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Abstract
The Steiner tree problem in graphs is widely studied because of its usefulness in 
network design and circuit layout. In this context, given a set of vertices S(|S| ≥ 2, ) 
a tree that connects all vertices in S is called an S-Steiner tree. This helps to measure 
how well a network G can connect any set of S vertices together. In an S-Steiner 
tree, if each vertex in S has only one connection, it is called a pendant S-Steiner tree. 
Two pendant S-Steiner trees, T and T ′, are internally disjoint if E(T) ∩ E(T �) = � and 
V(T) ∩ V(T �) = S. The local pendant tree-connectivity, denoted as �G(S), represents 
the maximum number of internally disjoint pendant S-Steiner trees in graph G. For an 
integer k with 2 ≤ k ≤ n, where n is the number of vertices, the pendant k-tree-con-
nectivity, denoted as �k(G), is defined as 𝜏k(G) = min{𝜏G(S) ∶ S ⊆ V(G), |S| = k}. 
This paper focuses on studying the pendant 3-tree-connectivity of augmented cubes, 
which are modified versions of hypercubes designed to enhance connectivity and 
reduce diameter. This research demonstrates that the pendant 3-tree-connectivity of 
augmented cubes, denoted as �3(AQn) is 2n − 3 . This result matches the upper bound 
of �3(G) provided by Hager, specifically for the augmented cube graph AQn.
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1 Introduction

Several topologies have been suggested to strike a balance between cost and perfor-
mance. Among these, Cayley graphs are particularly favoured due to their appealing 
properties for designing interconnection networks. One widely studied Cayley graph 
is the hypercube denoted by Qn , which is highly popular for parallel networks [1].

Augmented cubes, introduced by Choudum and Sunitha [2], are derived from 
hypercubes and possess favourable geometric characteristics while retaining key 
properties of hypercubes. An n−dimensional augmented cube, denoted as AQn, 
extends from the hypercube Qn by adding additional links. These graphs main-
tain properties like vertex symmetry and facilitate routing and broadcasting pro-
cedures with linear time complexity, akin to hypercubes. Choudum and Sunitha 
showed that AQn contains two edge-disjoint complete binary trees on 2n − 1 ver-
tices, both rooted at the same vertex. Additionally, AQn contains all k-cycles for 
3 ≤ k ≤ 2n . Moreover, the diameter of AQn is approximately half that of Qn. These 
unique properties distinguish augmented cubes from hypercubes and other varia-
tions. Furthermore, augmented cubes are Cayley graphs, unlike all variations of 
hypercubes. Given these properties, AQn emerges as a promising alternative to 
hypercubes for various applications.

The Steiner tree problem is of great interest to researchers in combinatorial 
optimization and computer science. In an augmented cube, protection routing 
can be established by utilizing pendant trees, as each vertex possesses a unique 
address. The pendant vertex of a tree ensures secure storage, making it a reliable 
option. These practical applications highlight the importance of investigating the 
pendant tree-connectivity of augmented cubes.

For a set S of vertices, with |S| ≥ 2, a tree that connects all the vertices in S is 
called an S-Steiner tree. This parameter helps to measure the reliability of a net-
work G to connect any set of |S| vertices together.

In an S-Steiner tree connecting the vertices of set S, if each vertex in S has a 
degree one, the tree is called a pendant S-Steiner tree. Two pendant S-Steiner trees 
T and T ′ are internally disjoint if E(T) ∩ E(T �) = � and V(T) ∩ V(T �) = S. The local 
pendant tree-connectivity �G(S) refers to the maximum number of internally dis-
joint pendant S-Steiner trees in graph G. For any integer k ( 2 ≤ k ≤ n ), the pendant 
k-tree-connectivity �k(G) is defined as 𝜏k(G) = min{𝜏G(S) ∶ S ⊆ V(G), |S| = k}.

The concept of pendant tree-connectivity, introduced by Hager [3], is a specific 
case of generalized connectivity, which itself is a broader concept introduced by 
Chartrand [4]. Generalized connectivity, also known as k-tree-connectivity, is a 
generalization of classical connectivity. In the definition of pendant tree-connec-
tivity, if we relax the requirement for each vertex in S to have a degree one, it 
transforms into generalized connectivity.

The generalized 2-connectivity, denoted as �2(G), is equivalent to the connec-
tivity �(G) of graph G. Furthermore, �n(G) corresponds precisely to the spanning 
tree packing number of G. Thus, generalized connectivity serves as a unified con-
cept encompassing both classical connectivity and spanning tree packing number. 
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In our work [5], we proved that �3(AQn) = 2n − 2. In 2017,   L. Chen et  al. [6] 
established the hardness of determining the generalized connectivity of a given 
graph G.

Theorem  1.1 [6] Given a graph G and a 3-subset S of V(G) and an integer 
l (2 ≤ l ≤ n − 2), deciding whether there are l internally disjoint trees containing S,  
namely deciding whether �G(S) ≥ l, is NP-complete.

Since pendant S-Steiner trees are a special type of S-Steiner trees, determining 
whether �G(S) ≥ l for 2 ≤ l ≤ n − 2 is also NP-complete.

The close relationships between generalized connectivity and complete independ-
ent spanning trees (CISTs), as well as disjoint paths, are well established. Research 
on S-Steiner trees, CISTs, spanning tree packing numbers, generalized connectivity, 
and pendant tree-connectivity of graphs is crucial for optimizing information trans-
portation in large-scale networks, particularly in parallel routing design. Furthermore, 
this research offers valuable insights for evaluating fault tolerance, see [7–40].

As a bridge between discrete mathematics and theoretical computer science, 
algorithmic graph theory has gained significant importance in recent years. In our 
work, we demonstrate that �3(AQn) = 2n − 3, reaching the upper bound of �3(G) as 
established by Hager [3], for G = AQn.

2  Preliminaries

The n-dimensional augmented cube, denoted by AQn, n ≥ 1, is a graph with a vertex 
set consisting of all binary n-tuples, represented as {0, 1}n . This graph is defined 
recursively as follows.

AQ1 is the complete graph K2 with vertex set {0, 1}. For n ≥ 2, AQn is obtained 
from two copies of AQn−1, denoted as AQ0

n−1
 and AQ1

n−1
, and then adding 2n edges 

between them as follows.
Let V(AQ0

n−1
) = {0x1x2...xn−1 ∶ xi = 0 or 1} and V(AQ1

n−1
) = {1y1y2...yn−1 ∶

yi = 0 or 1}. A vertex x = 0x1x2...xn−1 of AQ0

n−1
 is joined to a vertex y = 1y1y2...yn−1 

of AQ1

n−1
 if and only if either 

(1) xi = yi for 1 ≤ i ≤ n − 1, in this case the edge xy is called a hypercube edge and 
we set y = xh or

(2) xi = yi for 1 ≤ i ≤ n − 1, in this case the edge xy is called a complementary edge 
and we set y = xc.

Notice that for any x ∈ V(AQn), we have (xc)h = (xh)c = xch (let us call it xch).
Let Eh

n
 and Ec

n
 denote the sets of hypercube edges and complementary edges, 

respectively, used to construct AQn from two copies of AQn−1. Then, Eh
n
 and Ec

n
 form 

perfect matchings of AQn, and furthermore, AQn = AQ0

n−1
∪ AQ1

n−1
∪ Eh

n
∪ Ec

n
.
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The augmented cubes of dimensions 1, 2, and 3 are depicted in Fig. 1.
In AQ3, if u1 = 000, u2 = 001, u3 = 011, u4 = 010 and v1 = 100, v2 = 101,

v3 = 111, v4 = 110 , then Eh
3
= {uivi ∶ i = 1, 2, 3, 4} and Ec

3 = {u1v3, u2v4, 
u3v1, u4v2}.

From the definition, it is clear that AQn is a (2n − 1)-regular graph with 2n verti-
ces. Additionally, AQn is known to be (2n − 1)-connected and vertex-transitive [2].

3  Pendant 3‑tree‑connectivity of augmented cubes, �
3
(AQn)

With Hager’s introduction of tree-connectivity, another tree-connectivity parameter 
called pendant tree-connectivity was also proposed in his work [3]. Recently, Mao 
[26, 27] has further explored pendant tree-connectivity. In this section, we aim to 
determine the pendant 3-tree-connectivity of AQn. Before proceeding, let us review 
some definitions necessary for our discussion.

Definition 3.1 ([3]) For an S-Steiner tree, if the degree of each vertex in S is equal to 
one, then that tree is called a pendant S-Steiner tree.

Two pendant S-Steiner trees T and T ′ are said to be internally disjoint if 
E(T) ∩ E(T �) = � and V(T) ∩ V(T �) = S. For S ⊆ V(G) and |S| ≥ 2, the local pen-
dant tree-connectivity �G(S) is the maximum number of internally disjoint pendant 
S-Steiner trees in G. For an integer k with 2 ≤ k ≤ n, the pendant k-tree-connectivity 
is defined as

By convention, �k(G) = 0 when G is disconnected.
In Fig.  2a, there are three pendant S-Steiner trees in AQ3, where 

S = {000, 001, 011} . Additionally, in Fig.  2b, we observe four pendant S-Steiner 
trees in AQ3 with S = {001, 010, 100}.

Note that �1(AQn) is equal to the order of AQn, i.e. 2n − 1. Addition-
ally, �2(AQn) = 2n − 1, since the augmented cube is (2n − 1)-connected. It 
is evident that �k(G) ≤ �k(G), k ≥ 2. For the augmented cube AQn, we have 
�3(AQn) ≤ �3(AQn) = 2n − 2.

Let S be the vertex set of a triangle in AQn. In this scenario, we cannot use the 
two edges from each vertex in S to the other two vertices of S in the construction 

𝜏k(G) = min{𝜏G(S) ∶ S ⊆ V(G), |S| = k}.

Fig. 1  Augmented cubes of dimensions 1, 2, and 3
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of pendant S-Steiner trees, as the vertices of S should be pendant in each tree. 
Thus, in this case, we can obtain at most 2n − 3 pendant S-Steiner trees. Hence, 
�3(AQn) ≤ 2n − 3.

In this section, we establish the existence of 2n − 3 pendant S-Steiner trees in AQn 
for any subset S ⊂ V(AQn) with |S| = 3. Hence, the result is optimal.

Hager [3] provided the following result regarding pendant k-tree-connectivity, 
�k(G) , of a simple, finite graph G.

Proposition 3.2 ([3]) Let G be a graph with �k(G) ≥ m. Then, �(G) ≥ k + m − 1.

We need the above Proposition to prove the next result regarding the pendant 
3-tree-connectivity of the augmented cube AQn. Additionally, we require the follow-
ing result concerning the existence of a one-to-one path covering between any two 
vertices of the augmented cube, i.e. between any two vertices of AQn , there exist k 
vertex-disjoint paths covering all its vertices, for 2 ≤ k ≤ 2n − 1 . Since the maxi-
mum order of a one-to-one path cover in the augmented cube is equal to its connec-
tivity, which is (2n − 1), AQn becomes super spanning connected.

Proposition 3.3 ([18]) AQn is super spanning connected if and only if n ≠ 3.

We now explore the main result of this paper.

Theorem  3.4 Let n ≥ 3 be an integer. The pendant 3-tree-connectivity �3(AQn) of 
AQn is 2n − 3.

Proof The contra-positive statement of the above Proposition 3.2 is:
Let G be a graph with 𝛿(G) < k + m − 1. Then, 𝜏k(G) < m.

Given that 𝛿(AQn) = 2n − 1 < 3 + 2n − 2 − 1, we can infer from the previous 
result that 𝜏3(AQn) < 2n − 2, which implies �3(AQn) ≤ 2n − 3. Therefore, it is suf-
ficient to demonstrate that for any subset S of V(AQn) with |S| = 3, there exist 2n − 3 
pendant S-Steiner trees in AQn.

To prove this result, we will use induction on n. Let us start with the base case, 
n = 3. Since AQn is vertex-transitive according to [2], we can confirm the validity of 
the result for n = 3 from the following figures (Fig. 3a). 

Fig. 2  Pendant S-Steiner trees in AQ3
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The figures above include every option of three vertex sets in AQ4 , ensuring the 
truth of the result for both n = 3 and n = 4 . Assuming the induction hypothesis 
holds, the result remains true for AQn−1 , i.e. �3(AQn−1) = 2n − 5. Let us break down 
the canonical representation of AQn as follows: AQn = AQ0

n−1
∪ AQ1

n−1
∪ Eh

n
∪ Ec

n
 . 

Let S = {x, y, z} be a subset of V(AQn).

Case 1: Suppose x, y, z ∈ V(AQ0

n−1
).

Utilizing the induction hypothesis, we derive that there are 2n − 5 S-Steiner trees 
present in AQ0

n−1
 . Now in AQ1

n−1
, xh is the complement of xc. As we have the decom-

position of AQ1

n−1
 into two subgraphs, namely AQ10

n−2
 and AQ11

n−2
, one of the ver-

tices xh and xc should lie in AQ10

n−2
 and other in AQ11

n−2
. Similar is true for {yh, yc} 

and {zh, zc}. Thus, one of the neighbours, either hypercubic or complement, of each 
vertex of S lies in A10

n−2
 and other in AQ11

n−2
. Since AQn is Hamiltonian, there exist 

Hamiltonian paths P1 in AQ10

n−2
 and P2 in AQ11

n−2
. Hence, joining x, y, and z to their 

neighbours on P1 and on P2 , we get two more pendant S-Steiner trees. Thus, in this 
case, we get 2n − 3 pendant S-Steiner trees in AQn, see Fig. 4. 

Likewise, due to the vertex transitivity of the augmented cube, we will obtain 
2n − 3 pendant S-Steiner trees within AQn , when {x, y, z} ⊆ V(AQ1

n−1
).

Case 2: Suppose {x, y} ⊆ V(AQ0

n−1
) and z ∈ V(AQ1

n−1
).

Subcase 2.1: Let z ∈ {xh, xc, yh, yc}.

Without loss of generality, suppose z = xh.

Fig. 3  a Pendant S-Steiner trees in AQ3 . b Pendant S-Steiner trees in AQ4
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Subcase 2.1.1: Suppose {xh, xc} = {yh, yc}.

Consequently, in this scenario, x is adjacent to y. According to Proposition 3.3, 
we establish a path cover between x and y, denoted as P1,P2,… ,P2n−3 within AQ0

n−1
 . 

Let y1, y2,… , y2n−3 be the neighbours of y along P1,P2,… ,P2n−3 , respectively. 

Fig. 3  (continued)
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Without loss of generality, suppose y1 = x. Then, yc
1
= xc = yh ∈ V(AQ1

n−1
). Let 

Q1,Q2,… ,Q2n−3 be the path cover between z(= xh) and yh in AQ1

n−1
 corresponding to 

the path cover {P1,P2,… ,P2n−3} of AQ0

n−1
. Clearly, the neighbours yc

1
, yc

2
,… , yc

2n−3
 

of yc lie on the paths Q1,Q2,… ,Q2n−3 , respectively, and hence, Q1 = ycxc. Thus, the 
required 2n − 3 pendant S-Steiner trees T1, T2,… , T2n−3 are as follows:

Ti = Pi ∪ {ycyc
i
, yiy

c
i
}, for 2 ≤ i ≤ 2n − 3 and T1 = {xyh, yyh} ∪ Q1, see Fig. 5.

Fig. 3  (continued)
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Subcase 2.1.2:
Let us assume that {xh, xc} ≠ {yh, yc} and z is not adjacent to either yh or yc.
Clearly, x is not adjacent to y since z = xh and z is not adjacent yh. We know that 

AQn has one-to-one path cover of order k, 1 ≤ k ≤ 2n − 1 between any pair of ver-
tices. Therefore, we get a path cover P1,P2,… ,P2n−3 between x and y in AQ0

n−1
. 

Let y1, y2,… , y2n−3 be the neighbours of y along P1,P2,… ,P2n−3 , respectively. In 
AQ1

n−1
, let Q1,Q2,… ,Q2n−3 be the corresponding path cover between z = xh and yh 

such that yh
1
, yh

2
,… , yh

2n−3
 are neighbours of yh along Q1,Q2,… ,Q2n−3 , respectively. 

Thus, the required 2n − 3 pendant S-Steiner trees T1, T2,… , T2n−3 are obtained as 
follows:

Ti = Pi ∪ {Qi�y
hyh

i
} ∪ {yiy

h
i
}, for 1 ≤ i ≤ 2n − 3, see Fig. 6.

Fig. 4  Illustration for Case 1

Fig. 5  Illustration for Subcase 2.1.1
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Subcase 2.1.3: Let us suppose that {xh, xc} ≠ {yh, yc} and z is adjacent to yh or 
both yh and yc in AQ1

n−1
.

Then, y is adjacent to zh = x in AQ0

n−1
. By Proposition 3.3, we get one-to-one path 

cover of order k, 1 ≤ k ≤ 2n − 1 between any pair of vertices in AQn . Thus, we get 
a path cover P1,P2,… ,P2n−3 between x and y in AQ0

n−1
. Let x1, x2,… , x2n−3 be the 

neighbours of x along P1,P2,… ,P2n−3 , respectively. Similarly, in AQ1

n−1
, we get a 

path cover Q1,Q2,… ,Q2n−3 between xc and z such that neighbours xc
1
, xc

2
,… , xc

2n−3
 

of xc lie on Q1,Q2,… ,Q2n−3 , respectively. Since x is adjacent to y in AQ0

n−1
, without 

loss of generality, we assume that x1 = y which gives xc
1
= yc in AQ1

n−1
. Also, without 

loss of generality, assume that x2 = xch in AQ0

n−1
. Hence, P1 = xy and Q2 = xcxh. 

The required 2n − 3 pendant S-Steiner trees T1, T2,… , T2n−3 are as follows:
Ti = Pi ∪ {Qi�x

cxc
i
} ∪ {xix

c
i
}, for 3 ≤ i ≤ 2n − 3,

T1 = P2 ∪ {x2z} and T2 = {xxc, yyc} ∪ Q1, see Fig. 7.
Subcase 2.1.4: Suppose {xh, xc} ≠ {yh, yc} and z is adjacent to yc but not adjacent 

to yh in AQ1

n−1
.

Then, using the same reasoning as in Subcase 2.1.2 of this theorem, we obtain 
the necessary 2n − 3 pendant S-Steiner trees, as shown in Fig. 6. In this situation, 
assuming without loss of generality that yc = yh

1
 , the path Q1 would be {yhyc, ycz}.

Similarly, we get 2n − 3 pendant S-Steiner trees in the augmented cube AQn if 
z = xc, yc or yh.

Subcase 2.2: Let z ∉ {xc, xh, yc, yh}.

Subcase 2.2.1: Let us examine the scenario where {xh, xc} = {yh, yc} . Notice that 
in this instance, x is adjacent to y, and xh = yc while xc = yh.

Subcase 2.2.1(a): Let us assume that z is adjacent to one of the vertices xh or xc , 
but not both.

Without loss of generality, suppose z is adjacent to xc. Now we have a path 
cover P1,P2,… ,P2n−3 between x and y in AQ0

n−1
. Let y1, y2,… , y2n−3 be the neigh-

bours of y along P1,P2,… ,P2n−3 , respectively. Without loss of generality, sup-
pose y1 = x. Thus, P1 = xy. Then, yc

1
= xc = yh ∈ AQ1

n−1
. Consider a path cover 

Fig. 6  Illustration for Subcase 2.1.2
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Q1,Q2,… ,Q2n−3 between yc(= xh) and z such that neighbours yc
1
, yc

2
,… , yc

2n−3
 of yc 

lie on Q1,Q2,… ,Q2n−3 , respectively. Thus, the required 2n − 3 pendant S-Steiner 
trees T1, T2,… , T2n−3 are as follows:

Ti = Pi ∪ {Qi�{y
cyc

i
}} ∪ {yiy

c
i
}, for 2 ≤ i ≤ 2n − 3,

T1 = {xxc, yyh} ∪ {Q1�{x
cxh}}, see Fig. 8.

Subcase 2.2.1(b): Let us consider the case where z is adjacent to both xh and xc.
Since z is adjacent to xh = yc in AQ1

n−1
, zc is adjacent to y in AQ0

n−1
. Now we 

have a path cover P1,P2,… ,P2n−3 between x and y in AQ0

n−1
. Let y1, y2,… , y2n−3 be 

the neighbours of y along P1,P2,… ,P2n−3 , respectively. Without loss of generality, 
suppose y1 = zc and y2 = x. Thus, P2 = xy. Then, yc

1
= z and yc

2
= xc in AQ1

n−1
. Con-

sider a path cover Q1,Q2,… ,Q2n−3 between yc(= xh) and z such that the neighbours 
yc
1
, yc

2
,… , yc

2n−3
 of yc lie on Q1,Q2,… ,Q2n−3 , respectively. The required 2n − 3 pen-

dant S-Steiner trees T1, T2,… , T2n−3 are as follows:

Fig. 7  Illustration for Subcase 2.1.3

Fig. 8  Illustration for Subcase 2.2.1(a)
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Ti = Pi ∪ {Qi�{y
cyc

i
}} ∪ {yiy

c
i
}, for 3 ≤ i ≤ 2n − 3,

T1 = P1 ∪ {zcz} and T2 = Q2 ∪ {xxh, yyh}, see Fig. 9.
Subcase 2.2.1(c): Let us suppose that z is not adjacent to both xc and xh.
By Proposition  3.3, we get a path cover P1,P2,… ,P2n−3 between x and y in 

AQ0

n−1
 . Let y1, y2,… , y2n−3 be the neighbours of y along P1,P2,… ,P2n−3 , respec-

tively. Since x is adjacent to y,   without loss of generality, suppose y1 = x , and 
hence, P1 = xy. Consider a path cover Q1,Q2,… ,Q2n−3 between yh(= xc) and z such 
that the neighbours yh

1
, yh

2
,… , yh

2n−3
 of yh lie on Q1,Q2,… ,Q2n−3 , respectively. Thus, 

yh
1
= xh = yc. The required 2n − 3 pendant S-Steiner trees T1, T2,… , T2n−3 are as 

follows:
Ti = Pi ∪ {Qi�{y

hyh
i
}} ∪ {yiy

h
i
}, for 2 ≤ i ≤ 2n − 3,

T1 = Q1 ∪ {yyh, xxh}, see Fig. 10.
Subcase 2.2.2: Suppose {xh, xc} ≠ {yh, yc} and x is not adjacent to y.
Subcase 2.2.2(a): If z is adjacent to all xh, xc, yh, and yc.
Since z is adjacent to yc and xc in AQ1

n−1
, zc is adjacent to y and x in AQ0

n−1
. Now 

we have a path cover P1,P2,… ,P2n−3 between x and y in AQ0

n−1
. Let y1, y2,… , y2n−3 

be the neighbours of y along P1,P2,… ,P2n−3 , respectively. Let Q1,Q2,… ,Q2n−3 be 
a path cover between yc and z in AQ1

n−1
 such that the neighbours yc

1
, yc

2
,… , yc

2n−3
 of yc 

lie on Q1,Q2,… ,Q2n−3 , respectively. Without loss of generality, suppose y1 = zc and 
y2 = ych. Then, yc

1
= z and yc

2
= yh in AQ1

n−1
. The required 2n − 3 pendant S-Steiner 

trees T1, T2,… , T2n−3 are as follows:
Ti = Pi ∪ {Qi�{y

cyc
i
}} ∪ {yiy

c
i
}, for 3 ≤ i ≤ 2n − 3,

T1 = P1 ∪ {zcz} and T2 = {P2�{yy
ch}} ∪ Q2 ∪ {ycych, yyh}, see Fig. 11.

Subcase 2.2.2(b): If z is not adjacent to all of xh , xc , yh , and yc.
By Proposition  3.3, we get a path cover P1,P2,… ,P2n−3 between x and y in 

AQ0

n−1
. Let y1, y2,… , y2n−3 be the neighbours of y along P1,P2,… ,P2n−3 , respec-

tively. In AQ1

n−1
, let Q1,Q2,… ,Q2n−3 be a path cover between z and yh in AQ1

n−1
 such 

Fig. 9  Illustration for Subcase 2.2.1(b)
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that yh
1
, yh

2
,… , yh

2n−3
 are neighbours of yh along Q1,Q2,… ,Q2n−3 , respectively. Thus, 

the required 2n − 3 pendant S-Steiner trees T1, T2,… , T2n−3 are obtained as follows:
Ti = Pi ∪ {Qi�{y

hyh
i
}} ∪ {yiy

h
i
}, for 1 ≤ i ≤ 2n − 3, see Fig. 12.

With the same line of reasoning, we derive 2n − 3 pendant S-Steiner trees in AQn 
for the described cases. 

 (i) z is adjacent to yc or xc or both, but not adjacent to yh or xh.
 (ii) z is adjacent to yc or xh or both, but not adjacent to yh or xc.

In the aforementioned argument, if we opt for a path cover between yc and z instead 
of between yh and z in AQ1

n−1
 , we still obtain 2n − 3 pendant S-Steiner trees in AQn 

for the described cases. 

Fig. 10  Illustration for Subcase 2.2.1(c)

Fig. 11  Illustration for Subcase 2.2.2(a)
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 (i) z is adjacent to yh or xh or both, but not adjacent to yc, xc.
 (ii) z is adjacent to yh or xc or both, but not adjacent to yc, xh.

Subcase 2.2.2(c): If z is adjacent to yc or yh or both, but not adjacent to xh and xc.
In this scenario, employ a path cover of order 2n − 3 between xh and z instead 

of between yh and z in AQ1

n−1
 and obtain the desired result similar to Subcase 

2.2.2(b), as depicted in Fig. 13.
Similarly, we obtain 2n − 3 pendant S-Steiner trees if z is adjacent to xh or xc or 

both, but not adjacent to yh and yc.
Subcase 2.2.2(d): Suppose z is adjacent to yh only or to yh, xc, xh.

Fig. 12  Illustration for Subcase 2.2.2(b)

Fig. 13  Illustration for Subcase 2.2.2(c)
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In this case, use a path cover of order 2n − 3 between yc and z instead of between 
yh and z in AQ1

n−1
 and get the required result as similar to Subcase 2.2.2(b). Simi-

larly, we get 2n − 3 pendant S-Steiner trees if z is adjacent to xh only or to xh, yc, yh.
Subcase 2.2.2(e): Suppose z is not adjacent to yh only or to yc, xh, xc.
In this case, if z is not adjacent to yh only then as similar to Subcase 2.2.2(b), 

we get required 2n − 3 pendant S-Steiner trees in AQn by using a path cover of 
order 2n − 3 between yh and z in AQ1

n−1
. If z is not adjacent to yc, xh, xc , then we 

get required 2n − 3 pendant S-Steiner trees in AQn as similar to Subcase 2.2.2(b) by 
using a path cover of order 2n − 3 between yc and z instead of yh and z in AQ1

n−1
.

Subcase 2.2.3: Assume now that {xh, xc} ≠ {yh, yc} and x is adjacent to y.
Subcase 2.2.3(a): Suppose z is adjacent to all xh, xc, yh and yc.
We have a path cover P1,P2,… ,P2n−3 between x and y in AQ0

n−1
. Let 

y1, y2,… , y2n−3 be the neighbours of y along P1,P2,… ,P2n−3 , respectively. Since 
z is adjacent to yh in AQ1

n−1
, zh is adjacent to y in AQ0

n−1
. Without loss of general-

ity, suppose y1 = zh. Hence, yh
1
= z . Since x is adjacent to y,  let us assume, without 

any loss of generality, that y2 = x. Thus, yh
2
= xh . Also, take y3 = ych in AQ0

n−1
 so 

that yh
3
= yc in AQ1

n−1
. Now, in AQ1

n−1
, we get a path cover Q1,Q2,… ,Q2n−3 between 

yh and z such that the neighbours yh
1
, yh

2
,… , yh

2n−3
 of yh lie on Q1,Q2,… ,Q2n−3 , 

respectively. Thus, the required 2n − 3 pendant S-Steiner trees T1, T2,… , T2n−3 are 
obtained as follows:

Ti = Pi ∪ {Qi�{y
hyh

i
}} ∪ {yiy

h
i
}, for 4 ≤ i ≤ 2n − 3 and

T1 = P1 ∪ {zzh}, T2 = Q2 ∪ {xxh, yyh}

T3 = P3 ∪ {Q3�{y
hyc}} ∪ {ycych}, see Fig. 14.

Subcase 2.2.3(b): Suppose z is not adjacent to all xh, xc, yh and yc.
We have a path cover P1,P2,… ,P2n−3 between x and y in AQ0

n−1
. Let 

y1, y2,… , y2n−3 be the neighbours of y along P1,P2,… ,P2n−3 , respectively. Since x 
is adjacent to y,  without loss of generality, suppose y1 = x. Hence, yh

1
= xh . Now, in 

AQ1

n−1
, we get a path cover Q1,Q2,… ,Q2n−3 between yh and z such that the neigh-

bours yh
1
, yh

2
,… , yh

2n−3
 of yh lie on Q1,Q2,… ,Q2n−3 , respectively. Thus, the required 

2n − 3 pendant S-Steiner trees T1, T2,… , T2n−3 are obtained as follows:

Fig. 14  Illustration for Subcase 2.2.3(a)
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Ti = Pi ∪ {Qi�{y
hyh

i
}} ∪ {yiy

h
i
}, for 2 ≤ i ≤ 2n − 3 and

T1 = Q1 ∪ {xxh, yyh}, see Fig. 15.
With the same argument, we get 2n − 3 pendant S-Steiner trees in AQn for the fol-

lowing cases: 

 (i) z is adjacent to yc or xc or both, but not adjacent to yh, xh.
 (ii) z is adjacent to yc or xh or both, but not adjacent to yh, xc.

In the above argument, if we take a path cover between yc and z instead of between 
yh and z in AQ1

n−1
 , then we also get 2n − 3 pendant S-Steiner trees in AQn for the fol-

lowing cases: 

 (i) z is adjacent to yh or xh or both, but not adjacent to yc, xc.
 (ii) z is adjacent to yh or xc or both, but not adjacent to yc, xh.

Subcase 2.2.3(c): Suppose z is adjacent yc or yh or both, but not adjacent to xh and 
xc.

We establish a path cover P1,P2,… ,P2n−3 between x and y in AQ0

n−1
 . Let us 

denote the neighbours of x along P1,P2,… ,P2n−3 by x1, x2,… , x2n−3 , respectively. 
Let Q1,Q2,… ,Q2n−3 be a path cover between xh and z in AQ1

n−1
 such that neigh-

bours xh
1
, xh

2
,… , xh

2n−3
 of xh lie on Q1,Q2,… ,Q2n−3 , respectively. Since x is adja-

cent to y,  without loss of generality, suppose x1 = y, which gives us P1 = xy and 
xh
1
= yh. Thus, the required 2n − 3 S-Steiner trees T1, T2,… , T2n−3 are constructed 

as follows:
Ti = Pi ∪ {Qi�{x

hxh
i
}} ∪ {xix

h
i
}, for 2 ≤ i ≤ 2n − 3 and

T1 = Q1 ∪ {xxh, yyh}, see Fig. 16.
Similarly, we obtain 2n − 3 pendant S-Steiner trees if z is adjacent to xh or xc or 

both, but not adjacent to yh and yc.

Fig. 15  Illustration for Subcase 2.2.3(b)
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Subcase 2.2.3(d): Suppose z is adjacent to yh only or to yh, xc, xh.
In this case, utilize a path cover of order 2n − 3 between yc and z instead of 

between yh and z in AQ1

n−1
 to achieve the desired outcome, akin to Subcase 2.2.3(b). 

Likewise, we obtain 2n − 3 pendant S-Steiner trees if z is adjacent to xh only or to xh , 
yc , and yh.

Subcase 2.2.3(e): Suppose z is not adjacent to yh only or to yc, xh, xc.
In this case, if z is not adjacent to yh only then as similar to Subcase 2.2.3(b), 

we get required 2n − 3 pendant S-Steiner trees in AQn by using a path cover of 
order 2n − 3 between yh and z in AQ1

n−1
. If z is not adjacent to yc, xh, xc , then we 

get required 2n − 3 pendant S-Steiner trees in AQn as similar to Subcase 2.2.3(b) by 
using a path cover of order 2n − 3 between yc and z instead of between yh and z in 
AQ1

n−1
.

Therefore, utilizing the vertex transitivity of the augmented cube, we obtain 
2n − 3 pendant S-Steiner trees in AQn , similarly when {x, y} ⊆ V(AQ1

n−1
) and 

z ∈ V(AQ0

n−1
).

Thus, by the principle of mathematical induction, we conclude that 
�3(AQn) = 2n − 3.

4  Concluding remarks

In this paper, pendant 3-tree-connectivity of AQn is established, indicating 
�3(AQn) = 2n − 3 . However, evaluations of �k(AQn) for k ≥ 4 remain open.
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