
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:15006–15037
https://doi.org/10.1007/s11227-024-06017-9

1 3

DiGTreeS: a distributed resilient framework for generalized
tree search

Md Arshad Jamal1 · Sriram Kailasam2 · Bhumanyu Goyal3 · Varun Singh4

Accepted: 20 February 2024 / Published online: 28 March 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Exact combinatorial search algorithms have applications in several areas of compu-
tational algebra, AI, discrete optimization, etc. These problems are compute-inten-
sive and have a highly irregular search tree. Most of the earlier efforts to parallelize
these algorithms used a fixed degree of parallelism during runtime. We show that
such an approach leads to poor resource utilization as the parallel run-time efficiency
of an irregular search application varies over time. We propose DiGTreeS, a dis-
tributed resilient framework for generalized tree search that supports elastic scaling.
It features an easy-to-use API for expressing combinatorial search and hides away
the system concerns such as load balancing, fault tolerance, and elastic scaling. We
evaluate the DiGTreeS framework for different scaling strategies and show its effec-
tiveness on four representative problem instances: Traveling Salesman Problem, 0–1
Knapsack, N-queens, and Generic State Space Search Application.

Keywords  Distributed computing · Elastic scaling · Irregular tree search · Fault
tolerance

 *	 Md Arshad Jamal
	 s20013@students.iitmandi.ac.in

	 Sriram Kailasam
	 sriramk@nitw.ac.in

	 Bhumanyu Goyal
	 bhumanyu.goyal08@gmail.com

	 Varun Singh
	 varunsinghs2021@gmail.com

1	 School of Computing and Electrical Engineering, Indian Institute of Technology, Mandi, India
2	 Department of Computer Science and Engineering, National Institute of Technology, Warangal,

India
3	 Microsoft Corporation, Bengaluru, India
4	 Microsoft Corporation, Hyderabad, India

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-06017-9&domain=pdf

15007

1 3

DiGTreeS: a distributed resilient framework for generalized…

1  Introduction

Combinatorial search problems are found in several domains such as computational
algebra, constraint programming [1]. These search problems can be classified into 3
categories [2]: (1) enumeration: where every solution that matches a certain prop-
erty needs to be visited; (2) decision: to find out whether there exists a solution that
satisfies a certain property; and (3) optimization: to find the best solution that opti-
mizes a given objective function. These problems are highly compute-intensive and
are characterized by a highly irregular search tree. Finding exact solutions for many
such problem instances is NP-hard [3]. While approximation algorithms reduce the
time required, they do not guarantee an optimal solution. An alternative is to speed
up exact search by using parallelism where different parts of the search tree are
explored in parallel. However, due to the highly skewed computation tree and the
pruning heuristics that change the workload dynamically, parallelizing exact search
is non-trivial.

YewPar [2] is a recent framework for parallel tree search that has implemented
different search coordination techniques to improve the execution time. However,
it uses a fixed degree of parallelism during runtime. As seen in Fig. 1, if we use
a fixed number of workers (processing units) throughout the execution, the system
efficiency decreases for different problem instances over time. Thus, it leads to poor
resource utilization. In the cloud environment with a pay-per-use model, it translates
into an increased execution cost. Elastic scaling can potentially reduce this cost;
however, questions like when to scale, how much to scale, etc., need to be answered
in the context of irregular tree processing. Another important requirement for tree
search is the ability to recover from worker failures efficiently. As these tree searches
are long-running jobs, without fault tolerance, the entire job will have to be rerun
until successful completion.

Hitherto, frameworks like YewPar [2] have assumed a fixed set of workers to be
available during the entire execution and do not offer support for elastic scaling. The
fixed worker assumption may not be valid for long-running searches as computer
systems can fail at any time. Thus, the desirable properties of a cloud-aware frame-
work for parallel combinatorial search are (1) ease of expressing parallelism, (2)
resilience to failures, and (3) support for elastic scaling. Most of the existing frame-
works lack one of these. The most recent work, Equilibrium [4] supports (1) and (3)
but not (2); HOPE [5] supports (1) and (2) but not (3). Existing related works are
discussed in detail in Sect. 2.5.

Fig. 1   Efficiency over time with
the static number of work-
ers (30) for different problem
instances

15008	 M. A. Jamal et al.

1 3

This paper proposes DiGTreeS, a distributed resilient framework for general-
ized tree search. It has an event-driven architecture and is built using open-source
resilient distributed services like Apache ZooKeeper, Apache Kafka, and HDFS
(see Sect. 2.4). It provides an easy-to-use interface for specifying combinatorial tree
searches while hiding away the system concerns. DiGTreeS implements an elasticity
controller that monitors the system’s elastic efficiency (see Definition 1) and dynam-
ically adapts the number of workers to keep the system’s elastic efficiency within
a user-specified range using a reactive scaling strategy.1 On detecting worker(s)
failures, it recovers their state using checkpointing. We show the effectiveness of
DiGTreeS on four representative problem instances: Traveling Salesman Problem
and Knapsack (optimization), N-queens (enumeration), and GSSSA [7](enumera-
tion). Compared to the state-of-the-art elasticity controllers Equilibrium [4] and
Helpar [8], DiGTreeS has a higher benefit–cost ratio and it provides all three desir-
able properties of a cloud-aware framework for parallel combinatorial search.

The rest of the paper is organized as follows: Sect. 2 explains the relevant back-
ground and related work; Sect. 3 discusses the generalized API and walks through
an example problem; Sect. 4 gives details of the system architecture and the elas-
tic scaling algorithms implemented in DiGTreeS; Sect. 5 presents the experimental
evaluation of the proposed framework; Sect. 6 discusses future directions; Sect. 7
discusses the conclusion.

2 � Background and related work

2.1 � Combinatorial tree search

Combinatorial search involves exploring a huge search space to find a solution.
There are three major types of combinatorial search: (1) Optimization problems
involve minimizing or maximizing the objective function within the search space.
An example is the traveling salesman problem where the goal is to find a tour of
all cities having the lowest cost. (2) Enumeration problems involve visiting each
solution in the search space. An example is enumerating all the solutions of the
N-queens problem where the goal is to place the n queens on an n × n chess board
such that they do not attack each other. (3) Decision problems need to find whether
there exists a solution that fulfills certain criteria; the search should stop as soon
as any such solution is found. An example is the Boolean satisfiability problem [9]
where the goal is to find assignments to variables in a Boolean formula that would
make the formula true.

Combinatorial tree search algorithms deal with a system of discrete objects that
can be configured into various states. They need to be arranged or selected in such
a way as to achieve some cost function or to prove the existence of some combina-
torial configuration. The naive way of finding these solutions is to start from the

1  It is a technique where the elasticity controller reacts to the change in the system and makes decisions
about scaling operations [6].

15009

1 3

DiGTreeS: a distributed resilient framework for generalized…

root node and keep adding children till we reach a leaf node. After processing the
leaf, backtrack one step and add the next child. Keep repeating this process till all
possible nodes have been explored. In combinatorial search problems, with brute
force backtracking, the number of steps becomes exponential [2]. One technique for
reducing the search space is branch and bound. Some parts of the search space can
be dropped using a fast algorithm that calculates a bound on the best value pos-
sible in the current node’s subtree. If this bound is worse than the best solution we
have found so far, then we can prune the subtree. Such pruning operations cause the
search tree to have a highly irregular structure.

2.2 � Parallel combinatorial search

The different parts of the search tree can be explored in parallel by different workers.
Since the search tree can be irregular, an initial distribution of the subtree among the
workers may not ensure an even load. Hence, dynamic load balancing is required.
Work stealing and work sharing paradigms have been explored for this [10]. In work
stealing, an idle worker pulls tasks2 from the task queue of a loaded worker, whereas
in work sharing, the work is shared by the loaded worker with others. Among these,
work stealing is found to be more communication efficient as communication is ini-
tiated only when a worker becomes idle [11].

For optimization problems, the workers share their best local solution discovered
so far with the other workers. Using this, each worker can prune its subtrees whose
lower bounds exceed the best solution. This helps faster pruning of the search space
across all the workers. The final solution is the best-found global solution to the
problem. For decision problems, the search is terminated when any worker finds an
existential solution. However, to conclude that no solution exists, the entire search
space needs to be explored. DiGTreeS uses a work-stealing-based approach for
dynamic load balancing during runtime.

2.3 � Elastic scaling in cloud environment

Cloud computing is attractive to high-performance computing (HPC) due to its
pay-per-use policy and availability of huge compute resources. Elastic scaling is
an important feature of cloud computing that allows it to scale processing units to
respond to changing workload conditions [12]. The commonly used performance
metrics are parallel execution time Tpar , speedup (S), and parallel efficiency (E).
These are computed for a problem instance P under the assumption of having a fixed
number of processors (n) throughout the execution. Suppose Tseq is the execution
time of a single-threaded sequential algorithm on problem P, then

2  A task refers to an unexplored portion of the subtree.

15010	 M. A. Jamal et al.

1 3

Henceforth, we drop P from the above formulae to make them easy to read. With
elastic scaling, the number of processors changes during the execution. So, the basic
assumption of the number of processors being constant in the calculation of parallel
efficiency gets invalidated. Moreover, to calculate parallel efficiency the entire exe-
cution needs to be finished. Hence, there is a need for a metric that can be obtained
at run time and can be used to make decisions related to scaling.

Equilibrium [4] uses the concept of essential and non-essential computations.
DiGTreeS borrows this concept from Equilibrium [4], but the underlying mechanism
to compute the time spent in the essential computation is different. Equilibrium [4]
relies on ThreadMXBean, the management interface for the thread system of the
Java virtual machine (JVM), for measuring the threads’/workers’ CPU time,3 Which
they consider as time spent in essential computation, whereas DiGTreeS takes care
of the measurement of computation times by recording all the duration for which a
worker is involved in the essential computation.

Computations performed by all the workers that are also performed in the case
of sequential execution are essential computations. Time spent in communication,
work transfer, worker(s) being idle, etc., are all non-essential computations. The effi-
ciency of a particular worker is the ratio of time for which it is involved in essential
computation to the total time elapsed. We call run-time parallel efficiency as elastic
efficiency and denote it as Eelastic . We define Eelastic as follows.

Definition 1  (Elastic Efficiency) The elastic efficiency ( Eelastic ) is the arithmetic
average of individual efficiencies of all the processing units (workers), where the
efficiency of a processing unit is the ratio of time for which it is involved in essential
computation to the total time elapsed.

Mathematically, at any given point of time t, Eelastic is calculated using Eq. 3,
where Ei is efficiency of a worker i and n is the number of processing units at time t.

DiGTreeS uses Eelasctic as the metric for making decisions related to scaling opera-
tions (see Sect. 4.3).

(1)S =
Tseq(P)

Tpar(P)

(2)E =
1

n
× S

(3)Eelastic(t) =
1

n
×

n
∑

i=1

Ei

3  ThreadMXBean returns the user-level CPU time for the current thread if CPU time measurement is
enabled; −1 otherwise.

15011

1 3

DiGTreeS: a distributed resilient framework for generalized…

Let si and ei denote when a worker got provisioned and de-provisioned, respec-
tively. As the cloud uses a pay-per-use policy, if Ci denotes the cost per unit time of
using worker i, then the total cost of elastic scaling ( Ces ) can be calculated as:

We use this cost metric and execution time to compare the performance of different
scaling strategies in DiGTreeS.

2.4 � Overview of frameworks used in DiGTreeS

Apache ZooKeeper4 [13] is a distributed coordination service that is used to implement
protocols like master election, notification on process failures, locking, etc. It provides a
hierarchical namespace and allows storing small amounts of data in znodes. These can
be read or written atomically. The 3 types of znodes are persistent: store data persistently
unless explicitly deleted; ephemeral: retain only as long as the session is alive; sequen-
tial: an increasing sequence number assigned automatically based on the creation time.
ZooKeeper supports event notifications by setting a watch on a particular znode that gets
triggered when the znode is deleted, its data are changed, or its children are changed.

Apache Kafka5 [14] is a reliable distributed high-throughput messaging system.
It gives the abstraction of a topic to which messages can be posted by producers
and the consumers subscribed to that topic can read those messages. DiGTreeS uses
Kafka for reliable high-throughput work transfers.

Hadoop Distributed File System6 [15] (HDFS) is a fault-tolerant distributed file
system based on master/slave architecture. It provides high-throughput access and
is designed for storing large datasets. DiGTreeS stores snapshots in HDFS which is
used for fault tolerance.

2.5 � Related work

Gupta et al. [16] identify communication overhead and synchronization require-
ments of irregular tree search as one of the main reasons for its poor performance
on the cloud. They suggest over-decomposition of tasks and overlapping computa-
tion with communication as possible solutions. In DiGTreeS, communication and
computation are overlapped, but there is no over-decomposition of tasks. The tasks
are generated by the individual workers as part of their tree search and idle workers
can request work from other busy workers. This reduces the task tracking overhead.
Work queue+[17] uses the Work Queue framework for building parallel cloud-aware
applications. This work supports elasticity and handles worker failures by reassigning
failed tasks to others. However, this approach is master-heavy. Thereby, it can act as a
single point of failure and a potential bottleneck to scalability. In contrast, the task list

(4)Ces =

n
∑

i=1

Ci × (ei − si)

4  https://​zooke​eper.​apache.​org/.
5  http://​kafka.​apache.​org/.
6  https://​hadoop.​apache.​org/.

https://zookeeper.apache.org/
http://kafka.apache.org/
https://hadoop.apache.org/

15012	 M. A. Jamal et al.

1 3

is maintained in a distributed manner in DiGTreeS; thus it is master-light and scales
well. Kehrer and Blochinger [18], Haussmann et al. [7], Rosa Righi et al. [4] have
proposed different designs for elasticity controllers. Rosa Righi et al. [18] present a
reactive elasticity controller for iterative applications. Their scaling function is based
on an exponential weighted averaging of the measured efficiencies over time. Strictly
speaking, parallel tree search applications are not iterative in nature; however, their
scaling function can still be used. Haussmann et al. [7] present a more sophisticated
cost-based auto-scaling approach considering the low-cost opportunity instances in
the cloud. Equilibrium [4] presents a runtime efficiency metric that distinguishes
between essential and non-essential computations and adapts the number of instances
to meet user-specified target efficiencies. DiGTreeS also uses the time spent in essen-
tial computations to measure the runtime efficiency, but the scaling mechanisms and
efficiency computations are different (see Sect. 4.3 for more details).

The problems on parallel tree search and dynamic scaling have also been explored
in cluster computing. Archibald et al. [2, 19], Poldner and Kuchen [20], Bungart
and Fohry [21] present generic skeletons for expressing parallel tree search. Pol-
dner et al. [20] and Bungart et al. [21] implement dynamic scaling using MPI and
x107, respectively. However, the goal of dynamic scaling in cluster computing is to
optimize resource utilization at the cluster level considering all the jobs that are cur-
rently executing, whereas, in the cloud environment, it is application-specific.

2.6 � Problem instances

There exists a wide range of combinatorial problems to consider for benchmarking
and testing the proposed framework. We consider three classic problem instances
and one problem instance from the recent works in exact combinatorial searches for
benchmarking and testing DiGTreeS.

(1)	 Traveling Salesman Problem: The Traveling Salesman Problem (TSP) is a well-
known NP-hard problem [22]. Given a set of cities and the cost incurred in
traveling between any two cities, a salesman has to visit each city exactly once
and return to the starting city. The objective is to find such a path that incurs
minimum cost. It is implemented as an optimization problem.

(2)	 0–1 Knapsack Problem: Knapsack (Knap) Problem is also an optimization
problem. Given a set of items, each with a weight and a value, we need to find
the maximum total value of items that can be put inside a knapsack of a given
capacity [23]. It is implemented as an optimization problem.

(3)	 N-Queen Problem: N-queens (NQ) are an enumeration problem. Given a chess-
board of size N × N, find a way to place N queens on the board such that no two
queens can attack each other [24]. It is implemented as an enumeration problem.

(4)	 Generic State Space Search Application: GSSSA is a benchmark application
as proposed in [7]. It allows us to control the irregularity of search trees with a

7  http://​x10-​lang.​org/

http://x10-lang.org/

15013

1 3

DiGTreeS: a distributed resilient framework for generalized…

small set of parameters while exhibiting relevant features of parallel tree search
applications. GSSSA creates a binary search tree where each node has a work-
load value W representing a number of random SHA-1 hash calculations to be
done as work. Each node can either act as a leave and do hash calculations or
divide into two child nodes. The root node divides into two nodes creating two
separate subtrees, one regular fraction with workload Wr and another irregular
fraction with workload Wi . For further details on GSSSA refer [7]. It is imple-
mented as an enumeration problem.

In Sect. 1, we discussed that combinatorial search problems can be classified into
3 categories, (1) enumeration, (2) decision, and (3) optimization. In the case of TSP,
getting a path with minimum cost is an optimization problem. The corresponding
decision version is whether there is any path possible that covers all the cities with
cost = K . Similarly, to get all the valid TSP paths with cost = K is an enumeration
problem. Again this can be converted into a decision problem by terminating the
search the moment a valid path with cost = K is found. Similarly, a combinatorial
problem of any type can be converted into any other type. In the experimental evalua-
tion section, we showed results for optimization and enumeration problems only.

3 � Generalized application programming interface (API) for tree
search

DiGTreeS provides a generalized interface for specifying tree search-based problems
(see Fig. 2). There are 3 abstract classes that the user needs to extend for specifying
a new problem. The abstract class Node defines the details of a specific node in the
tree; Data are for the data that is common to all the tasks in the problem; NodeFac-
tory is for creating an instance of the Node type. With the help of these interfaces,
DiGTreeS covers the requirements for a wide range of problem types—optimization,
enumeration, and decision. Java generics are used to support different data types.

In the Node interface, A refers to the serialization type used for work transfer,
while B refers to the solution type. The value method returns the solution at that
node if a solution exists (isDone is true); estimateWork method should return
an approximate value of the total work in exploring the subtree below that node (see
Sect. 3.1); nextChild should return the next non-visited child of the current node.

Fig. 2   Generalized API of DiGTreeS

15014	 M. A. Jamal et al.

1 3

The enumStep method takes an object of type Accumulator that can be updated
for enumeration problems. The bound method can be used for setting a best-case
bound for the current exploration sub-tree. In the Data interface, an initial estimate
of the solution can be specified using the initValue method; the probType and
compType indicate the problem type, and the comparator type for optimization/
decision problems; the readFromFile method specifies how to parse the input
data. If the pruneSibling is enabled then the siblings of the child node are also
discarded in case the child node does not satisfy the bound. This is useful for the
Knapsack problem as the heuristic ordering ensures that an item with a better ratio
of value/weight gets processed before the rest of its siblings. The possible children
at any step are nodes s.t. the sum of their weights is less than the capacity. Some of
the methods in the interfaces are specific to the type of problem ((1) optimization, (2)
decision, and (3) enumeration) being implemented. bound method requires imple-
mentation only in case of an optimization problem. Implementation of the value
method is supposed to return the solution for the current node for the problems of
types (1) and (2). The method isDone is also associated with the problems of types
(1) and (2). The method enumStep is required for the problems of type (3).

3.1 � Work estimation and bounds calculation

The estimate of the remaining work at each worker helps the load balancer make bet-
ter decisions [25] while evaluating the bounds helps in pruning the search space. As
work estimation and bound evaluation are problem-dependent, the methods esti-
mateWork and bound are to be implemented for a problem instance. These are part
of the Node interface in the DiGTreeS API (see Fig. 2). We show an example of how
these methods can be implemented for the Traveling Salesman Problem (TSP).

In Sect. 2.6, we discussed TSP. The brute force way to solve the optimization ver-
sion of the TSP is to visit the cities using each possible permutation of cities and
find the path with the minimum cost. The complexity of this approach is O(n!) . The
branch and bound optimization can be used to improve the run time of this problem.
A bound on the path length can be calculated using the minimum spanning tree algo-
rithm [26, 27], which can be used to trim the unnecessary branches’ exploration. For
the initial estimate of the solution, we used the nearest neighbor algorithm [28], and
for the work estimate, Eq. 5 (i = No. of unvisited cities) provides a good approxima-
tion of the expected required work to solve the current task. Unpacking the task is 1
unit of work and then we need to solve i tasks each of size West(i − 1) . The weight of
the minimum spanning tree can be used to calculate the bound for TSP.

GSSSA [7] has been implemented as an enumeration problem, so it does not
require the bound method to be implemented. Each node in the exploration tree
contains the data related to regular workload ( Wr ) and irregular workload ( Wi ).
Method estimateWork returns summation of Wr and Wi . Likewise, the bound

(5)West(i) =

{

0, if i = 0

West(i − 1) ∗ i + 1 otherwise.

15015

1 3

DiGTreeS: a distributed resilient framework for generalized…

(if required) and estimateWork methods can be implemented for a problem
instance. Similarly, if any new problem comes it needs to be implemented using the
DiGTreeS API (see Fig. 2). For evaluating the proposed framework DiGTreeS, we
have implemented four problem instances as mentioned in Sect. 2.6. All four imple-
mentations are problem-dependent and not framework-dependent. By no means do
we claim that these implementations are better than the state of the art. These are
merely some of the ways to implement problems using DiGTreeS APIs. Implemen-
tations are based on trivial branching and pruning functions and work estimations.
It shows the generality of the approach but is far from the state of the art. There
exist or may exist ways to get better work estimates or calculate a better branch-
and-bound condition. These implementations are done to show that DiGTreeS APIs
can be used for any combinatorial problem. For instance, in practice, TSP is often
solved using linear programming and cutting plane techniques (branch and cut). For
comparison with a commercial Integer Linear Programming (ILP) solver, we imple-
mented TSP in CPLEX.8 CPLEX performs better than DiGTreeS. But any ILP is
just for mathematical optimization problems. It is not a generalized thing. For an
input of 35 cities (see Sect. 5 for details on input values), our TSP implementation
took around 700 s, whereas CPLEX took around 302 s.

4 � DiGTreeS

DiGTreeS is implemented on top of Apache ZooKeeper, Apache Kafka, and
Hadoop Distributed File System (HDFS). ZooKeeper supports several common pat-
terns of coordination in distributed systems. In DiGTreeS, master election protocol,

Fig. 3   System architecture of DiGTreeS

8  CPLEX is a commercial ILP solver by IBM.

15016	 M. A. Jamal et al.

1 3

monitoring events such as worker failures, changes in data structures, worker load
estimates, and solution sharing are implemented using ZooKeeper. Kafka is used for
performing reliable task transfers between donor and requester, and between master
and worker. HDFS stores the worker snapshots reliably, which is used for recovery.

4.1 � System architecture

DiGTreeS follows a master-worker architecture (see Fig. 3).

4.1.1 � Components of master

The master has 3 main components that are responsible for (1) static load balancing
(SLB), (2) dynamic load balancing (DLB), and (3) progress monitoring and scaling.

(1)	 Static Load Balancing: SLB is performed by the master (Lines 4–6, Algo-
rithm 1). It starts with a queue that has only the root node (which needs to be
specified in the problem’s implementation). It pops the first element, converts
it into its children using nextChild() operation specified in the problem’s
implementation (see Fig. 2), and pushes them back into the queue. If the size
of the queue becomes larger than the number of workers, then it removes the
elements from the front and assigns them to different workers. This process
is repeated until the remaining task size becomes very small. The remaining
work is given to the first worker. Once the SLB phase is completed, workers are
notified through ZooKeeper to start exploration, and the elasticity controller
subroutine is invoked (Line 7, Algorithm 1).

(2)	 Dynamic Load Balancing: The DLB component maintains a priority queue of
work estimates for each worker to implement an efficient donor lookup scheme.
It handles different types of requests (lines 8–27, Algorithm 1). When an idle
worker requests work from the master, it returns the most loaded worker from the
priority queue as a donor and decreases the donor’s load by half. This prevents
a single donor from being swamped by too many requesters. The requester then
contacts the donor directly for work and after receiving work, it updates the
master about its new workload. Until that update is received, the master stores
them in a pending updates queue QPU (pendUpd in Algorithm 1). It may hap-
pen that the master’s overall estimation of system load becomes zero although
there is still work available. This can happen when the requester has not yet
updated the master, and before that update, the other workers finished all their
work. If a worker requests a donor at this time, then it is added to the pending
requests queue QPR (pendReq in Algorithm 1). These pending requests are
served when the master receives a nonzero work update from any worker. At
the end of the computation, the master’s overall estimation of the system load
becomes zero. When this condition occurs, the termination detection component
sends the termination signal to all the workers (Lines 30–32, Algorithm 1).
The master-assisted DLB scheme in DiGTreeS not only reduces the latency of
locating a suitable donor but also allows the master to remain lightweight as the

15017

1 3

DiGTreeS: a distributed resilient framework for generalized…

master only stores metadata and not the actual tasks. DonorRequest() and
WorkUpdate() methods in Algorithm 1 help in DLB.

(3)	 Progress Monitoring and Scaling: This component computes Eelastic using updates
sent by the individual workers. It then determines the mode of operation: scale-out/
scale-in/continue as is (normal). For scale-out, workers are provisioned by the mas-
ter, whereas for scale-in the workers receive notifications to drop out. In Sect. 4.3 and
Algorithm 3, the progress monitoring and scaling component is discussed in detail.

For a detailed discussion on the Master Algorithm 1, refer to our earlier work
RD-FCA [25].

Algorithm 1   Algorithm for Master 

15018	 M. A. Jamal et al.

1 3

4.1.2 � Components of worker

The worker has components for (1) work stealing, (2) solution exploration, (3) solu-
tion sharing, and (4) checkpointing and recovery.

(1)	 Work Stealing: The work-stealing component is responsible for requesting work
from a donor, donating work to other requesters, receiving work from the master
during SLB, and updating the current workload as well as the local efficiency to
the master. Each worker uses the load-estimator function specified by the user
and reports its load to the master only when its load reduces by half of its current
value. This reduces the network traffic for work updates to log(initial_load) and
works well in practice.

(2)	 Solution Exploration: See Algorithm 2. Each worker stores the tasks received
during SLB into a task deque. Based on the problem type, an appropriate func-
tion is called for solution exploration. If the problem type is optimization (for
example, minimizing objective function), then ExploreOptMin (Line 1) func-
tion is called. At each exploration step, a node from the front of the deque is
popped and its children nodes are generated (Line 2). Next, the solution bound
in the subtree of the child node is compared with the current best solution found
globally (globalBest). For example, if the goal is to find the minimum value,
then the lower bound of the solution in the subtree of the child is considered. If
that bound is lower than the current globalBest, then only the child node
is explored; otherwise, it is discarded. The bound function is specified by the
user as part of the Node Interface. If the solution is reached at the child node
and is lower than the current globalBest value, then the global best value is
updated. Otherwise, if the pruneSibling flag is enabled, then the siblings of
the current node are discarded (Lines 3–8). A similar function with comparisons
reversed is written for maximization problems. The exploration method for a
decision problem is similar to the optimization problem, with the only differ-
ence being when a suitable solution is found, a signal is sent to all the workers
to terminate the search using ZooKeeper.

	  For enumeration problems (Line 9), an accumulator is used to collect infor-
mation from each node. A new accumulator object is created for each worker
and is passed to the Node.enumStep method. Inside this method’s concrete
implementation, the user can choose to update the value of the passed accu-
mulator based on the problem. For example, for the N-queens problem, we use
an Integer accumulator and increment it at each enumStep to count the total
number of solutions.

15019

1 3

DiGTreeS: a distributed resilient framework for generalized…

Algorithm 2   Exploration methods 

(3)	 Solution Sharing: This component is invoked by the solution explorer to read/
write to the current best solution found globally (among all the workers). The
sharing component does not send an update to the globally shared value for each
update made by the solution explorer. Instead, it maintains a local copy and
updates that. Periodically (in a few seconds granularity), it syncs with the global
value. This is to reduce the network traffic. Solution sharing is implemented
using ZooKeeper watches.

(4)	 Checkpointing and Recovery: DiGTreeS uses an asynchronous snapshot mecha-
nism wherein each worker takes a snapshot of its task queue and writes it to
HDFS atomically using techniques similar to shadow paging. Each worker’s
snapshot is stored in a different directory in HDFS. These snapshots are used
during recovery. DiGTreeS guarantees at least once semantics. For failure detec-
tion and recovery, it sets up a circular queue consisting of alive workers in which
each worker monitors its successor for failure using ZooKeeper. On detecting
a worker failure, the monitoring worker reads the latest snapshot of the failed
worker from HDFS and merges it in its task queue. Subsequently, it begins to
monitor the next alive successor in the circular queue. Apart from handling
independent worker failures, the system also handles cascading failures (worker
fails during recovery), donor failures (that cause blocking), and master failures
effectively. If the master fails, the alive worker with the least sequence number is
promoted to master. More details are presented in our earlier work RD-FCA [25].

4.2 � System implementation

For running a job, executor processes with (ids 0 to n) are launched in the clus-
ter. These processes participate in the master election by creating a sequential
ephemeral znode in ZooKeeper. The one with the lowest sequential number
becomes the master, while others act as workers. A watch ring (circular queue) is
set up among the workers in the increasing order of their sequence numbers; each
worker sets up a watch on its successor’s znode in ZooKeeper. As each of these
znodes is configured as ephemeral, when a worker fails, the znode that it created

15020	 M. A. Jamal et al.

1 3

disappears. Consequently, the watch on the predecessor worker gets triggered. As
it is a ring structure, even if a sequence of workers fails together, the recovery
is possible as discussed in Sect. 4.1.2 by the predecessor of the last worker that
failed in the sequence.

Zookeeper’s watch mechanism is also used for signaling the termination of
search, completion events such as SLB completion, scaling mode changes such
as scale-in/scale-out/normal mode, solution sharing, and workload estimates by
workers. Certain well-defined paths in ZooKeeper are designated for these events,
and the workers set up a watch on them. They get notified when these znodes are
created or updated, for example, znode /SLB_Done/ is created when SLB is com-
plete; scaling mode changes are signaled by updating the value of the znode. As
these events occur not that frequently, sending out notifications to all the work-
ers does not create a bottleneck. Kafka is used for implementing reliable high-
throughput work transfers. Each worker creates a topic in Kafka for receiving
messages from other executors (like a mailbox). During SLB, the master sends
the initial splits of the problem to different workers by writing to their topic in
Kafka. It is also used for task transfers from the donor to the requester.

4.3 � Elastic scaling

The idea on which the elasticity controller works is monitoring the entire system
to approximate runtime parallel efficiency ( Eelastic ) and vary the number of workers
to keep Eelastic within the user-defined range (uEff - dEff). uEff is the up-efficiency
threshold and dEff is the down-efficiency threshold. At the implementation level,
the elasticity controller accepts a single value for the efficiency threshold and cre-
ates a range (uEff - dEff). Using a single threshold value for making scaling deci-
sions would lead to thrashing. During runtime, the arithmetic average of efficien-
cies of individual workers gives Eelastic . In Sect. 2.3, we defined and explained Eelastic
(Definition 1).

The elasticity controller of DiGTreeS uses the hybrid scaling strategy (Algo-
rithm 3). Computation starts with 2 workers. Note that, if the initial number of
workers (INW) is N then 1 becomes master, and the rest N−1 become workers
(slaves). The number of workers scales out exponentially till at least one of the fol-
lowing two conditions is met. (1) The number of workers reaches the worker thresh-
old ( Workersthreshold ), or (2) Eelastic reaches the desired range. We call this phase the
Exponential start phase (ES-Phase). After the ES-Phase, scaling operation
(up or down) is done in the granularity of 1. This is Linear-Phase. We use 18
workers as Workersthreshold for the experimental evaluation of DiGTreeS. But it can
be set to any number since DiGTreeS is loosely coupled in nature and most of its
components are designed independently. We use 18 as the problem instances under
evaluation are small and under the experimental setup, a maximum of 40 workers is
possible. For the experiments with larger inputs, we have changed Workersthreshold to
84. It has been discussed in Sect. 5.3 where we show the scalability of the proposed
framework using a larger instance of GSSSA (GSSSA_L) on a test-bed that allows

15021

1 3

DiGTreeS: a distributed resilient framework for generalized…

scaling out up to 160 workers. Figure 4 explains ES-Phase and Linear-Phase
using a state transition diagram.

A prevalent problem in elasticity controllers is oscillating effects [29]. Frequent
provisioning and de-provisioning of compute resources lead to colossal overhead.
In a problem that needs elastic scaling, continuous monitoring of scaling metrics
is required. A very small interval may be chosen for the monitoring subroutine to
run, which may lead to very frequent scaling operations. Scaling operations done
frequently lead to thrashing, and if the duration between two scaling operations is
very large, it leads to either alive workers getting overloaded or underutilized. To
address this issue, we use a heuristic interval of 7 s for monitoring the scaling met-
ric. However, the scaling operation is carried out only when the requirements for the
same scaling operation (up or down) are met thrice consecutively. Note that the big-
gest variations using hybrid9 scaling seem to happen at the start and toward the end
of the execution [4]. DiGTreeS addresses the variation at the start by exponentially
provisioning the workers during the ES-Phase.

The elasticity controller (see Algorithm 3) accepts the up efficiency thresh-
old (uEff) and down efficiency threshold (dEff) and tries to keep the Eelastic within
these two thresholds. decommissionCount, provisionCount, provi-
sion and decommission variables are initialized (Lines 2–3). These variables
help in reducing the thrashing effect. Scale-in granularity (granIn) and scale-out
granularity (granOut) are set to 1. And the startPhase denoting ES-Phase
is set to true (Lines 4–5). The elasticity controller computes Eelastic (avgEff) using

Fig. 4   Execution starts in the exponential start phase (ES-Phase) with two workers. The number of
alive workers ( Workers

alive
 ) exponentially scales out by provisioning twice the number of currently alive

workers. For the execution to remain in the ES-Phase, both of the following conditions are to be met:
(1) Workers

alive
≤ Workers

threshold
 , and (2) E

elastic
> uEff, where Workers

threshold
 is the threshold for the

maximum number of workers in the ES-Phase (DiGTreeS uses 18 as value for Workers
threshold

 ), E
elastic

is the elastic efficiency, and uEff is the upper-efficiency threshold. If any of the two mentioned conditions
gets invalidated, execution gets transitioned to the Linear-Phase, where scale-out and scale-in opera-
tions are done in the granularity of 1. Once Linear-Phase has been attended, execution remains in
this phase till its completion. For Scale-out and Scale-in signals see Lines 21–23 and Line 24–26, respec-
tively, of Algorithm 3

9  Hybrid scaling is the combination of both upscaling and downscaling.

15022	 M. A. Jamal et al.

1 3

getCPULoad method (Line 7). If the execution is still in the ES-Phase, twice
the number of alive workers (aliveWorkers) is provisioned (Lines 10–14). After the
ES-Phase is over, Linear-Phase starts (Lines 15–26). When Eelastic surpasses
the up efficiency threshold (uEff) consecutively for 3 iterations, a new worker is pro-
visioned (Lines 21–23). And when Eelastic falls below the down efficiency threshold
(dEff) consecutively for 3 iterations, a worker is de-provisioned (Lines 24–26).

Algorithm 3   Elasticity Controller (Hybrid Scaling)

When a worker is provisioned, it asks the master for the donor worker’s id and
then directly requests the donor worker for task transfer (the task transfer mechanism
is discussed in detail in Sect. 4.1.1). DiGTreeS does not drop a worker when it has
pending local tasks because migrating work from a busy worker will be overhead.
At the implementation level, when a drop signal arises from the elasticity controller
a corresponding znode is created in ZooKeeper. When a worker completes its local
task, before requesting more work, it checks for the presence of the said znode. If it
is present, the worker terminates itself, leading to worker drop. Checking for znode
and drop operation is an atomic action.

15023

1 3

DiGTreeS: a distributed resilient framework for generalized…

5 � Experimental evaluation

All experiments have been conducted on a setup comprising server-class machines,
with a dual 10-core Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz CPU, 128 GB
RAM, and running Ubuntu 16.04.3 LTS and Java v11.0.10. Hadoop v3.2.0, Zoo-
Keeper v3.4.1, and Kafka v2.2.0 are also installed on these machines. Unless men-
tioned otherwise, each experiment has been performed at least 7 times, and stats
about deviation10 from the mean values of execution time and cost for all cases are
discussed. Since all experiments are carried out under a controlled environment, we
see very minimal deviations.

The following datasets have been used in the experiments: (1) Travelling Sales-
man Problem: the test cases are generated using a tool11 that takes as input the
number of cities and a seed value. We use a TSP instance of 35 cities with a seed
value of 37662. (2) 0–1 Knapsack Problem (Knap): We used the generator described
in [30] to generate hard instances with the configuration setting Type = uncorre-
lated span(2, 10), TestNo = 28 . (3) N-queens problem (NQ): the number of queens
is specified as 16. (4) Generic State Space Search Application problem (GSSSA):
We use the problem instance described in [7]; its parameter values are Wr = 1 × 109 ,
Wi = 19 × 109 , b = 2 × 10−4 , and g = 1 × 106 . We also use a larger instance of
GSSSA (GSSSA_L) with input parameters Wr = 1 × 1020 and Wi = 19 × 1020 with b
and g the same as above to demonstrate the scalability of DiGTreeS. Results regard-
ing cost and execution time for the N-queens (NQ) are shown separately because it
has a relatively shorter execution time.

5.1 � Performance with a fixed number of workers

Here a fixed number of workers are used for the entire search. From Fig. 5a, we
see that the time taken to complete the search reduces with an increase in the
number of workers. But this also has a trade-off in terms of the efficiency of
computation (Fig. 5b). The efficiency with N workers (which is calculated using
Eq. 2) starts to drop as the number of workers increases. In these experiments,
we observe that beyond 20 workers, the efficiency is below 0.5. Across different
problems, the efficiency at a higher number of workers is highest for N-queens,
then TSP then Knap, and GSSSA.

GSSSA allows us to control the irregularity by varying the balancing factor
b. Along with the GSSSA with input parameters described in the previous para-
graph and [7], we run a special case of GSSSA with very high irregularity b =
0.00001 and call it GSSSA_S. This extreme irregularity is the reason for very
little speedup with the increase in the number of workers in the case of GSSSA_S
(see Fig. 5a). This extreme irregularity is highly unlikely to be present in a

10  We calculate the percentage deviation as the ratio of difference of current value and mean value to the
mean value, i.e., deviation =

|current value−mean value|

mean value
× 100.

11  http://​dimacs.​rutge​rs.​edu/​archi​ve/​Chall​enges/​TSP/.

http://dimacs.rutgers.edu/archive/Challenges/TSP/.

15024	 M. A. Jamal et al.

1 3

real-world problem. We further analyze the performance of DiGTreeS using weak
scaling experiments.

Weak scaling is how the execution time varies with the number of workers
for a fixed problem size per worker. The problem size increases at the same rate
as the number of workers, keeping the amount of work per worker the same. To
test DiGTreeS’ performance using weak scaling we use the GSSSA_L instance.
We start execution with parameters, Wr = 1 × 1020 , Wi = 19 × 1020 , and num-
ber of workers = 120 . Balancing factor b and granularity g remain the same as
described earlier. Then for each iteration, we reduce Wr , Wi , and the number
of workers by half and record the execution time for each case. From Table 1,
we see that execution time does not vary much as the problem size per worker
remains the same. This shows that DiGTreeS is scalable as the communication
overhead is minimal as we increase the number of workers.

5.2 � Analysis of the hybrid scaling strategy in DiGTreeS

Here, we evaluate the hybrid scaling strategy in terms of execution time, and the
total cost (Eq. 4) incurred. We compare its performance with 3 different base-
line strategies: fixed number of workers, up-scaling, and down-scaling. We show
results for GSSSA, TSP, NQ, and Knap. For up-scaling and hybrid scaling, we
start with a smaller number of workers (INW = 2), whereas for down-scaling we
start with 30 workers. Values for uEff and dEff are set to 0.95 and 0.85, respec-
tively. Scale-out and scale-in granularity is set to 1.

Fig. 5   Variation of a speedup and b efficiency with the static number of workers for different applica-
tions

Table 1   Execution time during weak scaling for GSSSA_L

S. No. W
r
= 1 × 10

20 W
i
= 19 × 10

20 Workers Execution time (s)

1 W
r

W
i

120 15852
2 W

r
∕2 W

i
∕2 60 15501

3 W
r
∕4 W

i
∕4 30 15004

4 W
r
∕8 W

i
∕8 15 14789

15025

1 3

DiGTreeS: a distributed resilient framework for generalized…

In terms of execution time, hybrid scaling proves to be the best strategy for all
four application problems. Recall that (see Sect. 2.6), a decision problem is a spe-
cial case of optimization and enumeration problems. We showed results for opti-
mization and enumeration problems only. These results hold for all three classes
(enumeration, decision, and optimization). From Fig. 6 we see that the execution
time for hybrid scaling is always lower than all the other approaches. Hybrid scal-
ing switches between up-scaling and down-scaling to minimize the overhead of
parallel execution. Considering execution times across all seven runs we get a
maximum deviation of 3.7%.

In terms of cost (which is calculated using Eq. 4), the hybrid scaling strategy
performs better than the other strategies (see Fig. 7) as well. No extra cost is
incurred by needlessly keeping a worker around or by working with fewer work-
ers for a long time. Across all runs, we get a maximum deviation of 1.0% . Thus,
hybrid scaling proves to be the best strategy for all four problems in terms of both
execution time and cost.

Fig. 6   Execution time for different scaling strategies

Fig. 7   Cost for different scaling strategies

15026	 M. A. Jamal et al.

1 3

5.3 � Maintaining efficiency within user‑defined range

We discussed elastic scaling in Sect. 4.3. Here, we test the ability of the elastic-
ity controller (which uses elastic scaling based on the hybrid scaling strategy)
of DiGTreeS to maintain Eelastic within a range (dEff - uEff). The elasticity con-
troller is able to keep the Eelastic within any defined range. To demonstrate this
we show the results for all four problem instances with two different efficiency
ranges. uEff1 = 0.99 and dEff1 = 0.85 for GSSSA; for TSP, uEff1 = 0.99 and
dEff1 = 0.90; for NQ, uEff1 = 0.80 and dEff1 = 0.70; and for Knap, uEff1 = 0.80
and dEff1 = 0.70 as well. uEff2 and dEff2 are set to 0.55 and 0.45, respectively,
for all problem instances.

From Fig. 8, we see that the elasticity controller maintains the ( Eelastic ) within
the defined ranges. During the ES-Phase, Eelastic is always high as the number of
workers is less. Because of the irregular nature of the problem instances, there are

Fig. 8   Efficiency curve with elastic scaling for different efficiency ranges. For GSSSA efficiency range1
is (99%, 85%) and efficiency range 2 is (55%, 45%). Similarly, for other problem instances, both effi-
ciency ranges are highlighted on the y-axis

Fig. 9   Workers employed as a function of time for GSSSA_L instance. For all three runs, the elasticity
controller shows stable behavior

15027

1 3

DiGTreeS: a distributed resilient framework for generalized…

frequent fluctuations in the efficiency curves, but they remain within the range for
the majority of the time during execution.

To further understand the Eelastic fluctuations’ impact on the scalability of
the system we performed additional experiments with larger instances using
GSSSA_L on a larger test-bed where the number of workers can go up to 160.
Figure 9 shows such a set of runs using GSSSA_L. Since the input size is rela-
tively larger, we have used Workersthreshold as 84 so that Eelastic reaches the desired
efficiency range quickly and the efficiency range is set to uEff = 0.70 and dEff
= 0.60 . For all three runs, the elasticity controller shows stable behavior and
Eelastic fluctuations do not result in the thrashing of workers during the execution.
Moreover, while testing DiGTreeS for scaling using GSSSA_S (a special case of
GSSSA with extreme irregularity), with repeated runs we observed that the elas-
ticity controller does not provision more workers (in this case a maximum of 4
workers got provisioned) when the problem is not scalable. The elasticity control-
ler can detect the scaling behavior of the problem.

5.4 � Comparison with the state‑of‑the‑art elastic controllers

Equilibrium [4] and Helpar [8] are the most recent works in elastic scaling for
parallel tree search. We implemented elasticity controllers of Equilibrium [4] and
Helpar [8] and compared the elasticity controllers of DiGTreeS with them. From
Table 2 we see that DiGTreeS performs better than Helpar and Equilibrium both
in terms of execution time as well as cost in most of the cases. In some cases, we
see comparable results. For instance, Equilibrium has a lower execution time for
TSP than DiGTreeS, but the cost is higher. So, we further perform a benefit–cost
analysis.

Benefit–cost ratio [31] (BCR) is an indicator used in cost–benefit analysis. Origi-
nally, BCR is calculated by the following equation:

BCR gives the benefit obtained per unit cost incurred. The higher the value of BCR,
the better the approach. We consider the execution time and cost with a fixed number
of workers (30) as the baseline. The benefits derived by elastic scaling are computed

(6)BCR =
present value of expected benefits

present value of expected costs

Table 2   Execution time and cost incurred by DiGTreeS compared to Helpar [8] and equilibrium [4]

Execution time (s) Cost (Eq. 4)

Helpar Equilibrium DiGTreeS Helpar Equilibrium DiGTreeS

TSP 2264 857 915 32815 23961 18700
GSSSA 1275 1476 1260 16374 14420 14967
Knap 3570 3544 3500 26046 10502 10327
NQ 370 384 370 1859 1443 1150

15028	 M. A. Jamal et al.

1 3

as the reduction in the monetary cost w.r.t. baseline, while the cost is measured in
terms of an increase in the execution time w.r.t. baseline. We observe that DiGTreeS
outperforms both the state-of-the-art elastic controllers in all the problem instances
(see Fig. 10).

5.5 � Performance of DiGTreeS under failure

As discussed in Sect. 1, the tree searches are long-running jobs; without fault toler-
ance, the entire job will have to be rerun until successful completion. Resilience to
failures is one of the three desirable properties of a cloud-aware framework. Here
we study the performance of DiGTreeS under various failure scenarios. To emulate
the performance of DiGTreeS under different failure scenarios we implemented the
failure injection mechanism used in our earlier work RD-FCA [25].

The fault injection subroutine creates znode corresponding to the specified fail-
ure. Each worker checks for the presence of failure znode, and if found, tries to
delete it. If the deletion is successful, the current worker fails by self-termination. In
case of multiple worker failures, groups of workers are formed equal to the number

Fig. 10   Performance of
DiGTreeS vs state of the art [4,
8]

Fig. 11   Master failure at different instances during execution

15029

1 3

DiGTreeS: a distributed resilient framework for generalized…

of failures. Workers from each group attempt deletion of the corresponding failure
znode and only one of them succeeds. For further details refer RD-FCA [25].

5.5.1 � Performance under master failure

We analyze the effect of master failure on completion time by introducing mas-
ter failure at different phases (at 25% , 50% , 75% , and at a random time) during the
execution of different problem instances. Master failure at any instance leads to
increased execution time, but the increment is always less than 10% of the time taken
in the no-fault scenario (see Fig. 11). With repeated runs, the deviation is stable with
the maximum deviation of 9.0% observed in NQ when the failure is introduced at a
random point of execution. A failure of the master does not impact execution much.
Recall that (from Sect. 4.1.2) when the master fails a worker is promoted to master.
It takes over the responsibilities of the failed master. Loss of worker is adjusted by
the scaling algorithm (Algorithm 3). Details about the effect of loss of workers are
presented in Sect. 5.5.3 where we discuss the impact of multi-worker failure.

Fig. 12   Execution time for single-worker failure at different instances during execution

Fig. 13   Cost (Eq. 4) of single-worker failure at different instances during execution

15030	 M. A. Jamal et al.

1 3

5.5.2 � Performance under single‑worker failure

To evaluate the performance of DiGTreeS under single-worker failure, we introduce
the worker failure at different instances (at 25% , 50% , 75% , and at random time) dur-
ing the execution and compare execution time and cost with the no-fault scenario.

From Figs. 12 and 13, we observe that in most of the single-worker failure sce-
narios, the execution time and the cost match the no-fault scenario. With repeated
runs, the deviation is stable with the maximum deviation of 6.5% and 2.8% observed
in execution time and cost, respectively, for NQ. Thus, we have very little recovery
overhead. To further see the impact of failure we analyze execution time and cost
with multiple worker failures.

5.5.3 � Performance under multiple worker failure

To evaluate the performance of DiGTreeS in the presence of multiple worker fail-
ures, execution starts with 10 workers.12 We introduced 4 worker failures at different
instances during the execution.

Fig. 14   Execution time for multiple workers failure at different instances during execution

Fig. 15   Cost (Eq. 4) of multiple worker failure at different instances during execution

12  Execution starts with 10 workers as workers may fail at the very beginning of the execution when the
number of workers is small (i.e., less than 4).

15031

1 3

DiGTreeS: a distributed resilient framework for generalized…

From Figs. 14 and 15, we see that the execution time and cost for all the failure
scenarios are comparable to the no-fault scenario. Among GSSSA, TSP, and Knap
with repeated runs, we get a maximum deviation of 3.8% and 0.1% in execution time
and cost, respectively. For NQ we get a maximum deviation of 16.0% in execution
time. This is a general observation. Among all four problem instances, N-queens
have the least execution time and cost and it shows the most deviations. As the prob-
lem instance gets bigger, behavior gets stable and deviations get lesser.

To analyze this further we compute the cost to execution time ratio. From
Table 3, we see that the ratios of cost to execution time in different failure scenarios
for multiple worker failure are very close to the no-fault scenario. It means the cost
incurred per unit execution time is very close to the no-fault scenario for all the
problem instances in most of the cases, i.e., DiGTreeS can give a similar cost for
unit execution time irrespective of whether there is worker failure or not. This points
to a positive justification of the recovery mechanism used in DiGTreeS. It shows the
effectiveness of the fault tolerance mechanism of DiGTreeS.

When a worker fails, the monitoring worker reads the latest snapshot of the failed
worker from HDFS and merges it in its task queue (for more details on fault toler-
ance see Sect. 4.1.2). This merging of the failed worker’s task queue to the monitor-
ing worker’s task queue does not contribute toward essential computations and thus
leads to a decrease in Eelastic . This drop in Eelastic is quickly addressed by the fault-
tolerance mechanism of DiGTreeS, and the elasticity controller (Algorithm 3) pulls
the efficiency back to the desired range. Figure 16 shows the variation in the Eelastic
for 4 independent worker failures at different execution points for the TSP problem
instance. From Table 3, we can see that the cost-to-execution time ratio does not
deviate much for all the cases.

Table 3   Ratio of cost to
execution time in different
failure scenarios for multiple
worker failure

Problem instance No fault 25% 50% 75%

GSSSA 25.93 25.94 26.92 25.93
TSP 29.40 32.30 32.27 28.58
NQ 13.73 12.89 12.82 13.76
Knap 30.03 32.19 30.91 30.94

Fig. 16   Efficiency curve for TSP under multiple worker failure at different instances during the execu-
tion. We see a dip in the E

elastic
 when multiple workers fail simultaneously

15032	 M. A. Jamal et al.

1 3

5.6 � Summary of the results

Through experiments and discussion, we showed that DiGTreeS is scalable using
weak scaling. The hybrid scaling strategy is best suited for the pay-per-use model.
With two different ranges we saw DiGTreeS can maintain Eelastic within any given
range and with larger inputs (see Fig. 9) we observed that DiGTreeS shows a sta-
ble behavior. Comparison with the state-of-the-art elasticity controller revealed that
DiGTreeS outperforms them in terms of BCR. Further, we saw that DiGTreeS can
recover various failure scenarios with minimal overheads. In our earlier work [25],
we showed that snapshots used in checkpointing for fault tolerance have an overhead
of less than 5% . Experiments till now were based on the reactive approach. Further,
we discuss a proactive approach.

6 � Future directions: proactive approach

We have seen the reactive approach. Recall our discussion from Sect. 4.3 about ES-
Phase and Linear-Phase. We saw how DiGTreeS takes care of variations due
to hybrid scaling at the start of execution by exponentially provisioning the work-
ers during the ES-Phase. Similar variations occur toward the end of execution as
well. Here, we see the scope for using the proactive approach13 (also known as the
predictive approach). As the set of problems under consideration is irregular, due to
pruning of a subtree Eelastic may vary considerably. In the reactive approach, once
Linear-phase is attained, it may take a considerable amount of time to re-attain
the desired Eelastic . This is another scenario where we see the scope for using the
proactive approach. In the proactive approach, the elasticity controller can anticipate
the required number of workers to scale out (or scale in) to reach the desired Eelastic
and provision (or de-provision) workers at once instead of scaling in multiple of one.
This would greatly reduce the execution time.

The proposed proactive approach attempts to create a WHAT-IF engine using
machine learning techniques to predict the number of workers to be scaled in solv-
ing an irregular tree search problem while maintaining Eelastic as close as possible to
a desired value.

There are certain challenges in building such an engine: the irregular nature of
the problem; for our initial study we chose variables like etc. and used supervised
machine learning techniques there must be a pattern in the problem. Due to the
irregularity, the chances of finding any pattern are very low. However, variables like
type of the problem (viz. optimization, enumeration or decision), progress (number
of nodes explored), number of alive workers, and Eelastic can be correlated. Given a
type of problem, the number of alive workers and Eelastic is inversely proportional.
During the initial phase when the progress is less, the number of scaling operations
is high. We can see patterns in these variables.

13  It is the technique to anticipate future changes in the system and act accordingly before it occurs [6].

15033

1 3

DiGTreeS: a distributed resilient framework for generalized…

The proposed methodology uses supervised learning techniques to train the
machine learning model. The variables to train the model are identified and col-
lected as a first step, which are then used to train a Linear Regression Model. The
scaling strategy uses this model to predict the new efficiency upon the addition or
deletion of workers. The entire methodology can be divided into 3 major units: (1)
Monitor, (2) Predictor, and (3) Decision maker. The monitoring unit collects data
about the state of the machine including the amount of work already done (pro-
gress), the current number of alive workers, global efficiencies, etc. The predictor
uses the same to predict the new efficiency upon the addition/deletion of X number
of workers, using the model trained earlier. Finally, the decision-maker unit evalu-
ates the required number of workers such that the new efficiency comes as close as
possible to the desired value (same can be inferred from Fig. 17).

6.1 � Data collection and model training

We have used four independent variables: (1) Progress in the search space, (2)
Eelastic , (3) Current Number of alive workers, and (4) Workers to be scaled. Due to
the addition/deletion of workers, the efficiency changes. This is the dependent vari-
able and is logged after intervals in multiples of 30 s. It is important to note that
the number of workers to be scaled can be negative to signify that the workers are
dropped.

Fig. 17   High-level working of proactive scaling strategy

15034	 M. A. Jamal et al.

1 3

To train the Linear Regression Model (see Eq. 7), we gathered data points
in intervals of 30 s by running the reactive hybrid scaling algorithm on smaller
instances of the application problem. These data points are split into two sets, train-
ing and testing having a weightage of 70% and 30% , respectively. The trained model
had a regression score of 0.94 for test data and 0.96 for training data.

where Eelastic is the current elastic efficiency, Walive is the number of alive workers,
Nexp , is progress in the search space, and Gscale denotes the number of workers to be
scaled out/in.

Recall our discussion from Sect. 5.3, where we observed fluctuation in the Eelastic
curve. The proposed proactive scaling strategy roughly scales the exact number of
workers required to reach a particular desired efficiency. This leads to the addition
of workers more swiftly and convergence quickly. Earlier, we observed that the effi-
ciency curve for reactive hybrid scaling showed fluctuations due to the irregular
search tree. In the proactive approach, the frequency of fluctuations has reduced as
the worker(s) is/are provisioned/de-provisioned in advance based on the predicted
efficiency (see Fig. 18). Furthermore, we note that the proactive model is also capa-
ble of keeping the computational efficiency within the user-defined range.

Currently, the proactive model of DiGTreeS is in the initial stages and more work
and extensive testing is required. We plan to do this in our future work. The model
is trained only on the data of a specific problem at a time and hence lacks generality.
A new independent variable of problem type (enumeration, optimization, and deci-
sion) can be introduced further to account for problem-specific patterns such that the
model can be used for more general problems.

7 � Conclusion

In this paper, we presented the design and implementation of DiGTreeS, a distrib-
uted framework that supports generalized exact combinatorial search. We imple-
mented 4 search problems and showed that the proposed elasticity controller per-
forms well with the varying workload and efficiency and elastic scaling can be

(7)Epred = A ⋅ Eelastic + B ⋅Walive + C ⋅ Nexp + D ⋅ Gscale

Fig. 18   Efficiency with proactive hybrid scaling

15035

1 3

DiGTreeS: a distributed resilient framework for generalized…

beneficial in reducing the search time and cost compared to a fixed number of work-
ers. We implemented an elasticity controller based on the hybrid scaling strategy.
Comparison with state of the art [4, 8] revealed that DiGTreeS performs better in
terms of benefit–cost ratio (BCR). The proposed framework not only outperforms
the existing elasticity controllers in terms of BCR but also provides all the three
desirable properties of a cloud-aware framework for parallel combinatorial search
viz. (1) ease of expressing parallelism, (2) resilience to failures, and (3) support for
elastic scaling.

Though the proactive approach looks good, it is still in its initial phase and
needs further improvements. Currently, a separate model needs to be trained for
different categories (optimization, decision, and enumeration) of the problem.
There can be a single model with a separate parameter for the category of the
problem. Extensive testing of the proposed proactive model under different fail-
ure scenarios is also required. These are the parts of our future work.

Author contribution  MAJ helped in conceptualization, methodology, writing—original draft, writing—
reviewing and editing, software. SK contributed to conceptualization, methodology, writing—reviewing
and editing. BG and VS were involved in conceptualization and methodology.

Data availability  Data and/or code will be made available on request.

Declarations 

Conflict of interest  The authors declare that they have no known competing financial interests or personal
relationships that could have appeared to influence the work reported in this paper.

References

	 1.	 Paschos VT (2014) Applications of combinatorial optimization. Wiley, Hoboken
	 2.	 Archibald B, Maier P, Stewart R, Trinder P (2019) Implementing yewpar: a framework for par-

allel tree search. In: Euro-Par 2019: Parallel Processing: 25th International Conference on Par-
allel and Distributed Computing, Göttingen, Germany, August 26–30, 2019, Proceedings 25.
Springer, pp 184–196

	 3.	 Goldreich O (2010) P, NP, and NP-completeness: the basics of computational complexity. Cam-
bridge University Press, Cambridge

	 4.	 Kehrer S, Blochinger W (2020) Equilibrium: an elasticity controller for parallel tree search in the
cloud. J Supercomput 76:9211–9245

	 5.	 Yasugi M, Muraoka D, Hiraishi T, Umatani S, Emoto K (2019) Hope: a parallel execution model
based on hierarchical omission. In: Proceedings of the 48th International Conference on Parallel
Processing, pp 1–11

	 6.	 Rampérez V, Soriano J, Lizcano D, Lara JA (2021) Flas: a combination of proactive and reactive
auto-scaling architecture for distributed services. Futur Gener Comput Syst 118:56–72

	 7.	 Haussmann J, Blochinger W, Kuechlin W (2019) Cost-efficient parallel processing of irregularly
structured problems in cloud computing environments. Clust Comput 22(3):887–909

	 8.	 Rosa Righi R, Rodrigues VF, Rostirolla G, Costa CA, Roloff E, Navaux POA (2018) A light-
weight plug-and-play elasticity service for self-organizing resource provisioning on parallel
applications. Futur Gener Comput Syst 78:176–190

15036	 M. A. Jamal et al.

1 3

	 9.	 Vizel Y, Weissenbacher G, Malik S (2015) Boolean satisfiability solvers and their applications in
model checking. Proc IEEE 103(11):2021–2035

	10.	 Yang J, He Q (2018) Scheduling parallel computations by work stealing: a survey. Int J Parallel
Prog 46:173–197

	11.	 Xie F, Davenport A (2010) Massively parallel constraint programming for supercomputers:
Challenges and initial results. In: International Conference on Integration of Artificial Intelli-
gence (AI) and Operations Research (OR) Techniques in Constraint Programming. Springer, pp
334–338

	12.	 Herbst NR, Kounev S, Reussner R (2013) Elasticity in cloud computing: what it is, and what it is
not. In: 10th International Conference on Autonomic Computing (ICAC 13), pp 23–27

	13.	 Hunt P, Konar M, Junqueira FP, Reed B (2010) Zookeeper: wait-free coordination for internet-scale
systems. In: USENIX Annual Technical Conference, vol 8

	14.	 Kreps J, Narkhede N, Rao J et al. (2011) Kafka: a distributed messaging system for log processing.
In: Proceedings of the NetDB, vol 11. Athens, Greece, pp 1–7

	15.	 Shvachko K, Kuang H, Radia S, Chansler R (2010) The hadoop distributed file system. In: 2010
IEEE 26th Symposium on Mass Storage Systems and Technologies (MSST), pp 1–10. https://​doi.​
org/​10.​1109/​MSST.​2010.​54969​72

	16.	 Gupta A, Faraboschi P, Gioachin F, Kale LV, Kaufmann R, Lee B-S, March V, Milojicic D, Suen
CH (2014) Evaluating and improving the performance and scheduling of hpc applications in cloud.
IEEE Trans Cloud Comput 4(3):307–321

	17.	 Bui P, Rajan D, Abdul-Wahid B, Izaguirre J, Thain D (2011) Work queue+ python: a framework for
scalable scientific ensemble applications. In: Workshop on Python for High Performance and Scien-
tific Computing at Sc11

	18.	 Rosa Righi R, Rodrigues VF, Da Costa CA, Galante G, De Bona LCE, Ferreto T (2015) Autoelas-
tic: automatic resource elasticity for high performance applications in the cloud. IEEE Trans Cloud
Comput 4(1):6–19

	19.	 Archibald B, Maier P, Stewart R, Trinder P, De Beule J (2017) Towards generic scalable parallel
combinatorial search. In: Proceedings of the International Workshop on Parallel Symbolic Compu-
tation, pp 1–10

	20.	 Poldner M, Kuchen H (2008) Algorithmic skeletons for branch and bound. In: Software and Data
Technologies: First International Conference, ICSOFT 2006, Setúbal, Portugal, September 11–14,
2006, Revised Selected Papers 1. Springer, pp 204–219

	21.	 Bungart M, Fohry C (2017) A malleable and fault-tolerant task pool framework for x10. In: 2017
IEEE International Conference on Cluster Computing (CLUSTER). IEEE, pp 749–757

	22.	 Johnson DS, McGeoch LA (1997) The traveling salesman problem: a case study in local optimiza-
tion. Local Search Comb Optim 1(1):215–310

	23.	 Salkin HM, De Kluyver CA (1975) The knapsack problem: a survey. Naval Res Logist Q
22(1):127–144

	24.	 Bell J, Stevens B (2009) A survey of known results and research areas for n-queens. Discret Math
309(1):1–31

	25.	 Khaund A, Sharma AM, Tiwari A, Garg S, Kailasam S (2023) Rd-fca: a resilient distributed frame-
work for formal concept analysis. J Parall Distrib Comput 179:104710

	26.	 Archibald B, Maier P, McCreesh C, Stewart R, Trinder P (2018) Replicable parallel branch and
bound search. J Parall Distrib Comput 113:92–114

	27.	 Prim RC (1957) Shortest connection networks and some generalizations. Bell Syst Tech J
36(6):1389–1401

	28.	 Kizilateş G, Nuriyeva F (2013) On the nearest neighbor algorithms for the traveling salesman prob-
lem. In: Advances in Computational Science, Engineering and Information Technology: Proceed-
ings of the Third International Conference on Computational Science, Engineering and Information
Technology (CCSEIT-2013), KTO Karatay University, June 7–9, 2013, Konya, Turkey-Volume 1.
Springer, pp 111–118

	29.	 Bersani MM, Bianculli D, Dustdar S, Gambi A, Ghezzi C, Krstić S (2014) Towards the formaliza-
tion of properties of cloud-based elastic systems. In: Proceedings of the 6th International Workshop
on Principles of Engineering Service-Oriented and Cloud Systems, pp 38–47

https://doi.org/10.1109/MSST.2010.5496972
https://doi.org/10.1109/MSST.2010.5496972

15037

1 3

DiGTreeS: a distributed resilient framework for generalized…

	30.	 David P (2005) Where are the hard knapsack problems? Comput Oper Res 32(9):2271–2284
	31.	 Zangeneh A, Jadid S, Rahimi-Kian A (2010) Normal boundary intersection and benefit-cost ratio

for distributed generation planning. Eur Trans Electr Power 20(2):97–113

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	DiGTreeS: a distributed resilient framework for generalized tree search
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Combinatorial tree search
	2.2 Parallel combinatorial search
	2.3 Elastic scaling in cloud environment
	2.4 Overview of frameworks used in DiGTreeS
	2.5 Related work
	2.6 Problem instances

	3 Generalized application programming interface (API) for tree search
	3.1 Work estimation and bounds calculation

	4 DiGTreeS
	4.1 System architecture
	4.1.1 Components of master
	4.1.2 Components of worker

	4.2 System implementation
	4.3 Elastic scaling

	5 Experimental evaluation
	5.1 Performance with a fixed number of workers
	5.2 Analysis of the hybrid scaling strategy in DiGTreeS
	5.3 Maintaining efficiency within user-defined range
	5.4 Comparison with the state-of-the-art elastic controllers
	5.5 Performance of DiGTreeS under failure
	5.5.1 Performance under master failure
	5.5.2 Performance under single-worker failure
	5.5.3 Performance under multiple worker failure

	5.6 Summary of the results

	6 Future directions: proactive approach
	6.1 Data collection and model training

	7 Conclusion
	References

