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Abstract
Exact combinatorial search algorithms have applications in several areas of compu-
tational algebra, AI, discrete optimization, etc. These problems are compute-inten-
sive and have a highly irregular search tree. Most of the earlier efforts to parallelize 
these algorithms used a fixed degree of parallelism during runtime. We show that 
such an approach leads to poor resource utilization as the parallel run-time efficiency 
of an irregular search application varies over time. We propose DiGTreeS, a dis-
tributed resilient framework for generalized tree search that supports elastic scaling. 
It features an easy-to-use API for expressing combinatorial search and hides away 
the system concerns such as load balancing, fault tolerance, and elastic scaling. We 
evaluate the DiGTreeS framework for different scaling strategies and show its effec-
tiveness on four representative problem instances: Traveling Salesman Problem, 0–1 
Knapsack, N-queens, and Generic State Space Search Application.
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1 Introduction

Combinatorial search problems are found in several domains such as computational 
algebra, constraint programming [1]. These search problems can be classified into 3 
categories [2]: (1) enumeration: where every solution that matches a certain prop-
erty needs to be visited; (2) decision: to find out whether there exists a solution that 
satisfies a certain property; and (3) optimization: to find the best solution that opti-
mizes a given objective function. These problems are highly compute-intensive and 
are characterized by a highly irregular search tree. Finding exact solutions for many 
such problem instances is NP-hard [3]. While approximation algorithms reduce the 
time required, they do not guarantee an optimal solution. An alternative is to speed 
up exact search by using parallelism where different parts of the search tree are 
explored in parallel. However, due to the highly skewed computation tree and the 
pruning heuristics that change the workload dynamically, parallelizing exact search 
is non-trivial.

YewPar [2] is a recent framework for parallel tree search that has implemented 
different search coordination techniques to improve the execution time. However, 
it uses a fixed degree of parallelism during runtime. As seen in Fig.  1, if we use 
a fixed number of workers (processing units) throughout the execution, the system 
efficiency decreases for different problem instances over time. Thus, it leads to poor 
resource utilization. In the cloud environment with a pay-per-use model, it translates 
into an increased execution cost. Elastic scaling can potentially reduce this cost; 
however, questions like when to scale, how much to scale, etc., need to be answered 
in the context of irregular tree processing. Another important requirement for tree 
search is the ability to recover from worker failures efficiently. As these tree searches 
are long-running jobs, without fault tolerance, the entire job will have to be rerun 
until successful completion.

Hitherto, frameworks like YewPar [2] have assumed a fixed set of workers to be 
available during the entire execution and do not offer support for elastic scaling. The 
fixed worker assumption may not be valid for long-running searches as computer 
systems can fail at any time. Thus, the desirable properties of a cloud-aware frame-
work for parallel combinatorial search are (1) ease of expressing parallelism, (2) 
resilience to failures, and (3) support for elastic scaling. Most of the existing frame-
works lack one of these. The most recent work, Equilibrium [4] supports (1) and (3) 
but not (2); HOPE [5] supports (1) and (2) but not (3). Existing related works are 
discussed in detail in Sect. 2.5.

Fig. 1  Efficiency over time with 
the static number of work-
ers (30) for different problem 
instances
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This paper proposes DiGTreeS, a distributed resilient framework for general-
ized tree search. It has an event-driven architecture and is built using open-source 
resilient distributed services like Apache ZooKeeper, Apache Kafka, and HDFS 
(see Sect. 2.4). It provides an easy-to-use interface for specifying combinatorial tree 
searches while hiding away the system concerns. DiGTreeS implements an elasticity 
controller that monitors the system’s elastic efficiency (see Definition 1) and dynam-
ically adapts the number of workers to keep the system’s elastic efficiency within 
a user-specified range using a reactive scaling strategy.1 On detecting worker(s) 
failures, it recovers their state using checkpointing. We show the effectiveness of 
DiGTreeS on four representative problem instances: Traveling Salesman Problem 
and Knapsack (optimization), N-queens (enumeration), and GSSSA  [7](enumera-
tion). Compared to the state-of-the-art elasticity controllers Equilibrium  [4] and 
Helpar [8], DiGTreeS has a higher benefit–cost ratio and it provides all three desir-
able properties of a cloud-aware framework for parallel combinatorial search.

The rest of the paper is organized as follows: Sect. 2 explains the relevant back-
ground and related work; Sect. 3 discusses the generalized API and walks through 
an example problem; Sect. 4 gives details of the system architecture and the elas-
tic scaling algorithms implemented in DiGTreeS; Sect. 5 presents the experimental 
evaluation of the proposed framework; Sect. 6 discusses future directions; Sect. 7 
discusses the conclusion.

2  Background and related work

2.1  Combinatorial tree search

Combinatorial search involves exploring a huge search space to find a solution. 
There are three major types of combinatorial search: (1) Optimization problems 
involve minimizing or maximizing the objective function within the search space. 
An example is the traveling salesman problem where the goal is to find a tour of 
all cities having the lowest cost. (2) Enumeration problems involve visiting each 
solution in the search space. An example is enumerating all the solutions of the 
N-queens problem where the goal is to place the n queens on an n × n chess board 
such that they do not attack each other. (3) Decision problems need to find whether 
there exists a solution that fulfills certain criteria; the search should stop as soon 
as any such solution is found. An example is the Boolean satisfiability problem [9] 
where the goal is to find assignments to variables in a Boolean formula that would 
make the formula true.

Combinatorial tree search algorithms deal with a system of discrete objects that 
can be configured into various states. They need to be arranged or selected in such 
a way as to achieve some cost function or to prove the existence of some combina-
torial configuration. The naive way of finding these solutions is to start from the 

1 It is a technique where the elasticity controller reacts to the change in the system and makes decisions 
about scaling operations [6].
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root node and keep adding children till we reach a leaf node. After processing the 
leaf, backtrack one step and add the next child. Keep repeating this process till all 
possible nodes have been explored. In combinatorial search problems, with brute 
force backtracking, the number of steps becomes exponential [2]. One technique for 
reducing the search space is branch and bound. Some parts of the search space can 
be dropped using a fast algorithm that calculates a bound on the best value pos-
sible in the current node’s subtree. If this bound is worse than the best solution we 
have found so far, then we can prune the subtree. Such pruning operations cause the 
search tree to have a highly irregular structure.

2.2  Parallel combinatorial search

The different parts of the search tree can be explored in parallel by different workers. 
Since the search tree can be irregular, an initial distribution of the subtree among the 
workers may not ensure an even load. Hence, dynamic load balancing is required. 
Work stealing and work sharing paradigms have been explored for this [10]. In work 
stealing, an idle worker pulls tasks2 from the task queue of a loaded worker, whereas 
in work sharing, the work is shared by the loaded worker with others. Among these, 
work stealing is found to be more communication efficient as communication is ini-
tiated only when a worker becomes idle [11].

For optimization problems, the workers share their best local solution discovered 
so far with the other workers. Using this, each worker can prune its subtrees whose 
lower bounds exceed the best solution. This helps faster pruning of the search space 
across all the workers. The final solution is the best-found global solution to the 
problem. For decision problems, the search is terminated when any worker finds an 
existential solution. However, to conclude that no solution exists, the entire search 
space needs to be explored. DiGTreeS uses a work-stealing-based approach for 
dynamic load balancing during runtime.

2.3  Elastic scaling in cloud environment

Cloud computing is attractive to high-performance computing (HPC) due to its 
pay-per-use policy and availability of huge compute resources. Elastic scaling is 
an important feature of cloud computing that allows it to scale processing units to 
respond to changing workload conditions  [12]. The commonly used performance 
metrics are parallel execution time Tpar , speedup (S), and parallel efficiency (E). 
These are computed for a problem instance P under the assumption of having a fixed 
number of processors (n) throughout the execution. Suppose Tseq is the execution 
time of a single-threaded sequential algorithm on problem P, then

2 A task refers to an unexplored portion of the subtree.
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Henceforth, we drop P from the above formulae to make them easy to read. With 
elastic scaling, the number of processors changes during the execution. So, the basic 
assumption of the number of processors being constant in the calculation of parallel 
efficiency gets invalidated. Moreover, to calculate parallel efficiency the entire exe-
cution needs to be finished. Hence, there is a need for a metric that can be obtained 
at run time and can be used to make decisions related to scaling.

Equilibrium  [4] uses the concept of essential and non-essential computations. 
DiGTreeS borrows this concept from Equilibrium [4], but the underlying mechanism 
to compute the time spent in the essential computation is different. Equilibrium [4] 
relies on ThreadMXBean, the management interface for the thread system of the 
Java virtual machine (JVM), for measuring the threads’/workers’ CPU time,3 Which 
they consider as time spent in essential computation, whereas DiGTreeS takes care 
of the measurement of computation times by recording all the duration for which a 
worker is involved in the essential computation.

Computations performed by all the workers that are also performed in the case 
of sequential execution are essential computations. Time spent in communication, 
work transfer, worker(s) being idle, etc., are all non-essential computations. The effi-
ciency of a particular worker is the ratio of time for which it is involved in essential 
computation to the total time elapsed. We call run-time parallel efficiency as elastic 
efficiency and denote it as Eelastic . We define Eelastic as follows.

Definition 1 (Elastic Efficiency) The elastic efficiency ( Eelastic ) is the arithmetic 
average of individual efficiencies of all the processing units (workers), where the 
efficiency of a processing unit is the ratio of time for which it is involved in essential 
computation to the total time elapsed.

Mathematically, at any given point of time t, Eelastic is calculated using Eq.  3, 
where Ei is efficiency of a worker i and n is the number of processing units at time t.

DiGTreeS uses Eelasctic as the metric for making decisions related to scaling opera-
tions (see Sect. 4.3).

(1)S =
Tseq(P)

Tpar(P)

(2)E =
1

n
× S

(3)Eelastic(t) =
1

n
×

n
∑

i=1

Ei

3 ThreadMXBean returns the user-level CPU time for the current thread if CPU time measurement is 
enabled; −1 otherwise.
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Let si and ei denote when a worker got provisioned and de-provisioned, respec-
tively. As the cloud uses a pay-per-use policy, if Ci denotes the cost per unit time of 
using worker i, then the total cost of elastic scaling ( Ces ) can be calculated as:

We use this cost metric and execution time to compare the performance of different 
scaling strategies in DiGTreeS.

2.4  Overview of frameworks used in DiGTreeS

Apache ZooKeeper4 [13] is a distributed coordination service that is used to implement 
protocols like master election, notification on process failures, locking, etc. It provides a 
hierarchical namespace and allows storing small amounts of data in znodes. These can 
be read or written atomically. The 3 types of znodes are persistent: store data persistently 
unless explicitly deleted; ephemeral: retain only as long as the session is alive; sequen-
tial: an increasing sequence number assigned automatically based on the creation time. 
ZooKeeper supports event notifications by setting a watch on a particular znode that gets 
triggered when the znode is deleted, its data are changed, or its children are changed.

Apache Kafka5 [14] is a reliable distributed high-throughput messaging system. 
It gives the abstraction of a topic to which messages can be posted by producers 
and the consumers subscribed to that topic can read those messages. DiGTreeS uses 
Kafka for reliable high-throughput work transfers.

Hadoop Distributed File System6 [15] (HDFS) is a fault-tolerant distributed file 
system based on master/slave architecture. It provides high-throughput access and 
is designed for storing large datasets. DiGTreeS stores snapshots in HDFS which is 
used for fault tolerance.

2.5  Related work

Gupta et  al.  [16] identify communication overhead and synchronization require-
ments of irregular tree search as one of the main reasons for its poor performance 
on the cloud. They suggest over-decomposition of tasks and overlapping computa-
tion with communication as possible solutions. In DiGTreeS, communication and 
computation are overlapped, but there is no over-decomposition of tasks. The tasks 
are generated by the individual workers as part of their tree search and idle workers 
can request work from other busy workers. This reduces the task tracking overhead. 
Work queue+[17] uses the Work Queue framework for building parallel cloud-aware 
applications. This work supports elasticity and handles worker failures by reassigning 
failed tasks to others. However, this approach is master-heavy. Thereby, it can act as a 
single point of failure and a potential bottleneck to scalability. In contrast, the task list 

(4)Ces =

n
∑

i=1

Ci × (ei − si)

4 https:// zooke eper. apache. org/.
5 http:// kafka. apache. org/.
6 https:// hadoop. apache. org/.

https://zookeeper.apache.org/
http://kafka.apache.org/
https://hadoop.apache.org/
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is maintained in a distributed manner in DiGTreeS; thus it is master-light and scales 
well. Kehrer and Blochinger [18], Haussmann et al. [7], Rosa Righi et al.  [4] have 
proposed different designs for elasticity controllers. Rosa Righi et al. [18] present a 
reactive elasticity controller for iterative applications. Their scaling function is based 
on an exponential weighted averaging of the measured efficiencies over time. Strictly 
speaking, parallel tree search applications are not iterative in nature; however, their 
scaling function can still be used. Haussmann et al. [7] present a more sophisticated 
cost-based auto-scaling approach considering the low-cost opportunity instances in 
the cloud. Equilibrium  [4] presents a runtime efficiency metric that distinguishes 
between essential and non-essential computations and adapts the number of instances 
to meet user-specified target efficiencies. DiGTreeS also uses the time spent in essen-
tial computations to measure the runtime efficiency, but the scaling mechanisms and 
efficiency computations are different (see Sect. 4.3 for more details).

The problems on parallel tree search and dynamic scaling have also been explored 
in cluster computing. Archibald et al. [2, 19],  Poldner and Kuchen [20],  Bungart 
and Fohry [21] present generic skeletons for expressing parallel tree search. Pol-
dner et al. [20] and Bungart et al. [21] implement dynamic scaling using MPI and 
x107, respectively. However, the goal of dynamic scaling in cluster computing is to 
optimize resource utilization at the cluster level considering all the jobs that are cur-
rently executing, whereas, in the cloud environment, it is application-specific.

2.6  Problem instances

There exists a wide range of combinatorial problems to consider for benchmarking 
and testing the proposed framework. We consider three classic problem instances 
and one problem instance from the recent works in exact combinatorial searches for 
benchmarking and testing DiGTreeS.

(1) Traveling Salesman Problem:  The Traveling Salesman Problem (TSP) is a well-
known NP-hard problem [22]. Given a set of cities and the cost incurred in 
traveling between any two cities, a salesman has to visit each city exactly once 
and return to the starting city. The objective is to find such a path that incurs 
minimum cost. It is implemented as an optimization problem.

(2) 0–1 Knapsack Problem:  Knapsack (Knap) Problem is also an optimization 
problem. Given a set of items, each with a weight and a value, we need to find 
the maximum total value of items that can be put inside a knapsack of a given 
capacity [23]. It is implemented as an optimization problem.

(3) N-Queen Problem:  N-queens (NQ) are an enumeration problem. Given a chess-
board of size N × N, find a way to place N queens on the board such that no two 
queens can attack each other [24]. It is implemented as an enumeration problem.

(4) Generic State Space Search Application:  GSSSA is a benchmark application 
as proposed in [7]. It allows us to control the irregularity of search trees with a 

7 http:// x10- lang. org/

http://x10-lang.org/
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small set of parameters while exhibiting relevant features of parallel tree search 
applications. GSSSA creates a binary search tree where each node has a work-
load value W representing a number of random SHA-1 hash calculations to be 
done as work. Each node can either act as a leave and do hash calculations or 
divide into two child nodes. The root node divides into two nodes creating two 
separate subtrees, one regular fraction with workload Wr and another irregular 
fraction with workload Wi . For further details on GSSSA refer [7]. It is imple-
mented as an enumeration problem.

In Sect. 1, we discussed that combinatorial search problems can be classified into 
3 categories, (1) enumeration, (2) decision, and (3) optimization. In the case of TSP, 
getting a path with minimum cost is an optimization problem. The corresponding 
decision version is whether there is any path possible that covers all the cities with 
cost = K . Similarly, to get all the valid TSP paths with cost = K is an enumeration 
problem. Again this can be converted into a decision problem by terminating the 
search the moment a valid path with cost = K is found. Similarly, a combinatorial 
problem of any type can be converted into any other type. In the experimental evalua-
tion section, we showed results for optimization and enumeration problems only.

3  Generalized application programming interface (API) for tree 
search

DiGTreeS provides a generalized interface for specifying tree search-based problems 
(see Fig. 2). There are 3 abstract classes that the user needs to extend for specifying 
a new problem. The abstract class Node defines the details of a specific node in the 
tree; Data are for the data that is common to all the tasks in the problem; NodeFac-
tory is for creating an instance of the Node type. With the help of these interfaces, 
DiGTreeS covers the requirements for a wide range of problem types—optimization, 
enumeration, and decision. Java generics are used to support different data types.

In the Node interface, A refers to the serialization type used for work transfer, 
while B refers to the solution type. The value method returns the solution at that 
node if a solution exists (isDone is true); estimateWork method should return 
an approximate value of the total work in exploring the subtree below that node (see 
Sect. 3.1); nextChild should return the next non-visited child of the current node. 

Fig. 2  Generalized API of DiGTreeS
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The enumStep method takes an object of type Accumulator that can be updated 
for enumeration problems. The bound method can be used for setting a best-case 
bound for the current exploration sub-tree. In the Data interface, an initial estimate 
of the solution can be specified using the initValue method; the probType and 
compType indicate the problem type, and the comparator type for optimization/
decision problems; the readFromFile method specifies how to parse the input 
data. If the pruneSibling is enabled then the siblings of the child node are also 
discarded in case the child node does not satisfy the bound. This is useful for the 
Knapsack problem as the heuristic ordering ensures that an item with a better ratio 
of value/weight gets processed before the rest of its siblings. The possible children 
at any step are nodes s.t. the sum of their weights is less than the capacity. Some of 
the methods in the interfaces are specific to the type of problem ((1) optimization, (2) 
decision, and (3) enumeration) being implemented. bound method requires imple-
mentation only in case of an optimization problem. Implementation of the value 
method is supposed to return the solution for the current node for the problems of 
types (1) and (2). The method isDone is also associated with the problems of types 
(1) and (2). The method enumStep is required for the problems of type (3).

3.1  Work estimation and bounds calculation

The estimate of the remaining work at each worker helps the load balancer make bet-
ter decisions [25] while evaluating the bounds helps in pruning the search space. As 
work estimation and bound evaluation are problem-dependent, the methods esti-
mateWork and bound are to be implemented for a problem instance. These are part 
of the Node interface in the DiGTreeS API (see Fig. 2). We show an example of how 
these methods can be implemented for the Traveling Salesman Problem (TSP).

In Sect. 2.6, we discussed TSP. The brute force way to solve the optimization ver-
sion of the TSP is to visit the cities using each possible permutation of cities and 
find the path with the minimum cost. The complexity of this approach is O(n!) . The 
branch and bound optimization can be used to improve the run time of this problem. 
A bound on the path length can be calculated using the minimum spanning tree algo-
rithm [26, 27], which can be used to trim the unnecessary branches’ exploration. For 
the initial estimate of the solution, we used the nearest neighbor algorithm [28], and 
for the work estimate, Eq. 5 (i = No. of unvisited cities) provides a good approxima-
tion of the expected required work to solve the current task. Unpacking the task is 1 
unit of work and then we need to solve i tasks each of size West(i − 1) . The weight of 
the minimum spanning tree can be used to calculate the bound for TSP.

GSSSA  [7] has been implemented as an enumeration problem, so it does not 
require the bound method to be implemented. Each node in the exploration tree 
contains the data related to regular workload ( Wr ) and irregular workload ( Wi ). 
Method estimateWork returns summation of Wr and Wi . Likewise, the bound 

(5)West(i) =

{

0, if i = 0

West(i − 1) ∗ i + 1 otherwise.
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(if required) and estimateWork methods can be implemented for a problem 
instance. Similarly, if any new problem comes it needs to be implemented using the 
DiGTreeS API (see Fig. 2). For evaluating the proposed framework DiGTreeS, we 
have implemented four problem instances as mentioned in Sect. 2.6. All four imple-
mentations are problem-dependent and not framework-dependent. By no means do 
we claim that these implementations are better than the state of the art. These are 
merely some of the ways to implement problems using DiGTreeS APIs. Implemen-
tations are based on trivial branching and pruning functions and work estimations. 
It shows the generality of the approach but is far from the state of the art. There 
exist or may exist ways to get better work estimates or calculate a better branch-
and-bound condition. These implementations are done to show that DiGTreeS APIs 
can be used for any combinatorial problem. For instance, in practice, TSP is often 
solved using linear programming and cutting plane techniques (branch and cut). For 
comparison with a commercial Integer Linear Programming (ILP) solver, we imple-
mented TSP in CPLEX.8 CPLEX performs better than DiGTreeS. But any ILP is 
just for mathematical optimization problems. It is not a generalized thing. For an 
input of 35 cities (see Sect. 5 for details on input values), our TSP implementation 
took around 700 s, whereas CPLEX took around 302 s.

4  DiGTreeS

DiGTreeS is implemented on top of Apache ZooKeeper, Apache Kafka, and 
Hadoop Distributed File System (HDFS). ZooKeeper supports several common pat-
terns of coordination in distributed systems. In DiGTreeS, master election protocol, 

Fig. 3  System architecture of DiGTreeS

8 CPLEX is a commercial ILP solver by IBM.
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monitoring events such as worker failures, changes in data structures, worker load 
estimates, and solution sharing are implemented using ZooKeeper. Kafka is used for 
performing reliable task transfers between donor and requester, and between master 
and worker. HDFS stores the worker snapshots reliably, which is used for recovery.

4.1  System architecture

DiGTreeS follows a master-worker architecture (see Fig. 3).

4.1.1  Components of master

The master has 3 main components that are responsible for (1) static load balancing 
(SLB), (2) dynamic load balancing (DLB), and (3) progress monitoring and scaling.

(1) Static Load Balancing: SLB is performed by the master (Lines 4–6, Algo-
rithm 1). It starts with a queue that has only the root node (which needs to be 
specified in the problem’s implementation). It pops the first element, converts 
it into its children using nextChild() operation specified in the problem’s 
implementation (see Fig. 2), and pushes them back into the queue. If the size 
of the queue becomes larger than the number of workers, then it removes the 
elements from the front and assigns them to different workers. This process 
is repeated until the remaining task size becomes very small. The remaining 
work is given to the first worker. Once the SLB phase is completed, workers are 
notified through ZooKeeper to start exploration, and the elasticity controller 
subroutine is invoked (Line 7, Algorithm 1).

(2) Dynamic Load Balancing: The DLB component maintains a priority queue of 
work estimates for each worker to implement an efficient donor lookup scheme. 
It handles different types of requests (lines 8–27, Algorithm 1). When an idle 
worker requests work from the master, it returns the most loaded worker from the 
priority queue as a donor and decreases the donor’s load by half. This prevents 
a single donor from being swamped by too many requesters. The requester then 
contacts the donor directly for work and after receiving work, it updates the 
master about its new workload. Until that update is received, the master stores 
them in a pending updates queue QPU (pendUpd in Algorithm 1). It may hap-
pen that the master’s overall estimation of system load becomes zero although 
there is still work available. This can happen when the requester has not yet 
updated the master, and before that update, the other workers finished all their 
work. If a worker requests a donor at this time, then it is added to the pending 
requests queue QPR (pendReq in Algorithm 1). These pending requests are 
served when the master receives a nonzero work update from any worker. At 
the end of the computation, the master’s overall estimation of the system load 
becomes zero. When this condition occurs, the termination detection component 
sends the termination signal to all the workers (Lines 30–32, Algorithm 1). 
The master-assisted DLB scheme in DiGTreeS not only reduces the latency of 
locating a suitable donor but also allows the master to remain lightweight as the 
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master only stores metadata and not the actual tasks. DonorRequest() and 
WorkUpdate() methods in Algorithm 1 help in DLB.

(3) Progress Monitoring and Scaling: This component computes Eelastic using updates 
sent by the individual workers. It then determines the mode of operation: scale-out/
scale-in/continue as is (normal). For scale-out, workers are provisioned by the mas-
ter, whereas for scale-in the workers receive notifications to drop out. In Sect. 4.3 and 
Algorithm 3, the progress monitoring and scaling component is discussed in detail.

For a detailed discussion on the Master Algorithm  1, refer to our earlier work 
RD-FCA [25].

Algorithm 1  Algorithm for mAster 
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4.1.2  Components of worker

The worker has components for (1) work stealing, (2) solution exploration, (3) solu-
tion sharing, and (4) checkpointing and recovery.

(1) Work Stealing: The work-stealing component is responsible for requesting work 
from a donor, donating work to other requesters, receiving work from the master 
during SLB, and updating the current workload as well as the local efficiency to 
the master. Each worker uses the load-estimator function specified by the user 
and reports its load to the master only when its load reduces by half of its current 
value. This reduces the network traffic for work updates to log(initial_load) and 
works well in practice.

(2) Solution Exploration:  See Algorithm 2. Each worker stores the tasks received 
during SLB into a task deque. Based on the problem type, an appropriate func-
tion is called for solution exploration. If the problem type is optimization (for 
example, minimizing objective function), then ExploreOptMin (Line 1) func-
tion is called. At each exploration step, a node from the front of the deque is 
popped and its children nodes are generated (Line 2). Next, the solution bound 
in the subtree of the child node is compared with the current best solution found 
globally (globalBest). For example, if the goal is to find the minimum value, 
then the lower bound of the solution in the subtree of the child is considered. If 
that bound is lower than the current globalBest, then only the child node 
is explored; otherwise, it is discarded. The bound function is specified by the 
user as part of the Node Interface. If the solution is reached at the child node 
and is lower than the current globalBest value, then the global best value is 
updated. Otherwise, if the pruneSibling flag is enabled, then the siblings of 
the current node are discarded (Lines 3–8). A similar function with comparisons 
reversed is written for maximization problems. The exploration method for a 
decision problem is similar to the optimization problem, with the only differ-
ence being when a suitable solution is found, a signal is sent to all the workers 
to terminate the search using ZooKeeper.

  For enumeration problems (Line 9), an accumulator is used to collect infor-
mation from each node. A new accumulator object is created for each worker 
and is passed to the Node.enumStep method. Inside this method’s concrete 
implementation, the user can choose to update the value of the passed accu-
mulator based on the problem. For example, for the N-queens problem, we use 
an Integer accumulator and increment it at each enumStep to count the total 
number of solutions.
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Algorithm 2  explorAtion methods 

(3) Solution Sharing: This component is invoked by the solution explorer to read/
write to the current best solution found globally (among all the workers). The 
sharing component does not send an update to the globally shared value for each 
update made by the solution explorer. Instead, it maintains a local copy and 
updates that. Periodically (in a few seconds granularity), it syncs with the global 
value. This is to reduce the network traffic. Solution sharing is implemented 
using ZooKeeper watches.

(4) Checkpointing and Recovery: DiGTreeS uses an asynchronous snapshot mecha-
nism wherein each worker takes a snapshot of its task queue and writes it to 
HDFS atomically using techniques similar to shadow paging. Each worker’s 
snapshot is stored in a different directory in HDFS. These snapshots are used 
during recovery. DiGTreeS guarantees at least once semantics. For failure detec-
tion and recovery, it sets up a circular queue consisting of alive workers in which 
each worker monitors its successor for failure using ZooKeeper. On detecting 
a worker failure, the monitoring worker reads the latest snapshot of the failed 
worker from HDFS and merges it in its task queue. Subsequently, it begins to 
monitor the next alive successor in the circular queue. Apart from handling 
independent worker failures, the system also handles cascading failures (worker 
fails during recovery), donor failures (that cause blocking), and master failures 
effectively. If the master fails, the alive worker with the least sequence number is 
promoted to master. More details are presented in our earlier work RD-FCA [25].

4.2  System implementation

For running a job, executor processes with (ids 0 to n) are launched in the clus-
ter. These processes participate in the master election by creating a sequential 
ephemeral znode in ZooKeeper. The one with the lowest sequential number 
becomes the master, while others act as workers. A watch ring (circular queue) is 
set up among the workers in the increasing order of their sequence numbers; each 
worker sets up a watch on its successor’s znode in ZooKeeper. As each of these 
znodes is configured as ephemeral, when a worker fails, the znode that it created 
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disappears. Consequently, the watch on the predecessor worker gets triggered. As 
it is a ring structure, even if a sequence of workers fails together, the recovery 
is possible as discussed in Sect. 4.1.2 by the predecessor of the last worker that 
failed in the sequence.

Zookeeper’s watch mechanism is also used for signaling the termination of 
search, completion events such as SLB completion, scaling mode changes such 
as scale-in/scale-out/normal mode, solution sharing, and workload estimates by 
workers. Certain well-defined paths in ZooKeeper are designated for these events, 
and the workers set up a watch on them. They get notified when these znodes are 
created or updated, for example, znode /SLB_Done/ is created when SLB is com-
plete; scaling mode changes are signaled by updating the value of the znode. As 
these events occur not that frequently, sending out notifications to all the work-
ers does not create a bottleneck. Kafka is used for implementing reliable high-
throughput work transfers. Each worker creates a topic in Kafka for receiving 
messages from other executors (like a mailbox). During SLB, the master sends 
the initial splits of the problem to different workers by writing to their topic in 
Kafka. It is also used for task transfers from the donor to the requester.

4.3  Elastic scaling

The idea on which the elasticity controller works is monitoring the entire system 
to approximate runtime parallel efficiency ( Eelastic ) and vary the number of workers 
to keep Eelastic within the user-defined range (uEff - dEff). uEff is the up-efficiency 
threshold and dEff is the down-efficiency threshold. At the implementation level, 
the elasticity controller accepts a single value for the efficiency threshold and cre-
ates a range (uEff - dEff). Using a single threshold value for making scaling deci-
sions would lead to thrashing. During runtime, the arithmetic average of efficien-
cies of individual workers gives Eelastic . In Sect. 2.3, we defined and explained Eelastic 
(Definition 1).

The elasticity controller of DiGTreeS uses the hybrid scaling strategy (Algo-
rithm  3). Computation starts with 2 workers. Note that, if the initial number of 
workers (INW) is N then 1 becomes master, and the rest N−1 become workers 
(slaves). The number of workers scales out exponentially till at least one of the fol-
lowing two conditions is met. (1) The number of workers reaches the worker thresh-
old ( Workersthreshold ), or (2) Eelastic reaches the desired range. We call this phase the 
Exponential start phase (ES-Phase). After the ES-Phase, scaling operation 
(up or down) is done in the granularity of 1. This is Linear-Phase. We use 18 
workers as Workersthreshold for the experimental evaluation of DiGTreeS. But it can 
be set to any number since DiGTreeS is loosely coupled in nature and most of its 
components are designed independently. We use 18 as the problem instances under 
evaluation are small and under the experimental setup, a maximum of 40 workers is 
possible. For the experiments with larger inputs, we have changed Workersthreshold to 
84. It has been discussed in Sect. 5.3 where we show the scalability of the proposed 
framework using a larger instance of GSSSA (GSSSA_L) on a test-bed that allows 
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scaling out up to 160 workers. Figure 4 explains ES-Phase and Linear-Phase 
using a state transition diagram.

A prevalent problem in elasticity controllers is oscillating effects [29]. Frequent 
provisioning and de-provisioning of compute resources lead to colossal overhead. 
In a problem that needs elastic scaling, continuous monitoring of scaling metrics 
is required. A very small interval may be chosen for the monitoring subroutine to 
run, which may lead to very frequent scaling operations. Scaling operations done 
frequently lead to thrashing, and if the duration between two scaling operations is 
very large, it leads to either alive workers getting overloaded or underutilized. To 
address this issue, we use a heuristic interval of 7 s for monitoring the scaling met-
ric. However, the scaling operation is carried out only when the requirements for the 
same scaling operation (up or down) are met thrice consecutively. Note that the big-
gest variations using hybrid9 scaling seem to happen at the start and toward the end 
of the execution [4]. DiGTreeS addresses the variation at the start by exponentially 
provisioning the workers during the ES-Phase.

The elasticity controller (see Algorithm  3) accepts the up efficiency thresh-
old (uEff) and down efficiency threshold (dEff) and tries to keep the Eelastic within 
these two thresholds. decommissionCount, provisionCount, provi-
sion and decommission variables are initialized (Lines 2–3). These variables 
help in reducing the thrashing effect. Scale-in granularity (granIn) and scale-out 
granularity (granOut) are set to 1. And the startPhase denoting ES-Phase 
is set to true (Lines 4–5). The elasticity controller computes Eelastic (avgEff) using 

Fig. 4  Execution starts in the exponential start phase (ES-Phase) with two workers. The number of 
alive workers ( Workers

alive
 ) exponentially scales out by provisioning twice the number of currently alive 

workers. For the execution to remain in the ES-Phase, both of the following conditions are to be met: 
(1) Workers

alive
≤ Workers

threshold
 , and (2) E

elastic
> uEff, where Workers

threshold
 is the threshold for the 

maximum number of workers in the ES-Phase (DiGTreeS uses 18 as value for Workers
threshold

 ), E
elastic

 
is the elastic efficiency, and uEff is the upper-efficiency threshold. If any of the two mentioned conditions 
gets invalidated, execution gets transitioned to the Linear-Phase, where scale-out and scale-in opera-
tions are done in the granularity of 1. Once Linear-Phase has been attended, execution remains in 
this phase till its completion. For Scale-out and Scale-in signals see Lines 21–23 and Line 24–26, respec-
tively, of Algorithm 3

9 Hybrid scaling is the combination of both upscaling and downscaling.
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getCPULoad method (Line 7). If the execution is still in the ES-Phase, twice 
the number of alive workers (aliveWorkers) is provisioned (Lines 10–14). After the 
ES-Phase is over, Linear-Phase starts (Lines 15–26). When Eelastic surpasses 
the up efficiency threshold (uEff) consecutively for 3 iterations, a new worker is pro-
visioned (Lines 21–23). And when Eelastic falls below the down efficiency threshold 
(dEff) consecutively for 3 iterations, a worker is de-provisioned (Lines 24–26).

Algorithm 3  Elasticity Controller (Hybrid Scaling)

When a worker is provisioned, it asks the master for the donor worker’s id and 
then directly requests the donor worker for task transfer (the task transfer mechanism 
is discussed in detail in Sect. 4.1.1). DiGTreeS does not drop a worker when it has 
pending local tasks because migrating work from a busy worker will be overhead. 
At the implementation level, when a drop signal arises from the elasticity controller 
a corresponding znode is created in ZooKeeper. When a worker completes its local 
task, before requesting more work, it checks for the presence of the said znode. If it 
is present, the worker terminates itself, leading to worker drop. Checking for znode 
and drop operation is an atomic action.
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5  Experimental evaluation

All experiments have been conducted on a setup comprising server-class machines, 
with a dual 10-core Intel(R) Xeon(R) CPU E5-2650 v3 @ 2.30GHz CPU, 128 GB 
RAM, and running Ubuntu 16.04.3 LTS and Java v11.0.10. Hadoop v3.2.0, Zoo-
Keeper v3.4.1, and Kafka v2.2.0 are also installed on these machines. Unless men-
tioned otherwise, each experiment has been performed at least 7 times, and stats 
about deviation10 from the mean values of execution time and cost for all cases are 
discussed. Since all experiments are carried out under a controlled environment, we 
see very minimal deviations.

The following datasets have been used in the experiments: (1) Travelling Sales-
man Problem: the test cases are generated using a tool11 that takes as input the 
number of cities and a seed value. We use a TSP instance of 35 cities with a seed 
value of 37662. (2) 0–1 Knapsack Problem (Knap): We used the generator described 
in  [30] to generate hard instances with the configuration setting Type = uncorre-
lated span(2, 10), TestNo = 28 . (3) N-queens problem (NQ): the number of queens 
is specified as 16. (4) Generic State Space Search Application problem (GSSSA): 
We use the problem instance described in [7]; its parameter values are Wr = 1 × 109 , 
Wi = 19 × 109 , b = 2 × 10−4 , and g = 1 × 106 . We also use a larger instance of 
GSSSA (GSSSA_L) with input parameters Wr = 1 × 1020 and Wi = 19 × 1020 with b 
and g the same as above to demonstrate the scalability of DiGTreeS. Results regard-
ing cost and execution time for the N-queens (NQ) are shown separately because it 
has a relatively shorter execution time.

5.1  Performance with a fixed number of workers

Here a fixed number of workers are used for the entire search. From Fig. 5a, we 
see that the time taken to complete the search reduces with an increase in the 
number of workers. But this also has a trade-off in terms of the efficiency of 
computation (Fig. 5b). The efficiency with N workers (which is calculated using 
Eq. 2) starts to drop as the number of workers increases. In these experiments, 
we observe that beyond 20 workers, the efficiency is below 0.5. Across different 
problems, the efficiency at a higher number of workers is highest for N-queens, 
then TSP then Knap, and GSSSA.

GSSSA allows us to control the irregularity by varying the balancing factor 
b. Along with the GSSSA with input parameters described in the previous para-
graph and [7], we run a special case of GSSSA with very high irregularity b = 
0.00001 and call it GSSSA_S. This extreme irregularity is the reason for very 
little speedup with the increase in the number of workers in the case of GSSSA_S 
(see Fig.  5a). This extreme irregularity is highly unlikely to be present in a 

10 We calculate the percentage deviation as the ratio of difference of current value and mean value to the 
mean value, i.e., deviation =

|current value−mean value|

mean value
× 100.

11 http:// dimacs. rutge rs. edu/ archi ve/ Chall enges/ TSP/.

http://dimacs.rutgers.edu/archive/Challenges/TSP/.
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real-world problem. We further analyze the performance of DiGTreeS using weak 
scaling experiments.

Weak scaling is how the execution time varies with the number of workers 
for a fixed problem size per worker. The problem size increases at the same rate 
as the number of workers, keeping the amount of work per worker the same. To 
test DiGTreeS’ performance using weak scaling we use the GSSSA_L instance. 
We start execution with parameters, Wr = 1 × 1020 , Wi = 19 × 1020 , and num-
ber of workers = 120 . Balancing factor b and granularity g remain the same as 
described earlier. Then for each iteration, we reduce Wr , Wi , and the number 
of workers by half and record the execution time for each case. From Table 1, 
we see that execution time does not vary much as the problem size per worker 
remains the same. This shows that DiGTreeS is scalable as the communication 
overhead is minimal as we increase the number of workers.

5.2  Analysis of the hybrid scaling strategy in DiGTreeS

Here, we evaluate the hybrid scaling strategy in terms of execution time, and the 
total cost (Eq.  4) incurred. We compare its performance with 3 different base-
line strategies: fixed number of workers, up-scaling, and down-scaling. We show 
results for GSSSA, TSP, NQ, and Knap. For up-scaling and hybrid scaling, we 
start with a smaller number of workers (INW = 2), whereas for down-scaling we 
start with 30 workers. Values for uEff and dEff are set to 0.95 and 0.85, respec-
tively. Scale-out and scale-in granularity is set to 1.

Fig. 5  Variation of a speedup and b efficiency with the static number of workers for different applica-
tions

Table 1  Execution time during weak scaling for GSSSA_L

S. No. W
r
= 1 × 10

20 W
i
= 19 × 10

20 Workers Execution time (s)

1 W
r

W
i

120 15852
2 W

r
∕2 W

i
∕2 60 15501

3 W
r
∕4 W

i
∕4 30 15004

4 W
r
∕8 W

i
∕8 15 14789
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In terms of execution time, hybrid scaling proves to be the best strategy for all 
four application problems. Recall that (see Sect. 2.6), a decision problem is a spe-
cial case of optimization and enumeration problems. We showed results for opti-
mization and enumeration problems only. These results hold for all three classes 
(enumeration, decision, and optimization). From Fig. 6 we see that the execution 
time for hybrid scaling is always lower than all the other approaches. Hybrid scal-
ing switches between up-scaling and down-scaling to minimize the overhead of 
parallel execution. Considering execution times across all seven runs we get a 
maximum deviation of 3.7%.

In terms of cost (which is calculated using Eq. 4), the hybrid scaling strategy 
performs better than the other strategies (see Fig.  7) as well. No extra cost is 
incurred by needlessly keeping a worker around or by working with fewer work-
ers for a long time. Across all runs, we get a maximum deviation of 1.0% . Thus, 
hybrid scaling proves to be the best strategy for all four problems in terms of both 
execution time and cost.

Fig. 6  Execution time for different scaling strategies

Fig. 7  Cost for different scaling strategies
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5.3  Maintaining efficiency within user‑defined range

We discussed elastic scaling in Sect. 4.3. Here, we test the ability of the elastic-
ity controller (which uses elastic scaling based on the hybrid scaling strategy) 
of DiGTreeS to maintain Eelastic within a range (dEff - uEff). The elasticity con-
troller is able to keep the Eelastic within any defined range. To demonstrate this 
we show the results for all four problem instances with two different efficiency 
ranges. uEff1 = 0.99 and dEff1 = 0.85 for GSSSA; for TSP, uEff1 = 0.99 and 
dEff1 = 0.90; for NQ, uEff1 = 0.80 and dEff1 = 0.70; and for Knap, uEff1 = 0.80 
and dEff1 = 0.70 as well. uEff2 and dEff2 are set to 0.55 and 0.45, respectively, 
for all problem instances.

From Fig. 8, we see that the elasticity controller maintains the ( Eelastic ) within 
the defined ranges. During the ES-Phase, Eelastic is always high as the number of 
workers is less. Because of the irregular nature of the problem instances, there are 

Fig. 8  Efficiency curve with elastic scaling for different efficiency ranges. For GSSSA efficiency range1 
is (99%, 85%) and efficiency range 2 is (55%, 45%). Similarly, for other problem instances, both effi-
ciency ranges are highlighted on the y-axis

Fig. 9  Workers employed as a function of time for GSSSA_L instance. For all three runs, the elasticity 
controller shows stable behavior
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frequent fluctuations in the efficiency curves, but they remain within the range for 
the majority of the time during execution.

To further understand the Eelastic fluctuations’ impact on the scalability of 
the system we performed additional experiments with larger instances using 
GSSSA_L on a larger test-bed where the number of workers can go up to 160. 
Figure 9 shows such a set of runs using GSSSA_L. Since the input size is rela-
tively larger, we have used Workersthreshold as 84 so that Eelastic reaches the desired 
efficiency range quickly and the efficiency range is set to uEff = 0.70 and dEff 
= 0.60 . For all three runs, the elasticity controller shows stable behavior and 
Eelastic fluctuations do not result in the thrashing of workers during the execution. 
Moreover, while testing DiGTreeS for scaling using GSSSA_S (a special case of 
GSSSA with extreme irregularity), with repeated runs we observed that the elas-
ticity controller does not provision more workers (in this case a maximum of 4 
workers got provisioned) when the problem is not scalable. The elasticity control-
ler can detect the scaling behavior of the problem.

5.4  Comparison with the state‑of‑the‑art elastic controllers

Equilibrium  [4] and Helpar  [8] are the most recent works in elastic scaling for 
parallel tree search. We implemented elasticity controllers of Equilibrium  [4] and 
Helpar  [8] and compared the elasticity controllers of DiGTreeS with them. From 
Table  2 we see that DiGTreeS performs better than Helpar and Equilibrium both 
in terms of execution time as well as cost in most of the cases. In some cases, we 
see comparable results. For instance, Equilibrium has a lower execution time for 
TSP than DiGTreeS, but the cost is higher. So, we further perform a benefit–cost 
analysis.

Benefit–cost ratio [31] (BCR) is an indicator used in cost–benefit analysis. Origi-
nally, BCR is calculated by the following equation:

BCR gives the benefit obtained per unit cost incurred. The higher the value of BCR, 
the better the approach. We consider the execution time and cost with a fixed number 
of workers (30) as the baseline. The benefits derived by elastic scaling are computed 

(6)BCR =
present value of expected benefits

present value of expected costs

Table 2  Execution time and cost incurred by DiGTreeS compared to Helpar [8] and equilibrium [4]

Execution time (s) Cost (Eq. 4)

Helpar Equilibrium DiGTreeS Helpar Equilibrium DiGTreeS

TSP 2264 857 915 32815 23961 18700
GSSSA 1275 1476 1260 16374 14420 14967
Knap 3570 3544 3500 26046 10502 10327
NQ 370 384 370 1859 1443 1150



15028 M. A. Jamal et al.

1 3

as the reduction in the monetary cost w.r.t. baseline, while the cost is measured in 
terms of an increase in the execution time w.r.t. baseline. We observe that DiGTreeS 
outperforms both the state-of-the-art elastic controllers in all the problem instances 
(see Fig. 10).

5.5  Performance of DiGTreeS under failure

As discussed in Sect. 1, the tree searches are long-running jobs; without fault toler-
ance, the entire job will have to be rerun until successful completion. Resilience to 
failures is one of the three desirable properties of a cloud-aware framework. Here 
we study the performance of DiGTreeS under various failure scenarios. To emulate 
the performance of DiGTreeS under different failure scenarios we implemented the 
failure injection mechanism used in our earlier work RD-FCA [25].

The fault injection subroutine creates znode corresponding to the specified fail-
ure. Each worker checks for the presence of failure znode, and if found, tries to 
delete it. If the deletion is successful, the current worker fails by self-termination. In 
case of multiple worker failures, groups of workers are formed equal to the number 

Fig. 10  Performance of 
DiGTreeS vs state of the art [4, 
8]

Fig. 11  Master failure at different instances during execution
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of failures. Workers from each group attempt deletion of the corresponding failure 
znode and only one of them succeeds. For further details refer RD-FCA [25].

5.5.1  Performance under master failure

We analyze the effect of master failure on completion time by introducing mas-
ter failure at different phases (at 25% , 50% , 75% , and at a random time) during the 
execution of different problem instances. Master failure at any instance leads to 
increased execution time, but the increment is always less than 10% of the time taken 
in the no-fault scenario (see Fig. 11). With repeated runs, the deviation is stable with 
the maximum deviation of 9.0% observed in NQ when the failure is introduced at a 
random point of execution. A failure of the master does not impact execution much. 
Recall that (from Sect. 4.1.2) when the master fails a worker is promoted to master. 
It takes over the responsibilities of the failed master. Loss of worker is adjusted by 
the scaling algorithm (Algorithm 3). Details about the effect of loss of workers are 
presented in Sect. 5.5.3 where we discuss the impact of multi-worker failure.

Fig. 12  Execution time for single-worker failure at different instances during execution

Fig. 13  Cost (Eq. 4) of single-worker failure at different instances during execution
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5.5.2  Performance under single‑worker failure

To evaluate the performance of DiGTreeS under single-worker failure, we introduce 
the worker failure at different instances (at 25% , 50% , 75% , and at random time) dur-
ing the execution and compare execution time and cost with the no-fault scenario.

From Figs. 12 and 13, we observe that in most of the single-worker failure sce-
narios, the execution time and the cost match the no-fault scenario. With repeated 
runs, the deviation is stable with the maximum deviation of 6.5% and 2.8% observed 
in execution time and cost, respectively, for NQ. Thus, we have very little recovery 
overhead. To further see the impact of failure we analyze execution time and cost 
with multiple worker failures.

5.5.3  Performance under multiple worker failure

To evaluate the performance of DiGTreeS in the presence of multiple worker fail-
ures, execution starts with 10 workers.12 We introduced 4 worker failures at different 
instances during the execution.

Fig. 14  Execution time for multiple workers failure at different instances during execution

Fig. 15  Cost (Eq. 4) of multiple worker failure at different instances during execution

12 Execution starts with 10 workers as workers may fail at the very beginning of the execution when the 
number of workers is small (i.e., less than 4).



15031

1 3

DiGTreeS: a distributed resilient framework for generalized…

From Figs. 14 and 15, we see that the execution time and cost for all the failure 
scenarios are comparable to the no-fault scenario. Among GSSSA, TSP, and Knap 
with repeated runs, we get a maximum deviation of 3.8% and 0.1% in execution time 
and cost, respectively. For NQ we get a maximum deviation of 16.0% in execution 
time. This is a general observation. Among all four problem instances, N-queens 
have the least execution time and cost and it shows the most deviations. As the prob-
lem instance gets bigger, behavior gets stable and deviations get lesser.

To analyze this further we compute the cost to execution time ratio. From 
Table 3, we see that the ratios of cost to execution time in different failure scenarios 
for multiple worker failure are very close to the no-fault scenario. It means the cost 
incurred per unit execution time is very close to the no-fault scenario for all the 
problem instances in most of the cases, i.e., DiGTreeS can give a similar cost for 
unit execution time irrespective of whether there is worker failure or not. This points 
to a positive justification of the recovery mechanism used in DiGTreeS. It shows the 
effectiveness of the fault tolerance mechanism of DiGTreeS.

When a worker fails, the monitoring worker reads the latest snapshot of the failed 
worker from HDFS and merges it in its task queue (for more details on fault toler-
ance see Sect. 4.1.2). This merging of the failed worker’s task queue to the monitor-
ing worker’s task queue does not contribute toward essential computations and thus 
leads to a decrease in Eelastic . This drop in Eelastic is quickly addressed by the fault-
tolerance mechanism of DiGTreeS, and the elasticity controller (Algorithm 3) pulls 
the efficiency back to the desired range. Figure 16 shows the variation in the Eelastic 
for 4 independent worker failures at different execution points for the TSP problem 
instance. From Table  3, we can see that the cost-to-execution time ratio does not 
deviate much for all the cases.

Table 3  Ratio of cost to 
execution time in different 
failure scenarios for multiple 
worker failure

Problem instance No fault 25% 50% 75%

GSSSA 25.93 25.94 26.92 25.93
TSP 29.40 32.30 32.27 28.58
NQ 13.73 12.89 12.82 13.76
Knap 30.03 32.19 30.91 30.94

Fig. 16  Efficiency curve for TSP under multiple worker failure at different instances during the execu-
tion. We see a dip in the E

elastic
 when multiple workers fail simultaneously
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5.6  Summary of the results

Through experiments and discussion, we showed that DiGTreeS is scalable using 
weak scaling. The hybrid scaling strategy is best suited for the pay-per-use model. 
With two different ranges we saw DiGTreeS can maintain Eelastic within any given 
range and with larger inputs (see Fig. 9) we observed that DiGTreeS shows a sta-
ble behavior. Comparison with the state-of-the-art elasticity controller revealed that 
DiGTreeS outperforms them in terms of BCR. Further, we saw that DiGTreeS can 
recover various failure scenarios with minimal overheads. In our earlier work [25], 
we showed that snapshots used in checkpointing for fault tolerance have an overhead 
of less than 5% . Experiments till now were based on the reactive approach. Further, 
we discuss a proactive approach.

6  Future directions: proactive approach

We have seen the reactive approach. Recall our discussion from Sect. 4.3 about ES-
Phase and Linear-Phase. We saw how DiGTreeS takes care of variations due 
to hybrid scaling at the start of execution by exponentially provisioning the work-
ers during the ES-Phase. Similar variations occur toward the end of execution as 
well. Here, we see the scope for using the proactive approach13 (also known as the 
predictive approach). As the set of problems under consideration is irregular, due to 
pruning of a subtree Eelastic may vary considerably. In the reactive approach, once 
Linear-phase is attained, it may take a considerable amount of time to re-attain 
the desired Eelastic . This is another scenario where we see the scope for using the 
proactive approach. In the proactive approach, the elasticity controller can anticipate 
the required number of workers to scale out (or scale in) to reach the desired Eelastic 
and provision (or de-provision) workers at once instead of scaling in multiple of one. 
This would greatly reduce the execution time.

The proposed proactive approach attempts to create a WHAT-IF engine using 
machine learning techniques to predict the number of workers to be scaled in solv-
ing an irregular tree search problem while maintaining Eelastic as close as possible to 
a desired value.

There are certain challenges in building such an engine: the irregular nature of 
the problem; for our initial study we chose variables like etc. and used supervised 
machine learning techniques there must be a pattern in the problem. Due to the 
irregularity, the chances of finding any pattern are very low. However, variables like 
type of the problem (viz. optimization, enumeration or decision), progress (number 
of nodes explored), number of alive workers, and Eelastic can be correlated. Given a 
type of problem, the number of alive workers and Eelastic is inversely proportional. 
During the initial phase when the progress is less, the number of scaling operations 
is high. We can see patterns in these variables.

13 It is the technique to anticipate future changes in the system and act accordingly before it occurs [6].



15033

1 3

DiGTreeS: a distributed resilient framework for generalized…

The proposed methodology uses supervised learning techniques to train the 
machine learning model. The variables to train the model are identified and col-
lected as a first step, which are then used to train a Linear Regression Model. The 
scaling strategy uses this model to predict the new efficiency upon the addition or 
deletion of workers. The entire methodology can be divided into 3 major units: (1) 
Monitor, (2) Predictor, and (3) Decision maker. The monitoring unit collects data 
about the state of the machine including the amount of work already done (pro-
gress), the current number of alive workers, global efficiencies, etc. The predictor 
uses the same to predict the new efficiency upon the addition/deletion of X number 
of workers, using the model trained earlier. Finally, the decision-maker unit evalu-
ates the required number of workers such that the new efficiency comes as close as 
possible to the desired value (same can be inferred from Fig. 17).

6.1  Data collection and model training

We have used four independent variables: (1) Progress in the search space, (2) 
Eelastic , (3) Current Number of alive workers, and (4) Workers to be scaled. Due to 
the addition/deletion of workers, the efficiency changes. This is the dependent vari-
able and is logged after intervals in multiples of 30  s. It is important to note that 
the number of workers to be scaled can be negative to signify that the workers are 
dropped.

Fig. 17  High-level working of proactive scaling strategy
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To train the Linear Regression Model (see Eq.  7), we gathered data points 
in intervals of 30 s by running the reactive hybrid scaling algorithm on smaller 
instances of the application problem. These data points are split into two sets, train-
ing and testing having a weightage of 70% and 30% , respectively. The trained model 
had a regression score of 0.94 for test data and 0.96 for training data.

where Eelastic is the current elastic efficiency, Walive is the number of alive workers, 
Nexp , is progress in the search space, and Gscale denotes the number of workers to be 
scaled out/in.

Recall our discussion from Sect. 5.3, where we observed fluctuation in the Eelastic 
curve. The proposed proactive scaling strategy roughly scales the exact number of 
workers required to reach a particular desired efficiency. This leads to the addition 
of workers more swiftly and convergence quickly. Earlier, we observed that the effi-
ciency curve for reactive hybrid scaling showed fluctuations due to the irregular 
search tree. In the proactive approach, the frequency of fluctuations has reduced as 
the worker(s) is/are provisioned/de-provisioned in advance based on the predicted 
efficiency (see Fig. 18). Furthermore, we note that the proactive model is also capa-
ble of keeping the computational efficiency within the user-defined range.

Currently, the proactive model of DiGTreeS is in the initial stages and more work 
and extensive testing is required. We plan to do this in our future work. The model 
is trained only on the data of a specific problem at a time and hence lacks generality. 
A new independent variable of problem type (enumeration, optimization, and deci-
sion) can be introduced further to account for problem-specific patterns such that the 
model can be used for more general problems.

7  Conclusion

In this paper, we presented the design and implementation of DiGTreeS, a distrib-
uted framework that supports generalized exact combinatorial search. We imple-
mented 4 search problems and showed that the proposed elasticity controller per-
forms well with the varying workload and efficiency and elastic scaling can be 

(7)Epred = A ⋅ Eelastic + B ⋅Walive + C ⋅ Nexp + D ⋅ Gscale

Fig. 18  Efficiency with proactive hybrid scaling
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beneficial in reducing the search time and cost compared to a fixed number of work-
ers. We implemented an elasticity controller based on the hybrid scaling strategy. 
Comparison with state of the art  [4, 8] revealed that DiGTreeS performs better in 
terms of benefit–cost ratio (BCR). The proposed framework not only outperforms 
the existing elasticity controllers in terms of BCR but also provides all the three 
desirable properties of a cloud-aware framework for parallel combinatorial search 
viz. (1) ease of expressing parallelism, (2) resilience to failures, and (3) support for 
elastic scaling.

Though the proactive approach looks good, it is still in its initial phase and 
needs further improvements. Currently, a separate model needs to be trained for 
different categories (optimization, decision, and enumeration) of the problem. 
There can be a single model with a separate parameter for the category of the 
problem. Extensive testing of the proposed proactive model under different fail-
ure scenarios is also required. These are the parts of our future work.
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