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Abstract
As video surveillance systems become increasingly essential for railway opera-
tions, accurate and precise performance testing is crucial. Traditional methods for 
response latency testing rely on manual readings with millisecond-level clocks, 
which can lead to compatibility issues, software crashes, and potential security 
risks. To address these challenges, this paper proposes a response latency test-
ing method based on object detection for railway video surveillance systems. The 
response latency test method includes two application scenarios: real-time video call 
and pan–tilt–zoom camera control response. By leveraging the YOLO-V5 model 
and object detection techniques, the response speed of railway video surveillance 
systems is effectively evaluated, ensuring testing precision. Experimental results 
validate the efficiency and feasibility of the proposed approach, emphasizing its 
enhanced stability and compatibility compared to traditional methods. The proposed 
approach offers an innovative solution for testing the response lantency of railway 
video surveillance systems, contributing to the enhancement and optimization of 
railway operations.

Keywords  Object detection · Video surveillance systems · Response latency · 
Control response
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FAST	� Features from accelerated segment test
BRIEF	� Binary robust independent elementary features
BF	� Brute-force

1  Introduction

With the rapid development of railway transportation, there is widespread concern 
about the safety and efficiency of train operations [1–5]. The railway video surveil-
lance system has been widely applied as a crucial means to ensure railway secu-
rity [6]. The railway video surveillance system enables the timely detection and 
early warning of railway accidents and safety hazards, while also improving rail-
way operational efficiency. However, performance issues have also emerged with the 
railway video surveillance system, which can directly impact the system’s opera-
tional efficiency and data processing capabilities. These performance issues include 
video capture, image quality, system reliability, and system response latency [7–9]. 
To meet the growing demands for video surveillance performance, assessing and 
improving the performance indicators of the video surveillance system have become 
potential solutions [10]. Considering the diverse nature of performance indicators, 
achieving rapid and accurate performance evaluation of the video surveillance sys-
tem has become a primary concern.

The complexity and physical limitations of video transmission make the introduc-
tion of video playback latency inevitable [11]. Currently, there are latency assess-
ment methods tailored for various analog and digital camera models [12]. Moreover, 
to conduct user-centered video latency testing, [11] proposes a method for meas-
uring glass-to-glass video latency using video conferencing as an example. This 
approach involves using the VideoLat testing tool, which needs to be deployed on 
both the frontend and backend. It also requires calibration measurements before con-
ducting latency tests to ensure the accuracy of the results. With the rapid develop-
ment of cloud-based real-time intelligent video systems, accurately measuring end-
to-end latency has become a focal point of interest among scholars. [13] proposes 
three methods to measure latency: timecode, remote online, and lossless remote 
video online.

Considering the challenges of remote video transmission and multiple transmis-
sion nodes in railway video surveillance systems, especially in large stations where 
multiple frontend devices are installed, the hardware deployment approach men-
tioned above for response latency testing is not feasible in practical engineering 
testing.

Over the past few years of integration and testing, the team has made heavy use of 
tools such as screenshots, screen recording, and millisecond clock detection. How-
ever, these tools are feature-rich and predominantly green software, which results 
in frequent installation and uninstallation during testing. In actual testing, it was 
found that the adopted tools have varying degrees of compatibility issues with sys-
tems from different vendors. Furthermore, software crashes or automatic disconnec-
tions frequently happen during use, directly impacting testing progress and quality. 
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Currently, when considering the network security of railway systems, the utilization 
of green software may pose risks such as system virus intrusion.

Therefore, while implementing the response latency test of the video surveillance 
system on the existing railway video surveillance system platform, solving the com-
patibility of test tools from different manufacturers has become the core challenge at 
present.

The main contributions of this paper can be summarized as follows:

•	 We propose an innovative approach to develop a response latency measure-
ment system that utilizes object detection technology. This method solves 
compatibility issues that may arise when combining different detection tools and 
effectively addresses challenges related to manual response latency calculation. 
The measurement system integrates the functions of various detection tools and 
directly displays and stores the measured response latency results.

•	 We utilize the YOLO-V5 model[14] to monitor the start time ( ts ) of a pre-
cisely controlled video surveillance system. The YOLO-V5 model detects the 
halo that appears when the mouse clicks the pan–tilt–zoom (PTZ) camera rota-
tion button. Once the halo indicating the button click is detected, the current time 
is recorded as ts.

•	 In the real-time video call scenario, we calculate the sum of the differences 
of the mean values of the three channels of the image RGB to determine 
the end time ( te ). The first moment when the successful loading of the video is 
detected is considered as te.

•	 In the PTZ camera control response scenario, we utilize a combination of 
sign matching and contour detection to identify the end time ( te ). When a 
successful PTZ response is detected, the system logs the initial moment when the 
object area changes beyond a predefined threshold, which signifies the end time 
( te ) latency of the PTZ camera response.

The following article will be structured as follows. In the Related Work section, we 
will discuss the current video response latency measurement techniques and the spe-
cific requirements of the railway field for the response latency of two scenarios: real-
time video call and PTZ camera control response. The Methods Used for Response 
Latency Measurements section explains in detail the methods used in the response 
latency measurement process. Section 4 will present the architecture of our proposed 
response latency measurement method for object detection-based video surveil-
lance systems. Next, Sect. 5 will evaluate the effectiveness of our proposed response 
latency measurement method using offline operational videos. Finally, Sect. 6 will 
summarize and draw conclusions based on the previous sections.

2 � Related work

In this section, we provide a brief overview of previous research focusing on sur-
veillance latency measurements, as well as describe the methodology currently used 
by the Railway Joint Coordination Group to measure the response latency of video 
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surveillance systems. Finally, we outline the specific requirements for response 
latency in two scenarios: real-time video call and PTZ camera control response, in 
the technical specifications of the Chinese Railway.

2.1 � Video response latency measurements

The camera has a response latency between capturing the scene and outputting the 
video signal. In recent years, only a few new methods have emerged for measuring 
surveillance latency, primarily focusing on camera response latency and real-time 
video loading latency. Sven Ubik et al. [15] proposed three methods for measuring 
camera response latency: timecode views, waveform offsets, and on-screen photo-
detectors. However, these methods require additional equipment and are not practi-
cal for engineering measurements with limited resources. On the other hand, live 
streaming or video buffering latencies are usually assessed using sophisticated test 
scripts or test systems designed for measuring response latency, as outlined in refer-
ences [16, 17]. In [18], a method is presented for measuring the response and pro-
cessing latency of the PTZ camera with an AI engine, but this may necessitate addi-
tional device requirements for deploying the AI engine.

In the railway video surveillance system, the test computer used by the integrated 
video joint commissioning team is quite old. As a result, its response speed has 
gradually decreased over time. To test the control response latency of a video sur-
veillance system, testers typically use a combination of simple tools. For instance, 
they open a millisecond clock display tool next to the client’s PTZ camera video sur-
veillance screen and utilize recording software to capture the operator’s PTZ camera 
control commands and the camera’s corresponding response.

To measure the response latency of a video surveillance system, the tester records 
the start time (ts) when the operator issues the control command and the first moment 
(te) when the client’s video surveillance screen changes. The response latency is then 
calculated by subtracting ts from te . However, the use of multiple tools during the 
testing process can often cause compatibility issues, resulting in inaccurate data.

Moreover, the manual reading method of response latency measurement is prone 
to human error, as different operators may produce inconsistent results during meas-
urement. This can lead to inaccurate data, especially when dealing with large-scale 
data, which may require a lot of time and human resources to measure. This is not 
practical for real-time monitoring systems that require immediate results.

2.2 � Response latency measurement requirements for two railway video scenes

As per the Q/CR 575-2022 Technical Specification for Railway Integrated Video 
Surveillance System[19] issued by the China National Railway Group, the railway 
integrated video surveillance system is classified into a four-tier architecture con-
sisting of front-end equipment, video nodes, video terminals, external systems, and 
network equipment that connect these four parts through switches or communication 
devices. The system structure diagram is shown in Fig. 1.
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Response latency is defined as the time latency between image capture at a 
video node and its display at a video endpoint. Minimizing response latency is 
crucial for enabling real-time monitoring and effective decision-making. Perfor-
mance testing must carefully measure video call latency and PTZ camera control 
response latency to ensure timely and accurate data. The new specification states 
that system response latency requirements dictate that real-time video call latency 
should be limited to 3 s. Additionally, the response latency for PTZ camera con-
trol should not exceed 500 milliseconds.

In conclusion, comprehensive performance testing that meets these require-
ments enables railway operators to accurately evaluate the effectiveness, reli-
ability, and robustness of their video surveillance systems. This, in turn, ensures 
that these systems can operate optimally, thereby significantly contributing to the 
security and efficiency of the railway network.

3 � Methods used for response latency measurements

In this study, we propose an innovative response latency testing methodology 
based on object detection techniques. This methodology is specifically designed 
to evaluate response latency metrics for two scenarios: real-time video call and 
PTZ camera control response. The method relies on object-detection and involves 
several stages. A comprehensive schematic of the testing process is shown in 
Fig. 2.

In the following sections, we will explain the key techniques used in this response 
latency test methodology, in order to better understand its underlying mechanisms.

Fig. 1   Architecture diagram of railway video surveillance system. The architecture diagram includes the 
components, and how they are interconnected to enable video surveillance and security management of 
the railway area
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3.1 � YOLO‑V5 model

YOLO (You Only Look Once) [20] is a state-of-the-art object detection system that 
operates in real-time. The YOLO-V5 model, a remarkable advancement in real-time 
object detection, serves as a robust and efficient framework for object detection 
tasks. In our proposed performance testing method, this model plays a crucial role in 
the object detection process.

To facilitate subsequent image processing, the input images are typically resized 
to a standardized size. The input image pixels of our network are set to [640, 640]. 
Subsequently, the images undergo a series of convolutional neural network layers 
for feature extraction, capturing features such as edges, textures, and shapes. After 
feature extraction, YOLO-V5 utilizes detection heads to perform object detection on 
the images. The detection heads consist of a set of convolutional layers responsible 
for predicting bounding boxes and corresponding class probabilities of the objects. 
YOLO-V5 adopts anchor boxes to assist in predicting objects of various sizes and 
aspect ratios. As the same object may be detected by multiple anchor boxes, non-
maximum suppression (NMS) is utilized to eliminate overlapping bounding boxes, 
ensuring the retention of the most accurate object detection results. Ultimately, 
YOLO-V5 outputs the predicted object bounding boxes and corresponding class 
probabilities, along with the final detection results after NMS.

In the context of our performance testing method, YOLO-V5 is used to detect 
when a user initiates a video call or activates PTZ camera control, which then trig-
gers the time latency timer. The model’s real-time detection capability enables it to 

Fig. 2   Comprehensive schematic diagram of the testing process. The change process of the con-
trol response latency measurement interface for two scenarios of real-time video call and PTZ camera 
response
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quickly and accurately identify these initiations, thereby ensuring the precision of 
the subsequent response latency measurement.

3.2 � ORB algorithm‑based feature matching

In computer vision, feature matching algorithms are essential for tasks such as object 
detection and image alignment. The Oriented Fast and Rotated Brief (ORB) algo-
rithm is particularly useful in real-time applications due to its rapid feature extrac-
tion and optimized matching strategy [21, 22]. The algorithm’s effectiveness stems 
from its integration of the Features from Accelerated Segment Test (FAST) keypoint 
detector and the Binary Robust Independent Elementary Features (BRIEF) descrip-
tor generator, which together facilitate a comprehensive image characterization and 
matching process.

Mathematically, the ORB algorithm can be described as a two-stage process: key-
point detection and keypoint description.

The keypoint detection stage employs the FAST algorithm, which operates by 
analyzing the luminance of a central pixel and its surrounding pixels within a prede-
fined circular neighborhood. The FAST algorithm evaluates the difference in inten-
sity between the central pixel and a threshold number of contiguous pixels arranged 
in a specific pattern. Mathematically, for a pixel p at coordinates (x, y) and a set of 
pixels N within the neighborhood, the FAST algorithm computes:

where I(p) is the intensity of the central pixel, � is a predetermined threshold, and wq 
represents the weights assigned to the pixels in N. If this condition is met, the central 
pixel is considered a potential keypoint.

To enhance the detection process, the ORB algorithm incorporates orientation 
assignment, which aligns keypoints with local image gradients. The orientation � of 
a keypoint is determined by the dominant direction of gradients in its vicinity:

where Gx,y represents the gradient vector at pixel location (x, y), and wx,y is the gradi-
ent magnitude-weighted value.

The keypoint description stage leverages the BRIEF algorithm to generate binary 
descriptors. For each keypoint, the BRIEF algorithm selects a set of n pixel pairs 
within a defined radius and computes the grayscale differences between them. The 
resulting differences are then thresholded to generate a binary string, which forms 
the descriptor. Mathematically, let Di be the difference in intensity between the i-th 
pixel pair (xi, yi) and (xi+1, yi+1) , and let T be a predetermined threshold. The binary 
descriptor b is constructed as follows:

(1)I(p) − � ≥

∑
q∈N

wq(I(q) − I(p))

(2)� = argmin�

∑
(x,y)∈N

wx,y sin(� − ∠Gx,y)
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For i = 1, 2,… , n . This binary descriptor is compact, efficient to compute, and 
exhibits robustness against various image transformations and noise.

By combining these stages, the ORB algorithm achieves a balance between speed, 
accuracy, and robustness, making it a popular choice for feature matching in real-time 
computer vision systems. The use of binary descriptors, as opposed to real-valued 
descriptors, further reduces storage requirements and computational complexity, while 
maintaining a high level of matching performance [23].

3.3 � Homography matrix‑based camera movement distance calculation

To eliminate the impact of PTZ camera jitter on camera rotation detection, we utilize 
feature matching in conjunction with a single homography matrix [24]. This helps us 
calculate the movement distance of objects in the front and back video frames.

In image processing, the homography matrix is a crucial mathematical tool. Mono-
clinicity or projection transformation is a type of transformation that maps points from 
one plane to another. It has a wide range of applications in image processing, such as 
correcting perspective distortion, creating panoramic images, and inferring relative 
motion between two images.

In the context of distance detection for PTZ camera images, the homography matrix 
quantifies the transformation between the initial and resultant states of the PTZ camera 
image. This calculation helps measure the distance covered by the video image as a 
result of PTZ camera control commands.

Assume a point p1 = (x1, y1, 1)
T in the first image has a corresponding point 

p2 = (x2, y2, 1)
T in the second image. The homographic transformation relationship 

between the two images can be represented as follows:

Where " ∼ " represents the two vectors are in proportion, and H is the homography 
matrix. Because p2 and p1 are both homogeneous coordinates, H is a homography 
matrix, mathematically, that is expressed as follows:

By substituting the coordinates of p1 and p2 into the above equation, we can get:

(3)bi =

{
0 if Di ≤ T ,

1 otherwise.

(4)p2 ∼ Hp1

(5)H =

⎡⎢⎢⎣

h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤⎥⎥⎦

(6)
⎡⎢⎢⎣

x2
y2
1

⎤⎥⎥⎦
=

⎡⎢⎢⎣

h11 h12 h13
h21 h22 h23
h31 h32 h33

⎤⎥⎥⎦

⎡⎢⎢⎣

x1
y1
1

⎤⎥⎥⎦
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In the computation of the homography matrix H, the homogeneous coordinate sys-
tem is employed, and h33 is set to 1 to ensure the matrix’s uniqueness. After rear-
ranging the terms, the subsequent expressions are derived:

By leveraging feature point matching and least squares estimation techniques, a pre-
cise homography matrix H is obtained, which encapsulates the transformation rela-
tionship between images. This matrix is then used to calculate the horizontal and 
vertical displacements of the images, thereby recognizing image movement. If the 
calculated displacement exceeds a pre-defined threshold, it indicates a successful 
PTZ camera response.

The robustness of this approach is attributed to its capability to accommodate 
both rotational and translational camera movements, making it a compelling choice 
for detecting PTZ control responses with high precision and reliability. When com-
bined with the YOLO-V5-based object detection model outlined in the previous sub-
section, it forms a comprehensive system for measuring and evaluating PTZ camera 
response time within railway video surveillance systems.

4 � Object detection‑based performance testing method for railway 
video surveillance systems

During the response latency testing of a video surveillance system, we need to col-
lect two important pieces of information—the start time ( ts ) and the end time ( te ). To 
determine the start time ( ts ), we use the YOLO-V5 model for mouse click aperture 
detection. Additionally, we utilize image processing and object detection methods to 
capture the moment when the video loads successfully or the PTZ camera responds 
successfully.

4.1 � YOLO‑V5‑based mouse call operation detection

To ensure the accurate recording of the control start times (ts) of the video surveil-
lance system, YOLO-V5 is utilized in this paper. It monitors and recognizes the 
clicking actions of testers who use the mouse to issue control commands. The start 
time is when the tester initiates various functions by clicking on the control buttons 
in the interface of the video surveillance system.

The YOLO-V5 model divides the image into grids and assigns object detec-
tion tasks to each grid cell. The test image demonstrates this process, as detailed 

(7)x2 =
x1h11 + y1h12 + h13

x1h31 + y1h32 + 1

(8)y2 =
x1h21 + y1h22 + h23

x1h31 + y1h32 + 1
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in Fig. 4. Each cell predicts multiple bounding boxes and the class probabilities of 
those boxes. The bounding boxes are weighted according to the predicted probabili-
ties. Object detection is done in a single pass, making YOLO-V5 faster than other 
object detection methods.

In the response latency test method for video surveillance systems, YOLO-V5 is 
utilized to detect when the tester initiates issuing control commands. This triggers 
the clock to accurately record the start time ( ts ). The model’s real-time detection 
capability enables quick and accurate detection of the onset of a mouse click. This 
ensures the accuracy of subsequent response latency measurements.

Algorithm 1   Workflow for Determining Screen Image Changes

4.2 � Real‑time video call latency measurement method

Digital images, represented as matrices within computing systems, encode essen-
tial characteristics such as brightness, color, and additional image information, as 
depicted in Fig. 3. In the context of railway surveillance videos, digital image pro-
cessing proves instrumental. For the latency measurement of real-time video calling 
in the video surveillance system, the end time is measured using the algorithm 1.

We utilize the OpenCV [25, 26] to analyze video objects, aiming to simplify 
the reading and processing of video files. This approach enables the processing of 
images on a frame-by-frame basis across the entire video file.
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Fig. 3   Matrix storage form of digital images in a computer. Digital images are represented and stored in 
computer systems as matrices, providing a structured format for the storage and manipulation of visual 
data

Fig. 4   YOLO-V5 model detection mouse click. The process uses YOLO-V5 to accurately measure the 
startup time of the video surveillance system and monitor the mouse click operations initiated by the 
tester. In addition, it employs grid-based object detection to efficiently and quickly identify objects
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The video loading time measurement procedure consists of two main stages. Ini-
tially, frames from each image within the video are recognized. Before the user ter-
minal initiates the video file, the video display area is typically black. Upon user ini-
tiation, the testing model continuously detects frames from the video display area on 
the user terminal, recording the display area images as RGB values within a matrix.

Subsequently, differences in average values of the R, G, and B channels between 
adjacent video image frames are compared, as delineated in algorithm 1 and cor-
responding to Fig. 2(c). To enhance the algorithm’s efficiency, only the start time of 
the test ( ts ) and the capture time of the current video display area ( tc ) are retained.

To enhance the precision of the measurements, the algorithm assesses the dif-
ference between the average values of the R, G, and B channels between two suc-
cessive image frames. This difference is then compared to a predefined threshold, 
with the comparison outcome stored in sequence M. If this difference is found to be 
greater than the threshold � , the video is inferred to have been successfully captured. 
At this point, the first time ( tc ) when the threshold is met is recorded as the end time 
of the measurement latency ( te).

Through 500 threshold adjustment tests, it was found that the human eye can only 
perceive video frame changes when the absolute difference of the mean values of 
the three channels between consecutive video frames is greater than 30. Therefore, 
in this paper, the threshold is set as � = 30.

4.3 � Feature matching‑based measurement of response latency of PTZ camera

The paper utilizes feature matching based on ORB keypoints as an initial method to 
quantify the response latency of PTZ cameras. In PTZ camera control, the moment 
when the camera rotation is complete is considered the endpoint ( te ). To capture this 
moment, we depend on image detection technology. The area of image change on 
the PTZ video surveillance screen is monitored until it meets the satisfaction thresh-
old � . This is when we record the end time ( te).

However, in the PTZ camera control response latency test, the camera’s jitter may 
affect the data results at the end time ( te ). Therefore, we utilize image motion dis-
tance detection to eliminate the interference caused by camera jitter.

We utilize a feature matching method based on ORB keypoints to extract features 
from two frames of the image. First, we extract the feature parameters of the image 
and then calculate the spatial coordinate transformation parameters of the image. We 
set a threshold � to exclude the interference of camera jitter, and the specific process 
for detecting the distance of image movement is illustrated in Fig. 5.

For image feature point matching, we use ORB feature points to characterize the 
image. ORB feature points are identified by detecting pixels in the image that signif-
icantly differs from surrounding pixels, which are considered keypoints. The BRIEF 
descriptor is then computed for each keypoint. We utilize the brute-force (BF) 
matching method for the initial feature matching. The method computes the distance 
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between each descriptor in the training descriptor set and the query descriptor. The 
matching result is selected by ranking all the distances that meet the threshold � 
requirement. By performing feature matching on video images, we can essentially 
eliminate the impact of camera jitter on the test results. This way, we record the first 
moment when the image on the video surveillance screen changes and meets the 
threshold � = 20 as the end time ( te).

4.4 � Object detection‑based response latency measurement for PTZ cameras

We will test the PTZ camera response by comparing the difference in contour area 
ratios of objects in the video frames before and after. This will be in addition to 
the methods that were introduced in 4.3. We will switch to the object contour area 
detection method when the number of feature point matches detected by the feature 
matching method falls below the threshold. This is because we need to consider the 
situation when a large occlusion suddenly appears in front of the camera, leading 
to no feature keypoint match between the front and rear video frames of the PTZ 
camera. At this point, we designate the moment when the number of feature point 
matches appearing in the front and rear video frames falls below the threshold as ′t′

p
 . 

Fig. 5   PTZ camera movement distance detection steps based on feature matching. The process of deter-
mining the PTZ camera travel distance involves various steps focused on feature matching. The method 
eliminates the interference of camera jitter and measures the rotation response of the PTZ camera
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The specific detection process is shown in algorithm 1. The specific detection pro-
cess is shown in algorithm 2.

To detect moving objects, we utilize OpenCV to distinguish the dynamic fore-
ground from the static background. We compare the current frame with the frame 
assumed to be a static background to determine if a moving object has appeared in 
the region. We utilize a background subtraction algorithm based on the OpenCV 
library to achieve the separation of foreground (moving objects) and background 
(changes caused by other factors) in the PTZ video monitoring screen. However, 
direct pixel comparison can lead to false detections due to significant interference 
from lighting, shadows, and other factors.

Before calculating the contour area, we convert the image to grayscale and apply 
Gaussian blurring and binarization to obtain a clear binary map, reducing back-
ground interference. Using the “findContours()” and “drawContours()” functions 
of the OpenCV library, we can draw the contours of the objects in the foreground 
image. Finally, the area (C) of the video changing contours is calculated using the 
“contourArea()” function. The PTZ camera response is considered successful if the 
ratio of the difference in contour area between two neighboring foreground frames 
exceeds 25%. The end time ( te ) is defined as the same as ′t′

p
 . We determine the PTZ 

camera control response latency by calculating the time difference between the end 
time ( te ) and the start time ( ts ) in the video surveillance system. In other words, 
t = |te − ts|.

5 � Results and discussion

This section presents the experimental testing performed to validate the proposed 
performance testing method of the railway video surveillance system based on 
object detection. The assessment centered around two main areas: the accuracy of 
the start time ( ts ) and end time ( te ) records.

To ensure the accuracy of recording the start and end times, we compared our 
measurements with traditional manual stopwatch readings during the test evalua-
tion. We maintained consistency in the test environment, hardware configuration, 
testers, and data analysts to ensure repeatability and accuracy. We synchronized data 
obtained from both response latency test methods during the experiment for subse-
quent analysis and evaluation.
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Algorithm  2   Object Detection-Based Response Latency Measurement for PTZ 
Cameras

5.1 � Introduction of dataset

In order to establish a reliable and valid test method, we use the Python program-
ming language with Pycharm, a commonly used Python IDE, to implement our 
method. In our experiments, we used a dataset of 10,000 offline screen-recorded 
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videos obtained from different railroad sections, different weather conditions, and 
scenarios. For this experiment, we collected a dataset of 1000 screen-recorded vid-
eos of monitoring system responses on various railway sections under different 
weather conditions and scenarios. The video dataset has a resolution of 1850 × 1080 
and a frame rate of 25 fps. We used this dataset to conduct simulation experiments 
to evaluate the accuracy and efficiency of our proposed methodology for perfor-
mance testing.

We created an offline operational behavior image dataset to assess the practical 
performance of the underlying behavior on the client, given the limited availabil-
ity of the original operational behavior dataset. The image dataset comprises 6000 
images of testers’ actions. We used the LabelImg tool to label these images, and the 
labeled image information was saved as a.txt document. To train, tune parameters, 
and validate the YOLO-V5 model, we divided the labeled images into a training 
dataset, a validation dataset, and a test dataset in an 8:1:1 ratio.

The offline operational behavior image dataset plays a key role in this study, 
which contains 6000 still images, each capturing a specific operational behavior per-
formed by the tester on the PTZ camera control interface, such as mouse clicks. 
These actions involve controlling, adjusting, and operating the surveillance system, 
and are intended to evaluate the actual performance of client-side user actions in 
order to gain insight into how users interact with the surveillance system. Compared 
to the recorded video dataset, the offline operation behavior image dataset presents 
static characteristics and focuses on capturing specific user operation behaviors, 
while the recorded video dataset demonstrates the dynamic response of the sur-
veillance system in different scenarios. By utilizing these two datasets together, the 
experiments are able to evaluate the proposed performance testing methodology 
more comprehensively, taking into account the close correlation between system 
operations and actual user behaviors, thus providing a more in-depth assessment of 
the effectiveness of the performance testing methodology.

5.2 � Timing accuracy of start times‑based YOLO‑V5 model

To conduct the experiment, we configured the experimental parameters as specified 
in Table 1.

Table 1   Parameter setting of 
YOLO-V5 test model

Parameter Setting

Input resolution 640 × 
640

Number of classes 80
Model depth multiple 0.33
Layer channel multiple 0.5
Batch size 32
Number of epochs 300
Confidence threshold 0.4
IOU threshold for NMS 0.5
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The initial segment of our experimentation focused on evaluating the YOLO-
V5 model’s proficiency and precision in discerning user mouse maneuvers. A 
multitude of tests were orchestrated across a spectrum of conditions to emulate 
real-world environments. The test results are analyzed for two scenarios: real-
time video call and PTZ camera response. Subsequently, we analyzed the data 
detected by the YOLO-V5 model at the moment of the operational command 
placement.

Comparison experiments were conducted 500 times with millisecond accuracy 
in timestamp recording. The test results are shown in Fig. 6, and the test accu-
racy is presented in Table 2. In the real-time video call scenario, the traditional 
manual reading method yielded 477 correct test data, while the method proposed 
in this paper produced 480 correct test data. For the PTZ camera control response 
scenario, the traditional manual reading method yielded 479 correct test data, 
whereas the proposed method yielded 482 correct test data.

From these empirical results, we obtained a measurable understanding of the 
YOLO-V5 model’s operational accuracy and responsiveness.

Table 2   Start time accuracy Test items Our method Traditional method

Real-time video call 96% 95.4%
PTZ camera response 96.4% 95.8%

Fig. 6   Percentage of detailed data in different events at start time. We conducted a comparative experi-
ment to assess the accuracy of the start moments. Comparing the results enables us to analyze the preci-
sion and effectiveness of the proposed testing method
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5.3 � Timing accuracy of end times based on object detection

The third part of the experiment assessed the accuracy of the object detection 
method at the moment of determining the end. This phase of the test is involved. 
The test results are analyzed below for two scenarios: analyzing real-time video call 
and PTZ camera response, respectively. We compared the measurements with tradi-
tional manual stopwatch readings during the test evaluation.

The comparison experiments were conducted 500 times with a recording accu-
racy of timestamps in milliseconds. The test results are shown in Table 3 and Fig. 7. 
In real-time video calling scenarios that utilize the sum of the differences of the 
mean values of the three channels of the image RGB to determine the end time ( te ), 
the traditional manual reading method yielded 478 correct test data, whereas the 
method proposed in this paper yielded 477 correct test data. For the PTZ camera 
control response scenario that uses a combination of feature matching and contour 
detection to determine the end time ( te ), the traditional manual reading method 
yielded 482 correct test data, whereas the method proposed in this paper yielded 

Table 3   End time accuracy Test items Our method Traditional method

Real-time video call 95.4% 95.6%
PTZ camera response 96% 96.4%

Fig. 7   Percentage of detailed data in different events at end time. We conducted comparative experiments 
to evaluate the accuracy of the final moments. The comparative results enable us to analyze the accuracy 
and validity of the proposed test method
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480 correct test data. It should be noted that the average response latency of the 
PTZ camera control in these 500 tests is 189 ms, which meets the requirement of the 
relevant technical specification standard that mandates completion within 300 ms. 
In terms of accuracy, the method proposed in this paper is very similar to the tradi-
tional manual reading method.

In terms of overall testing time, the traditional manual reading method takes 10 h, 
while the method proposed in this paper takes only 4.5 h. Since the method in this 
paper fully utilizes computer vision for object detection, enhances testing efficiency, 
and reduces testing costs, it is more advantageous from a comprehensive perspec-
tive. The method proposed in this paper fully utilizes computer vision to enhance 
testing efficiency and reduce testing costs. Overall, this approach has multiple 
advantages and appears to be a more comprehensive solution.

5.4 � Discussion on effectiveness and viability

Once the experiments were completed, the collected data were subjected to rigorous 
analysis to extract meaningful insights into the effectiveness of the proposed perfor-
mance testing methodology, focusing on its precision and accuracy in comparison 
with conventional techniques. According to the test results, the proposed method 
demonstrates a high level of accuracy in measuring the response latency in the rail-
way video surveillance system. It meets the test standard requirements and provides 
accurate results. In comparison with the traditional manual reading approach, using 
a latency-based approach to video surveillance systems based on object detection is 
not only more efficient but also more cost-effective.

Object detection-based response latency measurement method for video sur-
veillance systems is an efficient solution to the overuse of generic testing tools in 
response latency testing by the railway video intermodulation comprehensive test 
team. The solution not only eliminates compatibility issues faced by testing tools 
tools, but also simplifies the process, making it more efficient. From a usability 
standpoint, testers conducting video surveillance system response latency measure-
ments will find it easy to deploy this all-in-one tool on the video inspection system 
interface host device.

6 � Conclusion

This paper introduces a novel approach for assessing the response latency of video 
surveillance systems through object detection. The control response latency of a 
video surveillance system is determined by calculating the time difference between 
the end time ( te ) and the start time ( ts ). Our method pinpoints latency by tracking 
changes in video screen parameters post-mouse click, utilizing the YOLO-V5 model 
to identify the command initiation ( ts ). To obtain accurate video response times ( te ), 
we leverage RGB channel analysis for the real-time video call’s successful transmis-
sion moment. Feature matching and contour detection further refine the precision of 
latency measurements for PTZ camera controls.
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Our experiments demonstrate that this automated method significantly outper-
forms traditional manual latency assessments in both accuracy and efficiency. This 
advancement is particularly beneficial for practical applications, streamlining the 
testing process for video surveillance systems and offering a reliable performance 
benchmark for integrated systems, such as those used in the railway industry. The 
efficiency and reliability gains are crucial for enhancing the overall performance and 
safety of these systems.

Looking ahead, future work will concentrate on refining the detection algorithms 
to minimize false alarms and omissions, and on extending the technique’s applica-
bility to diverse scenarios and systems.
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