
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:17952–17979
https://doi.org/10.1007/s11227-024-06138-1

1 3

LGAFormer: transformer with local and global attention 
for action detection

Haiping Zhang1,2 · Fuxing Zhou2 · Dongjing Wang1 · Xinhao Zhang2 · 
Dongjin Yu1 · Liming Guan3

Accepted: 9 April 2024 / Published online: 6 May 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2024

Abstract
Temporal action detection is a very important task in video understanding, aiming 
at predicting the start and end time boundaries of all action instances in an unedited 
video and their action classification. This task has been widely studied, especially 
after the transformer has been widely used in the field of vision. However, trans-
former model brings massive computational resource consumption when process-
ing long sequence input data. At the same time, due to the ambiguity of the video 
action boundary, many proposal and instance-based methods cannot predict the 
video boundary accurately. Based on the above two points, we propose LGAFormer: 
a very concise model that combines the local self-attention mechanism with the 
global self-attention mechanism, using local self-attention in the shallow layer of the 
network to process short-range temporal data to model local representations while 
reducing a large amount of computational consumption, and using global self-atten-
tion in the deep layer of the network to model long-range temporal context. This 
allows our model to achieve a good balance between effectiveness and efficiency. 
And in terms of detection head, we combine the advantages of the segment feature 
and instance feature to predict action boundaries more accurately. Thanks to these 
two points, our method achieves comparable results on all three datasets (THU-
MOS14, ActivityNet 1.3, and EPIC-Kitchens 100). On THUMOS14, an average 
mAP of 67.7% was obtained. On ActivityNet 1.3, the best performance is obtained 
with an average mAP of 36.6%. On EPIC-Kitchens 100, an average mAP of 24.6% 
was achieved.

Keywords  Action detection · Transformer · Self-attention · Video understanding

Haiping Zhang, Dongjing Wang, Xinhao Zhang, Dongjin Yu and Liming Guan have contributed 
equally to this work.

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06138-1&domain=pdf


17953

1 3

LGAFormer: transformer with local and global attention for…

1  Introduction

Temporal action detection is to detect the temporal boundaries of each action 
instance in an unedited video, i.e., the start and end moments of the action, and 
to classify the action instance, which is an important and very challenging task in 
video understanding because it requires a model with strong spatiotemporal fea-
ture extraction capability.

The mainstream approaches for this task can be broadly classified into three 
categories: first, convolution-based approaches [1–5]. Convolutional neu-
ral networks(CNNs) have played a major role in vision for many years. This is 
also true in the video understanding task. 3D convolutional networks can natu-
rally handle 3D data like video, so many 3D convolutional networks [6, 7] have 
made great breakthroughs in this task. However, such 3D networks tend to have 
a very large number of parameters, while the limited perceptive field of convo-
lutional networks makes these networks unable to capture long-term spatiotem-
poral dependencies. Therefore, in today’s increasingly diverse video landscape, 
pure convolutional network models are increasingly limited. The second cat-
egory is the transformer-based approaches [8–12]. The transformer [13] orig-
inally used in NLP have been gradually applied to the vision domain [14–18] 
and have achieved significant results (e.g., classification, detection, etc.). Since 
the transformer model is more suitable for processing sequential information 
compared to the convolutional model, the transformer model has been naturally 
extended to the video understanding domain, producing quite a lot of excellent 
work [19–23]. However, such methods have a huge drawback in that they con-
sume very high computational resources when the input sequence of the model 
is too long and therefore have high requirements for the equipment. So a third 
class of approaches [24–27] also emerged: combining CNN with transformer. By 
combining convolution, or MLP, with transformer, the computational complexity 
is reduced. However, the overall design of these models is usually very complex, 
adding many self-designed extra modules to the original transformer structure, 
making the whole model quite bloated.

We chose the second one for the above three types and constructed a clean 
and pure transformer model. One of the key modules in the transformer model 
is the self-attention mechanism. In recent years, research in various fields has 
confirmed the powerful spatiotemporal representation learning capabilities of 
the self-attention mechanism. For instance, in the medical imaging domain, Rad-
Former [28] achieves higher accuracy in gallbladder cancer detection by combin-
ing global attention and local attention. In the field of action recognition, DANet 
[29] use the dual-attention to learn robust video representations for view-invariant 
action recognition. In addition, there are many transformer-based models [9, 30] 
that solely utilize global self-attention mechanisms to model sequence features. 
However, from previous studies on CNN networks and transformer networks [12, 
31–33], the shallow layer of the network tends to capture more local information 
in the image. In contrast, the deep layer tends to capture more high-level seman-
tic information. Therefore, using global self-attention in the shallow layer will 



17954	 H. Zhang et al.

1 3

focus on unnecessary distant information, resulting in computational redundancy 
and consuming huge computational resources when the global self-attention layer 
processes long input sequences at once. To reduce the computational complex-
ity, some transformer-based models [34] replace the global self-attention with 
local self-attention all together to restrict the self-attention to a small local win-
dow. However, this will limit the deep layer of the network to learn high-level 
semantics and model long-range dependencies. As shown in Fig. 1, a transformer 
model that uses only local self-attention significantly differs in detection accuracy 
when detecting actions with a smaller amplitude and actions with a larger ampli-
tude. Detection accuracy is much higher for short-duration actions such as diving 
and shot put throwing than for long-duration actions such as playing tennis and 
gymnastic sports. This is because local self-attention cannot capture long-term 
dependencies well for actions with larger amplitude and longer duration.

According to the characteristics of global self-attention and local self-attention, 
in this paper, we construct a transformer-based model with a changeable self-atten-
tion mechanism: LGAFormer. In the shallow layer, the network focuses only on the 

Fig. 1   Detection results of TAD method based on local self-attention. Large difference in effect between 
long-duration and short-duration action detection. Detection accuracy is much higher for short-duration 
actions(bottom2) such as diving and shot put throwing than for long-duration actions(top2) such as play-
ing tennis and gymnastic sports



17955

1 3

LGAFormer: transformer with local and global attention for…

changes in adjacent frames and the local style information within the image, so we use 
the Local Attention Transformer Module (LATM) layer to capture the pattern informa-
tion within the local window, and in the deep layer, the Global Attention Transformer 
Module (GATM) model the long-term spatiotemporal dependencies. This ensures that 
the LGAFormer can model both short-term local spatiotemporal information and long-
term global spatiotemporal information. By constructing such features into a feature 
pyramid structure, with a detection head module attached to each layer of the feature 
pyramid, the output features can be decoded into class and temporal boundaries for 
each action instance.

In addition, most of the current detection heads are divided into two categories: 
one is the anchor-based approach [35, 36], which divides the output feature pyramid 
according to the anchor to get a candidate segment of a specific size, and then corrects 
the boundaries of the candidate segments by the regression head to get the final predic-
tion results. However, the boundary of the action in the video is often very ambiguous, 
and this regression method, based on the global features of the whole clip, cannot cap-
ture the detailed information of the boundary. Another type of method is the anchor-
free method [34, 37–39], which generates temporal proposals by predicting the offsets 
between each moment and the start or end boundaries. However, this method does not 
consider the relative relationship between adjacent moments, so the confidence of the 
obtained boundaries is not high. Therefore, our detection head combines the above two 
methods, first generating a time segment with a fixed time length at each moment, and 
predicting the offset between each moment of this time segment and the boundary, then 
estimating the relative probability distribution of the boundary between all moments of 
this segment, finally obtaining the temporal boundary by means of expectation.

In summary, our main contributions are three: 

1.	 We constructed a pure transformer network for temporal action detection tasks, 
which does not rely on predefined anchor boxes or other complex designs. This 
approach aims to achieve a better balance between efficiency and effectiveness 
in the model.

2.	 We design a stage-changeable self-attention mechanism in the transformer struc-
ture, using LATM at shallow levels to capture local features while reducing com-
putational redundancy and GATM at deep levels to model long-term dependency 
information. Moreover, the detection head is carefully designed to combine seg-
ment and momentary features to predict action boundaries more accurately.

3.	 Finally, we conducted a series of comparative tests on a standard test set, and we 
achieved good results in testing results while keeping computational resources 
within manageable limits.

2 � Related work

2.1 � Temporal action detection

Action recognition and temporal action detection are two important tasks in video 
understanding, where action recognition is the classification of edited videos into 



17956	 H. Zhang et al.

1 3

actions, and temporal action detection is to locate the start and end moments of each 
action instance in an unedited video and then classify them.

Most of the current TAD methods use the action recognition model as the video 
encoder, input the video into the action recognition model first to get the initial video 
spatiotemporal features, then use these features as the input to the TAD model, further 
process the features and decode them to get the final output. Some of the more used 
video encoders are TSN [40], I3D [41], SlowFast [42], etc. TSN is based on the idea 
of long-range temporal structure modeling. It combines a sparse temporal sampling 
strategy and video-level supervision to enable efficient and effective learning using 
the whole action video. I3D, a very widely used 3D CNN model, inflates the inception 
network directly into a 3D network, which can be pretrained using the dataset of an 
otherwise 2D network. SlowFast network is a two-stream network divided into a slow 
path and a fast path to extract spatiotemporal information. Both use the classical 3D 
CNN network. In order to save computational cost, our method LGAFormer is also 
constructed on video features encoded with a pre-trained video classification network.

As for the TAD model, which is only a detector, most of the current methods can 
be divided into three categories: the multistage, two-stage, and single-stage meth-
ods. The multistage method [43–45] first generates a number of candidate segments 
and then classifies each segment as action foreground or background by generat-
ing a confidence score through a binary classifier and further feeds the candidate 
boxes with high confidence scores to the multi-category classifier for action clas-
sification, and refines the boundaries of the candidate boxes by a regressor. The two-
stage methods [46–50] generate candidate video segments as action proposals in 
one step and then further classify these proposals into specific action categories and 
modify their timing boundaries. Both methods generate proposals first and then per-
form classification and regression correction. In generating proposals, some manu-
ally predefined fixed-size initial segment is usually used, which significantly limits 
the flexibility of the model, and this multistage model cannot be trained end-to-end. 
The one-stage methods [51–53] detect both the boundaries and categories of action 
segments in a single shot. Most of them are anchor-based methods, which generate 
a predefined number of fixed-size anchor boxes by anchor points, and then classify 
and regress these anchor boxes to get the boundaries and classes of action instances. 
Our approach also borrows this idea by generating a fixed-size segment for each pre-
diction point and combining the features of the segment with the moment features of 
the prediction points to help precisely locate the temporal boundaries.

2.2 � Anchor‑free action detection

Since the anchor-based approach requires setting a fixed size and number of anchor 
frames to generate action candidates, which will affect the generalization ability of the 
model to some extent, the anchor-free action detection approach emerged. Before this, 
there were many anchor-free methods [54–56] in the object detection task, the most 
famous of which is the YOLO [57] directly used to predict coordinates of bounding 
boxes from raw images. Fcos [52] aims to learn the distance to boundaries of each spa-
tial location and utilizes feature pyramid for objects with diverse scales. Inspired by 



17957

1 3

LGAFormer: transformer with local and global attention for…

these methods, many anchor-free methods have emerged for action detection task, such 
as A2Net [36], which directly predicts the distance to the action boundaries and the 
action category for each frame. In addition, AFSD [37] adds a saliency-based refine-
ment module to the convolutional network to extract boundary saliency features to opti-
mize the boundary position of each proposal. Our method belongs to the category of 
anchor-free, by matching scores of start boundary and end boundary for each moment 
and also predicting the offset between each moment to the boundary. Multiple moments 
are combined into one segment, and the relationship between each instance in the seg-
ment finally derives the most accurate boundary position.

2.3 � Video transformer

Due to the great success of transformer [13] in the field of NLP, the ViT model [58] 
first applied transformer to the field of vision, which immediately attracted the attention 
of many researchers. Subsequently, various transformer-based methods have made their 
mark in the image field with quite good results [14–16]. At the same time, this series of 
work has also promoted the development of transformer-based model in the video field 
[59, 60]. The core of transformer lies in its self-attention mechanism, which can easily 
capture the long-range context compared to CNN networks. Therefore, a large number 
of transformer-based approaches have emerged in video understanding. In the action 
recognition task, ViViT [61] and TimeSformer [62] propose to factorize along spatial 
and temporal dimensions on the granularity of encoder, attention block, or dot-product 
computation. Since global self-attention requires significant computational resources, 
the Video Swin transformer [22] developed from Swin Transfomer [17] dramatically 
reduces the cost of the transformer by introducing local self-attention.

On the other hand, many transformer-based methods have emerged for action 
detection task, among which TadTr [30] detects the action with the DETR-like trans-
former-based decoder. To reduce costs, ActionFormer [34] uses local self-attention 
to build a pure and straightforward transformer model with excellent results. E2E-
TAD [39] explores the specific benefits of an end-to-end training approach based on 
the transformer model.

As most of the previous methods are based on the fixed self-attention mechanism, we 
have constructed a straightforward model by summarizing previous research experience 
with the changing self-attention between network layers, choosing the corresponding 
global self-attention and local self-attention according to the characteristics of different 
network layers processing features, saving computational resources while maximizing 
the ability to capture contextual information with the self-attention mechanism.

3 � Method

3.1 � Problem formulation

Following common video action detection methods [63, 64], we consider feature 
sequences extracted from video frames by a 3D CNN as input to LGAFormer. Each 



17958	 H. Zhang et al.

1 3

video Vi is divided into T clips, and accordingly, there will be T feature clips corre-
sponding to each video clip. In this way, the input feature sequence for the pipeline 
can be written as X = {x1, x2,… , xT} , T is not a fixed value. Each video has a differ-
ent size of T depending on its video length. Furthermore, for each video sequence, 
there is a set of labels with number N relative to it: K = {kn = (ts,n, te,n,Cn)}

N
n=1

 , 
where kn represents the n-th action instance, and ts,n , te,n and Cn are its start time, end 
time and action class, respectively.

The goal of TAD is to predict M possible action instances 
Λ = {𝜆m = (t̄s,m, t̄e,m, C̄m,Pm)}

M
m=1

 based on the input X. Here, �m represents the m-th 
predicted action in the video, it contains four indicators t̄s,m , t̄e,m , C̄m and Pm . t̄s,m and 
t̄e,m represent the predicted start time and end time for the m-th predicted action; C̄m 
and Pm are its predicted action class and confidence score, respectively.

3.2 � Overall architecture

The overall architecture of LGAFormer is illustrated in Fig. 2, which can be divided 
into four main parts, data preprocessing, backbone, feature pyramid neck, and detec-
tion head.

Firstly, in the data preprocessing part, due to the limited memory in GPUs, 
we use the pre-extracted features X = {x1, x2,… , xT} by the pre-trained network 
as the input of the network. We will select different pre-trained networks accord-
ing to the characteristics of different datasets and then project the obtained pre-
extracted features into embedded features by the Projection layer. For the design 
of the Projection layer, we use a simple convolutional network with RELU as the 
activation function, following [34]. This can be expressed in the form of

Fig. 2   Overview of LGAFormer architecture. The overall structure can be divided into four parts: data 
preprocessing, backbone, neck, and head. First, a sequence of video clip features are extracted using a 
pretrained model in the data preprocessing phase and mapped into feature embeddings. These feature 
embeddings are further processed by the backbone network (consisting of LATM and GATM) to obtain 
the feature pyramid. Finally, each layer of the feature pyramid is input to the detection head, the classifi-
cation head obtains the classification result, and the start and end boundaries are obtained by combining 
the moment feature and segment feature by the regression head. Finally, the detected action instances are 
output



17959

1 3

LGAFormer: transformer with local and global attention for…

Here L0 is used as the input features of the feature pyramid network (FPN), and due 
to the nature of CNN networks, adding the convolution net in the shallow layer of 
the network can aggregate the local features well.

Then comes the backbone part, the transformer network in the backbone uses 
L0 as input. The backbone structure can be divided into two parts; the first part 
is the Local Attention Transformer Module(LATM), which consists of L trans-
former blocks with local self-attention mechanism [65]. The role of LATM is to 
encode local spatiotemporal representations in the shallow layers of the network. 
Followed by Global Attention Transformer Module (GATM), it use global self-
attention mechanism to tackle long-term dependencies in the deeper layer.

The third component in our modular TAD pipeline is the neck. The neck mod-
ule plays an essential role in the overall TAD task in the detection pipeline as a 
component after the backbone and before the detection head. The neck’s purpose 
is to align video features and downstream detection tasks. It provides a flexible 
mechanism to handle significant variations in the duration of action instances by 
constructing a multi-resolution representation.

The last component in our modular TAD framework is the detection header. 
Its goal is to accomplish the detection task of generating action instances and 
their labeled time intervals. It usually consists of sub-networks for classification 
and regression tasks, respectively. Also, specific sample allocation is vital for the 
training of these detection heads. Well-designed sub-networks and a reasonable 
sample allocation mechanism complement the final detection performance. In 
later sections, we look in detail at the design of the backbone network and the 
detection heads.

3.3 � Backbone design

The backbone part of the network is composed of a pure transformer structure. In 
our design, we divide the backbone network into two parts, LATM and GATM, 
both of which are complete transformer network modules as shown in the Fig. 3, 
where there are two key sub-layers, the first is a multi-head self-attention mech-
anism and the second is a simple, position-wise fully connected feed-forward 
network (MLP). A residual connection exists around each of the two sub-layers, 
followed by layer normalization. Finally, there is a downsampling operation at 
the end of each layer as a way to build the FPN. In our model, the maximum 
pooling layer does the downsampling operation here. The overall process can be 
expressed by:

(1)L0 = ReLu(Conv2(ReLu(Conv1(X))))

(2)
L̂n = MSA(LN(Ln−1)) + Ln−1,

L̄n = MLP(LN(L̂n)) + L̂n,

Ln = Downsample(L̄n), n = 1…N



17960	 H. Zhang et al.

1 3

Where Ln−1, L̂n and L̄n ∈ ℝ
Tn−1×D , Ln ∈ ℝ

Tn×D . And MSA() represents the multi-head 
self-attention mechanism, while LN() denotes layer normalization operations. Then 
after passing through N layers in this way, a feature pyramid with different time-
scale feature layers can be constructed, and each layer of the FPN is input to the 
detection head separately for detection, which facilitates the detection of actions of 
different durations.

3.3.1 � Local attention transformer module

As proposed in the Sect. 1, the use of global self-attention in the shallow part of 
the network causes a large amount of computational consumption due to the gen-
erally long input sequence at the beginning of the network. Moreover, it is known 
from previous experience that self-attention only focuses on local contextual 
information at the beginning of the network, so we use LATM as the backbone in 
the front part of the network, and the core part of LATM is local self-attention. 
And its computation process can be described as the input L0 = {li}

T
i=1

∈ ℝ
T×D , 

for each head j ∈ {1,… ,H} of multi-head self-attention, li is projected into 

Fig. 3   Illustration of the structure of the LATM and GATM. The LATM and GATM are both stand-
ard transformer structures, with the most crucial component being the self-attention mechanism. The 
primary difference between LATM and GATM lies in the self-attention mechanism employed. LATM 
utilizes a local multi-head self-attention mechanism, whereas GATM employs a global multi-head self-
attention mechanism



17961

1 3

LGAFormer: transformer with local and global attention for…

Qji = W
Q

ji
li , Kji = WK

ji
li and Vji = WV

ji
li , where WQ

ji
,WK

ji
 and WV

ji
∈ ℝ

Dh×D represent 
the weights of linear layers, Dh = D∕H , represents the feature dimension of each 
head. The output of the j-th head self-attention is given by:

where Aji ∈ ℝ
T×D is A weighted average of the features. Then, the combination of 

multi-head self-attention can be shown as:

The output of multiple headers is contacted and then passed through a linear layer, 
where Wout

i
∈ ℝ

D×D denotes the weight of the linear layer. From the above equa-
tion, we can calculate that single-head self-attention has a complexity of O(T2D) , so 
to reduce the computational complexity, we replace global self-attention with local 
self-attention in the shallow network, which forces each query token only attend to 
tokens within the same local window. This has two advantages: on the one hand, 
it forces attention in the local window, which makes the network pay more atten-
tion to local patterns in the early stage, and thus aggregates local spatiotemporal 
context relations; on the other hand, it can reduce the computational complexity to 
O(W2TD) , and since the input dimension T of shallow networks is usually large, and 
the manually set self-attention window size W will be much smaller than T, which 
can reduce most of the computational consumption. The model significantly allevi-
ates computation redundancy by applying LATM in the early stages and efficiently 
encodes local spatiotemporal representations.

3.3.2 � Global attention transformer module

In order to capture long-term dependencies, we use GATM at the deeper lay-
ers. The only difference between GATM and LATM is the type of self-attention 
mechanism, in which GATM uses global self-attention. Due to the FPN struc-
ture, the length of the input features is already much reduced in the last stage of 
the network than in the initial stage, and the computational resources consumed 
by GATM at this time are correspondingly much reduced. In GATM, given a 
query token, GATM compares it with all the tokens used for aggregation. In this 
way, we ensure that the model captures global dependencies in the final stage. 
By combining LATM in the shallow layer, the model forms an efficient way to 
learn the spatiotemporal representation of action detection.

3.3.3 � Feature pyramid network

Like object detection, a critical structure in the temporal action detection model is 
the FPN because in both target detection and action detection, the size of the detec-
tion target is not fixed, enabling the model to detect action instances of different 

(3)Aji = Softmax

�

QjiK
⊺

ji
√

Dh

�

× Vji

(4)Pi = Wout
i

Concat(A1i,… ,Aji) + Ln



17962	 H. Zhang et al.

1 3

lengths. We construct feature pyramid with different temporal lengths and then feed 
the feature outputs of each layer into the detection head for action detection; the spe-
cific structure is shown in Fig. 4. The construction method of feature pyramid in our 
model is straightforward; to ensure model simplicity and avoid introducing additional 
parameters, we chose not to adopt the complex PFN design used in the past. Instead, 
we implemented downsampling of feature maps by adding a max-pooling operation 
at the end of each transformer layer. The downsampled features are then fed into the 
next transformer layer, allowing for the extraction of feature maps with varying tem-
poral dimensions through multiple layers of processing. The reason we chose the 
max-pooling layer as the downsampling method is that the feature changes between 
successive frames of the video in motion detection are very subtle, and the video 
clips exhibit a high redundancy which leads to the high similarity of the pre-extracted 
features. Therefore, Max Pooling is deemed the most fitting block for preserving 
the most discriminative features. Finally, we construct a FPN structure with 6 layers 
through the maximum pooling layer, and the downsampling ratio between successive 
feature maps is set to 2.

Fig. 4   Illustration of the structure of the feature pyramid. There are seven transformer blocks, with six 
layers of output used to build the feature pyramid. The output of each transformer block is downsampled 
to obtain the pyramid features of each layer. The maxpooling layer does the downsampling operation, 
and the downsampling rate of each layer is different. The final feature pyramid is composed of feature 
vectors of different scales



17963

1 3

LGAFormer: transformer with local and global attention for…

3.4 � Classifier and regressor

After obtaining the temporal feature pyramid Ln , an anchor-free prediction module 
is utilized to predict the boundary distances and class scores at each location t on ln . 
The prediction module contains a classification module and a regression module.

3.4.1 � Classifier

Formally, the classify head is defined as:

Here, Ln is the latent feature of level n, Cn = {c0, c2l−1 ,… , cT} ∈ ℝ
T

2n−1
×D denotes the 

classification probability with ci ∈ ℝ
D . E denotes 1D convolution, followed by layer 

normalization and ReLU activation function. Note that all weights of the decoder 
are shared among different features in the multi-scale feature pyramid L. A sigmoid 
function is attached to each output dimension to predict the probability of C action 
categories.

3.4.2 � Regressor

In order to locate the boundary position more precisely, we propose a regress head 
that combines the instance feature and segment feature to capture the position infor-
mation of each moment while modeling the relative relationship between multiple 
neighboring moments to determine the final boundary position. The procedure is 
shown in Fig. 5: the feature of each FPN layer is input to the detection head. Given 
the feature of the n-th layer as Ln , it is first input to the boundary regressor to obtain 
the location feature floc ∈ ℝ

T that represents the response value at the current 
moment as a boundary point, which can be expressed as

For a moment t, when moment t is located in action duration, S moments adjacent to 
t are selected, and the left adjacent moments (i.e., moments close to the action start 
boundary) are selected to form a segment at the prediction start boundary, denoted 
Seg[t − s,… , t] , and accordingly, S right adjacent moments are also selected to form 
Seg[t,… , t + s] at the prediction end boundary, so that each segment contains s+1 
moments. This segment feature is then fed into the offset Regressor to obtain the off-
set fos ∈ ℝ

S+1 for each moment to the boundary within the segment. The Regressor 
is again implemented using a 1D convolutional network, following the same design 
as the classification network, with the difference that the ReLU connection is used 
at the end for distance estimation. We then sum the outputs of these two regressors, 
after a softmax function, to obtain the probability distribution Ptb for each moment 
inside the segment as the action start boundary, which can be expressed as

(5)Cn = Con1d(E2(E1(Ln)))

(6)floc = ReLu(Con1d(LN((Con1d(LN(Con1d(Li)))))))

(7)Ptb = Softmax(f
(t−s)∶t

loc
+ fos)



17964	 H. Zhang et al.

1 3

Then the expectation of distance between the moment t and boundary can be derived 
from the distance between each moment in the segment and moment t, which is the 
final predicted distance between t and the boundary dtb , and can be expressed by

Next we can get start and end time for tth time step in i-th level as follow

By the above method, the feature pyramid of each layer can be decoded into action 
instances with time boundary (�t, �t) and action category ct.

(8)dtb =

S
∑

s=1

(s × Ps
tb
)

(9)�t = 2
l−1 × (t − dtb)

(10)�t = 2
l−1 × (t + dtb)

Fig. 5   The process of boundary localization in regressor. The corresponding segment feature for the start 
and end boundary is obtained at each moment of the feature pyramid. Then, each feature in the segment 
is input into the boundary regressor and offset regressor to derive the location feature and offset feature, 
respectively. These two features are added together to get the boundary feature for each moment in the 
segment, and then the softmax function is used to obtain the boundary probability distribution in the seg-
ment. Finally, the expectation value generates the boundary position with the highest confidence



17965

1 3

LGAFormer: transformer with local and global attention for…

3.5 � Training and inference

3.5.1 � Training

After the output features of each FPN layer are input to the detection head, 
there is an output for each moment t of each feature pyramid layer, defined as 
ol
t
= (p(al

t
), dl

st
, dl

et
) . Where p(al

t
) denotes the probability of action categories, dl

st
 

and dl
et

 denote the distance between the instance t and the start boundary and end 
boundary, respectively. The Focal Loss [66] and IoU loss [67] are employed to 
supervise classification and regression outputs, respectively. The overall loss 
function consists of positive loss and negative loss

where Lpos is the loss function for positive samples, and accordingly, Lneg is the loss 
function for negative samples. They can be written as

Here, Npos,Nneg is the number of positive and negative samples. Following previ-
ous methods [68, 69], center sampling is adopted to determine the positive samples. 
Namely, the instants around the center of an action instance are labeled as positive, 
and all the others are considered as negative. 1◦{} is a indicator function.�IoU is the 
temporal Interaction of Union(tIoU) between predicted segment and the ground 
truth action instance, Lcls and Lreg is focal loss and IoU loss.

3.5.2 � Inference

For inference, our model takes the input video X and outputs (p(at), dst , d
e
t
) for 

each time step t at all pyramid levels. Each output further decodes to action 
instancd a = {p(at), st = t − ds

t
, et = t + de

t
} . p(at) is the action confidence score, 

and st, et is the start and end of the action, respectively. The action candidates are 
further processed using soft NMS [70] to remove highly overlapping instances to 
produce the final output of the action.

4 � Experiment

4.1 � Datasets and metrics

We perform extensive experiments on the datasets of THUMOS14 [71], Activ-
itiyNet1.3 [72], and EPIC-Kitchens 100 [73] to demonstrate the effectiveness of 

(11)Ltotal = Lpos + Lneg

(12)Lpos =
1

Npos

∑

n,t

1◦{cn
t
> 0}(𝜏IoULcls + Lreg)

(13)Lneg =
1

Nneg

∑

n,t

1◦{cn
t
= 0}Lcls



17966	 H. Zhang et al.

1 3

our LGAFormer. We employ a widely-used evaluation metric for TAL, the mean 
average precision (mAP) calculated at various temporal intersections over union 
(tIoU). We report the mAP scores for all action categories based on the given 
tIoU thresholds and further report an averaged mAP value across all tIoU thresh-
olds. For THUMOS14 and EPIC-Kitchens 100, we report the tIoU thresholds 
at [0.3:0.7:0.1] and [0.1:0.5:0.1], respectively. For ActivityNet, we report the 
result at tIoU threshold [0.5, 0.75, 0.95], and the average mAP is computed at 
[0.5:0.95:0.05].

4.1.1 � THUMOS14

The dataset for temporal action detection tasks comprises a total of 413 untrimmed vid-
eos, annotated with temporal labels for 20 action categories. Among these, 213 videos 
are designated for validation, while 200 videos are designated for testing. On average, 
each video contains 15 action instances, with an average duration of 4.04 s per action 
instance. We utilize the validation set for model training and the test set for evaluating 
the final detection performance.

4.1.2 � ActivityNet1.3

ActivityNet is a large-scale dataset containing 10,024 training videos, 4926 validation 
videos, and 5,044 test videos belonging to 200 activities covering sports, household, 
and working actions. ActivitiesNet1.3 only contains 1.5 action instances per video on 
average, and most videos contain a single action category with 36% background on 
average.

4.1.3 � EPIC‑Kitchens 100

The EPIC Kitchens 100 dataset is a comprehensive collection of self-centered action 
videos that includes 100  h of footage from 700 sessions documenting a variety of 
kitchen cooking activities. Furthermore, compared to THUMOS14, EPI-Kitchens 
100 is three times larger in total video hours and more than ten times larger in action 
instances (128 action instances per video on average). The videos were recorded from 
a first-person perspective, generating significant camera movement, which was a new 
challenge for Good Future’s research.

4.2 � Implementation details

Our model follows an end-to-end training approach for all datasets, and we use 
Adam [74] with warm-up for training. First, we limit the maximum input length to 
2309 for data processing, and for too long or too short input sequences, we crop or 
pad accordingly. The initial learning rate is set to 10−4 for THUMOS14 and EPIC-
Kitchens 100, and 10−3for ActivityNet1.3. In the proposed network, the total number 
of transformer block is 7, the number of LATM in our model is (6, 2, 2) and the 
number of GATM is (1, 5, 5) for THUMOS14, ActivityNet1.3 and EPIC-Kitchens 



17967

1 3

LGAFormer: transformer with local and global attention for…

100. In addition, the local window size of local self-attention in LATM is 19, 7, and 
9 for THUMOS14, ActivityNet1.3 and EPIC-Kitchens 100, respectively. Regard-
ing FPN structure, the number of layers of FPN is 6 and the downsampling ratio 
between each layer is set to 2. In the detection head the segment step S is set to 16 
for Thumos14 and EPIC and 14 for ActivityNet. Finally, We implemented and com-
piled our framework using PyTorch 1.11, Python3.8, and CUDA 11.3 on a single 
Nvidia Geforce RTX4090.

4.3 � Main results

In this subsection, we compare LGAFormer with state-of-the-art action detection 
methods on THUMOS14, ActivitiyNet1.3, and EPIC-Kitchens 100 in Tables 1, 2, 
and 3.

On the THUMOS14 dataset, we divide these methods into CNN-based net-
works and transformer-based networks to report results, and also report the 
backbone used by each method, e.g., I3D [83], TSN [40], R(2+1)D [84], Video 
Swin Transformer [22]. Our method achieves an average mAP of 67.7% ([0.3: 
0.1: 0.7]), with an mAP of 82.4% at tIoU=0.5 and an mAP of 45.2% at tIoU 
= 0.7, reaching the state of the art. Especially compared to CNN-based meth-
ods, our results are significantly better than these methods. And from the experi-
mental results, our model is more advantageous when tIoU is 0.7. This is due to 
the design of our detection head, which can predict the action boundary more 
accurately.

On ActivityNet1.3, we used pre-trained methods from TSP [85], and the results 
are shown in Table 2, and our results are still comparable. Our model outperforms 
most transformer-based methods and is second only to TCANet [11]. From the 

Table 1   Result on THUMOS14. We report results on two types of methods, the CNN-based method and 
the transformer-based method, and report the pre-trained features used by each method, where bolded 
text indicates the best results. Our LGAFormer achieves the SOTA level

Type Model Feature 0.3 0.4 0.5 0.6 0.7 Avg.

BSN [75] TSN 53.5 45.0 36.9 28.4 20.0 36.8
BMN [76] TSN 56.0 47.4 38.8 29.7 20.5 38.5
DCAN [38] TSN 68.2 62.7 54.1 43.9 32.6 52.3

CNN AFSD [37] I3D 67.3 62.4 55.5 43.7 31.1 52.0
BasicTad [77] R50-SlowOnly 75.5 70.8 63.5 50.9 37.4 59.6
BCNet+PGCN [78] I3D 69.8 62.9 52.0 39.8 24.0 49.7
ReAct [79] TSN 69.2 65.0 57.1 47.8 35.6 55.0
TALLFormer [80] swin 76.0 – 63.2 – 34.5 59.2
STPT [81] – 70.6 65.7 56.4 44.6 30.5 53.6
TCANet [11] TSN 60.6 53.2 44.6 36.8 26.7 44.3

Transformer TadTR [30] I3D 74.8 69.1 60.1 46.6 32.8 56.7
Actionformer [34] I3D 82.1 77.8 71.0 59.4 43.9 66.8
LGAFormer (ours) I3D 82.4 78.9 71.8 60.4 45.2 67.7



17968	 H. Zhang et al.

1 3

specific experimental results, the effect of our detection head is not significant in 
ActivityNet, which may be because each video in this dataset contains few action 
instances, resulting in our classification head’s uneven classification of action 
background and foreground. The TCANet, which performs best in ActivityNet, 
is a two-stage model. Thanks to its complex design, it has a significant advantage 
in generating proposals and localizing action boundaries. Moreover, the model 
utilizes more powerful SlowFast features, which is also one of its strengths. In 
addition, the longer duration of each action also indicates that our model is still 
deficient in long duration action detection.

On EPIC-Kitchens 100, we achieved 24.6% and 21.9% average mAP for verb and 
noun, respectively. Since this dataset is a first-person dataset, the detection includes 
not only the action itself, but also the direct relationship between the action and the 
target object of the action. The average mAP of our method in the verb subtask is 
1.1% higher than that of Actionformer. However, the effect in the noun subtask is 
only the same as that of Actionformer, indicating that there is space for improve-
ment in the recognition of the relationship between action and target object in our 
model.

Table 2   Result on 
ActivityNet1.3. We report mAP 
at different tIoU thresholds. 
Average mAP in [0.5:0.05:0.95] 
is reported on ActivityNet1.3, 
where bolded text indicates the 
best results

Model Feature 0.5 0.75 0.95 Avg.

BSN [75] TSN 46.5 30.0 8.0 30.0
BMN [76] TSN 50.1 34.8 8.3 33.9
G-TAD [46] TSN 50.4 34.6 9.0 34.1
AFSD [37] I3D 52.4 35.2 6.5 34.3
P-GCN [82] I3D 48.3 33.2 3.3 31.1
TadTR [30] I3D 49.1 32.6 8.5 32.3
TALLFormer [80] swin 54.1 36.2 7.9 35.6
STPT [81] – 51.4 33.7 6.8 33.4
TCANet [11] SlowFast 54.3 39.1 8.4 37.6
VSGN [49] I3D 52.3 35.2 8.3 34.7
Actionformer [34] R(2+1)D 54.7 37.8 8.4 36.6
LGAFormer (ours) R(2+1)D 55.0 37.9 8.4 36.7

Table 3   Results on EPIC-
Kitchens 100.We report mAP at 
different tIoU thresholds and the 
average mAP in [0.1:0.1:0.5], 
where bolded text indicates the 
best results. V. and N. denote 
the verb and noun sub-tasks, 
respectively

Method 0.1 0.2 0.3 0.4 0.5 Avg.

V. BMN [76] 10.8 8.8 8.4 7.1 5.6 8.4
G-TAD [46] 12.1 11.0 9.4 8.1 6.5 9.4
Actionformer [34] 26.6 25.4 24.2 22.3 19.1 23.5
LGAFormer(ours) 27.9 27.0 25.3 23.2 19.6 24.6

N. BMN [76] 10.3 8.3 6.2 4.5 3.4 6.5
G-TAD [46] 11.0 10.0 8.6 7.0 5.4 8.4
Actionformer [34] 25.2 24.1 22.7 20.5 17.0 21.9
LGAFormer(ours) 25.4 24.4 22.6 20.0 16.9 21.9



17969

1 3

LGAFormer: transformer with local and global attention for…

4.4 � Ablation study

We performed a large number of ablation experiments on THUMOS14 to verify the 
impact of different structural designs and different choices of hyperparameters on 
the final detection results and model efficiency.

Firstly, we present a detailed listing of the structure of each module in the 
LGAFormer network in Table 4, including the Projection layer, LATM, GATM, 
and the detection head. We also provide the specific implementations, output fea-
ture sizes, parameter counts, and computational complexities of each module. 
Both LATM and GATM have multiple layers, and their output feature dimen-
sions vary. Here, l denotes that the module is the l-th transformer layer in the 
network. We represent the computational complexity using the GMACs value. 
Since subsequent feature scales are continuously changing, leading to different 
computational requirements for each layer of LATM and GATM, we respectively 
use the computational complexity required when placing LATM and GATM in 
the first layer of the network as reference values. The following ablation experi-
ments will analyze the impact of these modules on the overall model’s detection 
performance and efficiency.

4.4.1 � Choice of backbone and head

We first conduct a series of experiments to investigate the effects and compu-
tational consumption of different backbone designs, namely transformer with 

Table 4   The structure and detailed information of each module in LGAFormer, including the composi-
tion of the modules, parameter count, and output feature dimensions

Module Layers Output size Params GMACs

Projection 2*(conv(k=3,s=1),layernorm(),ReLu()) T × 512 3.9M 9.06
LATM layernorm(),self-attention(),layernorm()

MLP{conv(k=1,s=1),GELU(),conv(k
=1,s=1)}

T∕2l−2 × 512 3.1M 7.33

maxpooling()
GATM layernorm(),self-attention(),layernorm()

MLP{conv(k=1,s=1),GELU(),conv(k
=1,s=1)}

T∕2l−2 × 512 3.1M 12.69

maxpooling()
Cls-head 2*(conv(k=3,s=1),ReLu()),conv(k=3

,s=1)

[

T∕32 × output,⋯ ,T × output
]

1.6M 7.27

Reg-head 2*(conv(k=3,s=1),ReLu()),conv(k=3
,s=1)

2*(conv(k=3,s=1),ReLu()),conv(k=3
,s=1)

[

T∕32 × output,⋯ ,T × output
]

4.8M 21.91

2*(conv(k=3,s=1),ReLu()),conv(k=3
,s=1)



17970	 H. Zhang et al.

1 3

all local self-attention, transformer with all global self-attention and our LGA-
Former. When these backbones do not use the detection head proposed in this 
paper, but just the typical classification head and the regression head, the results 
are shown in the first three rows of Table 5. From the results, we can also verify 
the idea we proposed in Sect. 1; here, the detection result using global self-atten-
tion is the same as that of local self-attention. If we choose to use global self-
attention as a whole, it will cause a lot of waste of computational consumption, 
the MAC of global self-attention will be 28% higher than that of local self-atten-
tion. While using our local and global self-attention structure, the final average 
mAP would be 0.1% higher than the other structures on the THUMOS14 dataset. 
At the same time, the MAC is only 3.8% higher than local self-attention, and 19% 
lower than global self-attention. These data also demonstrate that our structure 
design strikes a good balance between efficiency and detection effectiveness.

In terms of detection heads, when each of the three backbones uses our spe-
cially designed detection head, it is found that although the models of the first 
two (local self-attention, global self-attention) do not improve in the final average 
mAP, the respective mAPs at tIoU = 0.7 improve by 0.4% and 1.4%, indicating 
the improvement in detection boundary accuracy of our proposed detection head, 
but the reason for the reduced effect at lower tIoU needs to be further explored. 
In contrast, when paired with our local and glocal self-attention backbone, the 
detection head exerts a more tremendous advantage, with mAP at tIoU = 0.7 and 
average mAP improving by 1.7% and 0.8%, respectively.

4.4.2 � Number of LATM and GATM

After determining the structure of our backbone network, we also performed many 
ablation experiments with the specific design of the backbone network. Since our 
backbone network is mainly composed of LATM and GATM, the specific number of 
LATM and GATM modules will also have a significant impact on the experimental 
results. The total number of transformer blocks in our backbone network is 7. We 
then start from the structure of all LATM and keep adjusting the number of LATM 
and GATM modules to get the experimental results as shown in Table 6 to reveal the 
changes of detection effect and GMACs by different structure designs. In this table, 
L()G() represents LATM at the shallow layers of the network, and GATM at the 

Table 5   Comparison between 
different backbone types and 
head types. We experiment 
between three backbones 
(transformer with local self-
attention, global self-attention, 
local and global self-attention) 
and two detection heads to 
compare their detection results 
and computational consumption

Bolded values indicate the best results

Local Global Local and 
Global

Head 0.7 Avg. GMACs

√

43.9 66.8 45.3
√

43.9 66.8 57.8
√

43.5 66.9 47.0
√ √

44.3 66.8 59.9
√ √

45.3 66.8 72.4
√ √

45.2 67.7 61.9



17971

1 3

LGAFormer: transformer with local and global attention for…

deep layers. Additionally, to validate the point we previously raised, we conducted 
a set of comparative experiments where GATM is placed in the shallow layers of 
the network and LATM in the deep layers, denoted by G()L(). The results show that 
when LATM is placed at the shallow layers and the quantity is 2, the best perfor-
mance is achieved. At the same time, the computational complexity is significantly 
reduced compared to when GATM is placed in the shallow layers of the network. 
The detection results for the other designs are mostly the same but slightly higher 
than all LATM or all GATM designs. Therefore, in our final model structure, we 
choose the number of LATM to be 2 and the number of GATM to be 5 for better 
detection results.

4.4.3 � Window size of LATM

In this section, we follow Actionformer to investigate the window size of local 
self-attention in LATM, because the window size affects how large the self-atten-
tion mechanism attends to a range of visual information. We preset four window 
sizes and one global window, and the results are shown in Table 7, demonstrating 
the different detection results and computational complexity of different window 
sizes. The results show that different window sizes have a large impact on the 
detection effect, while the change in computational complexity is small. However, 

Table 6   Analysis of the number 
of LATM and GATM. We set 
different amounts of LATM 
and GATM in the experiment 
to analyze the effect on the 
detection results

Bolded values indicate the best results

0.3 0.4 0.5 0.6 0.7 Avg. GMACs

L(0) G(7) 81.4 77.2 70.5 59.5 45.3 66.8 72.4
L(2) G(5) 82.4 78.9 71.8 60.4 45.2 67.7 61.7
L(3) G(4) 81.6 77.5 71.2 59.7 44.4 66.9 60.5
L(4) G(3) 81.8 77.8 71.0 60.2 44.4 67.0 60.2
L(5) G(2) 82.0 78.2 70.9 59.4 44.7 67.0 60.1
L(6) G(1) 82.0 78.2 71.6 60.6 45.8 67.6 60.1
L(7) G(0) 81.5 77.6 71.4 59.0 44.3 66.8 59.9
G(2) L(5) 81.5 78.1 71.3 59.7 46.7 67.5 70.7
G(3) L(4) 82.2 78.3 70.7 59.7 44.8 67.1 72.1
G(4) L(5) 82.2 78.2 71.1 59.3 44.8 67.1 72.4

Table 7   Ablation on window 
size of local self-attention. 
We report MACs and mAP by 
varying the local window size 
for self-attention in our model

Bolded values indicate the best results

Win size 0.3 0.5 0.7 Avg. GMACs 
(Back-
bone)

9 82.1 70.7 44.5 67.1 32.49
19 82.4 71.8 45.3 67.7 32.57
25 81.4 70.6 44.9 66.8 32.62
37 82.2 71.6 45.6 67.6 32.72
Global 81.3 70.5 45.3 66.8 43.29



17972	 H. Zhang et al.

1 3

the local window has a great advantage over the global window not only in terms 
of detection effect but also in terms of computational cost.

4.4.4 � Level number of feature pyramid

After the experiments on the backbone part, we conducted some experiments on 
the design of the neck network to explore the effect of the number of the fea-
ture pyramid layers on the detection effect and computational cost. The results 
are shown in Table 8, when the feature pyramid design is not used ( N = 1 ), the 
detection effect is greatly reduced, while when N is set to 2 there is already a 
great improvement. This proves the importance of the feature pyramid design for 
our model. Also, in the final results, it is shown that the best results are achieved 
when N = 6.

4.4.5 � The effectiveness of detection head

Next, to validate the effectiveness of the proposed detection head, we conducted 
experiments on three different datasets. By comparing the results of using only 
conventional detection heads (no-head) with those using the specially designed 
detection head proposed in this paper(use-head), we found that the detection 
head in this paper improved the performance to varying degrees across these 

Table 8   Ablation on the number 
of feature pyramid layers

Bolded values indicate the best results

#Levels 0.3 0.5 0.7 Avg.

1 71.4 52.3 16.0 48.8
2 75.3 59.1 25.8 56.2
3 76.9 64.5 36.5 60.8
4 79.8 67.9 40.8 64.7
5 81.2 70.7 43.4 66.4
6 82.4 71.8 45.3 67.7
7 81.5 71.0 44.2 67.2

Table 9   Ablation on the 
effectiveness of detection of 
head

 Head (average mAP)
Thumos14 ActivityNet1.3 EPIC-

Kitch-
ens100

No-head 66.91 36.64 23.81
Use-head 67.71 36.73 24.63



17973

1 3

LGAFormer: transformer with local and global attention for…

three datasets. The results are shown in Table 9, particularly, significant improve-
ments were observed in the Thumos14 and EPIC-Kitchens100 datasets, with 
average mAP increases of 0.8% and 0.82%, respectively. However, the improve-
ment on the ActivityNet dataset was only 0.09%. This may be attributed to the 
relatively small number of action instances contained in ActivityNet videos, 
which tend to have longer durations. The fixed segment step size set in the regres-
sion head of this paper may not be conducive to detecting long-duration action 
instances, resulting in only marginal improvements in detection performance on 
ActivityNet.

4.4.6 � Segment step size of detection head

Finally, we show the experimental results of setting different sizes of segment step S 
in the detection head, as shown in Table 10. We find that the best results are obtained 
when S is set to 16. However, when S is set to small, the final detection effect will 
be reduced, even lower than the effect without using the detection head(66.8%), 
because GATM is used in the latter part of our backbone network, and the subse-
quent detection head detects the boundary in a single segment, when S is too small, 
it will limit the detection effect of the features extracted by GATM. Therefore, the 
appropriate step S should be chosen.

4.5 � Visualization

In this section, we present our detection results visually, as shown in Fig. 6, which 
mainly shows the boundary prediction results. From the figure, we can see that the 
prediction results for the start and end boundaries are mostly distributed near the 
actual boundaries, and there is a high probability distribution near the boundary 
labels, thanks to the processing of the boundary features in our detection head sec-
tion, which makes the localization of the boundaries more accurate.

Table 10   Ablation on size of 
segment step S in the detection 
head

Bolded values indicate the best results

S 0.3 0.5 0.7 Avg GMACs(Head)

8 81.4 70.8 44.2 66.5 29.07
10 81.8 70.8 44.3 66.8 29.13
12 81.2 70.5 44.3 66.3 29.20
14 81.9 70.3 44.9 67.0 29.24
16 82.4 71.8 45.3 67.7 29.29
18 81.9 70.9 43.6 66.5 29.35
20 81.6 71.5 44.4 67.0 29.40



17974	 H. Zhang et al.

1 3

5 � Conclusion

In this paper, we combine local self-attention and global self-attention, which are 
LATM and GATM in this paper, based on the observation of previous transformer-
based TAD methods, and combine these two modules into a novel and concise 
model LGAFormer, using LATM to aggregate local pattern information in the shal-
low layer of the network and GATM to model long-term dependencies in the deeper 
layer of the network to obtain a feature representation with rich spatiotemporal 
information. Then, the final boundaries are determined by combining the instance 
feature and the segment feature in the detection head and obtaining the expectation 
within the segment through the probability distribution. Furthermore, the effective-
ness of our model is verified in three public datasets (THUMOS14, ActivityNet1.3, 
and EPIC-Kitchens 100) with outstanding results, proving our proposed method’s 
effectiveness.

However, there are still some shortcomings in our approach. One of the most 
important issues is that our method relies on features extracted by a pre-trained 
model rather than directly taking raw video data as input. Such a practice is not con-
ducive to the practical deployment of subsequent algorithms. Therefore, in future 
work, we will consider incorporating a video feature extraction module at the fron-
tend of the network, enabling it to participate in training along with the detector, 
thus making the extracted features more suitable for temporal action detection tasks. 
On the other hand, we found in experiments that for some complex video datasets 
such as EPIC-Kitchen100, the detection performance of our model did not reach a 

Fig. 6   Visualization of boundary localization result. The green line indicates the probability distribution 
of the predicted start boundary, and the red line indicates the probability distribution of the predicted end 
boundary



17975

1 3

LGAFormer: transformer with local and global attention for…

satisfactory level. This also requires further exploration of the reasons behind it and 
improvements to the model.

Author contributions  All authors contributed to the study conception and design. Fuxing Zhou pro-
grammed the algorithms, conducted the experiments, and wrote the main manuscript text; Haiping 
Zhang, Dongjing Wang, and Liming Guan supervised the experiment based on an analysis; Xinhao 
Zhang and Dongjin Yu designed the algorithm. All authors reviewed the manuscript.

Data availability  The datasets generated during and/or analyzed during the current study are available 
from the corresponding author on reasonable request.

Declarations 

Conflict of interest  All the authors do not have any possible conflict of interest.

Ethical approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

References

	 1.	 Zhao Y, Xiong Y, Wang L, Wu Z, Tang X, Lin D (2017) Temporal action detection with structured 
segment networks. In: Proceedings of the IEEE International Conference on Computer Vision, pp 
2914–2923

	 2.	 Shou Z, Wang D, Chang S-F (2016) Temporal action localization in untrimmed videos via multi-
stage cnns. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 
1049–1058

	 3.	 Shou Z, Chan J, Zareian A, Miyazawa K, Chang S-F (2017) Cdc: convolutional-de-convolutional 
networks for precise temporal action localization in untrimmed videos. In: 2017 IEEE Conference 
on Computer Vision and Pattern Recognition (CVPR), pp 1417–1426

	 4.	 Dai X, Singh B, Zhang G, Davis LS, Chen YQ (2017) Temporal context network for activity 
localization in videos. In: 2017 IEEE International Conference on Computer Vision (ICCV), pp 
5727–5736

	 5.	 Liu Q, Wang Z (2020) Progressive boundary refinement network for temporal action detection. In: 
Proceedings of the AAAI Conference on Artificial Intelligence, vol 34, pp 11612–11619

	 6.	 Xu H, Das A, Saenko K (2017) R-c3d: region convolutional 3d network for temporal activity detec-
tion. In: Proceedings of the IEEE International Conference on Computer Vision, pp 5783–5792

	 7.	 Tran D, Bourdev L, Fergus R, Torresani L, Paluri M (2015) Learning spatiotemporal features with 
3d convolutional networks. In: Proceedings of the IEEE International Conference on Computer 
Vision, pp 4489–4497

	 8.	 Wang L, Yang H, Wu W, Yao H, Huang H (2021) Temporal action proposal generation with trans-
formers. arXiv:​2105.​12043

	 9.	 Cheng F, Bertasius G (2022) Tallformer: temporal action localization with long-memory trans-
former. In: European Conference on Computer Vision

	10.	 Li S, Zhang F, Zhao R-W, Feng R, Yang K, Liu L-N, Hou J (2022) Pyramid region-based slot atten-
tion network for temporal action proposal generation. In: British Machine Vision Conference

	11.	 Qing Z, Su H, Gan W, Wang D, Wu W, Wang X, Qiao Y, Yan J, Gao C, Sang N (2021) Temporal 
context aggregation network for temporal action proposal refinement. In: 2021 IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp 485–494

http://arxiv.org/abs/2105.12043


17976	 H. Zhang et al.

1 3

	12.	 Weng Y, Pan Z, Han M, Chang X, Zhuang B (2022) An efficient spatio-temporal pyramid trans-
former for action detection. In: Proceedings of Computer Vision–ECCV 2022: 17th European Con-
ference, Tel Aviv, Israel, October 23–27, 2022, Part XXXIV. Springer, pp. 358–375

	13.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I (2017) 
Attention is all you need. In: Advances in Neural Information Processing Systems, vol 30

	14.	 Li Y, Mao H, Girshick R, He K (2022) Exploring plain vision transformer backbones for object 
detection. In: European Conference on Computer Vision. Springer, pp 280–296

	15.	 Li Y, Wu C-Y, Fan H, Mangalam K, Xiong B, Malik J, Feichtenhofer C (2022) Mvitv2: improved 
multiscale vision transformers for classification and detection. In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp 4804–4814

	16.	 Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object 
detection with transformers. In: European Conference on Computer Vision. Springer, pp 213–229

	17.	 Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, Lin S, Guo B (2021) Swin transformer: hierarchical 
vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pp 10012–10022

	18.	 Ding M, Xiao B, Codella N, Luo P, Wang J, Yuan L (2022) Davit: dual attention vision transform-
ers. In: European Conference on Computer Vision. Springer, pp 74–92

	19.	 Tong Z, Song Y, Wang J, Wang L (2022) Videomae: masked autoencoders are data-efficient learn-
ers for self-supervised video pre-training. In: Advances in Neural Information Processing Systems, 
vol 35, pp 10078–10093

	20.	 Li K, Wang Y, He Y, Li Y, Wang Y, Wang L, Qiao Y (2022) Uniformerv2: spatiotemporal learning 
by arming image vits with video uniformer. arXiv:​2211.​09552

	21.	 Yan S, Xiong X, Arnab A, Lu Z, Zhang M, Sun C, Schmid C (2022) Multiview transformers for 
video recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp 3333–3343

	22.	 Liu Z, Ning J, Cao Y, Wei Y, Zhang Z, Lin S, Hu H (2022) Video swin transformer. In: Proceedings 
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 3202–3211

	23.	 Qing Z, Zhang S, Huang Z, Wang X, Wang Y, Lv Y, Gao C, Sang N (2023) Mar: masked autoen-
coders for efficient action recognition. IEEE Trans Multimed

	24.	 Dai R, Das S, Kahatapitiya K, Ryoo MS, Brémond F (2022) Ms-tct: multi-scale temporal convtrans-
former for action detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition, pp 20041–20051

	25.	 Tolstikhin IO, Houlsby N, Kolesnikov A, Beyer L, Zhai X, Unterthiner T, Yung J, Steiner A, Key-
sers D, Uszkoreit J (2021) Mlp-mixer: an all-mlp architecture for vision. In: Advances in Neural 
Information Processing Systems, vol 34, pp 24261–24272

	26.	 Yu W, Luo M, Zhou P, Si C, Zhou Y, Wang X, Feng J, Yan S (2022) Metaformer is actually what 
you need for vision. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp 10819–10829

	27.	 Shi D, Zhong Y, Cao Q, Ma L, Li J, Tao D (2023) Tridet: temporal action detection with relative 
boundary modeling. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp 18857–18866

	28.	 Basu S, Gupta M, Rana P, Gupta P, Arora C (2023) Radformer: transformers with global-local 
attention for interpretable and accurate gallbladder cancer detection. Med Image Anal 83:102676

	29.	 Kumie GA, Habtie MA, Ayall TA, Zhou C, Liu H, Seid AM, Erbad A (2024) Dual-attention net-
work for view-invariant action recognition. Complex Intell Syst 10(1):305–321

	30.	 Liu X, Wang Q, Hu Y, Tang X, Zhang S, Bai S, Bai X (2022) End-to-end temporal action detection 
with transformer. IEEE Trans Image Process 31:5427–5441

	31.	 Raghu M, Unterthiner T, Kornblith S, Zhang C, Dosovitskiy A (2021) Do vision transformers see 
like convolutional neural networks? In: Advances in neural information processing systems, vol 34, 
pp 12116–12128

	32.	 Wu Z, Su L, Huang Q (2019) Cascaded partial decoder for fast and accurate salient object detec-
tion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 
3907–3916

	33.	 Hou Q, Cheng M-M, Hu X, Borji A, Tu Z, Torr PH (2017) Deeply supervised salient object detec-
tion with short connections. In: Proceedings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, pp 3203–3212

	34.	 Zhang C-L, Wu J, Li Y (2022) Actionformer: localizing moments of actions with transformers. In: 
European Conference on Computer Vision. Springer, pp 492–510

http://arxiv.org/abs/2211.09552


17977

1 3

LGAFormer: transformer with local and global attention for…

	35.	 Lin C, Li J, Wang Y, Tai Y, Luo D, Cui Z, Wang C, Li J, Huang F, Ji R (2020) Fast learning of 
temporal action proposal via dense boundary generator. In: Proceedings of the AAAI Conference on 
Artificial Intelligence, vol 34, pp 11499–11506

	36.	 Yang L, Peng H, Zhang D, Fu J, Han J (2020) Revisiting anchor mechanisms for temporal action 
localization. IEEE Trans Image Process 29:8535–8548

	37.	 Lin C, Xu C, Luo D, Wang Y, Tai Y, Wang C, Li J, Huang F, Fu Y (2021) Learning salient bound-
ary feature for anchor-free temporal action localization. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp 3320–3329

	38.	 Chen G, Zheng Y-D, Wang L, Lu T (2022) Dcan: improving temporal action detection via dual 
context aggregation. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 36, pp 
248–257

	39.	 Liu X, Bai S, Bai X (2022) An empirical study of end-to-end temporal action detection. In: Proceed-
ings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 20010–20019

	40.	 Wang L, Xiong Y, Wang Z, Qiao Y, Lin D, Tang X, Van Gool L (2018) Temporal segment networks 
for action recognition in videos. IEEE Trans Pattern Anal Mach Intell 41(11):2740–2755

	41.	 Carreira J, Zisserman A (2017) Quo vadis, action recognition? A new model and the kinetics data-
set. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 
6299–6308

	42.	 Feichtenhofer C, Fan H, Malik J, He K (2019) Slowfast networks for video recognition. In: Proceed-
ings of the IEEE/CVF International Conference on Computer Vision, pp 6202–6211

	43.	 Shou Z, Wang D, Chang S-F (2016) Temporal action localization in untrimmed videos via multi-
stage cnns. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp 1049–1058

	44.	 Tan J, Tang J, Wang L, Wu G (2021) Relaxed transformer decoders for direct action proposal 
generation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 
13526–13535

	45.	 Bai Y, Wang Y, Tong Y, Yang Y, Liu Q, Liu J (2020) Boundary content graph neural network for 
temporal action proposal generation. In: Computer Vision–ECCV 2020: 16th European Conference, 
Glasgow, UK, August 23–28, 2020, Proceedings, Part XXVIII vol 16. Springer, pp 121–137

	46.	 Xu M, Zhao C, Rojas DS, Thabet A, Ghanem B (2020) G-tad: sub-graph localization for temporal 
action detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern 
Recognition, pp 10156–10165

	47.	 Su H, Gan W, Wu W, Qiao Y, Yan J (2021) Bsn++: complementary boundary regressor with scale-
balanced relation modeling for temporal action proposal generation. In: Proceedings of the AAAI 
Conference on Artificial Intelligence, vol 35, pp 2602–2610

	48.	 Sridhar D, Quader N, Muralidharan S, Li Y, Dai P, Lu J (2021) Class semantics-based attention for 
action detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, 
pp 13739–13748

	49.	 Zhao C, Thabet AK, Ghanem B (2021) Video self-stitching graph network for temporal action 
localization. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 
13658–13667

	50.	 Liao X, Yuan J, Cai Z, Lai J-h (2023) An attention-based bidirectional gru network for temporal 
action proposals generation. J Supercomput 79(8):8322–8339

	51.	 Lin T, Zhao X, Shou Z (2017) Single shot temporal action detection. In: Proceedings of the 25th 
ACM International Conference on Multimedia, pp 988–996

	52.	 Tian Z, Shen C, Chen H, He T (2019) Fcos: fully convolutional one-stage object detection. In: Pro-
ceedings of the IEEE/CVF International Conference on Computer Vision, pp 9627–9636

	53.	 Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, Berg AC (2016) Ssd: single shot 
multibox detector. In: Proceedings of Computer Vision–ECCV 2016: 14th European Conference, 
Amsterdam, The Netherlands, October 11–14, 2016, Part I vol 14. Springer, pp 21–37

	54.	 Law H, Deng J (2018) Cornernet: detecting objects as paired keypoints. In: Proceedings of the 
European Conference on Computer Vision (ECCV), pp 734–750

	55.	 Kong T, Sun F, Liu H, Jiang Y, Li L, Shi J (2020) Foveabox: beyound anchor-based object detec-
tion. IEEE Trans Image Process 29:7389–7398

	56.	 Zhu C, He Y, Savvides M (2019) Feature selective anchor-free module for single-shot object 
detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recog-
nition, pp 840–849



17978	 H. Zhang et al.

1 3

	57.	 Redmon J, Divvala S, Girshick R, Farhadi A (2016) You only look once: unified, real-time object 
detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
pp 779–788

	58.	 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, 
Minderer M, Heigold G, Gelly S, et al (2020) An image is worth 16x16 words: transformers for 
image recognition at scale. arXiv preprint arXiv:​2010.​11929

	59.	 Yang J, Dong X, Liu L, Zhang C, Shen J, Yu D (2022) Recurring the transformer for video 
action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pp 14063–14073

	60.	 Bulat A, Perez Rua JM, Sudhakaran S, Martinez B, Tzimiropoulos G (2021) Space-time mixing 
attention for video transformer. In: Advances in Neural Information Processing Systems, vol 34, 
pp 19594–19607

	61.	 Arnab A, Dehghani M, Heigold G, Sun C, Lučić M, Schmid C (2021) Vivit: a video vision 
transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 
6836–6846

	62.	 Bertasius G, Wang H, Torresani L (2021) Is space-time attention all you need for video under-
standing? In: ICML, vol 2, p 4

	63.	 Zhao P, Xie L, Ju C, Zhang Y, Wang Y, Tian Q (2020) Bottom-up temporal action localization 
with mutual regularization. In: Proceedings of Computer Vision–ECCV 2020: 16th European 
Conference, Glasgow, UK, August 23–28, 2020, Part VIII 16. Springer, pp 539–555

	64.	 Liu D, Jiang T, Wang Y (2019) Completeness modeling and context separation for weakly super-
vised temporal action localization. In: Proceedings of the IEEE/CVF Conference on Computer 
Vision and Pattern Recognition, pp 1298–1307

	65.	 Choromanski K, Likhosherstov V, Dohan D, Song X, Gane A, Sarlos T, Hawkins P, Davis J, 
Mohiuddin A, Kaiser L, et al (2020) Rethinking attention with performers. arXiv:​2009.​14794

	66.	 Lin T-Y, Goyal P, Girshick R, He K, Dollár P (2017) Focal loss for dense object detection. In: 
Proceedings of the IEEE International Conference on Computer Vision, pp 2980–2988

	67.	 Rezatofighi H, Tsoi N, Gwak J, Sadeghian A, Reid I, Savarese S (2019) Generalized intersection 
over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern Recognition, pp 658–666

	68.	 Tian Z, Shen C, Chen H, He T (2019) Fcos: fully convolutional one-stage object detection. In: 
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp 9627–9636

	69.	 Zhang S, Chi C, Yao Y, Lei Z, Li SZ (2020) Bridging the gap between anchor-based and anchor-
free detection via adaptive training sample selection. In: Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pp 9759–9768

	70.	 Bodla N, Singh B, Chellappa R, Davis LS (2017) Soft-nms-improving object detection with 
one line of code. In: Proceedings of the IEEE International Conference on Computer Vision, pp 
5561–5569

	71.	 Idrees H, Zamir AR, Jiang Y-G, Gorban A, Laptev I, Sukthankar R, Shah M (2017) The thumos 
challenge on action recognition for videos in the wild. Comput Vis Image Underst 155:1–23

	72.	 Caba Heilbron F, Escorcia V, Ghanem B, Carlos Niebles J (2015) Activitynet: a large-scale 
video benchmark for human activity understanding. In: Proceedings of the IEEE Conference on 
Computer Vision and Pattern Recognition, pp 961–970

	73.	 Damen D, Doughty H, Farinella GM, Furnari A, Kazakos E, Ma J, Moltisanti D, Munro J, Per-
rett T, Price W et al (2022) Rescaling egocentric vision: collection, pipeline and challenges for 
epic-kitchens-100. Int J Comput Vis 130:1–23

	74.	 Loshchilov I, Hutter F (2017) Decoupled weight decay regularization. arXiv:​1711.​05101
	75.	 Lin T, Zhao X, Su H, Wang C, Yang M (2018) Bsn: boundary sensitive network for temporal 

action proposal generation. In: Proceedings of the European Conference on Computer Vision 
(ECCV), pp 3–19

	76.	 Lin T, Liu X, Li X, Ding E, Wen S (2019) Bmn: boundary-matching network for temporal action 
proposal generation. In: Proceedings of the IEEE/CVF International Conference on Computer 
Vision, pp 3889–3898

	77.	 Yang M, Chen G, Zheng Y-D, Lu T, Wang L (2023) Basictad: an astounding rgb-only baseline for 
temporal action detection. Comput Vis Image Underst 232:103692

	78.	 Yang H, Wu W, Wang L, Jin S, Xia B, Yao H, Huang H (2022) Temporal action proposal generation 
with background constraint. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol 
36, pp 3054–3062

http://arxiv.org/abs/2010.11929
http://arxiv.org/abs/2009.14794
http://arxiv.org/abs/1711.05101


17979

1 3

LGAFormer: transformer with local and global attention for…

	79.	 Shi D, Zhong Y, Cao Q, Zhang J, Ma L, Li J, Tao D (2022) React: temporal action detection with 
relational queries. In: European Conference on Computer Vision. Springer, pp 105–121

	80.	 Cheng F, Bertasius G (2022) Tallformer: temporal action localization with a long-memory trans-
former. In: European Conference on Computer Vision. Springer, pp 503–521

	81.	 Weng Y, Pan Z, Han M, Chang X, Zhuang B (2022) An efficient spatio-temporal pyramid trans-
former for action detection. In: European Conference on Computer Vision. Springer, pp 358–375

	82.	 Zeng R, Huang W, Tan M, Rong Y, Zhao P, Huang J, Gan C (2019) Graph convolutional networks 
for temporal action localization. In: Proceedings of the IEEE/CVF International Conference on 
Computer Vision, pp 7094–7103

	83.	 Carreira J, Zisserman A (2017) Quo vadis, action recognition? A new model and the kinetics data-
set. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp 
6299–6308

	84.	 Tran D, Wang H, Torresani L, Ray J, LeCun Y, Paluri M (2018) A closer look at spatiotemporal 
convolutions for action recognition. In: Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp 6450–6459

	85.	 Alwassel H, Giancola S, Ghanem B (2021) Tsp: temporally-sensitive pretraining of video encod-
ers for localization tasks. In: Proceedings of the IEEE/CVF International Conference on Computer 
Vision, pp 3173–3183

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

Authors and Affiliations

Haiping Zhang1,2 · Fuxing Zhou2 · Dongjing Wang1 · Xinhao Zhang2 · 
Dongjin Yu1 · Liming Guan3

 *	 Fuxing Zhou 
	 shiyichen1213@gmail.com

	 Haiping Zhang 
	 zhanghp@hdu.edu.cn

	 Dongjing Wang 
	 dongjing.wang@hdu.edu.cn

	 Xinhao Zhang 
	 zxh8991@163.com

	 Dongjin Yu 
	 yudj@hdu.edu.cn

	 Liming Guan 
	 glm@hdu.edu.cn

1	 School of Computer Science, Hangzhou Dianzi University, Qiantang, Hangzhou 310018, 
Zhejiang, China

2	 School of Electronics and Information, Hangzhou Dianzi University, 
Qiantang, Hangzhou 310018, Zhejiang, China

3	 School of Information Engineering, Hangzhou Dianzi University, Qiantang, Hangzhou 310018, 
Zhejiang, China


	LGAFormer: transformer with local and global attention for action detection
	Abstract
	1 Introduction
	2 Related work
	2.1 Temporal action detection
	2.2 Anchor-free action detection
	2.3 Video transformer

	3 Method
	3.1 Problem formulation
	3.2 Overall architecture
	3.3 Backbone design
	3.3.1 Local attention transformer module
	3.3.2 Global attention transformer module
	3.3.3 Feature pyramid network

	3.4 Classifier and regressor
	3.4.1 Classifier
	3.4.2 Regressor

	3.5 Training and inference
	3.5.1 Training
	3.5.2 Inference


	4 Experiment
	4.1 Datasets and metrics
	4.1.1 THUMOS14
	4.1.2 ActivityNet1.3
	4.1.3 EPIC-Kitchens 100

	4.2 Implementation details
	4.3 Main results
	4.4 Ablation study
	4.4.1 Choice of backbone and head
	4.4.2 Number of LATM and GATM
	4.4.3 Window size of LATM
	4.4.4 Level number of feature pyramid
	4.4.5 The effectiveness of detection head
	4.4.6 Segment step size of detection head

	4.5 Visualization

	5 Conclusion
	References




