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Abstract
In the era of heterogeneous computing, a new paradigm called accelerator level par-
allelism (ALP) has emerged. In ALP, accelerators are used concurrently to provide 
unprecedented levels of performance and energy efficiency. To reach that there are 
many problems to be solved, one of the most challenging being co-execution. In this 
paper, we present a new scheduling framework called POAS, a general method for 
providing co-execution to applications. Our proposal consists of four steps: predict, 
optimize, adapt and schedule. With POAS, an unseen application can be executed 
concurrently in ALP with little effort. We evaluate POAS on a heterogeneous envi-
ronment consisting of CPUs, GPUs (CUDA cores), and XPUs (Tensor cores) on 
two different fields, namely linear algebra (matrix multiplication benchmark) and 
deep learning (convolution benchmark). Our experiments prove that POAS provides 
excellent performance and completes the tasks within a time very close to the opti-
mal time for the hardware and applications used, with a negligible execution time 
overhead. Moreover, the POAS predictor performed exceptionally well, achieving 
very low RMSE values for both use cases. Therefore, POAS can be a valuable tool 
for fully exploiting ALP and improving overall performance over offloading in het-
erogeneous settings.
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1  Introduction

In recent years, it has been demonstrated that CPUs are less efficient regarding 
power consumption and performance compared to accelerators  [10]. After the 
end of Moore’s law [11], computer architecture is evolving into the heterogene-
ous era, where accelerators are used to accomplish different tasks, instead of rely-
ing on the CPU for all of them [46]. Accelerators are typically used in fields like 
machine learning, where many accelerators exist, like the tensor processing unit 
(TPU), the neural processing unit (NPU), etc. Other notable accelerators include 
image signal processor (ISP), digital signal processor (DSP), or video encoders/
decoders [37].

In fact, some authors say that the next computer architecture paradigm is the 
accelerator level parallelism (ALP)  [15]. This new kind of parallelism seeks to 
execute workloads in multiple accelerators concurrently, thus exploiting paral-
lelism at the accelerator level. However, co-execution in heterogeneous environ-
ments is challenging since the software needs to divide the work into parts and 
schedule them among radically different devices. In this context, the scheduling 
may pursue different objectives, like minimizing the execution time, the energy 
consumption, or both [41]. In either case, achieving it depends heavily on the tar-
get hardware platform.

This article presents POAS (Predict, Optimize, Adapt and Schedule), a frame-
work for scheduling an application to run concurrently on multiple accelerators, 
which can potentially minimize the execution time of a given workload.

To demonstrate how POAS works, we apply our method to two relevant case 
studies. First, matrix multiplication, one of the centric linear algebra operations, 
which is present in uncountable HPC applications. Second, convolution, the heart 
of convolutional neural networks (CNNs), which is one of the most representative 
metrics for inference performance in low-energy SoCs and training performance in 
HPC servers. We implement POAS as a framework that runs matrix multiplication 
and convolution workloads in ALP, supporting multi-core CPUs, GPUs and XPUs 
(tensor cores), an accelerator for matrix multiplication and DNN workloads.

Unlike previous works that offload workloads to one device at a time, POAS aims 
to execute one single task in many accelerators concurrently. POAS can be applied 
to any application as long as it is possible to predict its execution time as a function 
of the input size. In its current state, the framework cannot be applied to applica-
tions where predicting the execution time is not possible. However, we are exploring 
alternatives for extending the framework to support these application types.

Compared to related works, POAS novelty comes from the fact that it is:

•	 Application independent: Previous works have already studied schedul-
ing in heterogeneous scenarios, but most of them are application-dependent 
(like [22]). However, POAS can be applied to any application as long as it is 
possible to predict its execution time as a function of the input size.
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•	 Designed for ALP: Unlike previous works that offload workloads to one device 
at a time, POAS aims to execute one single task in many accelerators concur-
rently.

•	 Accelerator agnostic: Previous works typically are tied to a specific number and 
type of device (e.g., CPU/GPU environments), while POAS can be extended to 
any number and kind of accelerators.

•	 Flexible: Unlike previous works that focus only on execution time, POAS can 
minimize execution time and/or energy consumption.

•	 Middleware: Ideally, POAS could be implemented like a middleware at the OS 
level, similarly to how Intel Thread Director [17] works.

Furthermore, experimental results highlight that POAS can exploit ALP with neg-
ligible overhead, reaching near-optimal results. Combined, this makes POAS 
an excellent candidate to reach ALP in current and future generation computing 
systems.

The main contributions of this paper are:

•	 Defines a novel framework for exploiting Accelerator Level Parallelism (ALP) 
in heterogeneous environments. The framework is based on a new scheduling 
model that uses a performance predictor together with the definition and optimi-
zation of a mathematical model.

•	 Details how the proposed framework works in two real-world applications 
(matrix multiplication and convolution).

•	 Presents an experimental evaluation of the proposed framework in an ALP envi-
ronment (CPU, GPU and XPU).

The rest of the paper is organized as follows. Section  2 presents the background 
in scheduling and co-execution state-of-the-art techniques, as well as related work 
in heterogeneous matrix multiplication and convolution approaches. In Sect. 3, we 
present POAS, our framework for allowing co-execution in heterogeneous environ-
ments. We detail how POAS works in real-world applications like matrix multipli-
cation and convolution in Sect. 4. A performance evaluation of POAS is shown in 
Sect. 5. Finally, Sect. 6 concludes the paper and gives some hints for future work.

2 � Background and related work

2.1 � Accelerators and tensor cores

Accelerators are hardware devices that execute a given workload in less time and/
or with higher energy efficiency than conventional CPUs [10]. Nowadays, GPUs are 
the mainstream, easily accessible accelerators for the masses. While they accelerate 
many relevant workloads (like machine learning) [9], they are still generic enough 
for many domains. However, there is a trade-off between efficiency and generality, so 
GPUs are usually less efficient than more specific accelerators. FPGAs, for example, 
can be adapted to different domains thanks to their re-programmable hardware, but 
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they are particularly difficult to use. Lastly, application-specific integrated circuits 
(ASICs) are designed and built for specific applications, so they achieve the high-
est levels of performance and efficiency [37]. Accelerators are common in popular 
domains like machine learning. The well-known tensor processing unit (TPU) [21] 
accelerates both inference and training workloads. In the area of matrix multiplica-
tion, accelerators supporting dense and sparse products  [2], as well as sparse-only 
matrix multiplication [36], exist.

Tensor cores [8, 20] are domain-specific cores designed to enhance matrix mul-
tiplication performance, which ultimately boosts deep learning applications. They 
were included for the first time in the Nvidia GPU Volta microarchitecture. In Volta, 
tensor cores implement a 4x4x4 FP16 matrix multiply and accumulate instruction, 
HMMA (half precision matrix multiplication and accumulate)  [20]. The Tensor 
cores in the Turing microarchitecture add support for int8, int4 and int1 data 
types [19] through a new IMMA instruction. Finally, in the Ampere microarchitec-
ture, the matrix multiplication size changes from 4x4x4 to 8x4x8, doubling its FP16 
throughput [9]. It also adds new instructions for sparse matrix multiplication, which 
in turn doubles the throughput of dense matrix multiplications.

Tensor cores boost specific applications’ performance in an unprecedented way, 
providing a 4x boost in peak performance compared to CUDA cores, and 8x for the 
case of sparse matrices [9].

2.2 � Scheduling

Task scheduling algorithms have been applied successfully to exploit scenarios 
where multiple tasks have to be scheduled to different processing elements [24, 47, 
48]. Within the same node, scheduling can be divided into two different approaches: 
offloading and co-execution. In offloading, the idea is to enhance application perfor-
mance by offloading the compute-intensive part to specialized hardware devices [1, 
27]. To decide on which device the workload should be offloaded, previous works 
studied the performance of each device and selected the best fitting for this task. 
Unlike task scheduling and offloading, co-execution aims to distribute a single appli-
cation among different devices and run all of them concurrently.

Task scheduling techniques have been proposed for OpenCL kernels in  [48], 
where authors use both code’s features as well as runtime ones to predict the 
speedup of applications in CPU or GPU. Also in OpenCL, non-analytical meth-
ods like decision-based trees are used in [47] to schedule OpenCL kernels on CPU/
GPU platforms. Co-execution opportunities are studied in [50] on integrated CPU/
GPU architectures. They also studied how to determine which compute elements are 
suitable or not for a given task (in other words, when co-execution is beneficial or 
not). List scheduling has been applied in static [51] and dynamic runtime scenarios, 
where new workloads arrive over time  [24]. Profiling and machine learning were 
combined in [14] to provide scheduling in heterogeneous environments. Integer lin-
ear programming (ILP) and linear regression were combined with stream graphs 
in [28] to efficiently distribute workloads on multi-GPU platforms.
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Performance modeling has been widely applied in many works  [13, 34, 38, 
44]. In a DynamIQ heterogeneous multi-core environment, a performance model 
to estimate the efficient distribution of critical sections was designed [34]. Task 
scheduling has been often applied to CPU/GPU environments, but there are also 
other approaches for more heterogeneous environments, like CPU/FPGA  [42]. 
In  [49], authors proposed a scheduling strategy for distributed accelerator-rich 
environments centered in real-time applications. The predictable execution model 
(PREM)  [38] was proposed to enable time prediction on non-predictable hard-
ware. The approach separates programs into memory and computing phases, 
which can be independently scheduled. It was proposed for CPU only, but a 
recent work extended it for CPU/GPU architectures  [13]. Many of these works 
focused primarily on minimizing execution time, while others studied energy 
consumption. Although the latest is often harder to predict, there are some prom-
ising works in this field [12]. Given the heterogeneous nature of today’s comput-
ing systems, other studies considered both execution time as well as consumption 
in their scheduling decisions [39, 41].

Recently, several works have focused on designing frameworks and systems 
to co-execute applications without domain-specific information. Many are often 
targeted to specific frameworks or languages that enable single-source coding 
on heterogeneous platforms. A language that is gaining influence lately is one-
API  [18]. oneAPI, as well as other heterogeneous languages, typically achieves 
good performance in relevant applications like DNNs  [25, 26]. However, one-
API does not officially provide a mechanism for scheduling or co-execution. In 
a recent research  [30], authors proposed a new co-execution runtime in oneAPI 
based on load-balancing algorithms. Another relevant framework in this con-
text is OpenCL, coupled with a co-execution engine in  [29]. In  [40], authors 
extend the OmpSs framework to allow co-execution of OpenCL kernels. Lastly, a 
Python-based heterogeneous scheduler was proposed in [23], with similar objec-
tives to what POAS pursues. It uses task parallelism and a queue-based approach 
to schedule programs in multi-GPU environments.

Finally, there are also domain-specific scheduler proposals. Among them, 
scheduling proposals for general matrix multiplication have been deeply studied 
over time, mainly due to their high relevance in many computer science appli-
cations. Recent works have studied the performance of matrix multiplication 
in heterogeneous environments  [43]. Furthermore, several papers have consid-
ered the use of different hardware devices to compute matrix multiplications to 
exploit heterogeneous systems. One of the first studies  [4] already approached 
the problem from an analytical point of view. The authors analyzed the compu-
tational power of each processor in the heterogeneous system and later expressed 
the workload distribution as an optimization problem. In  [6], authors designed 
a hierarchical approach to distribute parts of the matrix multiplication to differ-
ent devices. When considering multiple accelerators and a range of n columns 
to be assigned to each accelerator, the search space becomes too big. Therefore, 
they proposed a hierarchical way of considering all the possibilities, significantly 
reducing the search space. A new algorithm based on Strassen’s method was pre-
sented in  [22] for heterogeneous environments. To schedule the work between 
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accelerators, a queue-based system was used, which gives blocks of the matrices 
to be computed whenever a device is free. Matrix multiplication workload distri-
bution has also been studied in the context of energy efficiency [7], where authors 
proposed an approach for ARM big.LITTLE processors.

3 � Predict, optimize, adapt and schedule (POAS)

In this section, we present POAS (Predict, Optimize, Adapt and Schedule), a frame-
work that can schedule any application to be executed in ALP environments.

Figure 1 depicts a general view of our framework, which takes one application 
and executes it in ALP, improving the application performance. The framework is 
divided into four phases (Predict, Optimize, Adapt, and Schedule), which must be 
performed in order. The first one, predict, consists of developing a prediction model 
of the execution time of the CPU and the accelerators, as well as the memory cost 
to copy the data between the CPU and the accelerators. In the optimization step, 
the performance prediction model is used to build a constraint satisfaction problem 
(CSP). The problem is then optimized to find the values so that the objective func-
tion is minimal. Lastly, the results given by the solver may need to be adapted so the 
scheduler can use them in the last step of POAS.

Figure 2 shows a detailed view of POAS. All phases are mandatory except for the 
Adapt phase, which is optional. Likewise, the output of each phase is the input of the 
next one, as Fig. 2 shows.

Fig. 1   POAS operation over-
view. The framework takes dif-
ferent applications and executes 
them in co-execution, providing 
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Fig. 2   Detailed overview of POAS (Predict, Optimize, Adapt and Schedule) framework
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The Predict phase must be tuned to pursue one of those goals. One of the main 
strengths of POAS is its ability to provide ALP in a generic way. Rather than achiev-
ing ALP through a set of hardcoded, domain-specific constructs, POAS is built of 
different steps that are flexible enough to be used for diverse applications. At the 
core of this generality is the division of the prediction phase in two: the prediction 
itself and the optimization. As Fig. 3 shows, the Predict phase is problem agnostic 
because it does not consider domain-specific information to be built.

Likewise, the Optimize phase is both platform and problem-aware because the 
problem formulation must reflect the behavior of the problem but also consider 
hardware peculiarities. This decoupling scheme allows for flexible scheduling that 
does not depend on the problem.

Lastly, the Adapt phase depends on the problem, whereas the scheduling is only 
aware of the hardware platform.

It is worth mentioning that, like other scheduling approaches, POAS is designed 
for scenarios where there is a significant amount of work to do. If not, ALP would 
not provide substantial gains over the execution on a single device.

3.1 � Predict

In the predict phase, a performance predictor is designed, and the profiling of the 
hardware platform is performed.

3.1.1 � Predictor

The goal of the prediction is to give a precise estimation of the execution time of 
the application. This prediction is software and hardware-dependent, so the predic-
tion must consider both application and hardware characteristics. POAS is a modu-
lar framework, so any performance prediction method can be chosen in this phase. 
There are many performance prediction approaches, and depending on the domain, 
one predictor would be more suitable than the others. The POAS framework could 
implement different predictors that would be used depending on the application. 
Furthermore, in the case of performance prediction, the performance model must 
predict both the execution time and the time spent in memory transfers between the 
CPU and the accelerators over the bus. The only requirement for the performance 
predictor is to provide a function that, given the input size, predicts the execution 
time of the application. While the resultant function has no restriction regarding 
its complexity, it is desirable to have a linear or quadratic function, as discussed in 

Fig. 3   Analysis of the four 
POAS phases



14673

1 3

POAS: a framework for exploiting accelerator level parallelism…

Sect.  3.2. Regression or similar methods can be used for computing the function 
from the measured values in the profiling. To achieve competitive performance, the 
accuracy of the predictor is vital. If the prediction fails to precisely reproduce the 
experimental results, the scheduling would be poor. At this point, it is worth noting 
that with POAS it is not mandatory to have the source code, which makes the frame-
work more flexible since it does not depend on the programming language, which is 
a limitation in many language-centered models.

3.1.2 � Hardware profiling

As part of the prediction phase, a profiling of the hardware platform is also neces-
sary. With profiling, the hardware is sampled with different input sizes, and time is 
measured to build the function that maps the input size into execution time. One 
key aspect before profiling is to study the behavior of the hardware executing the 
application because sometimes the hardware provides different performance results 
depending on data sizes, alignment, and other factors. For example, in matrix 
multiplication, tensor cores only provide optimal performance if m% 8 == 0 and 
k% 8 == 0 [31] (where m and k are matrix dimensions).

3.2 � Optimize

The optimization phase takes the prediction model generated in the previous step 
as input. This phase has two objectives: to define a formulation of the application’s 
behavior and to optimize it. The output of this phase is a set of optimized values, 
which typically represent the input size of each device, such that the desired objec-
tive function is optimized.

3.2.1 � Formulation of the problem

The formulation is expressed as a constraint satisfaction problem (CSP), which can 
be enunciated to achieve different goals. In many cases, however, the problem can 
be further specialized into a constrained-optimization problem (COP), which is a 
generalization of the CSP. It is crucial that the mathematical formulation models all 
the details of how the application works in the real world (i.e., when the compute 
and communication phases occur and how). The formulation of the problem is the 
only manual part of the whole framework since it is application-dependent. Depend-
ing on the application, communication schemes, and other factors, different applica-
tions may need different formulations. Likewise, one formulation might be reused 
for many applications if they behave similarly.

3.2.2 � Optimizing the problem

Regarding methods for optimizing the model, linear or quadratic programming can 
be used, providing the optimal solution in very little time. However, these methods 
can only be used if the function that models the behavior of the application is linear 
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or quadratic. Considering that there might be cases where the performance model is 
too complex to be represented in these terms (e.g., the function is cubic), the prob-
lem should be formulated as a CSP. In this case, alternative methods (like backtrack-
ing, local search, etc.) can be used to optimize the performance model. The POAS 
framework implementation can provide different solvers, which would be used by 
the appropriate application.

3.3 � Adapt

This is the only optional phase of the POAS framework. Depending on the applica-
tion, the variables that come from the optimized model designed in the previous 
phase might need some transformations to be used by the scheduler. Therefore, an 
intermediate phase called adapt might be needed to make the scheduler work cor-
rectly. The output of this phase is always a set of valid values to the scheduler. If the 
input of the adapt phase is a valid input to the scheduler, data are left unmodified, 
and the adapt phase is a no-op. Otherwise, the adapt phase performs an adjustment 
of the data. We differentiate between two types of adjustments: data and hardware 
adjustments.

3.3.1 � Data adjustments

This kind of adjustment is needed when the output of the optimized model contains 
different variables than the one needed to determine how to schedule the applica-
tion. In these cases, the adapt phase must adjust the values given by the optimization 
phase to some values that can actually be used in the scheduler. For example, let’s 
say that the scheduler needs the number of elements to be computed by each device 
within a vector, but the output of the optimize phase is the start and the end of the 
portion of the vector to be computed. Data adjustments depend on the application so 
this procedure is essentially application-dependent.

3.3.2 � Hardware adjustments

Generally speaking, hardware is very sensitive to data sizes and other factors, so 
performance might vary depending on the input size. This is very harmful to predic-
tion accuracy and is something that must be solved in this phase. The goal of hard-
ware adjustments is to ensure that the input of the next phase (scheduling) matches 
the same performance conditions as the previous phase (profiling).

For example, let’s consider the case of tensor cores. As we discussed, tensor cores 
typically perform differently depending on the size of m and k. Let’s say that we per-
form the profiling phase assuming that input sizes will always be multiple of 8, the 
best-case scenario. However, the optimized values m and k given by the solver do 
not have to be a multiple of 8. This phase takes care of these low-level details, which 
are key for high-quality prediction accuracy.

It is worth noting that the goal is not to capture all the aspects of both hardware 
and software that have an impact on performance, but to capture only the hardware 
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characteristics that are not captured by the prediction phase in POAS. For example, 
the impact of the memory hierarchy or the use of shared memory in GPUs is directly 
captured by the predict phase and therefore does not have to be considered here.

3.4 � Scheduler

Within the POAS framework, different scheduling policies can be implemented. In 
this work, we only consider a static scheduling approach. The static scheduler uses 
the performance model and optimizes the problem formulation to get the optimal 
inputs for each device. Other scheduling policies (for example, dynamic scheduling) 
are left for future work. The scheduler policy must also include how to manage the 
communications between the CPU and the accelerators, which might have a signifi-
cant impact on performance. The framework might implement different schedulers 
that work better or worse for different applications, allowing users to select the best 
scheduler for each case.

3.4.1 � Data communication scheme

In work distribution, the effective use of the memory bus is a performance crucial 
aspect. In ALP environments (like SoCs), accelerators are usually connected to a 
shared bus, where all of them can communicate with the CPU. Hence, optimizing 
applications for exploiting ALP is challenging since the bus (thus, the throughput) 
must be shared among the accelerators.

As a first approach, we propose a scheduler based on priority scheduling. The 
idea is to assign a priority to each device connected to the shared bus. Then, data 
are copied to/from the CPU in the order dictated by the priority ordering. There are 
many approaches to designing this scheme with different goals, like minimizing the 
idle time of accelerators. We leave for future work to further investigate more effi-
cient approaches.

4 � Scheduling GEMM and convolution with POAS

This section details how POAS can schedule real-world applications. Hence, this 
section should not be considered as an attempt to find the optimal prediction or 
scheduling methodology for GEMM or convolution. The goal of this section is to 
show how the framework works, so its main focus is not on the particular perfor-
mance prediction approaches or schedulers used. First, we detail all the phases for 
matrix multiplication. Later, in Sect. 4.5, we highlight only the differences between 
GEMM and convolution, since most of the workflow in POAS for GEMM and con-
volution remains the same.

We designed a POAS implementation focused on minimizing the execution time, 
targeting CPUs, GPUs and tensor cores (from now on, XPUs). The implementation 
relies on optimized libraries to perform the matrix multiplications: MKL (in Intel 
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CPUs), BLIS (in AMD CPUs) and cuBLAS (for both CUDA and tensor cores). 
For convolution workloads, our implementation relies on oneDNN (in CPUs) and 
cuDNN (in GPUs).

4.1 � Predict (GEMM)

4.1.1 � Linear regression

To design the performance predictor for GEMM, we used a regression analysis 
approach. It is well known that GEMM general algorithm has a complexity of O(n3) . 
But to use linear regression, we must find a way to represent the time with linear 
complexity. Thus, we model the execution time with the number of operations (from 
now on, ops), such that ops = m ∗ n ∗ k , where m, n and k are the matrix dimen-
sions. In other words, the execution time grows with a cubic complexity if we con-
sider the input size, but it grows linearly considering the number of operations.

While this linear function can generally predict the performance of GEMM, 
there are certain hardware peculiarities which might cause the prediction to fail. For 
example, the XPU will provide radically different results depending on the input size 
of the matrix, as the tensor cores can only be optimally used when the input meets 
some criteria. To eliminate ambiguity, the performance predictor always assumes 
the best case (e.g., in the case of tensor cores, it assumes that input size meets the 
criteria that give the best performance). Therefore, one additional task in the adapt 
phase is ensuring that real workloads can be computed in the same way that the pre-
dictor was trained for. We further contemplate these details in Sect. 4.3. In addition 
to the compute times, we also predict copy times between CPU and GPU.

4.1.2 � Profiling

We perform a profiling step of the hardware platform, which is done only once at 
installation time and takes less than five minutes to complete. The profiling phase 
measures the computing power of all the hardware devices available in the system 
and the memory bandwidth between the CPU and the accelerators. Then, the results 
are stored in a text file that is read when real matrix multiplication workloads arrive. 
To improve prediction accuracy, we profile the performance of squared matrix mul-
tiplication only, rather than profiling many different matrix shapes. Restricting the 
profiling space can improve prediction significantly since the range of predicted 
inputs is smaller. Then, when a big, non-square matrix computation arrives, POAS 
divides the matrix into a list of squared matrices, which are equivalent to computing 
the whole matrix at once. (We detail the slicing algorithm in Sect. 4.3.1.) Using this 
approach, we predict the performance of all matrix shapes precisely. Therefore, the 
profiling phase consists of two steps:

•	 Computing power profiling: The program runs a set of squared matrix multipli-
cations (using appropriate libraries like MKL, BLIS or cuBLAS). The sizes of 
the squared matrices are variable and adjustable depending on the device (see 
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Sect.  5.1.3 for more details). When all the experiments have finished, linear 
regression is performed to obtain the linear function that models the execution 
time of the device.

•	 Memory bandwidth profiling: The program runs a microbenchmark that meas-
ures the bandwidth between the CPU and each accelerator.

4.2 � Optimize (GEMM)

In the optimization phase, we formulate a constraint satisfaction problem (CSP) that 
minimizes the execution time. Therefore, the goal of the solver is to find a distribution 
of ops among the hardware devices such that the total execution time is minimal.

4.2.1 � Problem formulation

We express the execution and copy times as a mixed-integer linear programming 
(MILP) problem. We define cx as the independent variables, which represents the num-
ber of operations (ops) to be computed by device x. We also define yx as the function 
that gives the time to copy A, B and C matrices. The goal of the solver is to minimize 
the following objective function (which models the total execution time of the GEMM 
in n devices):

where 

•	 n is the number of devices in the system.
•	 tcx is a linear function in the form acx + b that models the execution time of the 

device x when it computes cx operations.
•	 tyx is a linear function that models the copy time of the device x when it computes 

cx operations (if x is a CPU, then tyx = 0).

with constraints:

where N is the total number of operations to be computed (i.e., m ∗ n ∗ k ). To cal-
culate the copy time function ( yx ), we first start by computing bytes to be transferred 
(B) as:

where dtx is the data type size in bytes and m, n, k are the matrix dimensions. When 
distributing the matrices across devices, we only vary m (see Sect. 4.3.1). Then, we 

(1)max(tc1 + ty1 , tc2 + ty2 , ... , tcn + tyn )

(2)c1, c2, ... , cn ≥ 0

(3)
n
∑

i=0

ci = N

(4)B = dtx ∗ (mk + kn + mn)
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can find the relationship of bytes copied with the number of operations ( cx ) by sub-
stituting m in the previous equation:

if we simplify and account for the memory bandwidth ( bwx ), we get:

Equation 6 gives the time to copy A, B and C matrices, assuming that the communi-
cations happen in a bus exclusively used by device x. We implement the MILP prob-
lem using CPLEX 12.10  [16]. The CPLEX solver is embedded in the framework 
using the CPLEX API, and the MILP formulation is defined dynamically, depending 
on the devices being used. When the model has been optimized, the output vari-
ables of the MILP solver are c1, c2, ... cn , which represent the number of operations 
to compute by each device.

4.3 � Adapt (GEMM)

The optimized values given by the MILP solver in the previous phase are the num-
ber of operations, while the scheduler needs values for m, n and k. Therefore, in this 
phase, the number of operations is converted into matrix shape values, so they can 
be used by the scheduler. For this task, we designed an algorithm called ops_to_
mnk that works on both data and hardware adjustments.

4.3.1 � Data adjustments

Regarding data adjustments, the ops_to_mnk algorithm must accomplish two 
tasks: 

1.	 Find m, n and k such that the number of operations matches the operations given 
by the MILP solver. This gives the m, n and k dimensions for each device.

2.	 Express the global matrix product as a list of squared sub-matrices products (in a 
best-effort manner). This divides the m, n and k dimensions for each device into 
sub-matrices for precise performance prediction.

For the first task, we start setting n and k to their original values. Partitioning 
a matrix with a different value of n would provide partial results in the output C 
matrix, so we fix n for convenience. Setting k to the original value makes the ops_
to_mnk algorithm easier since just the rows of A (m) must be distributed. Then, to 
map ops to mnk, only m has to be determined, which is computed as m =

ops

n∗k
.

For the second task, the algorithm must ensure that resultant matrices are as 
squared as possible (best-effort). Having squared matrices is the optimal scenario, as 
we would be performing the matrix multiplications in the same way as the profiling 

(5)B = dtx ∗
( cx

nk
k + kn +

cx

nk
n
)

(6)yx =

dtx ∗
(

cx

(

1

k
+

1

n

)

+ kn
)

bwx
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phase. But it can only be accomplished if the input size is divisible by the sub-
matrix sizes, which is not always possible. However, matrices that are very close to 
being squared (e.g., m = 1.1k ) can also be predicted with very high precision. Let us 
denote with an apostrophe the dimensions of the submatrix (e.g., k′ ) and without it, 
the dimensions of the original matrix (e.g., k). The algorithm tries to make m′ and k′ 
as similar as possible while keeping n′ equal to n. Our algorithm always ensures that 
the number of horizontal dimensions in A fits perfectly (i.e., k % k� == 0 ). Without 
such restriction, “gaps" may appear in the last column of A. Therefore, the search 
space in k′ is restricted to the divisors of k, which happens to be big enough when 
the input matrix is also big. For determining m′ size, the algorithm iterates over all 
the possibilities, analyzing how “squared” the resultant matrices using a simple 
heuristic would be. For a given list of squared matrices with {m�

1
,m�

2
, ...m�

n
} and 

{k�
1
, k�

2
, ... k�

n
} , the squareness (sq) is computed as:

This value represents how squared the global set of sub-matrices is. Thus, to find the 
best sub-matrix distribution, the algorithm chooses the one that maximizes the value 
of the heuristic.

4.3.2 � Hardware adjustments

The ops_to_mnk algorithm asserts that the matrix sizes satisfy the requirements 
imposed by the hardware to achieve optimal performance. In our case study, we con-
sider CPUs, GPUs and tensor cores, so the ops_to_mnk algorithm must meet two 
additional requirements:

•	 Tensor Cores: To reach optimal performance, the input sizes must meet the fol-
lowing conditions: m % 8 == 0 and k % 8 == 0  [31]. To do so, the algorithm 
reduces the input size until it meets the desired requirements. In the end, this 
means that the tensor cores get fewer operations than the MILP solver speci-
fied, but this is barely noticeable since the size reduction is tiny compared to the 
global size.

•	 CPU cores: When profiling the CPU, inputs are designed to fit into cache mem-
ory. Therefore, when a real workload arrives, the algorithm must ensure that the 
generated submatrices also fit into cache.

4.4 � Scheduler (GEMM)

For the scheduler, we use a static scheduling approach, as we found that gives excel-
lent results for our case study. In other words, the scheduler receives the matrix sizes 
for each device and does not change them over time. We explore some of the pos-
sible issues of this approach in Sect. 5.3.

(7)sq =

N
∑

i=0

(

min(m�
i
, k�

i
)

max(m�
i
, k�

i
)
∗ m�

i
k�
i
n

)
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Regarding the shared PCIe bus, we use a priority scheduling approach. When 
the program reads the configuration file, it assigns a priority for each device: the 
faster the device, the higher priority. Then, A and B matrices are copied in the order 
established by the priority. Thus, lower-priority accelerators remain idle, while the 
higher-priority devices are copying the data. After the computation, the first device 
(meaning the faster one) copies C to the host, and the same order is used to copy 
the remaining parts of C. In this case, higher idle times are experienced from high-
priority devices, which have to wait for the rest of the devices to complete. Figure 4 
shows the proposed communication scheme. 

4.5 � Convolution

4.5.1 � Prediction

Similarly to how we divided matrix multiplication by the number of rows in matrix 
A, we look for a way of dividing a convolution workload to distribute it among the 
compute elements. We decide to divide convolutions by the minibatch size, which is 
a common technique in distributed and parallel approaches [5, 35]. In the profiling 
phase, convolution is measured by varying all parameters (image sizes, number of 
filters, filter sizes) except for the minibatch size, which we restrict to a reduced set. 
(We detail values for this set in Sect. 5.1.3.) We perform the profiling phase comply-
ing with the convolution tensor core restrictions. First, C and N must be multiple of 
8 [32]. Second, the 4D tensors layout must be NHWC [33]. For simplicity, we use 
no padding and a stride of 1.

4.5.2 � Optimize

We follow a similar formulation to the one shown in matrix multiplication, where 
we express the time with respect to the number of operations. Naturally, we have to 
compute the number of operations for convolution, which is [3]:

where Kh and Kw are the height and width of the filters, C is the number of channels, 
Hout and Wout are the height and width of the output image, and K is the number 
of filters. In our problem formulation, we change this formula to fit our particular 

(8)ops = Kh ∗ Kw ∗ C ∗ Hout ∗ Wout ∗ K

0 10 20 30 40 50 60 70 80 90 100

CPU

GPU

XPU

% Time

Compute Copy Idle

Fig. 4   Proposed scheduling communication scheme in a shared bus with CPU+GPU+XPU
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needs. First, we observed that DNN implementations are typically parallelized over 
the number of filters (K), meaning that the execution time is invariant to K (when 
the filter sizes are small enough). Second, we must account for the number of mini-
batches in the formula. Therefore, we use the following expression:

where N is the number of minibatches. Likewise, we compute the memory copy 
function following the same approach as in matrix multiplication. For example, the 
bytes to be copied (B) for the input image is:

where, again, cx and dt are the number of operations and the size in bytes of the data 
type, respectively.

4.5.3 � Adapt

In convolution, we also need to adapt the optimized values (e.g., transform operations 
into convolution shapes). We implemented a straightforward algorithm called ops_
to_batches that simply computes the number of minibatches (N) of each device as:

The algorithm also ensures that the XPU input sizes passed to the scheduler have N 
and C multiple of 8.

4.6 � Implementation details

In our POAS implementation, we copy the data between the CPU and GPU asynchro-
nously. However, the GPU does not start computing until the whole data stream is copied. 
This simple approach could be improved using CUDA streams and overlapping the com-
putation with memory copies. In either case, the performance predictor can be adapted 
to predict the memory copies with or without overlap. Therefore, for our study, it is not 
particularly relevant whether the implementation copies the data with or without overlap.

5 � Evaluation

We evaluate POAS using matrix multiplication and convolution applications. 
Section 5.1 details our hardware and software configuration. In Sect. 5.2, we ana-
lyze the prediction accuracy of POAS. Lastly, we evaluate the performance of 
POAS in Sect. 5.3.

(9)ops = Kh ∗ Kw ∗ C ∗ Hout ∗ Wout ∗ N

(10)B = dt ∗ N ∗ C ∗ H ∗ W

(11)= dt ∗
cx

Kh ∗ Kw ∗ C ∗ Oout ∗ Wout

∗ C ∗ H ∗ W

N =
ops

Kh ∗ Kw ∗ C ∗ Hout ∗ Wout
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5.1 � Test bed

5.1.1 � Hardware and software configuration

The evaluation platform is equipped with mach1 and mach2, two HPC servers 
with a CPU+GPU+XPU configuration. During this evaluation, we refer to an 
XPU as a GPU that uses the tensor cores to perform the matrix multiplication, 
whereas GPU uses traditional CUDA cores. The hardware configuration, as well 
as the summary of the libraries that POAS relies on, is summarized in Table 1. 
The specifications for each device are detailed in Table 2.

Both systems run Centos 8.2 (4.18.0-193 kernel in mach1 and 4.18.0-348 in 
mach2). We build POAS using g++ 8.4.1. Regarding the communication between 
CPU and GPUs, the RTX 2080Ti’s in mach1 are connected to a PCIe 3.0 x16 
bus, which peak memory bandwidth is 15.75 GB/s. In mach2, both cards are 
connected to a PCIe 4.0 x16 bus, providing a peak memory bandwidth of 31.75 
GB/s. Since the RTX 2080Ti supports up to PCIe 3.0, the card in mach2 works 
in 3.0 mode, even though it is connected to a 4.0 slot. In both mach1 and mach2, 
both GPUs are connected to the same PCI channel, and thus, the PCI bus usage 
is similar to what Fig. 4 shows. For the convolution, we use the CUDNN_TEN-
SOR_NHWC tensor format, as it is the optimal format for tensor cores  [33]. For 
the experiments, we reserve one physical CPU core for managing the GPU and 
XPU. Henceforth, mach1 has 5 physical cores and mach2 has 23 cores to run the 
CPU workloads.

5.1.2 � Input sizes

For matrix multiplication, we conceive six different matrix sizes (shown in 
Table 3) sorted in descending order by the number of operations (TOps). We are 
interested in evaluating relatively small matrices, like the first two inputs, as well 
as squared and non-squared matrices. We also want to study very skinny matrices 
like input 3, where the m dimension is much larger than the others. The same idea 
is explored for n and k dimensions in inputs 4 and 5. Those inputs are useful to 
understand how solid the predictor is because they allow us to see if the predictor 
performs well on non-square and skinny matrices.

Table 1   Hardware and libraries summary for the testbed environment

CPU GPU XPU

mach1 Hardware Xeon v3 RTX 2080 Ti RTX 2080 Ti
Software MKL 2020.0.2 cuBLAS 11.2.0 Same as GPU

oneDNN 1.96.0 cuDNN 8.0.5
mach2 Hardware AMD EPYC RTX 3090 RTX 2080 Ti

Software AOCL BLIS 3.1 cuBLAS 11.8.0 Same as GPU
oneDNN 1.96.0 cuDNN 8.4.1
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For convolution, we design four inputs (shown in Table 4) based on real CNN 
workloads  [45]. Inputs 1 and 3 are representative of the ResNet 50 architecture, 
while inputs 2 and 4 are based on AlexNet.1 Due to memory size limitations, inputs 
1 and 2 are executed only in mach1, and inputs 3 and 4 are run in mach2, which has 
a bigger GPU memory size. For each input, we repeat the computations 50 times, 
therefore executing 50 matrix multiplication and convolutions over the accumulated 
data. We run each input ten times, and the values shown are the average over these 
three independent runs.

5.1.3 � Profiling configuration

In matrix multiplication, the profiling phase performs 30 squared matrix products 
with matrix sizes ranging between 1000 and 2000 for the CPU and between 3000 
and 6000 for GPU/XPU. For the generation of the list of squared sub-matrices, they 
are restricted to be of a size such that the number of operations are between the same 
number of operations that were performed during profiling. In other words, in the 
CPU, the sub-matrices are restricted to 1000 × 1000 ×  1000 ( 109 ) and 2000 ×2000 
×2000 ( 8 × 109 ) operations, and in GPU between 3000 × 3000 × 3000  ( 27 ∗ 108 ) 
and 6000 × 6000 × 6000 ( 216 ∗ 108 ) operations. Thus, sizes are computed on the fly 
depending on the size of n in the original matrix.

In convolution, the profiling phase performs a set of convolutions with a min-
ibatch size of 8, 128 and 256 for CPU, GPU and XPU, respectively. Similarly to 
matrix multiplication, those sizes are the same as the minibatch size used in real 
workloads.

Table 2   Hardware specifications for the testbed environment

Model CPUs GPUs / XPUs

Intel Xeon 
E5-2603 v3

AMD EPYC 7413 NVIDIA RTX 
2080 Ti

NVIDIA RTX 3090

Architecture Haswell Zen 3 Turing Ampere
Technology 22 nm 7 nm 12 nm 8 nm
CPU cores 6 24 – –
CUDA cores – – 4352 10496
Tensor cores – – 544 328
Max. frequency 1.6 GHz 3.6 GHz 1.5 GHz 1.6 GHz
TFLOP/s (FP32) 0.307 2.76 13.45 35.58
TFLOP/s (FP16) – – 107.5 284.65
LLC 15 MB 128 MB 6 MB 6 MB
Memory size 64 GB 512 GB 11 GB 24 GB

1  We reduced the number of filters due to GPU memory limits.
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5.2 � Prediction accuracy

To evaluate the performance predictor used in POAS, we study the prediction accu-
racy. We measure and compare the execution and memory copy times with the 
predicted values. Then, we calculate the prediction error e as an expression of the 
relative error: e = 100 ∗

v−vpred

v
 , where v is the measured time in our experiments 

and vpred is the value given by the predictor. We also compute the root mean square 
error (RMSE), which gives a perspective of the prediction robustness across differ-
ent inputs.

Tables  5 and  6 show the prediction error and root mean square error (RMSE) 
for GPU and XPU, where we show the global prediction error (and RMSE) in the 
first instance, followed by the computing and memory copy prediction error (and 
RMSE), respectively. Overall, we observe that the prediction error is low (typically, 
under 5%). This is a key factor to provide high-quality co-execution because oth-
erwise, the load imbalance would be very high, leading to substantial performance 
degradation. Except for a few cases, the memory prediction error is very low, espe-
cially for mach2, whose prediction is close to being perfect. Some inputs are pre-
dicted with slightly higher prediction error ratios than the mean (e.g., the latest 
ones in the GPU and XPU in mach1). In fact, these “outliers” are the main fact that 
increases the RMSE of the whole evaluation. We believe that these observations are 
caused by high temperatures, which cause overheating. During the profiling phase, 
we leave all the device’s frequencies unlocked. Because the profiling phase is rela-
tively short, the device does not get significantly hotter than the idle temperature. 
However, in real workloads, the temperature can increase much more, downscaling 
the clock frequency to avoid overheating. In other words, the measured frequency 
in the profiling phase may not match the frequency used in real workloads. This is 

Table 3   Input sizes (GEMM) Input m (K) n (K) k (K) TOps

1 30 30 30 27.0
2 60 20 35 42.0
3 130 20 20 52.0
4 40 80 20 64.0
5 40 30 60 72.0
6 56 40 40 89.6

Table 4   Input sizes 
(convolution)

Input n c h w k kh kw

1 3500 16 224 224 16 7 7
2 4000 16 227 227 16 11 11
3 3000 32 224 224 16 7 7
4 2500 32 227 227 16 11 11
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especially true for mach1 since it has substantially worse heat dissipation capabili-
ties than mach2.

Regarding RMSE, POAS achieves very low values for both use cases, which 
confirms the great robustness of the predictor, despite the use of static sched-
uling. However, a more sophisticated solution could employ a dynamic sched-
uler that considers the frequency in real-time of every device and dynamically 
balance the workload to further improve accuracy. In either case, POAS fully 
adapts to the underlying hardware, properly exploiting its computing power.

Figures 5 and 6 show the boxplots of the execution time for both applications. 
The variance between runs is very low, yielding a mean difference between the 
longest and shortest of 0.73%. Based on our results, we can confirm that POAS 
is able to efficiently exploit ALP in CPU+GPU+XPU environments for GEMMs 
and convolutions.

Fig. 5   Box plots of the execution time of GEMM in mach1 (blue) and mach2 (red)

Fig. 6   Box plots of the execution time of convolution in mach1 (blue) and mach2 (red)
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5.3 � Performance

5.3.1 � POAS overhead

To evaluate the overhead of the framework we measure the execution time of 
the main components of POAS. First, we measure how much is the cost of using 
CPLEX to solve the MILP problem at runtime, used in the Optimize phase. In 
all our experiments, the execution time of CPLEX was between 0.1 and 0.2  s, 
which becomes negligible compared to the execution of the actual computa-
tion. Another candidate for inducing unwanted overhead is the ops_to_mnk 
and ops_to_batches algorithms, used in the Adapt phase. Those algorithms 
are very fast, with typical execution times in the order of a few milliseconds, 
so their time does not add any overhead to the framework. In fact, the major-
ity of the time spent before computing the actual application comes from the 
initialization of the GPU/XPU and the memory allocation, both unrelated to the 
framework.

5.3.2 � Work distribution

We show the workload distribution used by POAS in Fig. 7. As we can see, the CPU 
provides little help in computing the matrix multiplication (especially in mach1, 
where it gets less than 1% of the work), while the GPU takes between 20% and 30% 
of the work. Because matrix multiplication is a very compute-intensive workload, 
the communication penalty between the CPU and the accelerators is smaller than 
the higher computational power of the accelerators. On the other hand, convolution 
has a lower arithmetic intensity, so it is easier for the CPU to contribute more work 
than in matrix multiplication since memory copy overhead is bigger in the accelera-
tors. Hence, we can observe that the CPU participates more in both machines and 

Fig. 7   Percentage of work distribution among devices in mach1 and mach2 for GEMM and convolution
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the GPU participates less since the shared bus is occupied more often by the XPU, 
which has a higher priority in accessing the PCIe bus. This figure is also useful to 
compare when ALP is a better choice over offloading. As mentioned, the CPU in our 
setup is very weak compared to the XPU. In a setup with only the weak CPU and the 
XPU, ALP would yield negligible improvement compared to offloading. The same 
would happen if having a slow GPU. In essence, when the accelerator is signifi-
cantly more powerful than the rest of the devices, ALP provides little speedup over 
offloading. However, in our setup, the CUDA cores are a valuable resource when 
used in conjunction with the XPU compared to offloading only to the accelerator, so 
ALP is indeed beneficial. 

Now, we compare POAS execution time against the optimal work distribution. 
To find the optimal distribution, we develop a small program that explores all pos-
sible work distributions and finds the one that achieves the minimum execution 
time. Figure 8 shows that POAS distribution was very close to the optimal in both 
machines and applications. The difference between the POAS and optimal distribu-
tions comes from two factors. The first one is prediction errors, which we already 
studied in depth. The second one is load unbalance in the POAS work distribu-
tion. Even though POAS aims to distribute evenly the work among devices, this is 
not always possible. Sometimes, inputs must be divided in non-even distributions 
to make sure that accelerators receive the optimal input size. (We discussed this in 
Sect.  4.3.2.) This division unbalances the distribution because other devices must 
take the remainder work from the accelerator, or do less work since it is now done 
by the accelerator. In any case, this second factor has less influence than the predic-
tion error. However, we observe that POAS tends to give excessive work to the CPU 
in mach2. A small work excess in the CPU has a bigger impact because it is more 
sensible to execution time variations. This explains why POAS is closer to optimal 
in mach1.

Fig. 8   Runtime comparison of POAS implementation for GEMM and convolution against optimal distri-
bution
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6 � Conclusions and future work

Energy-constrained systems benefit from accelerators thanks to their lower con-
sumption while high-performance systems also take advantage of massive perfor-
mance improvements in compute-intensive workloads. To exploit heterogeneity, 
accelerator level parallelism (ALP) is a promising approach. As the number of 
applications in which accelerators are used is growing quickly, we need solutions 
that allow this process to be performed easily and efficiently.

This work has presented POAS, a framework for scheduling workloads among 
the heterogeneous compute elements available within a node. POAS adapts to the 
software libraries and hardware, maximizing resource usage. We tested our frame-
work on two different fields: linear algebra (matrix multiplication benchmark) and 
deep learning (convolution benchmark) using a heterogeneous environment con-
sisting of CPUs, GPUs (CUDA cores), and XPUs (Tensor cores). Our framework, 
POAS, showed excellent performance, completing the tasks in a time very close to 
the optimal time for the hardware and applications used, with a negligible execution 
time overhead. Additionally, the POAS predictor performed very well, achieving 
very low RMSE values for both use cases.

Therefore, POAS can be a valuable tool to fully exploit ALP to improve overall 
performance over offloading in heterogeneous settings.

For future work, we plan to extend POAS with more sophisticated scheduling 
policies. We also plan to study how the framework adapts to other kinds of problems 
where predicting the execution time upfront is harder or not possible, like in sparse 
matrix applications. Another open topic is how to efficiently schedule the communi-
cations between the CPU and accelerators, which can also have a notable impact on 
overall performance, especially in shared bus scenarios.
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