver(m�)

V ≤ W ⟺ ∀i ∈ {0,… , |P| − 1} ∶ V[i] ≤ W[i]

V < W ⟺ V ≤ W ∧ ∃j ∈ {0,… , |P| − 1} such that V[j] < W[j]

V || W ⟺ V ≮ W ∧W ≮ V

Fig. 1   Example of causal broadcast timestamping with Birman’s algorithm
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Now, we describe in detail the Birman’s CRB algorithm in a system of a set P of 
processes. Each process pi maintains a local clock Vi that is a vector of non-negative 
integers with one entry per process. Vi is updated according to the following rules: 

R0)	Initialization: 

R1)	Before the cBroadcast of a message m is generated at site i: 

 Then, m is cBroadcast piggybacking < i,VT(m) > , where i is the identifier of 
the sender, and VT(m) is the timestamp of the cBroadcast event of m taking the 
value of Vi.

	   When a process pi receives a message m with timestamp VT(m) from pj , the 
process pi delays the cDeliver of m until the following conditions are both ful-
filled: 

R2)	Before a process pi cDelivers m with timestamp VT(m), pi updates its vector clock 
as: 

The vector timestamp VT(m) assigned to the cBroadcast of message m counts the 
number of messages cBroadcast by each process that causally precede m.

Figure 1 shows an example of the execution of Birman’s CRB algorithm. At the 
beginning of the execution, all processes initialize their local clocks according to 
rule R0. Then, process p0 cBroadcasts the message m0 in the event e00 , updating 
its vector clock and timestamping m0 according to rule R1. Since the timestamp 
(1, 0, 0) of cBroadcast event e00 is less than the timestamp (1, 1, 0) of cBroadcast 
event e11 (3), it holds that cBroadcast(m0) happened–before cBroadcast(m1) . Events 
e03 and e22 are concurrent because looking at their respective timestamps (2, 1, 0) 
and (1, 1, 1), e22 did not happen before e03 and vice versa. In p2 , after receiving m1 , 
the cDeliver event of m1 is delayed until m0 is cDelivered, according to conditions 
(4a) and (4b) of rule R1, because m0 happened–before m1 . Finally, when a cDeliver 
event of a message happens in any process, its local clock is updated according to 
rule R2. For example, after cDeliver event e21 at process p2 , the vector clock of p2 
has the value (1, 1, 0).

As it has been described above, Birman’s CRB algorithm ensures the causal 
delivery of broadcast messages by means of a vector timestamp system that 

(3)m
c
−→ m�

⟺ VT(m) < VT(m�)

i = process identifier

∀j ∈ {0,… , |P| − 1} ∶ Vi[j] = 0

Vi[i] = Vi[i] + 1

(4a)Vi[j] + 1 = VT(m)[j]

(4b)Vi[k] ≥ VT(m)[k],∀k ≠ j

∀k ∈ {0..|P| − 1} ∶ Vi[k] = max(Vi[k],VT(m)[k])
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timestamps cBroadcast events. As the timestamping of Birman’s CRB algorithm 
only defines how to timestamp cBroadcast events and how to compare them to 
determine if they are causally related (3), it is not possible to detect if a cDeliver 
event happened-before any other event (be it cBroadcast or cDeliver). In other 
words, Birman’s CRB algorithm timestamping falls short in guaranteeing and iden-
tifying causal relationships among events of both cBroadcast and cDeliver types, 
such as cBroadcast → cDeliver , cDeliver → cBroadcast , and cDeliver → cDeliver . 
As a consequence, causality in Birman’s algorithm can only be established among 
cBroadcast events using timestamps.

Although Birman’s timestamping does not pose any problem for the correct 
causal delivery of broadcast messages, it makes difficult to design systems imple-
mented with Birman’s CRB algorithm that need to reason about cDeliver events. 
For example, formal methods for verification and testing the correctness of Birman’s 
CRB implementations cannot use the cDeliver timestamps and then they need to 
adopt ad hoc implementation-dependent solutions, as we show below.

Problems with formal verification techniques. Formal verification techniques can 
be used to establish the correctness of Birman’s CRB libraries regarding to the for-
mal properties of the CRB abstraction [10]. A Birman’s CRB library is causally con-
sistent if it verifies the CRB properties for all its possible executions. Examples of 
the difficulty of formal verification of Birman’s CRB libraries can be seen in [26] 
and [27]. In both libraries, the causal delivery property needs to be verified locally 
in every process because of the lack of global cDeliver timestamping. In both cases 
they need to build local histories assigning ad hoc local timestamps to cDeliver 
events in each process p. In [27], the timestamp of cDeliver of m in p is the value of 
the local clock when this event happened in p, while in [26], the timestamp of cDe-
liver of m is the value of the timestamp of the cBroadcast of m.

Besides the causal delivery property problems identified in the previous paragraph, 
the validity property of CRB that says that a correct sender of a message m always self-
cDelivers m is also hard to prove. Because the cDeliver events are not timestamped, in 
[27] the cBroadcast and its corresponding self-cDeliver events are considered as only 
one atomic event. In [26] a cBroadcast primitive is proposed to broadcast a message to 
all processes except the sender, and hence their cBroadcast primitive does not gener-
ate a self-cDeliver event. As a consequence, the agreement CRB property, which says 
that all correct processes cDeliver the same set of messages, is also implementation 
dependent, as its correctness depends on the correctness of the validity property.

As a result of the lack of timestamping of cDeliver events, the use of formally 
verified Birman’s CRB libraries requires to know how they interpret and imple-
ment the CRB properties. In contrast, our causal timestamp system CTS globally 
timestamps cBroadcast and cDeliver events, and thus the formal verification of CRB 
properties on libraries that implement our CRB algorithm with our CTS would not 
depend on particular interpretations.

Problems with testing techniques. Testing techniques applied to libraries imple-
menting the Birman’s CRB algorithm check whether a given library execution is cor-
rect regarding the CRB properties. One technique is to determine if CRB properties 
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applied to any global state of a run of the Birman’s CRB library are being satisfied. 
A way to construct global states is to use an external monitor process executing con-
currently with the system that uses the library. The monitor receives notifications of 
cBroadcast events that happen in a run, obtaining a global causal sequence of these 
events in a run. There are not cDeliver events in the causal sequence observed by the 
monitor. Thus, the monitor can only check the property of causal order delivery of a 
message m indirectly if it observes the cBroadcast of another message m′ that caus-
ally depends on m. Note that this cBroadcast of m′ could never happen as it depends 
on the logic of the application.

To sum up, the lack in Birman’s CRB algorithm of detection of causality among 
cBroadcast and cDeliver events by means of timestamps makes not possible the 
global predicate evaluation of CRB properties using a passive monitor to obtain 
global states. Conversely, with our global state monitoring algorithm GSM, we can 
monitor runs of libraries that implement our CRB algorithm with our CTS. Our 
GSM can obtain a global causal sequence of both cBroadcast and cDeliver events to 
calculate global states and to evaluate global predicates, in addition to the evaluation 
of the properties of CRB abstraction.

As we show in this paper, the timestamping of cDeliver events, in addition to 
cBroadcast timestamping, improves the causal accuracy captured by the Birman’s 
CRB algorithm, providing a finer grained detection of causality very useful for 
applications such as GSM and verification libraries.

3 � System model and definitions

We consider an asynchronous fail-silent distributed system composed by a finite set 
P of processes that do not share neither memory nor clock. We assume crash-stop 
processes that may fail by crashing. A process is said to be correct if it does not 
fail during all execution of the system, otherwise it is said to be faulty. Each pair of 
processes are connected via asynchronous reliable point-to-point links [25]. We do 
not consider any order of delivery in the channels. Processes communicate through 
these reliable channels exchanging a set of M messages through a reliable broadcast 
communication service.

Every process in the system is composed of a stack of asynchronous event-based 
service abstractions. From top to bottom: Application layer, Causal Reliable Broad-
cast abstraction layer, Reliable Broadcast abstraction layer and Reliable Point-to-
point abstraction layer. Each service abstraction is modeled with a name and some 
properties, and it offers an API interface based on events it accepts (requests) and 
produces (indications), and it is implemented as a state machine, whose transitions 
are triggered by the reception of events.

Events of interest. Events generated in the layers are called internal events. Events 
generated outside of the abstraction stack are called external events (i.e., indication 
events of message delivery to the Point-to-point communication abstraction). Events 
are handled in mutual exclusion way in each stack. Internal events have priority over 



18737

1 3

Timestamp system for causal broadcast communication﻿	

external events and events with the same priority are handled in FIFO order. In a 
distributed execution, we consider as events of interest the cBroadcast and cDeliver 
events defined by the Causal Reliable Broadcast abstraction. We will denote by H 
the set of all events cBroadcast and cDeliver happened in a distributed execution. 
Now we define the properties of the reliable broadcast abstraction that are used by 
the causal reliable broadcast abstraction to offer reliability.

Definition 1  (The Reliable Broadcast Abstraction) The reliable broadcast abstrac-
tion reliably sends and delivers a message m ∈ M to all processes ∈ P , including the 
sender process. This abstraction defines the request event rBroadcast and the indica-
tion event rDeliver. A process invokes the event rBroadcast to request the reliably 
broadcast of a message by this abstraction, and the reliable broadcast abstraction 
triggers the event rDeliver to deliver a message to the upper layer of a process.

This abstraction has the following properties [10]:

•	 RB1. Integrity: For any message m, every correct process rDelivers m at most 
once and only if m was previously rBroadcast by sender of m.

•	 RB2. Validity: If a correct process p rBroadcasts a message m, then p eventually 
rDelivers m.

•	 RB3. Agreement: If a correct process rDelivers a message m, all correct pro-
cesses in the system must eventually rDeliver m.

4 � The causal reliable broadcast abstraction

Since the reliable broadcast abstraction delivers messages in any order, it is not pos-
sible to determine with this abstraction if a message could be the cause of broadcast-
ing other messages. However, the causal broadcast abstraction captures this potential 
causality among messages, delivering first the cause messages and then their effect 
messages.

The causal broadcast abstraction generates cBroadcast and cDeliver events. The 
event < p, cBroadcast | m > broadcasts a message m ∈ M from p to all processes 
∈ P . The event < p, cDeliver | q,m > delivers in Causal order a message m to pro-
cess p from q. The causal order delivery requires to know if two messages are caus-
ally related to deliver them in such order. We now define the Causal order relation 
among messages. This relation uses the Lamport’s happened–before relation [2] 
particularized for capturing the potential causality among cBroadcast and cDeliver 
events ∈ H.

Definition 2  (happened–before Relation ( → )) Considering two events a, b ∈ H , this 
relation is defined as follows:

a → b ⟺ ∃p ∈ P:a, b are two events of p and a occurs before b
∨ ∃ p, q ∈ P:(a =< p, cBroadcast|m >) ∧ (b =< q, cDeliver|p,m >)
∨ ∃ c ∈ H:a → c ∧ c → b
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An event a is concurrent with b and it is represented as a || b iff a ↛ b and b ↛ a.

Definition 3  (Causal Order Relation 
c
−→)

Two messages m,m� ∈ M , are related by 
c
−→ , if the cBroadcast of m′ may have 

been potentially caused by the cBroadcast of m. More formally, ∀a, b ∈ H , 
∀p, q ∈ P:

Messages m and m′ are concurrent, represented as m ||c m′ , if 
not(m

c
−→m�) ∧ not(m�

c
−→m).

When m
c
−→m� we say that m is a causal predecessor of m′ and m′ is a causal suc-

cessor of m. The causal history of m are made up of all predecessors of m.
The Causal Order delivery rule describes the delivery of messages in causal 

order.

Definition 4  (Causal Order Delivery Rule)
The Causal Order Delivery rule holds if for any pair of messages m,m� ∈ M 

cBroadcast by src and src′ respectively and related by 
c
−→ , the cDeliver of m 

happened–before the cDeliver of m′ in all processes of the system. Formally, 
∀p, src, src� ∈ P:

The causal broadcast abstraction obeys the causal delivery rule but does not 
assure reliability guarantees. When the causal broadcast abstraction also respects the 
reliable broadcast abstraction guarantees (Def. 1), it is called causal reliable broad-
cast abstraction. This abstraction has the following properties:

•	 CRB1-CBR3 are the properties of Integrity, Validity and Agreement described 
in the reliable broadcast abstraction (Def. 1).

•	 CRB4. Causal delivery: messages are delivered by all processes according to 
causal delivery rule. (Def. 4).

In the next section, we define a causal timestamp system valid for both causal broad-
cast and causal reliable broadcast abstractions. For the sake of simplicity, and from 
now on, we define the causal timestamp system only for the causal reliable broadcast 
abstraction.

5 � Timestamping system for causal broadcast

In distributed systems, time can be considered a logical abstraction [2]. A timestamp 
system has a logical clock that stamps every event of interest [14]. A timestamp 
represents the instant in logical time in which an event occurs from the point of view 

m
c
−→m′ ⟺ (a → b) ∧ (a =< p, cBroadcast|m >) ∧ (b =< q, cBroadcast|m′ >)

m
c
−→m�

⇒< p, cDeliver| src,m >→< p, cDeliver|src�,m� >
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of some process in the system. The causal broadcast implementations based on vec-
tor clocks as shown in [21] and [7] define a timestamp framework for timestamping 
and reasoning about the happened–before relation of any pair of cBroadcast events 
∈ H ; however they do not define how to compare any pair of events by their times-
tamps. For example, it is not defined if a cBroadcast event of m happened–before 
the cDeliver event of any other message m′ using timestamps. We propose a Causal 
Timestamp System (CTS) for the causal broadcast abstraction (Def. 3 and Def. 4) 
that timestamps all events in H. As CTS characterizes causality [14], it lets us rea-
son about the happened–before relation of any pair of events, no matter if they are 
cBroadcast or cDeliver events. We have modeled CTS according to timestamp sys-
tems defined by Torres-Rojas et al. [14] but we have also included the Causal Order 
delivery condition of messages.

In a CTS for a system with P processes, each process pi keeps a local clock in the 
pair ( seqi , Vi ). The clock component seqi counts the number of messages cBroadcast 
by pi , while the clock component Vi is a vector of P entries where Vi[j] counts the 
number of messages cBroadcast by pj and cDelivered in pi.

CTS is defined as a tuple (H, S, CT.stamp, CDC, RS , RCT ), where: 

1.	 H is the global history of causal broadcast (cBroadcast) and causal delivery 
(cDeliver) events of the system.

2.	 S is the set of timestamps. A timestamp is an identifier of the form (i, seqi,Vi) , 
where i is a non negative integer that identifies the process pi , seqi is the number 
of messages cBroadcast by pi and Vi is a P-vector of the set ℕ|P| of integers, that 
represents the cDelivered messages in pi.

3.	 CT.stamp is a global identifier function that acts as a logical clock assigning 
to each event a timestamp of S. That is, CT .stamp ∶ H → S . If a is a cBroad-
cast or cDeliver event produced in a process pi , the event has the timestamp 
CT .stamp(a) = CTi.stamp(a) . For any process pi , the function CTi.stamp is defined 
using the following rules: 

	RV0)	 Initialization: 

	RV1)	 Before the cBroadcast event a of message m is generated at site i: 

 Message m is broadcast with a timestamp CTi.stamp(a) = (i, seqi,Vi).
	RV2)	 Before a message m with the timestamp (j, seqj,Vj) , that fulfills the causal 

delivery condition CDC, is cDelivered at site i: 

i = process identifier

seqi = 0

∀j ∈ {0,… , |P| − 1} ∶ Vi[j] = 0

seqi = seqi + 1

∀k ∈ {0,… , |P| − 1} ∶ Vi[k] = max(Vi[k],Vj[k])

Vi[j] = Vi[j] + 1
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	    In a timestamp CT .stamp(a) = (i, seqa,Va) , the value Va[k] counts the number 
of events of messages cDelivered in pi from pk , up to the event a. Similarly, seqa 
counts the number of cBroadcast events happened in pi up to the event a.

4.	 CDC is the Causal Delivery Condition to deliver messages in causal order. A mes-
sage m with timestamp (j, seqj,Vj) can be cDelivered in pi , if the both following 
conditions hold: 

 That is, messages whose cBroadcast events happened–before the cBroadcast 
event of m either by the same sender (5a) or by different senders (5b) have to be 
cDelivered before m.

5.	 Set of relations RS = {<S,
S
=,

S

||} over S. Let t1 = (i, seqi,Vi) and t2 = (j, seqj,Vj) 
be timestamps ∈ S , we define the relations as follows: 

 

 The pair (S,<S) is a strict partial ordered set.
	   Being the comparison of two vectors V and W as follows: 

6.	 Set of relations RCT = {
CT
−−→ , 

CT
= ,

CT

||} over H. Let a, b ∈ H  with timestamps 
CT.stamp(a) and CT.stamp(b) over S, the relations of RCT are defined as follows: 

(5a)seqj = Vi[j] + 1

(5b)Vj[k] ≤ Vi[k], ∀k ≠ j

(6a)t1 <S t2 ⟺ ((i = j) ∧ ((seqi < seqj) ∨ (Vi < Vj)))

(6b)∨ ((i ≠ j) ∧ (Vi[i] < Vj[i]) ∧ (Vi ≤ Vj))

(7)t1
S
= t2 ⟺ (i = j) ∧ (seqi = seqj) ∧ (Vi = Vj)

(8)t1

S

|| t2 ⟺ not (t1 <S t2) ∧ not (t2 <S t1)

V = W ⟺ ∀i ∈ {0,… , |P| − 1} ∶ V[i] = W[i]

V ≤ W ⟺ ∀i ∈ {0,… , |P| − 1} ∶ V[i] ≤ W[i]

V < W ⟺ V ≤ W ∧ ∃j ∈ {0,… , |P| − 1} such that V[j] < W[j]

V || W ⟺ V ≮ W ∧W ≮ V

(9)a
CT
−−→ b ⟺ CT .stamp(a) <S CT .stamp(b)

⟺ CTS "believes" that a causally precedes b.

(10)a
CT
= b ⟺ CT .stamp(a)

S
= CT .stamp(b)

⟺ CTS "believes" that a and b are the same event.
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 As the CT.stamp is a bijective function that preserves the relations from H to S, 
the relations on the set RCT are isomorphic to their respective relations on the set 
RS.

Example of CTS timestamping
The example of Fig.  2 depicts a group of three processes communicating with 

a CRB that employs the CTS timestamp system defined above. In the example, we 
do not only show how CRB broadcasts messages and delivers them in causal order 
but also showcase how CTS captures the causal relationship between cBroadcast 
and cDeliver events. Let us observe this capturing in action in Fig.  2, analyzing 
the following type of events:

cBroadcast and self-cDeliver events. Consider the process p0 that cBroad-
casts the message m0 in the event e00 . The rule RV1 of CTS assigns to the event 
e00 the timestamp t00 with the value (0,  1,  (0,  0,  0)), as m0 is the first message 
cBroadcast by p0 and p0 has not yet cDelivered any messages. The message m0 
piggybacks the timestamp t00 . When the message m0 is received by CRB in p0 , 
m0 can be delivered in causal order according to the CDC of CTS, so the message 
m0 is self-cDelivered in p0 in the event e01 . According to the rule RV2 of CTS, the 
timestamp of the event e01 is t01 = (0, 1, (1, 0, 0)) . From the point of view of CTS, 
the timestamp t00 is earlier than the timestamp t01 because t00 <S t01 , as seen in 
(6a). As a result, from the point of view of CTS, the event e00 happened before the 
event e01 , ( e00

CT
−−→e01 ) as seen in (9).

cBroadcast and cDeliver events. CTS captures the causal relation between 
the cBroadcast event e00 of the message m0 in p0 and the cDeliver event e10 of 
the message m0 in p1 . The event e00 is timestamped as t00 = (0, 1, (0, 0, 0)) and e10 
is timestamped as t10 = (1, 0, (1, 0, 0)) . As these two events happened in differ-
ent processes p0 and p1 , CTS determines that the timestamp t00 is earlier than the 

(11)a
CT

|| b ⟺ CT .stamp(a)
S

|| CT .stamp(b)
⟺ CTS "believes" that a and b are concurrent.

Fig. 2   Example of causal broadcast and causal deliver event timestamping with CTS. All timestamps can 
be compared to determine if they are causally related or if they are concurrent
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timestamp t10 . This is true because t00 <S t10 , according to (6b) of the relation <S . 
As a result, from the point of view of the CTS, the cBroadcast event e00 occurred 
before the cDeliver event e10 , that is, e00

CT
−−→e10 as seen in (9).

cBroadcast events. The process p0 cBroadcasts the message m0 in the 
event e00 . The message m0 piggybacks the timestamp t00 = (0, 1, (0, 0, 0)) . In 
the event e11 , p1 cBroadcasts m1 . The message m1 piggybacks the timestamp 
t11 = (1, 1, (1, 0, 0)) of event e11 . According to (6b), it is true that t00 <S t11 . So 
from the point of view of CTS in (9), the event e00 happened before the event e11 , 
( e00

CT
−−→e11 ). Hence, by the causal delivery rule (Def. 4) implemented by the CDC 

of CTS, m0 is cDelivered before m1 in every process. As it can be seen in p2 , the 
cDelivery of m1 is delayed until the cDelivery of m0.

Concurrent events. With CTS it is also possible to determine if any pair of 
events are concurrent comparing their timestamps. For example, any process hav-
ing access to the timestamps can determine the causal relation between the cDe-
liver event e01 in p0 and the cDeliver event e12 in p1 . The timestamps of the events 
e01 and e12 are t01 = (0, 1, (1, 0, 0)) and t12 = (1, 1, (1, 1, 0)) respectively. From the 
point of view of CTS these timestamps are concurrent as seen in (8). So, from the 
point of view of CTS, e01 and e12 are concurrent events according to (11).

Finally, as we will prove in the theorem  1, the CTS characterizes causality, 
so CTS captures correctly and with the maximal accuracy the causal relationship 
between any pair of events, whether they are cBroadcast or cDeliver events.

Definition 5  (m
CT
−−→ m� ) The cBroadcast of a message m′ may have been potentially 

caused by the cBroadcast of another message m, denoted as m
CT
−−→ m� , if from the 

point of view of CTS the cBroadcast event a of m happened–before the cBroadcast 
event b of m′ . More formally:

m
CT
−−→m�

⟺ a
CT
−−→b

∧ (a =< p, cBroadcast|m >)

∧ (b =< q, cBroadcast| m� >)
From now on, we use CT(a) instead of CT.stamp(a) when no confusion arises.

Theorem 1  CTS characterizes causality [14]. That is, ∀a, b ∈ H : 

1.	 a = b ⟺ a
CT
= b

2.	 a → b ⟺ a
CT
−−→ b

3.	 a || b ⟺ a
CT

|| b

The first condition asserts that the CTS gives only one timestamp to each 
event, and all events have different timestamps. The second condition asserts 
that the CTS always detects the causal relation among events. The third condition 
asserts that when two events are concurrent, the CTS detects that these events 
are concurrent. In order to prove these properties, let CT(a) = (i, seqa,Va) and 
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CT(b) = (j, seqb,Vb) be the timestamps of events a and b that happened in pi and 
pj , respectively.

Proof  (1). Suppose that a = b holds. We want to prove that CTS clock only ticks once 
for each cBroadcast or cDeliver event happened. According to clock rules RV1 and 
RV2, an event only has one timestamp assigned by the CTS in the course of a run. 
Hence a = b ⇒ CT(a)

S
= CT(b) . By definition of a

CT
= b , it follows a = b ⇒ a

CT
= b.

Conversely, now suppose a
CT
= b . We want to prove that CTS clock never assigns 

the same timestamp to different events in a run. As CTS clock is a strictly monotonic 
increasing function, it never assigns in rules RV1 and RV2 the same timestamp to 
events a and b if they are different. Therefore, it follows that a

CT
= b ⇒ a = b . 	�  ◻

Proof  (2). First, we want to prove that CTS always detects the causal relation among 
any pair of events. That is, if a → b ⇒ a

CT
−−→ b . We prove by induction on the num-

ber n of events that happened after a and happened–before b. That is: P(n)  :   if 
e0 → e1 → … → en , where a = e0 ∧ b = en , then a

CT
−−→ b.

Base case. The statement holds for n = 1 , i.e., a and b are consecutive events. We 
consider two cases.

Case 1. The event a happened before b in the same process pi . We have the fol-
lowing sub-cases: 

a)	 a can be any type of event and b is a cBroadcast event. Then, by rule RV1, 
seqa < seqb , so by (6a) CT(a) <S CT(b).

b)	 a can be any type of event and b is a cDeliver event of a message m from pk . 
Then, by rule RV2, (Va[k] < Vb[k]) ∧ (Va[r] ≤ Vb[r]), ∀r ≠ k , so by (6a) 
CT(a) <S CT(b).

As in both cases a) and b) it is true that CT(a) <S CT(b) , then by (9) it is true that 
a

CT
−−→ b.

Case 2. The events a and b happened in different processes i ≠ j . Let a be the 
cBroadcast event in pi of a message m and b be the cDeliver of m in pj . Then, by 
rule RV2 and condition CDR, it is true (Va[i] < Vb[i]) ∧ (Va[k] ≤ Vb[k]), ∀k ≠ i . 

Therefore by (6b) CT(a) <S CT(b) , so by (9) it is true that a
CT
−−→ b.

Inductive step. For any k ≥ 1 , if P(k) holds, then P(k + 1) also holds. P(k + 1) ∶ 
if e0 → e1 → … → ek → ek+1 , where a = e0 and b = ek+1 , then a

CT
−−→ b.

By the induction hypothesis, we assume that n = k holds for a given k, mean-
ing P(k) is true: if e0 → e1 … → ek where a = e0 , then a

CT
−−→ ek . It follows that 

events ek and b = ek+1 are consecutive events. By the base case, ek
CT
−−→ b so it is 

true by (9) that CT(ek) <S CT(b) . By the induction hypothesis a
CT
−−→ ek , so it is true 

by (9) that CT(a) <S CT(ek) . Then, as CT(a) <S CT(ek) <S CT(b) , it follows that 

CT(a) <S CT(b) and by (9) it is true that a
CT
−−→ b.
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Since both the base case and the inductive step have been proved as true, it is 
true, for any events a, b ∈ H , that if a → b then a

CT
−−→ b.

Second, we want to prove that if CTS “believes” that a and b are causally related, 
then a happened-before b. That is, if a

CT
−−→ b ⇒ a → b . We use a proof by contra-

diction. We have to prove two cases: (1) CTS “believes” that a and b are causally 
related but a and b are concurrent and (2) CTS “believes” that a and b are causally 
related but b → a.

Case 1. Assume for the sake of contradiction that CTS “believes” that a and b 
are causally related but a and b are concurrent. That is, a

CT
−−→ b ⇒ a || b . If a and 

b are concurrent, these events necessarily happened in different processes pi and pj 
respectively. In addition, the event a cannot be a cBroadcast event of a message m in 
pi and b cannot be a cDeliver event of m in pj . Also there do not exist two events c 
and d, where c is the cBroadcast in pi of a message m and d is the cDeliver of m in 
pj , such that a → c and d → b . However, from the point of view of CTS a and b are 
causally related, so by (9) CT(a) <S CT(b) . In addition, as a and b happened in pi 
and pj respectively, by (6b), Va[i] < Vb[i] ∧ Va ≤ Vb . So, the local clock of pj had 
to cDelivered a message m from pi according to rule RV2) of CTS in a event that 
happened before b or in the same event b. This fact contradicts the fact that a and b 
are concurrent. Thus, if CTS “believes” a and b are causally related it is not possible 
that a and b are concurrent events.

Case 2. Assume for the sake of contradiction that CTS “believes” that a and b 
are causally related but b → a . If from the point of view of CTS a and b are causally 
related, then CT(a) <S CT(b) by (9). Every time an event happens, the CTS clock 
increments its value according to clock rules RV1 and RV2, so if a were to hap-
pen after b, this would imply that CT(a) could not be less that CT(b) by (6a) and 
(6b) contradicting the fact that CT(b) <S CT(a) . Thus, if CTS “believes” a and b are 
causally related it is not possible that b → a.

Since both cases have been proved by contradiction, it is true, for any events 
a, b ∈ H , that if a

CT
−−→ b then a → b . 	�  ◻

Proof  (3). Suppose that a||b. Def. 2 says that a||b ⟺ not (a → b) ∧ not (b → a) . 
Considering the property (2) of theorem 1, it is true that

a||b ⇒ not (a
CT
−−→b) ∧ not (b

CT
−−→a) . Thus, it follows by (11) that a || b ⇒ a

CT

||b.

Conversely, suppose a
CT

||b . Considering the property (2) and the definition of con-
current events in the relation CT, it is true that

a
CT

||b ⇒ not (a → b) ∧ not (b → a) . Hence a
CT

||b ⇒ a || b . 	�  ◻

Theorem 2  m
c
−→m�

⟺ m
CT
−−→m�

Proof  Let a and b be the cBroadcast events of messages m and m′ respectively, 
where a → b . As CTS characterizes causality, it is true that a → b ⟺ a

CT
−−→b . 

Therefore, by Def. 3 and Def. 5, m
c
−→m�

⟺ m
CT
−−→m� . 	�  ◻
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Theorem 3  CTS timestamps cDeliver events respect the causal order Delivery rule 
(Def. 4).

Proof  Let a and b be the cBroadcast events of messages m and m′ respectively. By 
hypothesis, message m is cBroadcast before the cBroadcast of m′ . First, consider 
that m and m′ are cBroadcast by the same sender p. According to condition (5a) 
of CTS, messages from the same sender are cDelivered in FIFO order. Therefore 
m is causally delivered in any process before m′ . Second, consider that m and m′ 
were cBroadcast by p and q with timestamps (p, seqm,Vm) and (q, seqm� ,Vm� ) respec-
tively. Then, it is true that Vm[p] < Vm� [p] . According to condition (5b) of CDC and 
theorem 2, in any process r, message m′ cannot be cDelivered unless Vm� [p] ≤ Vr[p] . 
Hence, m has already been cDelivered in process r. 	�  ◻

The important property of CTS of capturing with the maximal accuracy the hap-
pened–before relation among cBroadcast and cDeliver events improves the quality 
of the passive monitoring of distributed applications. In the next section we define 
a passive monitor for the global predicate evaluation of distributed applications that 
use a CRB with CTS and illustrate the monitoring with an example.

6 � Consistent global state monitoring algorithm for CTS

In this section we propose a consistent Global State Monitoring algorithm (GSM) 
for monitoring passively the CTS timestamp events in a distributed application, in 
order to construct consistent global states. The distributed application uses a causal 
reliable broadcast service that implements causal delivery with the Causal Times-
tamp System (CTS) described in Sect. 5. For short we refer to GSM for CTS as GSM.

This GSM algorithm is a variation of the algorithm from [24], where our monitor 
receives CTS-timestamps not only of cBroadcast events but also of cDeliver events. 
This increase in the number of correctly timestamped events will allow our monitor 
to detect more fine-grained global state transitions, and hence to get better global 
predicate evaluations. This monitor schema can be generalized as a stream process-
ing system of cBroadcast and cDeliver events that can be causally ordered according 
to their timestamps and then analyzed either with an on-line monitor or off-line from 
a database [28].

GSM algorithm assumes the model described in Sect.  3, but with some failure 
model variations described in [24]. It assumes that during the monitoring execu-
tions, application processes ∈ P do not fail. It also assumes that the monitor is a 
correct process. Application processes communicate with the monitor using reliable 
point-to-point links. Application processes use the reliable broadcast communica-
tion layer and, on top of this layer, all processes use the causal broadcast service. 
In order to let application processes to access event timestamp information, GSM 
assumes that the causal broadcast service delivers each timestamp of every event 
(cBroadcast and cDeliver) to the application process as soon as they happen. With 
all of these assumptions, the monitoring algorithm can ensure that if an application 
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process cBroadcast a message m, it will be cDelivered in any application process 
(reliable broadcast properties of Def. 1) and the notifications of the corresponding 
CTS timestamps of cBroadcast and cDeliver events will be sent reliably from the 
application processes to the monitor process.

These timestamp notifications must causally order by the monitor. For this pur-
pose, the monitor uses a clock that is implemented by two vectors for counting the 
application cBroadcast event timestamps causally delivered by GSM and the appli-
cation cDeliver event timestamps causally delivered by GSM respectively. The rea-
son that the GSM uses two vectors instead of the one used by CTS is that the monitor 
algorithm needs to causally order timestamps of cBroadcast and cDeliver notifica-
tions, while the application processes only need to causally order timestamps of 
cBroadcast messages.

6.1 � The global state monitoring algorithm

The global state monitoring algorithm has two parts: the distributed application 
A that runs P processes that communicate among them with the Causal Reliable 
Broadcast abstraction, and a passive Global State Monitor process GSM that com-
municates with each application process with a reliable point to point channel. 
Each application process sends messages to GSM containing CTS-timestamps of 
causal broadcast (cBroadcast) and causal deliver (cDeliver) events as soon as the 
events happen in the process, and GSM delivers them in causal order. The event 
< p, send | GSM,me > is used by the process p for sending a message me with the 
timestamp of an event e to GSM, while the event < GSM, deliver | me > is used by 
GSM to deliver a timestamp message me.

Let a and b be any pair of events ∈ H where a happened–before b, and ma and mb 
be the messages containing the CTS-timestamps of a and b respectively. The GSM 
process implements the following causal monitoring delivery rule:

a → b ⇒

< GSM,Deliver | ma >→ < GSM,Deliver | mb >

This rule is implemented in GSM using a local logical clock called Monitoring 
Clock (MC) and the following delivery conditions:

•	 BDC is the cBroadcast Delivery Condition. GSM causally delivers a timestamp 
me of cBroadcast event e that happened in pj when the MC clock time is greater 
than the timestamps of all cBroadcast and cDeliver events in pj that happened–
before e.

•	 DDC is the cDeliver Delivery Condition. GSM causally delivers a timestamp me 
of cDeliver event e in pj when the MC clock time is greater than all timestamps 
of events in pj that happened–before e, and for each of these events that are cDe-
liver events, the MC clock time is also greater than their corresponding cBroad-
cast event timestamps, no matter the sender.
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When a cBroadcast or cDeliver timestamp message me fulfills the condition BDC or 
DDC respectively, MC clock ticks just before GSM causally delivers me.

The clock MC is implemented by two vectors: Broadcast Vector (BV) and Deliv-
ery Vector (DV). BV counts the application cBroadcast event timestamps causally 
delivered by GSM. DV counts the application cDeliver event timestamps causally 
delivered by GSM.

More formally, the monitor GSM is defined as a tuple (H, S, MC, BDC, DDC) 
where: 

1.	 H is the global history of cBroadcast and cDeliver events of the application A.
2.	 S is the set of timestamps. A timestamp is an event identifier of the form 

(j, seqj,Vj) , where j represents the process pj where the event happened, seqj is 
the number of messages cBroadcast by pj and Vj is a P-vector of the set ℕ|P| of 
integers, that represents the cDelivered messages in pj.

3.	 MC is the Monitor Clock. The monitor GSM causally delivers a message me with 
the timestamp (j, seqj,Vj) of a cBroadcast or cDeliver event e that happened in pj . 
This causal delivery is expressed according to the following rules for updating 
MC: 

RM0)	 Initialization. ∀j ∈ {0,… , |P| − 1}:
	   BV[j] = 0

	   DV[j] = 0

RM1)	 Let me be a message received by GSM that is the timestamp of a 
cBroadcast event e in pj that fulfills the BDC condition. Before me is Deliv-
ered by GSM:

	   BV[j] = BV[j] + 1

RM2)	 Let me be a message received by GSM that is the timestamp of a 
cDeliver event e in pj that fulfills the DDC condition. Before me is Delivered 
by GSM:

	   DV[j] = DV[j] + 1

4.	 BDC is the delivery condition for cBroadcast events. A message me with times-
tamp (j, seqj,Vj) of a cBroadcast event e in pj can be causally delivered by GSM 
if the following conditions hold: 

BDC1)	 BV[j] + 1 = seqj
	   (i.e., GSM knows all cBroadcast events in pj that happened–before the 

event e)
BDC2)	 DV[j] =

∑

k

Vj[k]

	   (i. e. GSM knows all cDeliver events in pj that happened–before the event e)

5.	 DDC is the delivery condition for cDeliver events. A message me with the times-
tamp (j, seqj,Vj) of a cDeliver event e in pj can be causally delivered by GSM if 
the following conditions hold: 

DDC1)	 BV[j] = seqj
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	   (i.e., GSM knows all cBroadcast events in pj up to the event e)
DDC2)	 BV[k] ≥ Vj[k], ∀k ≠ j

	   (i.e., GSM knows at least Vj[k] cBroadcast events from pk)
DDC3)	 DV[j] + 1 =

∑

k

Vj[k]

	   (i.e., GSM knows all cDeliver events that happened–before the event e in pj)

Figure  3 shows how the algorithm delivers the event messages in the monitor 
process. It shows how the monitor delays the delivery of the message from p0 with 
timestamp [0, 1, (1, 1, 1)]. This message is a cDeliver event of a message cBroad-
cast by process p2 with timestamp [2, 1, (1, 1, 0)]. Hence the monitor must delay the 
deliver of the cDeliver event at least until it has delivered its corresponding cBroad-
cast event. Of course, it also must delay the delivery of cDeliver event until it has 
delivered all the other causal preceding events of this one such as the events with 
timestamps [0, 1, (0, 0, 0)], [2, 0, (1, 1, 0)], [1, 1, (0, 0, 0)], and [2, 0, (0, 1, 0)]

Now we will show that GSM algorithm satisfies the safety an liveness proper-
ties. First, we prove that the causal order delivery property is never violated (safety). 
Assume that GSM receives messages m and m′ from pj and pk respectively. Assume 
that m has the timestamp t = (j, seqe,Ve) corresponding to an event e in pj and m′ 
has the timestamp t� = (k, seqe� ,Ve� ) corresponding to an event e′ in pk . Let e hap-
pened–before e�(e → e�) . Next we will prove that as CTS characterizes causality 
(theorem 1), e → e′ ⇔ t <S t

′ and thus GSM must deliver m before m′.

Theorem 4  Safety property. The Monitoring Algorithm delivers messages in causal 
order. I. e. for any events e, e� ∈ H , if e → e′ then GSM delivers m before m′.

Fig. 3   Example of the global state monitoring algorithm using CTS timestamps, where GSM is the moni-
tor process and pi are the application processes that communicate using the Causal Reliable Broadcast 
service with our CTS 



18749

1 3

Timestamp system for causal broadcast communication﻿	

Proof  We give a proof by induction on the number n of events that happened 
after e and happened–before e′ . That is: P(n)  :   if e0 → e1 → … → en , where 
e = e0 ∧ e� = en then GSM delivers m before m′.

Base case. The statement holds for n = 1 , i.e., e and e′ are consecutive events. We 
consider two cases.

Case 1. m and m′ are both transmitted by the same process pj . We have the fol-
lowing sub-cases: 

a)	 e can be any type of event and e′ is a cBroadcast event, both in pj . Then by rule 
RV1 of Sect. 5, seqe < seqe′ and Ve ≤ Ve′ . Hence, under the BDC1 condition of 
Sect. 6, BV[j] + 1 = seqe� (GSM must have Delivered all the cBroadcasts from pj 
previous to the cBroadcast of m) and, under the BDC2 condition of Sect. 6, 
DV[j] =

∑

k

Ve� [k] (GSM must have Delivered all cDeliver events that happened–

before m′ ). Then GSM must Deliver m before m′.
b)	 e can be any type of event and e′ is a cDeliver event in pj . Then seqe ≤ seqe′ and 

Ve < Ve′ . Hence, under the rule DDC1 in Sect. 6, BV[j] = seqe� (GSM knows all 
cBroadcast events of j up to event e′ ) and, under the DDC3 condition in Sect. 6, 
DV[j] + 1 =

∑

k

Ve� [k] (GSM knows all cDeliveries in pj that happened–before 

e′ ), GSM must Deliver m before m′.

Case 2. m and m′ are transmitted by two distinct processes pj and pk . Message m 
corresponds to the cBroadcast event e of a message x in pj and m′ corresponds 
to the cDeliver event e′ of this message x in pk . Then, by rule RV2 of Sect.  5, 
seqe = Ve� [j],Ve[j] < Ve� [j] , and Ve[i] ≤ Ve� [i]∀i ≠ j . Hence, under the condition 
DDC2 in Sect. 6, BV[j] ≥ Ve� [j] (GSM knows at least Ve� [j] cBroadcast events from 
pj ), GSM must Deliver m before m′.

Inductive step. Show that for any k ≥ 1 , if P(k) holds, then P(k + 1) also holds. 
That is: P(k + 1) ∶ if e0 → e1 → … → ek → ek+1 then GSM Delivers m before m′ . 
Assume by the induction hypothesis that for a particular k, the single case n = k 
holds, meaning P(k) is true: if e0 → e1 … → ek then GSM Delivers m before mk . It 
follows that: Events ek and ek+1 are consecutive events that can happen in the same 
process or in different processes. Then, it is true by the base case that GSM Deliv-
ers mk before mk+1 . Also, by the induction hypothesis GSM Delivers m before mk , 
then it follows that GSM Delivers m before mk+1 . That is, the statement P(k + 1) 
also holds true, establishing the inductive step. Since both the base case and the 
inductive step have been proved as true, by mathematical induction it follows for any 
events e, e� ∈ H , if e → e′ then GSM Delivers m before m′ . 	�  ◻

Now we prove that any message received by the monitor process will be eventu-
ally Delivered (liveness).

Theorem 5  Liveness property. The Monitoring algorithm never delays the Delivery 
of a message indefinitely.
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Proof  To prove liveness, we will suppose that there exists an event ek (cBroadcast 
or cDeliver) of which GSM has notice after receiving a message m from pk inform-
ing of ek , and that this message is never Delivered at GSM. Then we will show that 
we end up with a contradiction. Message m comes with the timestamp (pk, seqk,Vk) . 
∀i ≠ k,Vk[i] counts the number of cBroadcast events in pi that causally precede ek , 
and seqk counts the number of cBroadcast events in pk that causally precede ek . 
Also, either ek is cBroadcast event and Vk[k] counts the number of cDeliver events in 
pk that causally precede ek , or ek is a cDeliver event and Vk[k] − 1 counts the number 
of cDeliver events in pk that causally precede ek . Finally, ∀j ≠ k , if ej is the cBroad-
cast that corresponds with the Vk[j]-th and last cBroadcast from pj that causally pre-
cedes event ek , and ej has the timestamp (pj, seqj,Vj) , then Vj[j] counts the number 
of cDeliver events in pj that causally precede ek . The number of events that causally 
precede ek is thus bounded. In absence of failure, and after a finite time, messages of 
all these events will have arrived to GSM, and event ek will be deliverable (see the 
causal delivery rules). Note that, by the delivery rules, a message of a cDeliver event 
er cannot be Delivered in GSM if its corresponding cBroadcast event message has 
not been Delivered in GSM and also that a cBroadcast event es of a process s cannot 
be Delivered in GSM if the Deliver events in s that causally precede es have not been 
delivered in GSM.

So, if ek cannot be delivered, there exists an event ei , such that ei → ek , which is 
never Delivered. The same reasoning applied to ek can again be applied to ei , and so 
on. As the number of events causally preceding ek is finite, we end up with an event 
en which has no event causally preceding it. So en will be Delivered enabling the 
delivery of ei and ek , which shows the contradiction. 	�  ◻

7 � Example: monitored domotic application using CTS

This section describes an example of a domotic application that allows comparing 
two passive monitoring systems, the GSM monitoring system as described in Sect. 6 
and the Babaoǧlu monitoring for Birman’s CRB as described in [24].

The domotic application is made up of an alarm keypad to arm and disarm the 
surveillance system, sensors for detecting intrusions and actuators to ring alarms, 
and a passive monitor. This application is distributed, with processes controlling the 
keypad, sensors and actuators respectively. When we refer to the monitor for Bir-
man’s CRB, it is assumed that processes communicate using the Birman’s CRB algo-
rithm and its timestamping described in Sect. 2. When we refer to the GSM monitor, 
processes communicate using a CRB with CTS timestamping, as it is described in 5.

Each monitoring system receives notifications from processes of the domotic 
application. GSM monitor receives notifications of cBroadcast and cDeliver events. 
The monitor for Birman’s CRB receives only notifications of cBroadcast events. 
Based on these notifications, these monitors can compute consistent global states 
and evaluate predicates.

Figure 4 shows on its lower right side a state diagram that models the behavior 
of the alarm system. It shows the states and the meaningful transitions of the state 
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machine implemented by the domotic application. Both, processes controlling sen-
sors and actuators and the monitor processes implement this same state machine. 
However, they are not replicated state machines. Each application process transi-
tions through a different sequence of states depending on the order of cDeliver of 
the received messages, which can be different due to concurrent events. On the other 
hand, the GSM monitor transitions when it receives notifications of cBroadcast 
and cDeliver events. However, the monitor for Birman’s CRB transitions when it 
receives cBroadcast events.

While the system is in the Deactivated initial state, the user can arm the alarm 
system through the keypad, what triggers the Activate transition to the Activated 
state. While the system is in the Activated state, the event of a sensor detecting 
movement triggers the Movement transition to the Alarm state, with the associ-
ated action of ringing the alarm. While the system is in the Alarm state, either 
(1) a timeout event stops the bell action and triggers the Timeout transition to the 
Activated state, or (2) the event of a user deactivating the alarm in the keypad 
stops the bell and triggers the Deactivate transition to the Deactivated state.

We assume that our domotic application is implemented using three processes 
that perform different actions: process p1 controls the keypad, process p2 controls 
the movement sensors, and process p3 rings the alarm. These processes cBroad-
cast notifications that, when cDelivered, cause the corresponding transitions in 
the receiving processes.

We also assume that each monitoring system is implemented by a monitor 
process having two layers: (1) a monitor’s communication layer that delivers in 

Fig. 4   Domotic example of causal reliable broadcast with two monitoring systems: Monitor for Birman’s 
CRB and GSM for CTS. The state transition diagram in the bottom right shows the meaning of both the 
states and the transitions. The space-time diagram shows how the alarm system is activated with an acti-
vate cBroadcast and how an alarm rings with a movement cBroadcast. Also shows how notifications of 
all the events are sent and delivered to the monitor process
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causal order the notification messages it receives informing of the corresponding 
events in p1, p2, p3 , and (2) the monitor’s application layer that detects state tran-
sitions of the domotic application and evaluates predicates.

Figure  4 shows a space-time diagram of an execution scenario, with the 
domotic application processes p1, p2, p3 , and the monitor processes. The dia-
gram does not show the vector clocks neither in the domotic application nor in 
the monitors. The domotic application processes deliver their messages in causal 
order and the monitors deliver the application event notifications in causal order 
too.

At t1 the three processes are in the Deactivated state. The user arms the alarm 
in the keypad and so process p1 broadcasts m1 informing of the Activate transition. 
Upon delivery of m1 different actions occur in each process:

•	 p1 : it transitions locally to the Activated state.
•	 p2 : it transitions locally to the Activated state and turns on the movement sen-

sors.
•	 p3 : it transitions locally to the Activated state.

At t2 the three processes are in the Activated state. Movement is detected by a sen-
sor and thus process p2 cBroadcasts m3 informing of the Movement transition. Upon 
cDeliver of m3 different actions occur in each process:

•	 p1 : it transitions locally to the Alarm state. Although not shown in the figure, 
note that after t2 , if p1 does not either self-cDeliver a message m2 informing of 
the Deactivate transition, or cDeliver a message m4 informing of the Timeout 
transition sent by p3 , then it could detect that p3 is failing and no user is deacti-
vating the alarm. In this case p1 could send, for example, an SMS message to the 
user cellphone.

•	 p2 : it transitions locally to the Alarm state.
•	 p3 : it transitions locally to the Alarm state, activating the ringing of the bell 

through a local actuator.

At t3 the three processes are in the Alarm state. The bell is still ringing, and a time-
out event TO occurs at p3 , which broadcasts m4 informing of the Timeout transition. 
Upon cDelivery of m4 different actions occur in each process:

•	 p1 : it transitions locally to the Activated state.
•	 p2 : it transitions locally to the Activated state.
•	 p3 : it stops the bell and transitions locally to the Activated state.

At t4 the three processes are in the Activated state. Movement is detected again by 
a sensor and thus process p2 cBroadcasts m3 informing of the Movement transition. 
With respect to the cDeliveries of message m3 , we have already shown above what 
are their effects in the different processes. In particular, p3 starts ringing the bell. 
Approximately at t4 , in parallel the user disarms the alarm in the keypad and so p1 
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cBroadcasts m2 informing of the Deactivate transition. Upon cDelivery of m2 differ-
ent actions occur in each process:

•	 p1 : it transitions locally to the Deactivated state.
•	 p2 : it transitions locally to the Deactivated state and turns off the movement sen-

sors.
•	 p3 : it transitions locally to the Deactivated state, it cancels the timer and before 

the timeout TO is triggered it stops the bell.

In the space-time diagram we see that the cDelivery order of these last two concur-
rent messages m2 and m3 is different depending on the process.

Note, although the effect of cDeliver of concurrent messages causes different 
sequences of transitions in the local state machines of different processes, all process 
state machines eventually converge to the same state. For example, in Fig. 4 we see 
that p1 does not transition to the Alarm state after cDelivering m3 because it cDeliv-
ers m2 before, and so it is in the Deactivated state when it cDelivers m3 . But both, p2 
and p3 cDeliver first m3 , entering the Alarm state before they cDeliver m2 . Eventu-
ally, the three processes reach the Deactivated state after they have cDelivered both 
messages.

7.1 � States observed in the GSM using the CTS

The process labeled as Global States Monitor in the top of Fig. 4 shows the states 
observed by the GSM. The communication subsystem of the GSM causally cDeliv-
ers the notifications of the cBroadcasts and cDeliver events that happen in p1, p2 and 
p3 . For example, in Fig.  4 the notification of cBroadcast of m1 event in p1 and its 
corresponding cDeliver events in all processes p1 , p2 and p3 are cDelivered in causal 
order in GSM. The same happens with all other messages.

The application part of the GSM computes the state transitions of the alarm sys-
tem based on the notifications delivered. As a design decision (other valid design 
decisions are possible), GSM considers that a transition occurs when it has received 
notifications of a cBroadcast event of a given message and all of the cDeliver events 
of that message in p1, p2, p3 . Global states are shown with labels and colors cor-
responding with the names of the states in the state machine. Note that the GSM 
receives more information about the functioning of the domotic application than 
the processes themselves because the GSM receives notifications about the cDeliver 
events occurring in all processes, while processes p1, p2, p3 only know about its own 
cDeliver events.

The sequence of transitions observed by the GSM is computed using the same 
state machine that is used by the rest of processes.

As we explained above, the three state machines of the application processes may 
transit through different sequences of states due to the order of concurrent cBroad-
cast and cDeliver events. Note that the state machine of GSM may also differ in 
the sequence of states it observes with respect to the sequences observed by the 



18754	 I. Muñoz‑Fernández et al.

1 3

application processes. The GSM and application processes eventually converge to 
the same state.

In the example, GSM computes first the notifications of the cBroadcast and cDe-
liver events of message m2 sent by p1 at t4 . Later it computes the notifications of the 
cBroadcast and cDeliver events of message m3 sent by p2 . Thus the GSM observes 
the same state transitions that p2 and p3 , which is different from the one observed at 
p1.

7.2 � Monitoring using Birman’s causal broadcast

In order to assess GSM algorithm that uses CTS, we are going to compare it now 
with the monitoring system proposed by Babaoǧlu et al. [24] that uses a CRB algo-
rithm similar to Birman’s.

In this monitoring system the processes of the domotic application are imple-
mented using the Birman’s CRB algorithm and its timestamps for CRB communica-
tion, instead of using CTS like in our GSM. This monitoring system now works as 
follows: every time an application process cBroadcasts a message m, it also sends 
the monitor for Birman’s CRB a notification message with the vector timestamp of 
the cBroadcast of m. In every instant, the monitor for Birman’s CRB can construct a 
consistent observation of the global state by causal ordering only cBroadcast times-
tamps and evaluate global predicates over this global state.

In the topmost of Fig.   4, labeled as monitor for Birman’s CRB, we show the 
sequence of notifications of the cBroadcast events that this monitor receives 
from the domotic application, the causal order delivery of those notifications and 
finally, the application state transitions that the monitor for Birman’s CRB process 
calculates.

7.3 � Discussion

As we have seen above in previous Sect. 7.2 (monitoring using Birman’s Broadcast), 
the monitoring system that uses Birman’s CRB algorithm does not notify cDeliver 
events to the monitor. Thus, the monitor for Birman’s CRB cannot know about the 
existence of a cDeliver of a message m that happened on a process p until it receives 
a notification of a ulterior cBroadcast event of a message m′ in p that depends caus-
ally of m. Furthermore, the monitor will never know the program ordering of cDe-
liver events in p occurred between two consecutive cBroadcast events in p. There-
fore, the monitor for Birman’s CRB might not be able to reason, among other global 
state predicates, about the causal delivery predicate in every process.

On the other hand, our Global State Monitoring (GSM) that uses CTS has more 
information about the monitored system because it receives notifications of the cDe-
liver events, and not only of cBroadcast events. With these notifications, our GSM 
monitor makes more accurate global predicate evaluations over a run compared with 
the monitoring system with Birman’s CRB timestamp. For example, our GSM evalu-
ates systematically global predicates such as the properties of the CRB abstraction. 
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Hence, our GSM gives a more structured tool for solving the problem of the ad-hoc 
verification techniques described in Sect. 1.

Hence, when monitoring with Birman’s CRB algorithm, the number of global 
states of the system and the number of global predicates that the monitor can evalu-
ate are both less than the number of states and predicates that our GSM can evaluate. 
Also, the evaluation of predicates over chained global states to detect bad patterns 
can be made more accurate with our GSM than with Birman’s CRB monitoring [23].

As an example, it can be seen in Fig.  4 that the GSM does not consider the alarm 
system is activated (transition to SAC state) until it has received the notifications of 
both the cBroadcast and all the cDeliver events of m1 . To get the same global state 
information with the monitoring system using Birman’s CRB algorithm, the monitor 
would have to wait the reception of the cBroadcast notifications of messages that 
have m1 as their causal predecessor from each application processes to ensure that all 
of them have cDelivered m1.

Another example of use of our GSM that evaluates predicates online is the one 
that detects communication failures in the application, i.e., if it cDelivers the notifi-
cation of cBroadcast of m1 but it does not cDeliver all the notifications of cDelivers 
of m1 in the application processes. The offline evaluation of predicates, also called 
postmortem analysis, is easier with our GSM, as it is explained in the next section.

7.4 � Postmortem analysis of the domotic example

A postmortem analysis of events of an execution of the domotic application is use-
ful among others for (1) the discovery of the possible causes of an unexpected inci-
dent detected by the application, (2) the discovery of common or unusual patterns 
of events in executions, and (3) detection of bugs in the implementation of the CRB 
abstraction used in the domotic application.

We show here that the use of our CTS simplifies the implementation of this kind 
of postmortem analysis process. The postmortem analysis is simpler than the global 
state monitoring because application processes can store locally the events with their 
timestamps, and the postmortem analysis process just needs to retrieve the whole set 
of events after the end of an execution. Previously to any analysis, the events must 
be causally sorted. To do this sorting, the postmortem analysis process just needs 
to apply the set of relations RS of our CTS, defined in Sect. 5. With those CTS rela-
tions all cBroadcast and cDeliver events can be successfully causally ordered to get 
a consistent analysis. Then, the partial order can be extended to a causal total order 
by using the process unique identifiers of the events as in [2].

Note that with the timestamp system of the Birman’s CRB algorithm it is possible 
to make the kind of postmortem analysis explained above but using only cBroadcast 
events. In this case, the analysis will be of worse resolution due to a lower number of 
events processed.
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8 � Related work

In this paper we have formally defined a causal timestamp system (CTS) based on 
logical vector clocks to implement the Causal Reliable Broadcast (CRB) abstraction 
with the maximal accuracy among cBroadcast and cDeliver events. The formaliza-
tion of our CTS follows the timestamp framework defined by Torres et al. [14].

CRB algorithm by Birman et al. [7] is certainly the most well-known and widest 
used algorithm of the vector clock CRB algorithms [21, 22, 25, 29] that captures 
with the maximal accuracy the causal relation among cBroadcast events. However, 
Birman’s CRB algorithm (and, as far as we know, all vector-based CRB algorithms) 
only timestamps globally cBroadcast but not cDeliver events. Therefore with Bir-
man’s CRB algorithm tracking causality among cBroadcast and cDeliver events 
with timestamps is not possible.

As it was explained in Sect. 1 there are two techniques to address the scalability 
problems of vector clocks. The first one compresses the causal information to be 
transmitted in different ways. The compression proposals in [7, 9–12] are not scala-
ble, because in a group of P processes, the complexity of message overhead is O(P), 
which it is not acceptable for a large value of P.

The proposal in [30] introduces Encoded Vector Clocks (EVCs) using prime 
numbers, where each event timestamp is represented by a single scalar number, char-
acterizing causality regardless of the dynamic number of processes of the system. 
However, the drawback lies in the exponential storage growth and operational com-
plexity required by EVCs. Conversely, in [13], Resettable Encoded Vector Clocks 
(REVCs) are built on EVCs to solve the problem of the exponential storage growth 
of EVCs. A REVC performs a clock reset operation whenever its value overflows a 
predefined number of bits. However, REVCs suffer from overheads in computation 
time and unbounded linear storage growth with respect of the number of messages. 
To address these challenges, REVCs can operate within an upper bound on storage 
requirements, which may entail sacrificing some degree of causal precision.

In this family, we also consider the clocks of a constant size M that are scala-
ble with respect to the number of processes P, as M < P . In plausible clocks [14] 
each process maintains a plausible vector clock of size M where each vector clock 
entry might track events generated by several processes, so plausible clocks do not 
characterize causality. Bloom clocks [15] based on the Bloom filter [31] are used to 
probabilistically assess causality among events in a system. In [16], a Bloom clock 
is proposed for a system with P processes. Each process pi maintains a Bloom clock 
Bi , which is a vector of M integers and k random hash functions. Each hash function 
maps to one of the m indices in Bi . Every time an event occurs in pi , all k hash func-
tions are applied to their corresponding positions in Bi , and then these correspond-
ing positions are incremented. Bloom clocks exhibit the best performance among 
vector clocks of any size for determining causality. However, the drawback of these 
clocks is that the probability of detecting events as causally related when they are 
not related is greater than zero. In [32], recommendations for setting the Bloom 
clock parameters M and k to improve the precision of causal detection are provided.
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The second technique to address scalability is based on network overlay topolo-
gies and FIFO channels [17–20], but these solutions have the problem of not charac-
terizing causality.

Recently [12] has proposed a causal broadcast system that timestamps cBroad-
cast events in a similar way as we do in our CST system, although they do not 
explicitly identify and study a formal timestamp system as we have done with CTS 
in this paper.

In [4] a CRB communication system is proposed where the timestamps of 
cBroadcast message events are made available to the application layer so that it can 
order those timestamps to implement replicated databases. Other applications, like 
passive monitoring systems, could find beneficial to obtain not only the timestamps 
of cBroadcast events but also the cDeliver timestamp information provided by our 
CTS system.

Related with the global predicate evaluation over global states of a distributed 
system, in [24] it was proposed a monitoring system for applications that use CRB 
algorithms based on vector clocks. In a run, an external monitor passively records 
cBroadcast event timestamps generated by the application. Like the Global State 
Monitoring algorithm, [33, 34] also record global snapshots assuming that the 
underlying system supports causal message cDelivery, although unicast, not mul-
ticast. In both of them the monitor process must broadcast a token to every process 
including itself each time it wants to record a new global snapshot. In [30], it is 
also shown how to determine global states of distributed systems that use EVCs. 
In [13], a practical use of REVC for dynamic race detection is shown, with signifi-
cant performance improvements over traditional logical clock implementations in 
tracking event causality. In [35], a kind of monitor algorithm is used to demonstrate 
impossibility and possibility results. This algorithm demonstrates that it is possible 
to detect the causal relation of events of an execution of a distributed application, 
where processes communicate with broadcast or unicast assuming a synchronous 
and byzantine model.

9 � Conclusion

The proposed Causal Timestamp System (CTS) based on vector clocks provides an 
efficient and effective solution for timestamping cBroadcast and cDeliver events in 
the Causal Reliable Broadcast (CRB) abstraction. CTS simplifies the formal veri-
fication and testing of CRB implementations, allowing for improved accuracy and 
causality characterization.

The formal specification of CTS and the verification of its properties that we have 
done follow a well known formal timestamp framework. Furthermore, the proofs 
establish that CTS extends the maximal accuracy to cDeliver events while maintain-
ing a comparable cost in terms of piggybacked information to the Birman’s CRB 
algorithm.

We have developed a new passive Global State Monitoring (GSM) algorithm 
tailored to our CRB with CTS that enables a finer-grained assessment of consist-
ent global states and predicates. This advancement is particularly beneficial for 
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distributed applications requiring global predicate evaluations, such as deadlock and 
termination detection, testing, and debugging.

The domotic example we presented showcases the practical application and com-
parative analysis of the GSM and CRB with CTS, offering insights into their func-
tionalities and advantages over a passive monitor utilizing the Birman’s CRB algo-
rithm. The inclusion of CTS timestamping of cDeliver events further highlights the 
usefulness and potential of our CRB with CTS algorithm.

Overall, this paper presents a novel timestamp system CTS for implementing the 
CRB abstraction, demonstrates its properties and benefits, and shows a new passive 
monitoring algorithm GSM. These findings open up possibilities for improved for-
mal verification, online and offline testing, and debugging techniques in distributed 
systems based on CRB algorithms that use vector clocks, with potential applications 
in various domains.
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