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Abstract
This work presents a lightweight phoneme recognition model using object detec-
tion techniques. This model is mainly proposed to run on devices with low process-
ing power, such as tablets and mobile phones. The use of the combination of hard-
ware network architecture research complemented by the NetAdapt algorithm has 
led to the use of a simpler and lighter network architecture called MobileNet. The 
MobileNetV3 convolutional network architecture was combined with the Single-
Shot Detection. The databases used in model training were TIMIT and LibriSpeech, 
both have spoken audios in English. To generate a graphical representation using 
the audiobases, for each audio, its spectrogram was calculated on the Mel scale. 
To train the algorithm of phoneme location detection, the temporal position of the 
occurrence of each phoneme in respective spectrogram is used. Additionally, it was 
necessary to increase the training dataset, in order to provide improvement in the 
generalization of the model. Therefore, the two databases were joined and data aug-
mentation techniques were applied to audios. The main idea was to achieve learning 
using a lightweight architecture that can be used on devices with low processing 
power, such as tablets and mobile phones. Thus, this research used the MobileNet-
Large architecture, which obtained an accuracy of 0.72 mAP@0.5IOU. For compar-
ison, the MobileNet-Small architecture was also used, which obtained an accuracy 
of 0.63 mAP@0.5IOU.

Keywords  Speech recognition · Deep neural networks · Computer vision · Deep 
learning
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1  Introduction

The applicability of interacting with machines through audio commands provides 
greater use of them and expands possibilities of use, entailing greater accessibility 
for all individuals, especially for those who have physical limitations or disabilities.

The first researches in this area aimed to identify a sound signal and convert 
it into numerical digits [9]. From this first milestone, several models were imple-
mented. Around the 1980s, some lines of research began to apply the probabilistic 
theory of hidden Markov models (HMM) in speech recognition systems and gave 
rise to the first commercial speech recognition systems [21, 35]. Around the 1990s, 
commercial systems became popular, such as IBM Via Voice and Dragon Systems 
[3].

More recently, around 2012, a group of researchers proposed a new approach, 
which consisted of replacing the acoustic model, where a Gaussian process repre-
sents this model in most systems, by another one based on deep neural networks 
(DNNs). This model was used as a feature extractor and was linked to another mod-
ule based on hidden Markov chains. This change exceeded the performance of the 
previous state-of-the-art model by more than 30% [17].

After this milestone, several research initiatives have been trying to further 
improve the performance of current ASR (automatic speech recognition). Some 
researchers sought to build an end-to-end system based entirely on neural networks. 
During their research, some groups of researchers obtained satisfactory results 
by replacing the statistical module, based on HMM and responsible for modeling 
the sequential structure of speech, by models based on recurrent neural networks 
(RNNs) [12, 13, 39, 40].

The system output can be either the whole word or the word subdivided into 
smaller phonetic units, for example, phonemes, syllables, diphones, triphones or 
even characters. These units are commonly called tokens [2].

Continuous speech recognition systems are systems that commonly present a high 
complexity when compared to others. This is mainly because in human speech there 
are usually no pauses among tokens. These systems have been gradually replaced by 
models that use deep neural networks [12, 13, 39, 40].

The main objective of this work was to implement an approach for recognizing 
phonemes in words. Graphical representations of audio were used, to which pattern 
recognition and object detection techniques were applied using deep neural net-
works. The contributions of this work include the use of a simplified neural network 
architecture, which provided results with satisfactory accuracy using little process-
ing power when compared to more robust networks. It was therefore possible to use 
the proposed model in devices with limited processing power, such as smartwatches 
and smartphones.
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2 � Bibliographic review

Some works in the literature have obtained promising results by applying deep learn-
ing techniques to raw audio signals without any kind of pre-processing [4, 31, 32].

However, the use of pre-processing resources usually enhances the extraction of 
representative features, which are relevant to the pattern recognition process. There-
fore, the pre-processing drives the efforts of the model for the understanding of the 
really useful information and refraining from irrelevant information, such as back-
ground noises or unexpressive spectra.

With this in mind, recent works divide the audio recognition task into two mod-
ules, the first one seeks to elaborate an acoustic model and the second one is a clas-
sifier. The first module is responsible for extracting representative features of the 
audio spectrum. These features are subsequently sent to the second module, which 
should correlate the information in order to identify the analyzed sequences.

Meftah et al. [30] showed a study analyzing some of the main feature extractors 
used in the literature, using an HMM-based model as a classifier. They used Linear 
Predictive Coding (LPC), Mel-Frequency Cepstral Coefficients (MFCC), Perceptual 
Linear Prediction (PLP), Logarithmic Mel-Filter Bank Coefficients (FBANK), Mel-
Filter Bank Coefficients (MELSPEC) and Linear Prediction Reflection Coefficients 
(LPREFC) as the sound representation for their analysis. This study is done using 
a base of phonemes in the Arabic language. Grozdic et al. [14] used Deep Denois-
ing Autoencoders (DDAE) for whispered speech recognition. DDAE is applied for 
generating whisper-robust cepstral features. Three types of cepstral coefficients were 
used in those experiments: MFCC, TECC (Teager-Energy Cepstral Coefficients) and 
TEMFCC (Teager-based Mel-Frequency Cepstral Coefficients). This system was 
tested and compared in terms of word recognition accuracy with conventional hid-
den Markov model (HMM) speech recognizer in an isolated word recognition task 
with a real database of whispered speech (WhiSpe).

Several works have proposed acoustic models using the combination of some 
transformation techniques and deep learning techniques. In the work of Quinta-
nilha et al. [34], CNN and RNNs were used. The audio signal of a speech excerpt 
is transformed into MFCCs and used as the system input. They used the Brazilian 
Portuguese speech dataset (BRSD) which was built by combining 4 datasets from 
different sources (LapsBM, CSLU: Spoltech Brazilian Portuguese, Voxforge and Sid 
dataset).

In the work of Glackin et al. [10] demonstrated how CNN, which is known for 
state-of-the-art performance for image processing tasks, can be adapted to learn the 
acoustic model (AM) component of an ASR system. They used spectrograms as 
input and phonemes as output classes for training to perform speech recognition. For 
this, they chose to use the TIMIT corpus to train the acoustic model because it has 
phonemic transcription.

Fan and Liu [8] showed one approach combining CNNs and RNNs and the pre-
sented a comparison among audio inputs transformed into Mel-scale spectrogram 
and FBANKs. Sree and Vijaya [42] proposed to enhance the power of DBN further 
by pre-training the neural network using particle swarm optimization (PSO). Three 
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variations of PSO namely, the basic PSO, second generation PSO (SGPSO) and the 
new model PSO (NMPSO) are applied in pre-training the DBN to analyze their per-
formance on phoneme classification.

Gupta et al. [15] presented the analysis and classification of speech spectrograms 
for recognizing emotions in RAVDESS dataset. Feature extraction from speech 
utterances is performed using Mel-Frequency Cepstrum Coefficient. Thereafter, 
deep neural networks are employed to classify speech into six emotions (happy, 
sad, neutral, calm, disgust and fear). The paper puted forward an analysis of Bag 
of Visual Words that uses speeded-up robust features (SURF) to cluster them using 
K-means and further classify them using support vector machine (SVM) into afore-
mentioned emotions. Out of the five DNNs deployed, (i) Long Short-Term Memory 
(LSTM) on MFCC and, (ii) Multilayer Perceptron (MLP) classifier on MFCC out-
perform others, giving an accuracy score of 0.70 (in both cases). Also, it achieves a 
precision score between 0.77 and 0.88 for the classification of six emotions.

Finally, Wang et  al. [43] bridged the gap between the linguistic and statistical 
definition of phonemes and proposed a novel neural discrete representation learning 
model for self-supervised learning of phoneme inventory with raw speech and word 
labels. Under mild assumptions, Wang et al. [43] proved that the phoneme inventory 

Table 1   The classifier and objective proposed in the aforementioned works

Authors’ work Classifier/learning algorithm Objective

[30] HMM-based model ASR
[14] Deep Denoising Autoencoders (DDAE) ASR
[34] CNN and RNNs ASR
[10] CNN-AM ASR
[8] CNNs and LSTM-CTC​ ASR
[42] The basic PSO, SGPSO and NMPSO are applied in pre-

training the DBN
ASR

[15] CNN, LSTM, GRU and ensemble learning (MLPC) Recognizing emotions
[43] Neural network called an information quantizer (IQ) ASR

Table 2   The dataset used in the 
aforementioned studies

Authors’ work Dataset properties

[30] A corpus of Arabic speech was created based on 
selected recordings of recitations from the Holy 
Quran

[14] WhiSpe
[34] BRSD
[10] TIMIT corpus
[8] TIMIT corpus
[42] The speech corpus Kazhangiyam
[15] RAVDESS dataset
[43] TIMIT corpus and Mboshi
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learned by they approach converges to the true one with an exponentially low error 
rate. Moreover, in experiments on TIMIT and Mboshi benchmarks, your approach 
consistently learns a better phoneme-level representation and achieved a lower error 
rate in a zero-resource phoneme recognition task than previous state-of-the-art self-
supervised representation learning algorithms.

Tables 1, 2 and 3 summarize the classifier, the objective, the dataset used and 
the representation of the sound that served as input for the learning algorithm in 
the works mentioned above.

The various challenges constantly proposed to the community are factors of 
fundamental importance. These challenges aim to stimulate the development of 
new solutions that can accurately detect a wide range of different object classes. 
As examples of these challenges, one can mention Google AI Open Images 
Object Detection Track 2018, PASCAL Visual Object Classes Challenge 2007 
and 2012 (VOC2007, VOC2012), Microsoft COCO: Common Objects in Context 
(MS COCO), ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) [5, 
7, 23, 26, 38].

As a result of the computer vision community’s efforts to overcome these chal-
lenges, some very interesting tools have emerged, such as You Only Look Once 
(YOLO) [36] and Single-Shot MultiBox Detector (SSD) [27].

The first steps to investigate the application of object detection techniques to clas-
sify phonemes in audio signal spectrograms were taken by [1]. In their work, the 
authors proposed the use of phoneme recognition using spectrograms of the Eng-
lish TIMIT base and an Arabic base. They used the YOLO architecture and also an 
architecture called CenterNet, in both of which they obtained results comparable to 
recently published articles on phoneme recognition.

Table 3   The representation of the sound used as input in the aforementioned studies

Authors’ work Sound representation

[30] LPC, MFCC, PLP, FBANK, MELSPEC and LPREFC
[14] MFCC, TECC and TEMFCC
[34] MFCCs
[10] Spectrograms
[8] Mel-scale spectrograms and FBANKs
[42] Discrete wavelet transform (DWT) applied on the wave form repeatedly to extract six 

levels of DWT features
[15] Spectrograms - Feature extraction from speech utterances is performed using MFCCs
[43] Frame-level phoneme transcriptions

Table 4   The classifier and objective proposed in the aforementioned works

Authors’ work Architectures Dataset Sound representation Objective

[1] YOLO and CenterNet TIMIT and an Arabic base Spectrograms ASR
Ours SSD and MobileNet TIMIT and LibriSpeech Spectrograms ASR
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In our work, we proposed the use of the SSD object detection system using the 
MobileNetV3 neural network as a backbone. We used an approach similar to that of 
[1]; however, the proposal was to use a leaner and more simplified architecture. As 
a result of this approach, it was possible to obtain results with satisfactory accuracy 
using modest computational resources, compared to more complex networks. The 
TIMIT and LibriSpeech English-language audio databases were used to train the 
phoneme recognition system.

Table 4 summarizes the two proposals, mentioning the classifier, the objective, 
the dataset used and the representation of the sound that served as input for the 
learning algorithm in the aforementioned works.

In [1]’s work, the focus was general because he used the state of the art in object 
detection. In our work, the focus was on a more simplified architecture with the aim 
of obtaining good results without the need for a large amount of computing power, 
as this would make it possible to apply the system to a device with less computing 
power, such as an embedded system or a smartphone.

3 � Voice processing

The voice is an inherently human characteristic based on the production of articu-
lated sounds, which are represented by a language. Speech is an analog, continuous 
and non-periodic signal. Due to technical limitations, digital computers do not allow 
the voice signal to be stored considering an infinite set of points, so periodic sam-
pling must be performed. The necessary quantitative foundation for this purpose is 
provided by the sampling theorem [24].

After recording and storing the signal digitally, to get a good representation of the 
signal, a sliding window is used. This process consists of sliding along the signal in 
a window, whose length is usually limited to between 20 and 40 ms. To avoid loss of 
information, the distance between a window and its successor is usually smaller than 
the total width of the window, so the windows overlap.

For each window extracted, the Short-Time Fourier Transform (STFT) was 
applied. With the result of the previous step, the spectral power of the signal is cal-
culated. The goal of this procedure is to intensify the amounts of energy in different 
frequency bands.

The process of transforming the power spectrum to the so-called Mel scale is a 
method that models the frequency response similar to what occurs in the human 
auditory system [8, 11]. To transform the power spectrum to the Mel scale, a bank 
of K filters must be applied to the spectral power S(k). The filter bank is composed 
of filters spaced according to the Mel frequency scale, represented by Eq. 1:

where f is the frequency of the signal.

(1)Mel(f ) = 1125 × ln

(

1 +
f

700

)
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The effect of using the Mel-scale spectrogram is to promote spacing among the 
low magnitude frequencies located at the bottom of the spectrogram, while the high 
magnitude frequencies are slightly compressed.

4 � Convolutional network architectures

Nowadays, many network architectures are available for image recognition. Some 
prominent examples are the Google AI Open Images Object Detection Track 2018, 
PASCAL Visual Object Classes Challenge 2007 and 2012 (VOC2007, VOC2012), 
Microsoft COCO: Common Objects in Context (MS COCO), ImageNet Large-Scale 
Visual Recognition Challenge (ILSVRC) challenges [5, 7, 23, 26, 38].

Around 2012, convolutional networks started to be widely spread in the com-
puter vision area, when Alex Krizhevsky won the ImageNet challenge (ILSVRC 
2012) [38] with his AlexNet network architecture [22]. Since then, several net-
work architectures have been proposed. The modifications are very diverse, such 
as increasing the number of layers or neurons. In general, the larger the network 
and the more sophisticated techniques used, the higher the accuracy; however, 
this efficiency is not reflected in relation to the size of the model and its process-
ing speed.

In real-world applications, where a high-performance machine is not always 
available, more sophisticated models are difficult to be executed in a device with 
computational restrictions. Even when a datacenter can be used to compensate this 
restriction, in some situations, there is no internet access.

The relationship between accuracy and efficiency of architectures is an important 
factor in a project involving neural networks. However, the demand for networks 
that work offline on low computational capacity devices has caused some smaller 
architectures such as MobileNet, ShuffleNet and SqueezeNet to emerge [19, 20, 44].

The reduction of image size through pooling technique or using a stride value 
greater than one is a real possibility. These techniques can reduce the total number 
of parameters to be processed.

Convolutional networks perform many mathematical operations, therefore, 
demand a high processing power. In order to overcome it, a technique called point-
wise convolution or 1 × 1 convolution was developed [25].

The computational cost Θstandard of the standard convolution operation is repre-
sented by Eq. 2:

where Dk represents the size of the filter, M and N represent the number of input 
channels and the number of output channels, respectively, and Df  represents the 
dimensions of the original image.

In order to reduce the computational cost Θstandard , the Depthwise Separable Con-
volution technique emerged. This technique divides the previous process into two 
steps. The first step performs a convolution similar to the previous one, each channel 
is treated individually. The difference is in the end of the process, where the initial 

(2)Θstandard = Dk ⋅ Dk ⋅M ⋅ N ⋅ Df ⋅ Df
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number of channels is preserved and the operation is applied only once, thus, Eq. 3 
is obtained.

where ΘDepthwise is the computational cost of the Depthwise Separable Convolution.
Depthwise convolution is more efficient compared to standard convolution; how-

ever, this step is only responsible for applying the filters to the channels and does 
not combine them to extract new features. Therefore, a second step is required that 
computes a linear combination among the previous (Pointwise convolution 1 × 1 or 
Pointwise convolution). At this point, a 1 × 1 ×M filter is used. The result of this 
second step is a feature map that has Df × Df × 1 dimension, so for N maps, we 
obtain Df × Df × N dimension. The combination between the Depthwise convolu-
tion and the Pointwise convolution 1 × 1 has the computational cost Θdp described 
by Eq. 4.

The understanding of this operation is not intuitive and many times, the first impres-
sion hides its effectiveness or utility; however, this technique is extremely powerful 
to condense the information along the channels of the image inputs or filters in a 
given layer. The MobileNet model uses this this technique. The MobileNet architec-
ture is currently in its third version. In order to improve the architecture, the authors 
proposed a convolutional block that combines the pointwise and depthwise convo-
lutional techniques used in the first version with the residual connection techniques 
[16].

The intention is to provide an architecture with low density layers. In order to 
obtain a good accuracy without increasing the data density, the authors presented a 
convolution block called Bottleneck Residual Block.

The function of this block is to reduce the amount of data that are passing through 
the network, as the name suggests, the block generates a “bottleneck” of information 
in its output. This set of convolutions consists of three stages: the first one applies 
a pointwise convolution layer to the received data. Next, there is a depthwise layer, 
which performs a filtering of the expanded data. Finally, in the last part of the block, 
a pointwise layer “compacts” the data and reduces its dimensionality. In addition to 
the operations mentioned above, the block has a residual connection between the 
first and last stages [18, 41].

4.1 � Object detection

The goal of the conventional classification process, for example, using convolutional 
networks, is to extract features through the first layers and at the end of the pro-
cess the last layers of the network are responsible for performing a classification. In 
object detection task, however, at the end of the process, this task indicates not only 
the object classification, but also its location in the image. Therefore, there are two 

(3)ΘDepthwise = Dk ⋅ Dk ⋅M ⋅ Df ⋅ Df

(4)Θdp = Dk ⋅ Dk ⋅M ⋅ Df ⋅ Df + N ⋅M ⋅ Df ⋅ Df
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output layers: the first one classifies a certain object, while the second output layer 
indicates the location of this object.

There are two widespread methods for object detection in images, one based 
on sliding windows and the other based on region proposals. The first mentioned 
method is commonly called a one-step detector, while the second one is called a 
two-step detector. As the name suggests, the one-step detector performs the detec-
tion in only one stage. The two-step detectors, on the other hand, first need to use 
some method to propose regions, and then, they perform the detections. The two-
stage detectors have high accuracy rates considering the location and also the clas-
sification, while the one-stage detectors stand out in the detection speed. The most 
representative example in the literature of a two-stage detector is the Faster R-CNN 
[37]. As examples of one-stage detectors, we can mention the systems You Only 
Look Once (YOLO) and Single-Shot Multibox Detector (SSD) [27, 36].

4.1.1 � Single‑shot multibox detector

According to the number of objects to be detected, a collection of delimiters, called 
bounding boxes, is created. For each delimiter, an estimate of presence of one object 
is produced. After detections, the non-maximum suppression algorithm runs aiming 
to discard irrelevant bounding boxes.

This detector has some peculiarities that provide versatility and agility in detec-
tion, without compromising the accuracy of its predictions. Among the features of 
that detector, one can highlight the addition of some extra layers that are coupled to 
the base architecture used. These extra layers follow a pattern in which their size is 
progressively reduced, in order to provide detection at multiple scales, as shown in 
Fig. 1.

Some extra layers added progressively decrease in size to assist the detection. 
One can observe that all outputs of the layers, both from the base architecture, as 
well as the outputs of the extra layers, are connected directly in parallel with the 
detection layer. After the detection layer, the non-maximum suppression step is 
applied [27, 36]. According to the authors, the goal of this method is to reduce over-
fitting. Besides, the authors proposed a “by-pass” among the layers connecting them 
directly to the classifier at the end of the network.

Fig. 1   Example of a VGG-16 architecture as the base backbone. Extra layers with reduced size were 
added to assist the detection. All outputs of the layers are directly connected (black arrows) with the 
detection layer. Later, the non-maximum suppression limitates the bounding boxes with lower scores [27]
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During the training of the SSD system, it is necessary to determine which bound-
ing boxes are closer to the annotation of the object’s real position and train the net-
work accordingly. For each prediction, the set of standard bounding boxes is varied 
in order to diversify aspects related to its shape, location and the bounding box scale 
so as to cover objects in different positions. Therefore, for each of the delimiters in 
the standard set of bounding boxes, the intersection over union index (IoU) is com-
puted. For this, the annotation that corresponds to the location in the image of the 
original object is used and the prediction that has the highest index is selected. The 
intersection over the union is also called Jaccard’s index and can be expressed by 
Eq. 5:

where A and B are sets of images.
According to the author, the objective function used in the SSD system is derived 

from the MultiBox system [6]; however, the function in the SSD was optimized to 
handle multiple categories. The objective function of this system is composed of the 
localization loss (loc) and the confidence loss (conf), according to Eq. 8.

The localization loss (loc) is responsible for correcting the error between the 
original annotation position and the position predicted by the network through the 
bounding box. For that, only positive combinations are considered. Be Xp

ij
 an indica-

tor for the equivalence between the i-th bounding box and the j-th annotation of a 
class p in image. If IoU is greater than 0.5,Xp

ij
= 1 , otherwise, Xp

ij
= 0 . The localiza-

tion loss is the same Smooth L1 loss used in YOLO [36], according to Eq. 6:

where N is the number of matched default boxes, the parameter l represents the 
marking predicted by the network and parameter g represents the original marking 

on the image, where ĝcx
j
=

cxgj
−cxdi

wdi

 , ĝcy
j
=

cygj
−cydi

hdi

 , ĝw
j
= log

(

wgj

wgi

)

 and ĝh
j
= log

(

hgj

hgi

)

 , 

while parameters cxgj and cygj correspond, respectively, the x and y position of the 
center of the bounding box gj , the parameters cxdi and cydi correspond, respectively, 
the x and y position of the center of the bounding box di , the parameters wdi

 , wgj
 and 

wgi
 correspond, respectively, the width of the bounding box di , gj and gi , the parame-

ters hdi , hgj and hgi correspond, respectively, the height of the bounding box di , gj and 
gi.

The confidence loss (conf) metric represents the error calculated when making a 
prediction. For each positive combination, the objective function is adjusted accord-
ing to the evaluation score for that respective class. As for the negative combina-
tions, the zero class is penalized, which corresponds to the “background” detection 
in the image. For this, one should apply the softmax function considering the scores 
obtained in the classification according to Eq. 7:

(5)J(A,B) =
A ∩ B

A ∪ B

(6)Lloc(X, l, g) =

N
∑

i𝜖Pos

∑

m𝜖cx,cy,w,h

X
p

ij
smoothL1(l

m
i
− ĝm

j
)
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where c is class score, ĉp
i
=

e
c
p

i

∑

p(e
c
p

i )
 and N is the total number of positive 

combinations.
The overall objective function is described by Eq. 8:

where N is the number of bounding boxes representing a positive combination and 
the parameter � is a weight to be multiplied by the localization loss.

5 � Methodology

Concerns the materials and methods employed in this work. The first ones consist 
basically of databases and a framework. The methods used here were phonetic divi-
sion, data augmentation and metrics.

5.1 � Databases

Two databases were used: TIMIT and LibriSpeech. TIMIT is an English-language 
audio database designed to provide data for acoustic-phonetic studies and to assist in 
the development and evaluation of automatic speech recognition systems. The base 
consists of audios from 630 speakers, covering the eight major dialects of American 
English. Each speaker recorded ten phonetically rich sentences, generating a total of 
6300 sentences, or 5.4 h. The utterances were recorded using 16-bit resolution and 
frequencies range up to 16 kHz. For each audio-recorded utterance, there are ortho-
graphic, phonetic and word transcriptions, which all have temporal annotation.

LibriSpeech is a free database built from the audiobooks made available in the 
LibriVox project [33]. It contains about 1000 h of speech with frequencies in the 16 
kHz range. The files are divided into three subsets, with sizes of 100, 360 and 500 h. 
Unlike the TIMIT database, the annotations in this database were automatically ver-
ified using alignment and speaker identification algorithms.

This base originally does not have phonetic alignment. Therefore, to be able to 
use this base in this work, it was necessary to use a tool to force phonetic align-
ment [29]. This algorithm has some pre-trained templates for certain languages. The 
files containing the information regarding the phonetic and word annotations were 
obtained from the work of [28]. For more details about the alignment algorithm, 
see the mentioned works. In this work, we chose to use the subset of the base that 
contains 100 h of recordings. Even so, only a part of the recordings was selected to 
complement the sample bases used during training.

(7)Lconf(X, c) = −

N
∑

i𝜖Pos

X
p

ij
log(ĉ

p

i
) −

∑

i𝜖Neg

log(ĉ0
i
)

(8)L(X, c, l, g) =
1

N
(Lconf(X, c) + �Lloc(X, l, g))
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5.2 � Framework

In order to develop this project, the Google Collab framework was used, as well as, 
the API’s TensorFlow and Keras. To perform experiments in this work, we chose to 
use the SSD object detector in combination with the MobileNet network architec-
ture. This was decided in order to have a low processing cost and to work in a device 
with low computational capacity or offline.

It is worth remembering that this algorithm was previously developed in 
another work [18] and was applied to the ImageNet classification challenge [38]. 
In this work, we took advantage of this architecture applied to the task of phoneme 
recognition.

As mentioned in Sect. 4, the MobileNet architecture is responsible for perform-
ing the convolutional part of the process and has two versions: MobileNetV3-Large 
and MobileNetV3-Small. The large version consists of the complete architecture of 
the network and the small one is a reduced version, which uses a smaller amount of 
parameters.

5.3 � Phoneme division

Originally the audios were recorded containing entire sentences. The base contains 
annotations of the temporal position of each spoken word and phoneme throughout 
each recording. Thus, the sentences were divided into isolated phonemes. Further-
more, it also provides faster detection, as it uses smaller units for detection, which 
provide a faster response when compared to recognition of complete utterances.

The audiobases used in this work, for each audio sample, there is a text document 
containing annotations regarding the temporal position of each phoneme present in 
the utterance. A program was developed that receives the temporal information of 
the beginning and end of each phoneme and separates the audios into phonemes or 
words and organizes them according to their phonetic classification.

When converting the audio format to spectrogram, phonetic annotation was also 
performed taking into account the position of phonemes in pixels in the spectro-
gram image. Figure 2 illustrates the constitution of phonetic annotations on the word 
“covers.” For each audio sample, a spectrogram and a markup file were created con-
taining information on the position of each phoneme in that image. Thus, one can 

Fig. 2   Example of phonetic 
annotation on the spectrogram 
of an audio recording of the 
word “covers”
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visualize the markings through software used to annotate images, such as LabelImg. 
Through the markings file, we facilitated the process of converting the images and 
the annotation process for the standard used during the training of the object detec-
tion algorithms.

5.4 � Data augmentation

Most processes involving the use of deep network algorithms require an extensive 
number of samples for training, and these samples should be so diverse as possible. 
However, many times the process of obtaining data is very costly. Thus, one way to 
reduce costs in obtaining data is through data augmentation techniques. To deal with 
conventional images, it is very common to apply image deformation techniques such 
as: stretching or shrinking their size, rotating them clockwise or counterclockwise, 
enlarging or shrinking the images, modifying the intensity and color balance, and 
even removing a random piece of the images.

However, as the images in this work correspond to a distribution of signals over 
time, some techniques cannot be applied. For example, mirroring horizontally the 
image may totally invert the meaning of the pronunciation of a word. Procedures to 
stretch or shrink the image can be applied in this context since its effect on audio is 
similar to procedures of increasing or decreasing the recording speed.

Fig. 3   Effect on the spectrogram of audios recorded with variations in speed
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In Fig. 3, one can observe the effect of changes in the spectrogram as a function 
of increasing and decreasing the recording speed of the original audio. Figure  3a 
shows the spectrogram of audio at normal speech rate. In Fig.  3b, the image has 
been stretched on the horizontal axis to represent audio with reduced speech rate. In 
Fig. 3c, the opposite comes to light, i.e., the speed is faster and the speaking time is 
shorter.

Another technique used was the displacement of the audio of the original record-
ing by adding a noise excerpt at the beginning of the audio, as shown in Fig. 4. Thus, 
the corresponding information to the speech is time delayed by a few seconds.

Figures 4a, b are spectrograms of the word “possible.” While Fig. 4a illustrates 
the spectrogram of the audio in its original form, Fig.  4 shows the effect of add-
ing a noise section at the beginning of the recording in order to displace it in time. 
Figure 4b shows a light spot at the beginning (that would be the noise) and then the 
original audio spectrogram equal to Fig. 4a.

Noise was also applied throughout the original recording. To do this, one can 
generate a white noise and multiply it by a coefficient, and then add it to the original 
recording. Besides adding a white noise, one can also use another type of noise.

Figure 5 illustrates the application of white noise in an audio recording that con-
tains the word “possible.” While Fig.  5a illustrates the audio’s spectrogram in its 

Fig. 4   Displacing the audio by adding noise before the original audio’s position

Fig. 5   Technique that consists of adding a bank of white noise throughout the audio recording
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original form, Fig. 5b shows the effect of adding white noise across the entire length 
of the audio.

One can see in Fig. 5b that the light spot that appears at the beginning of Fig. 4b 
extends across the entire spectrogram image, but it is still noticeable that the audio 
of the word is present in the spectrum, the stronger green spots are noticeable in the 
same locations in Figs. 5a, b.

Another technique used was the addition of localized noise in certain passages 
of the audio recordings. In this case, according to the position of phonemes in the 
audio and its duration, a localized noise was applied in order to disfigure one of 
the phonemes as illustrated in Fig.  6. Figures 6a, b are spectrograms of the word 
“possible.”

While Fig. 6a illustrates the audio spectrogram in its original form, Fig. 6b shows 
the effect of adding noise located at a random location in the audio. The difference 
among the spectrograms is a vertical spot on the left side of Fig. 6b, which would be 
the localized noise to disfigure the phoneme.

5.5 � Metrics

Two metrics were used: the Phone Error Rate and the Mean Average Precision.

5.5.1 � Phone error rate

The Phone Error Rate (PER) metric is similar to the Word Error Rate (WER) 
metric. Both are metrics widely used to evaluate the performance of speech rec-
ognition or translation systems. The PER metric considers four important param-
eters to measure the performance of the recognition system, namely substitutions 
(S), deletions (D) and insertions (I), divided by the total number of predictions 
(N), according to Eq. 9.

(9)PER =
S + D + I

N

Fig. 6   Technique for adding localized noise to certain parts of audio recordings
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5.5.2 � Mean average precision

Mean Average Precision (mAP) is a widely used metric in object detection. This 
metric is calculated through the intersection over union (IoU) of the areas of the 
object’s real marking in the image and the marking predicted by the algorithm 
during classification. In general, the detection of the object location is correct if 
the IoU is greater or equal to 0.5. If a detection occurs and IoU is greater than or 
equal to 0.5, the detection is True Positive (TP), otherwise, False Positive (FP). If 
there is no detection, the model failed to detect the object and thus the detection 
is classified as False Negative (FN). The mAP is the average model accuracy con-
sidering a given confidence level, represented by IoU. To calculate the average 
precision of the model, Eq. 10 is used.

To calculate the mAP, the average of the accuracies (AP) of all classes is considered, 
according to Eq. 11:

6 � Results

The use of data augmentation techniques, presented in Sect. 5, individually gener-
ated different effects during training, and the impacts were verified during the tests. 
Even so, during the experiments, we tried to combine the data augmentation tech-
niques in order to provide a greater generalization of the model and thus ensure a 
satisfactory result.

In addition to data augmentation techniques, parts of another audio database, 
LibriSpeech, were also used. During the experiments, it was decided to use only a 
subset of this database, in order to verify its impact on training. The aggregation of 
these new samples allowed to obtain a satisfactory result.

For phoneme recognition, k-fold cross-validation was applied, where the input 
data was divided into five data subsets, i.e., the percentage of the dataset assigned is 
80% for training, 10% for validation and 10% for testing. The samples generated by 
the data augmentation techniques remained in the training dataset.

In Fig. 7, one can verify the progress of one of the system trainings. During this 
training, it was used a batch size equal to 16, an initial learning rate of 0.1 and a 
momentum term equal to 0.9. In this training, the combinations of data augmen-
tation techniques (local noise, displacement and 20% speed change) applied to the 
TIMIT database training data were used, and a subset of the LibriSpeech database 
was added to increase the number of samples in the database and favor the network 
generalization.

(10)AP =
TP

TP + FP

(11)mAP =
1

N

N
∑

j=1

APj
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In both graphs presented in Fig.  7, the markings on the left side of the graph 
represent the variation of the training Loss, while the right side shows the scale cor-
responding to the accuracy measured by mAP. Likewise, the blue line represents the 
variation of Loss during the training, while the orange line corresponds to accuracy 
measurement.

Fig. 7   Graph of net training evolution for 200,000 iterations
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Fig. 8   Confusion matrix graph of networks trained for 200,000 iterations
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The graph shown in Fig. 7a represents the training of the full version of the net-
work, the MobileNetV3-Large architecture. The training of this version occurred in 
a low-noise way, presenting remarkable progress and stability. Among the first 10 
thousand iterations, there was a significant decrease in the Loss parameter, while 
accuracy showed significant growth until around the 80 thousandth iteration. At the 
end of the process, the accuracy presented a value of 0.72 mAP, while the Loss fin-
ished near 0.5.

On the other hand, the graph shown in Fig. 7b represents the MobileNetV3-Small 
architecture training. This training, in turn, presented a high level of noise, with 
many oscillations throughout the process. This characteristic expressed a certain 
difficulty of the system to learn the data patterns. In this case, it happened mainly 
due to the reduced parameters of the architecture, a factor that impaired the learning 
task. At the end of the process, the accuracy presented a value of 0.63 mAP, while 
Loss finished near 1.0.

Figure 8a illustrates the confusion matrix of the best model obtained throughout 
the experiments. The closer to the dark red, the higher the hit rate. Analyzing the 
figure, for example, for the class z, we have a red square, so it was recognized. We 
can also notice that class z was sometimes recognized as class s and t for presenting 
a lighter blue than the other classes. The class sil was the only one that was identi-
fied a few times correctly when compared to others, because line it is the only one 
that presents a light blue color on the diagonal line, while all the other classes are 
red. Some classes were identified as other classes, for example, class k was identi-
fied as g and sil at some moments, so the blue of these two classes is lighter than the 
other classes.

One can verify that most predictions are in accordance with the corresponding 
classes, except the class sil. As previously commented, the system considered most 
of the occurrences of this class as “background” of the image, so it disregarded its 
classification. Considering this possibility, an alternative to circumvent this problem 
would be to eliminate the class of silence, since it can be considered background of 
the image, and discarding it would not cause losses to the model.

Figure 8b illustrates the confusion matrix of the Small model. Since this model 
is smaller and less robust than the model previously presented, it has less effective 
results. Different from the confusion matrix illustrated in 8a, there are some gaps 
in the main diagonal. The classes uw, ah, v, eh, dh, g, th, uh, y and aw show a faint 
red or white color on the diagonal line, this means that about 0.45 of the total were 
correctly classified. The classes sil and oy have been correctly classified very few 
times, so they show a blue color on the diagonal line. As the other classes have been 
correctly classified several times, they show a strong red color on the diagonal. Even 
though there are many inaccurate predictions, analyzing the bic picture, the model 
presented above average results.

In Fig. 9, a circular graph is illustrated with the objective of exposing the perfor-
mance in relation to the mAP considering the classes individually. It was considered 
the intersection index over union (IoU) equal to 0.5. Regarding the more robust net-
work, it can be verified that there was a good performance in most classes, except 
for the class “sil,” which corresponds to the pauses and the silences during the audio 
signal. It was verified that this problem occurred because this class is often confused 
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with the “ackground” of the image. According to the methodology adopted by the 
object detection system, the detections considered as “background” of the image are 
simply discarded to avoid disturbing the classifier during the recognition task.

Fig. 9   Circular graph comparing the mAP for each phoneme class of the Large and Small models

Table 5   Results obtained during the testing phase for the MobileNetV3-Large and -Small models using 
test data from the TIMIT base

Model mAP(0.5IOU) PER(%) Parameters Average time

SSD-MobileNetV3-Large 0.729 19.47 5.4M 9–10 h
SSD-MobileNetV3-Small 0.632 31.02 2.5M 3–5 h
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6.1 � Comparison of results

The results obtained during the experiments of this work are presented in Table 5. A 
comparison was made using the two models of the same architecture used, the full 
version (large) and the reduced version (small).

Notably, the complete network architecture obtained better results. This occurs 
because it has more attributes and consequently greater generalization power. On the 
other hand, the amount of parameters used by the reduced network is less than half 
of the amount used by the larger network.

Table 6 shows the results obtained in the work of [1], which uses a methodology 
similar to the one used in this work. The results are comparable because they were 
obtained using the same database during the testing phase. By analyzing the tables, 
the product of this work presented slightly lower results compared to [1]. However, 
when comparing the number of parameters from both systems, the ones used in this 
work, although presenting lower accuracy, require an expressively lower amount of 
parameters. Being a system that uses fewer parameters, the training is faster, less 
memory is used, consequently less computational resources are used and this is very 
appropriate and advantageous for systems with low computational power, such as 
tablet, cell phones and smartwatches.

When comparing the YOLOv3 architecture to the MobileNetV3-Large SSD, 
there is a difference of 0.056 in accuracy, but it becomes minimal when compared 
to the availability of computational resources due to the significant reduction in the 
number of parameters. YOLOv3 uses twelve times the number of parameters of the 
MobileNetV3-Large SSD, so its computational cost is much higher. It is not use-
ful for systems with low computational power to have one thousand one hundred 
percent more parameters to gain only 6% in accuracy. When comparing the Yolo 
V3 Tiny architecture to the SSD-MobileNetV3-Large, the number of parameters is 
equivalent, but the results obtained by the SSD-MobileNetV3-Large are superior.

7 � Conclusion

This work comprises the area of signal processing and pattern identification to pho-
neme classification using techniques of computer vision. In order to represent the 
signal graphically, using spectrograms calculated based on the audio signals.

Throughout the work, the need to increase the amount of data for training was 
identified. Generally, acquiring data is a costly task, so some data augmentation 

Table 6   Results obtained by [1]

Model mAP (0.5IOU) PÈR(%) Parameters Average time

YOLOv3 0.785 16.34 65.9M Not informed by the authors
CenterNet 0.766 15.89 62.2M Not informed by the authores
YOLO V3 Tiny 0,68 25.57 5.5M Not informed by the authores
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techniques have been applied like increasing and decreasing the recording speed of 
the original audio, displacing the audio by adding noise before the original audio’s 
position, among others.

Over the past few years, several object detection algorithms have been proposed 
and many of them present satisfactory results. Nevertheless, besides the proper 
functioning of the algorithm in terms of accuracy of its predictions, other important 
factors are the latency of response of the predictions and the processing capacity 
required for the operation of these systems.

As a result of this work, the developed model presented satisfactory results 
regarding phoneme identification. The model offers an efficient accuracy, even using 
reduced number of parameters, for instance 5.4M for the MobileNet-Large model 
and 2.5M for the MobileNet-Small model. From the results, one can apply the algo-
rithms for object recognition in spectrograms. In mobile devices, which have low 
processing capacity. This will allow the use of the model in a free, unlimited and 
standalone way, without the need to use an external service that is often requires 
payments for the number of requests requested.

In the present work, we sought to build a phoneme classifier, but nothing pre-
vents us from using the same strategies for the word detection task, since the data-
base itself contains annotations referring to words. To do this, it would be enough to 
select a certain set of words to train the algorithm in a similar way to that performed 
in this work. Although the word detection approach generates a model with lim-
ited vocabulary, depending on the desired application, this type of detection can be 
useful.

In addition to word detection, one can apply the same technique to recognize 
other kinds of sound elements. To do this, simply use databases with temporal anno-
tations of the occurrence of sound effects to enable the training of the algorithm. 
MFCC, FBanks or some geometric representation such as vectors, linear combina-
tion of vectors, among others, or a union of these techniques.

Furthermore, one can modify the network backbone and use other architectures 
in conjunction with the SSD system or even use another object detection system 
such as YOLO or Faster R-CNN.
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