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Abstract
This study focused on the optimization of double-precision general matrix–matrix 
multiplication (DGEMM) routine to improve the QR factorization performance. By 
replacing the MKL DGEMM with our previously developed blocked matrix–matrix 
multiplication routine, we found that the QR factorization performance was subopti-
mal due to a bottleneck in the AT

⋅ B matrix–panel multiplication operation. We pre-
sent an investigation of the limitations of our matrix–matrix multiplication routine. 
It was found that the performance of the matrix multiplication routine depends on 
the shape and size of the matrices. Therefore, we recommend different kernels tai-
lored to matrix shapes involved in QR factorization and developed a new routine for 
the AT

⋅ B matrix–panel multiplication operation. We demonstrated the performance 
of the proposed kernels on the ScaLAPACK QR factorization routine by comparing 
them with the MKL, OPENBLAS, and BLIS libraries. Our proposed optimization 
demonstrates significant performance improvements in the multinode cluster envi-
ronments of the Intel Xeon Phi Processor 7250 codenamed Knights Landing (KNL) 
and Intel Xeon Gold 6148 Scalable Skylake Processor (SKL).
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1  Introduction

ScaLAPACK [1, 2] has been the industry standard for dense linear algebraic com-
putation for the past 30 years. Our aim was to improve the performance of QR fac-
torization that uses a basic linear algebra subprogram (BLAS) [3] double-precision 
general matrix–matrix multiplication (DGEMM) operation. The general matrix mul-
tiplication operation is of the form

where � and � are scalars, and A, B, and C are matrices of sizes m × k , k × n , and 
m × n , respectively.

In blocked matrix multiplication, the matrices are divided into submatrices. 
The dimensions of these submatrices are referred to as block sizes. When both the 
dimensions are small, it is referred to as a block. The term panel is used when only 
one dimension is small. Depending on whether m, n, or k is small, the matrix–matrix 
multiplication in Eq.  (1) can be referred to as panel–matrix, matrix–panel, or 
panel–panel, respectively [4].

Gunnels et al. [5] presented a family of algorithms designed for matrix computa-
tions, and analyzed the cost of data movement between different memory layers in 
a multilevel memory architecture. Goto and Van De Geijn [6, 7] presented a layered 
approach for implementing general matrix–matrix multiplication (GEMM). In an 
earlier study [8], a blocked matrix–matrix multiplication operation was implemented 
for large matrices stored in the row-major. The aforementioned routine achieved up 
to 99 percent of the MKL DGEMM performance on a single core, and the parallel 
implementation achieved good scaling results that were more than 90 percent of the 
MKL DGEMM [8, 9]. The column major variant of the double-precision blocked 
matrix–matrix multiplication algorithm was also developed based on the conven-
tional Goto algorithm in C using an Intel AVX-512 intrinsic and named OUR_
DGEMM [4, 10]. Tuyen et al. [11] presented a method for optimizing ScaLAPACK 
LU factorization by optimizing some routines in the BLAS library, including the 
DGEMM routine, and replacing the MKL DGEMM routine with OUR_DGEMM, 
illustrating that the efficacy of the proposed LU factorization routine was compara-
ble to that of the legacy ScaLAPACK LU factorization routine.

However, the performance of QR factorization was not optimal. The motiva-
tion behind this study was to identify the reasons for the performance bottleneck in 
QR factorization. We investigated the performance issues of OUR_DGEMM and 
conducted a detailed analysis focusing on optimizing the multiplication operations 
involved in QR factorization. QR factorization casts half of the computation involv-
ing panel–panel multiplication, and the other half requires either the matrix–panel 
or panel–matrix multiplication operation. We discovered that the suboptimal perfor-
mance of AT

⋅ B matrix–panel multiplication operation caused low performance of 
QR factorization.

A performance comparison of the matrix multiplication operation for differ-
ent operations of the MKL DGEMM and OUR_DGEMM is shown in Fig. 1a, b, 
respectively. Figure 1 shows a comparative analysis of the performance of matrix 

(1)C ∶= aAB + �C,
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Fig. 1   Performance comparison of matrix multiplication operations of a MKL DGEMM and b OUR_
DGEMM for small dimension of size 40 on Intel KNL
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multiplication operations when the matrices involved in the multiplication are of dif-
ferent shapes and sizes. The line with circular ( ∙ ) data points presents the perfor-
mance of panel–matrix multiplication. The line with cross-shaped data points ( × ) 
represents the performance of the matrix–panel multiplication. The line with star-
shaped ( ⋆ ) data points presents the performance of panel–panel multiplication. For 
all the settings mentioned above, the small dimensions were set to 40.

The number of computations involved in the matrix multiplications is 
2 × m × n × k because the number of computational operations required is directly 
proportional to the number of elements in each matrix. However, in panel–matrix, 
matrix–panel, and panel–panel multiplication, the performances are different, even 
though the theoretical number of computations is the same. The performance was 
suboptimal, particularly for matrix–panel multiplication.

OUR_DGEMM performs nearly optimally on m = n = k matrix multiplication 
but performs sub-optimally on matrices of different shapes. We discovered that our 
routine did not attain an optimal performance for different matrix shapes based on 
the operation and size of the matrices involved in multiplication.

QR factorization involves AT
⋅ B and A ⋅ BT multiplication operations. In our rou-

tine, the performance of AT
⋅ B matrix–panel multiplication operation was very bad, 

so we developed a new routine for AT
⋅ B matrix–panel multiplication, also opti-

mized the existing routine for A ⋅ BT panel–panel multiplication operation, as dis-
cussed in Sect. 3.

In this study, we used the term “micro-kernel” as the core computational unit 
responsible for performing multiplication operations. The term “kernel” refers to the 
implementation of an algorithm with specific parameters and a micro-kernel. The 
term “routine” refers to the implementation of an algorithm without specific param-
eters. The routine can also be a kernel but has a different connotation. For example, 
an algorithm with different micro-kernels may be considered the same routine but 
treated as different kernels.

The main contribution of this study:

•	 The performance issues of OUR_DGEMM were analyzed when applied to 
matrices of different shapes. This highlights that a single kernel for matrix multi-
plication may not be universally optimal, and it is crucial to select different ker-
nels based on the shapes and sizes of the matrices involved.

•	 Implemented a new routine for AT
⋅ B matrix–panel multiplication operation and 

optimized the existing routine for A ⋅ BT panel–panel multiplication operation.
•	 The matrix multiplication performance using the new kernels in the ScaLAPACK 

QR factorization routine on Intel KNL and SKL multiprocessors was evaluated 
by comparing MKL [12], OPENBLAS [13], and BLIS [14].

2 � Background

ScaLAPACK is a parallelized version of LAPACK [15, 16] that has a modular 
architecture based on HPC software packages and is portable for multinode systems 
that support MPI [17]. ScaLAPACK was built on top of the Basic Linear Algebra 
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Communication Subprograms (BLACS) [18], which provide a standardized API for 
communication between processes. ScaLAPACK uses both parallel BLAS (PBLAS) 
[19] and explicit distributed memory parallelism to extend LAPACK to multinode 
and distributed memory structures. ScaLAPACK solves systems of linear equations, 
least squares problems, eigenvalue problems, and singular value decompositions. 
ScaLAPACK was designed to operate with distributed memory systems that use a 
message-passing paradigm, such as clusters and supercomputers. ScaLAPACK pro-
vides several routines for factoring matrices, including QR factorization.

QR Factorization. A method for factoring a matrix into the product of an orthog-
onal matrix and an upper triangular matrix. The QR factorization of a matrix A is a 
technique used in linear algebra to decompose a matrix A into two matrices, Q and 
R, where A ∶= Q ⋅ R , A is an m × n matrix, Q is an m × m orthogonal matrix, and R 
is an m × n upper-triangular matrix, as shown in Fig. 2.

In QR factorization, the primary purpose of the routine is to apply QT to the 
remainder of the matrix from the left: Ã ∶= QT

⋅ A . There are different methods to 
compute this routine, and the currently available version of ScaLAPACK computes 
it as follows:

In the current implementation of ScaLAPACK, the first DGEMM operation 
computes W ∶= AT

⋅ V  and conducts a (transpose)-(no-transpose) operation of 
the matrix multiplication, as shown in Fig.  3. This operation is a matrix–panel 
multiplication. In addition, the second DGEMM operation computes and updates 

QT
⋅ A ∶= (I − VTVT)TA

∶= (I − VTTVT)A

∶= A − VTTVTA

∶= A − V(TTVTA)

∶= A − V(ATVT)T

∶= A − V(WT)T

∶= A − VW̃T

Fig. 2   QR factorization
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Ã ∶= A − V ⋅ W̃T and conducts a (no-transpose)-(transpose) operation. The second 
DGEMM operation is illustrated in Fig. 4. This operation is called panel–panel 
multiplication.

3 � Methodology

In this section, we analyze the performance issues of OUR_DGEMM and address 
them to improve QR factorization performance.

3.1 � Revisiting OUR_DGEMM

The double-precision blocked matrix multiplication algorithm, OUR_DGEMM, 
was implemented in C with the AVX-512 intrinsic. A blocked matrix multiplication 
algorithm was used to improve the effectiveness of memory hierarchies. In addition 
to cache blocking, vectorization, loop un-rolling, parallelism, and data prefetching 
techniques have been utilized to optimize the performance of matrix–matrix mul-
tiplication. In this implementation, the matrices are stored in a column major order 
and packed into a contiguous array for the core computation component, the micro-
kernel. The pseudocode for the micro-kernel can be found in this study [4]. The 
implementation of OUR_DGEMM adheres to Algorithm 1, as illustrated in Fig. 5. 

Fig. 3   Illustration of DGEMM 
operation for W ∶= AT

⋅ V

Fig. 4   Illustration of DGEMM operation for Ã ∶= A − V ⋅ W̃T
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Algorithm 1   Blocked matrix–matrix multiplication algorithm

In these loops of Algorithm  1, the term Ĉ += Â ⋅ B̂ is corresponding to the 
micro-kernel. The micro-kernel performs a series of rank-1 updates on the mr × nr 

Fig. 5   Illustration of Algorithm 1
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block of matrix C to load and store data in the registers. The choice of register-
blocking parameters mr , nr , and cache-blocking parameter kb is crucial for opti-
mizing the micro-kernel performance. The choice of mr , nr is limited by the num-
ber of available registers on the target machine, and the size of kb should be large 
enough to amortize the cost of updating the mr × nr block of matrix C. The meth-
odology for choosing the best mr , nr , and kb is discussed in Sects. 3.2 and 3.7.

The three outer loops i, p, and j are responsible for partitioning the matrices 
into submatrices, as shown in Fig. 5. The subdivision of the matrices into blocks 
or panels depends on the loop sequences and cache block sizes. The inner two 
loops ir and jr correspond to loop tiling, which is a technique used for cache 
blocking. These loops divide the submatrices into smaller units called slivers. 
These loops divide the matrix multiplication operation into smaller computing 
problems that can be processed by the micro-kernel. The algorithm performance 
relies on many factors, such as loop sequences, parallelization of appropri-
ate loops, register and cache blocking parameters, vectorization, loop unrolling, 
and prefetch distances. The performance of the algorithm was determined by the 
coordination of these factors.

Fig. 6   Illustration of Algorithm 1 for a A ⋅ BT panel–panel multiplication on the left and b AT
⋅ B matrix–

panel multiplication on the right
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For the computation of A ⋅ BT panel–panel multiplication and for AT
⋅ B 

matrix–panel multiplication, the illustration of OUR_DGEMM in blocked diagrams is 
shown in Fig. 6.

To identify the performance issues of OUR_DGEMM for matrix–panel multiplica-
tion, it is necessary to analyze the data size for reuse. This analysis enables us to deter-
mine when and where each block is cached. Table 1 presents an analysis of the data 
reuse in the different loops of OUR_DGEMM implemented according to Algorithm 1.

Data are transferred across multiple levels of the memory hierarchy. Block Ĉ of size 
mr × nr resides in the registers and is reused kb times in the innermost 6th loop. Block Ã 
divided into sliver Â of size mr × kb which resides in the L1 cache and is reused nb∕nr 
times in the 5th loop, jr. The panel of B is divided into blocks B̃ of size nb × kb , residing 
in the L2 cache, and reused mb∕mr times in the 4th loop, ir. The submatrix of A divided 
into Ã of size mb × kb that resides in the L3 cache or main memory when the L3 cache 
is not available, and is reused n∕nb times in the 3rd loop, j. Matrix C is divided into a 
submatrix of size mb × n because of loop p. Matrix A is divided into panels that are 
multiplied with matrix B of size k × n , in the 1st loop, i.

3.2 � Improving micro‑kernel

For the choice of mr × nr , Goto and Van De Geijn [6] argued that half of the available 
registers must be used to store the elements of Ĉ ; however, Lim et al. [8] demonstrated 
that the utilization of all registers achieves the optimal performance of micro-kernel. 
Both of our target multiprocessor machines, KNL and SKL, support AVX-512 intrinsic 
and have 32 vector registers per core. The possible combination of mr and nr can be 
determined using the following equation:

In Eq. (2), mr

8
 indicates the number of registers required to store the number of rows, 

and nr indicates the number of registers required to store the number of columns of 
block Ĉ , respectively. The term mr mod 8 is important because AVX-512 operates 
on 512-bit registers, and each register can hold eight double-precision floating-point 
numbers. Parameters mr and nr determine the number of rows and columns of block 
Ĉ to be loaded and stored in the registers.

(2)
mr

8
(1 + nr) ≤ 32 and mr mod 8 = 0.

Table 1   Analytical review of 
data reuse in different loops of 
Algorithm 1

# Loop Data used Size Reuse factor

1 i Matrix B k × n m∕mb

2 p Submatrix of C mb × n k∕kb

3 j Ã mb × kb n∕nb

4 ir B̃ nb × kb mb∕mr

5 jr Â mr × kb nb∕nr

6 kb Ĉ mr × nr kb
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The possible choices for mr were 8, 16, 24, and 32. This allowed for the possi-
ble combination of (mr, nr) for the maximum possible utilization of the vector reg-
isters as (8, 31), (16, 15), (24, 9), and (32, 7). According to earlier research [8], 
the best combination for matrix–matrix multiplication in KNL is (8, 31). However, 
we observed that this combination did not work well for matrices with different 
dimensions, as shown in Fig.  1. We then evaluated the existing routine and per-
formed experiments using different combinations of (mr, nr) on a single-core KNL to 
select the optimal micro-kernel. We found that (16, 15) is the second best option for 
matrix–matrix multiplication when all vector registers are used and mr ≈ nr . In this 
analysis, we examined the performance on a single core with the assumption that the 
optimal performance routine on a single core could likewise achieve optimal perfor-
mance in a multicore environment.

For the matrix multiplication operation, it was observed that the size of mb is not 
crucial for cache blocking on KNL because of the loop order ipj and the absence of 
the L3 cache. Good performance is obtained when half of the L2 cache is used to 
store B̃ , Â , and Ĉ [8, 9]. We observed that the performance was superior when the 
parameters were (mr, nr, nb, kb) = (8, 31, 124, 438).

Table 2   Optimal size of nb and 
kb for different (mr, nr) when 
m = n = k = 6400

(mr, nr) (8, 31) (16, 15) (32, 7) (24, 9) (8, 20)

# of vector registers 32 32 32 30 21
nb 124 135 126 135 120
kb 438 400 400 438 400

Fig. 7   Performance of OUR_DGEMM for different micro-kernels using (mr, nr) for A ⋅ B matrix–matrix 
multiplication when m = n = k = 6400 , AT

⋅ B matrix–panel multiplication when m = k = 6400 and 
n = 40 , and A ⋅ BT panel–panel multiplication when m = n = 6400 and k = 40 on KNL
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KNL features two cores on the same tile that share 1MB of L2 cache. Accord-
ingly, we considered Eq.  (3) to calculate the size of nb and kb by taking the best-
performing matrix–matrix multiplication operation parameters as benchmarks and 
adjusting them by varying the value of nb and kb experimentally for other combina-
tions of (mr, nr) in Table 2.

The performance of the different micro-kernels is shown in Fig.  7 for the matrix 
multiplication operations mentioned below:

•	 A ⋅ B , matrix–matrix multiplication when m = n = k = 6400.
•	 AT

⋅ B , matrix–panel multiplication when m = k = 6400 and n = 40.
•	 A ⋅ BT , panel–panel multiplication when m = n = 6400 and k = 40.

In the case of matrix–panel multiplication operations, the nb is limited by the size of 
n, and the size of B̃ cannot be sufficient for optimal performance using the same block-
ing parameters as for matrix–matrix multiplication. The most important parameter is 
kb , which has the greatest impact on the performance. The size of kb affects the sizes of 
Â , B̂ , Ã and B̃ and eventually impacts the performance of the micro-kernel. In the case 

(3)nbkb + 2mrkb + 2mrnr ≤ 64K

Fig. 8   Relationship between the size of n and the block size kb for transferring data from memory to L2 
cache in the computation of mb × n elements of the submatrix of C on KNL
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of a panel–panel multiplication operation, the block size of kb is limited by the size of k. 
Accordingly, we adjusted the size of nb and kb in matrix–panel and panel–panel multi-
plication operations.

3.3 � Analyzing the impact of n size on OUR_DGEMM

We analyzed the required memory bandwidth for OUR_DGEMM. The required band-
width is the amount of data transferred divided by the time on computation. To com-
pute the mb × n elements of the submatrix of C, 2 × mb × n × kb computations were 
performed, and at least (mb × n + mb × kb + kb × n) elements of data were transferred 
from the main memory to the L2 cache and mb × n data were transferred back to the 
main memory.

•	 Data transfer: (2 × mb × n + mb × kb + kb × n) × (8 bytes)
•	 KNL can compute 3,046.4 Gflops arithmetic operations per second: 

(1.4 GHz × 8 doubles × 2 VPUs × 2 IPC × 68 cores)
•	 Time on computation: (2×mb×n×kb)

(3,046.4×109 s)

For KNL, the required bandwidth is given by

(4)
(

2

kb
+

1

n
+

1

mb

)

× 12185.6 GB/s

Fig. 9   Performance of different loop orders on single-core KNL for A ⋅ B matrix multiplication of differ-
ent shapes of matrices when the largest dimension is 6400 and the smallest dimension is 40
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Considering the optimal performing block sizes of matrix–matrix multiplica-
tion (mr, nr, nb, kb) = (8, 31, 124, 438) . Block B̃ of size nb × kb is 425 KB, and with 
that size of B̃ , half of the L2 cache occupies with B̃ , Â , and Ĉ . But when n = 40 , 
the block size nb is limited by the size of n, and the size of B̃ reduced to 137 KB 
which is three times smaller. With that size of B̃ only 1∕6th of the portion of L2 
covers with B̃ , Â , and Ĉ , which impacts the performance, and good performance 
can be obtained when half of the L2 cache is used to store the B̃ , Â , and Ĉ.

The size of mb depends on the size of the L3 cache. On KNL, the L3 cache is 
not present, and for large values of mb , 1∕mb is negligible in (4). When n is small, 
we need to change the size of kb such that half of the L2 cache is used to store B̃ , 
Â , and Ĉ . Considering the case when n is large and kb = 438 , and varying the size 
of n the impact on kb is presented in Fig. 8. The relationship between kb and n fol-
lows a linear trend for n greater than 2000 and kb remains almost consistent with 
a small difference. However, when n decreases, the required value of kb increases 
exponentially, indicating an inverse relationship with the size of n. When n is less 
than 220, it is impossible to obtain a similar performance for matrix–panel multi-
plication as for matrix–matrix multiplication using OUR_DGEMM.

Fig. 10   Special shapes of submatrices
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3.4 � Parallelization scheme and loop orders

In OUR_DGEMM, the j loop was parallelized with tj number of threads, and the 
ir loop was parallelized with tir number of threads. The detailed reasoning behind 
this parallelization scheme was elaborated in the paper [8]. We also observed that 
the performance of the matrix–matrix multiplication operation is superior when 
(tj, tir) = (17, 4) . However, the performance of the panel–panel multiplication opera-
tion improved when (tj, tir) = (68, 1) . However, in the case of matrix–panel multipli-
cation operation, this parallelization scheme does not work well.

We analyzed the data reuse factors for Algorithm 1 by referring to Table 1. In 
the case of matrix–panel multiplication operation, the size of n is very small; there-
fore, the ratio of n∕nb is not sufficient to parallelize the j loop. However, the ratio 
of mb∕mr is large enough to parallelize the ir loop. We found some performance 
improvements using (tj, tir) = (1, 68) with limited success. In the loop order of ipj, 
i loop is not a good candidate for parallelism, because each thread multiplies its 
own copy of panel of A with the shared data of matrix B which resides in the main 
memory. The ratio k∕kb is reasonable for parallelizing the p loop; however, parallel-
izing the p loop that iterates over the shared dimension k of the multiplying matrices 
may not yield significant benefits because of the synchronization overhead to ensure 
accurate result accumulation. The j loop is also not a good candidate for paralleliza-
tion in matrix–panel multiplication because of its small ratio of n∕nb.

Subsequently, an analysis was conducted on different possible combinations of 
loop orders for matrices with different shapes, as shown in Fig.  9. The 3rd loop 
reveals better performance while traversing along the largest dimension. This also 
increases the potential for the parallelization of the operation by applying paralleli-
zation on 3rd loop. In this case, each thread allocates a different block of the subma-
trix stored in the L2 cache, and all threads access the same block of the multiplying 
matrix, depending on the loop order. Based on this observation, the loop structure 
outlined in Algorithm 1 is not appropriate for matrix–panel multiplication. There-
fore, we developed a new algorithm for matrix–panel multiplication with the jpi 
loop order described in Sect. 3.6. In this case, i loop can be considered as a candi-
date for parallelization. This article [20] provides a more comprehensive description 
of the parallelization analysis.

For our analysis of loop orders, as shown in Fig. 9, we executed routines with 
different micro-kernels of (mr, nr) , as listed in Table 2. The maximum performance 
achieved for each loop order was then recorded.

3.5 � Shapes of submatrices

Large matrices can be divided into submatrices of different shapes as shown in 
Fig. 10, as a result of the execution of the outer three loops.

Effectively utilizing the principle of locality is critical for optimizing the algo-
rithm performance in a hierarchical memory system. When the matrices are parti-
tioned into panel–panel (inner product) shapes, a limited number of columns and 
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rows from matrices A and B are streamed from the memory to the L2 cache. This 
requires the storage of partial products in memory and subsequent retrieval for the 
accumulation of the final result in matrix C. Consequently, this approach requires 
twice the panel–panel (outer product) bandwidth. The outer product eliminates the 
need for redundant reads of submatrices A or B, depending on the algorithm design. 
The inner product exhibited suboptimal performance compared to the outer product 
[6].

Moreover, the panel–panel (outer product) can be subdivided into block-panel or 
panel-block. This division of submatrices allows parallelization because there is no 
need for thread synchronization, and each thread processes different elements within 
the panel. This approach leverages both spatial and temporal localities with well-
selected block sizes, and minimizes cache misses. The panel–panel (inner product) 
can be further divided into block–block. The block–block, effectively exploits the 
temporal locality as one block is used multiple times. However, it fails to utilize 

Fig. 11   Illustration of Algo-
rithm 2 for AT

⋅ B matrix–panel 
Multiplication
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spatial locality because the other block is stored in a buffer memory after packing, 
and its potential for parallelization is limited. When the result of matrix C is in block 
format after the third loop, its performance tends to be inferior compared to utilizing 
a panel shape for submatrix C. This difference can be observed in Figs. 6 and 12.

3.6 � Matrix–panel multiplication

For matrix–panel multiplication, we developed an alternative routine based on Algo-
rithm 2, illustrated in the block diagram in Fig. 11, which effectively enhances the 
performance. We refer to this revised routine as OUR_DGEMM2.

Fig. 12   Blocked diagram illustrating the AT
⋅ B matrix–panel multiplication operation, emphasizing the 

challenge within Algorithm 1 and highlighting the necessity for the development of Algorithm 2

Table 3   Micro-kernels Matrix operation Dimensions Micro-kernel ( mr, nr)

KNL
A ⋅ B m = n ≈ k (8, 31)
A ⋅ BT m ≈ n when k = 40 (16, 15)

AT
⋅ B m ≈ k when n = 40 (8, 20)

SKL
A ⋅ BT m ≈ n when k = 40 (16, 14)

AT
⋅ B m ≈ k when n = 40 (8, 20)
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The illustrations of both algorithms in Fig. 12 visualizes the difference between 
the two algorithms for AT

⋅ B matrix–panel multiplication operation. Algorithm  1 
was parallelizing the j loop, and it becomes difficult to exploit the parallelism as 
shown in Fig. 12a, which proves to be unsuitable. On the other hand, Algorithm 2 
addressed this difficulty by considering the jpi loop order and parallelizing the i 
loop, as shown in Fig. 12b.

Algorithm 2   Blocked matrix–panel Multiplication

 

3.7 � Choice of algorithm, micro‑kernel, and cache blocking parameters

For the micro-kernel, we experimentally identified the kernel combinations men-
tioned in Table 3 that showed good performance on the KNL and SKL for our test 
cases.

For A ⋅ BT panel–panel multiplication, Algorithm   1 is preferable along 
with micro-kernel (mr, nr) = (16, 15) for register blocks. As k is small, the 
size of kb can be limited by the size of k. We conducted performance experi-
ments to select nb by varying its value, and the best performance was observed 
when (mr, nr, nb) = (16, 15, 45) for KNL. The size of mb is not crucial for L1 
cache blocking on KNL; however, because of the presence of an L3 cache on 
the SKL system, the choice of mb does not remain free to choose for cache 
blocking, and we obtained the best performance on SKL when choosing 
(mr, nr,mb, nb) = (16, 14, 1024, 84).

For AT
⋅ B matrix–panel multiplication operation, Algorithm 2 is preferable along 

with the micro-kernel (mr, nr) = (8, 20) . The combination of (8, 20) register blocks 
does not use full vector registers; however, we experimentally observed that this 
combination performs relatively better for matrix–panel multiplication, as shown in 
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Fig. 7. We conducted performance experiments and observed that the combination 
of (mr, nr,mb, nb, kb) = (8, 20, 8, 40, 876) and (8, 20, 16, 40, 1000) performed better 
for KNL and SKL, respectively.

The KNL system has one processor with 68 cores and the SKL system has two 
sockets, each with 20 cores, for a total of 40 cores. Any reference to 68 threads in 
this paper should be interpreted as 40 threads for the SKL system. Similarly, 17 
threads on KNL were considered 10 threads on SKL.

4 � Experiments and results

In this section, we discuss the results of the performance comparison. The KISTI 
Nurion system [21] was used in our experiments. We included the Intel/one-
api_21.2 and impi/oneapi_21.2 modules to use icc, mpicc, compilers, and MKL 
for comparison. We used the following libraries in our study:

•	 Memkind v1.14.0 [22]
•	 ScaLAPACK v2.2.0 [23]
•	 OPENBLAS v0.3.23 [13]
•	 BLIS v0.9.0 [24]

4.1 � Settings

We used OUR_DGEMM2 to perform matrix–panel multiplication operation 
C = AT

⋅ B when m = k ranging from (4 to 40) × 103 and n = 40 . We used OUR_
DGEMM for panel–panel multiplication operation C = A ⋅ BT when m = n rang-
ing from (4 to 40) ×103 and k = 40.

The DGEMM operation in ScaLAPACK QR factorization is linked to the 
MKL DGEMM. We have replaced our OUR_DGEMM2 routine with MKL 
DGEMM for AT

⋅ B matrix–panel multiplication and OUR_DGEMM routine for 

Fig. 13   Performance of a AT
⋅ B when n = 40 and b A ⋅ BT when k = 40 on KNL
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A ⋅ BT panel–panel multiplication. In a multinode environment, the performance 
of QR factorization is optimal for a range of matrix sizes and a block size of 
40. Therefore, we examined our routines for block size nb = 40 . The sizes of the 
matrices were denoted in thousands with a scale factor of ×103 . We used OpenMP 
for parallelization and set the environment variables as follows:

In our analysis, we adhered to a convention to represent the results. The lines 
with diamond-shaped ( ⧫ ) data points represent the performance of the MKL, 
whereas the lines with square-shaped ( ▪ ) data points represent the performance of 
OURS revised routines. We benchmarked our results against two more widely used 

Fig. 14   Performance of QR factorization for nb = 40 on a 1 node, b 4 nodes, and c 16 nodes KNL
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open-source libraries, OPENBLAS and BLIS, for comparative purposes. The lines 
with cross-shaped ( × ) data points represent the performance of BLIS, while the lines 
with triangle-shaped ( ▴ ) data points represent the performance of OPENBLAS. We 
measured the performance of these routines in terms of Gflops. The largest evalu-
ated matrix sizes are 40,000, 80,000, and 120,000 on one, four, and sixteen nodes, 
respectively.

4.2 � Results on Knights Landing (KNL) cluster

This section presents the results conducted on the KNL cluster environment. First, 
we discuss the results of matrix–panel multiplication, as shown in Fig.  13a, and 
panel–panel multiplication, as shown in Fig. 13b. Then, we discuss the results of QR 
factorization.

For AT
⋅ B matrix–panel multiplication, OURS routine achieved higher perfor-

mance of MKL when m = k = 36, 000 and 40,000. When m = k = 40, 000 , OURS 
routine performance is better than MKL, OPENBLAS and BLIS by the factor of 
1.06× and 11.90× and 1.96× , respectively. While on a matrix size of m = k = 20, 000 
OURS routine significantly outperformed OPENBLAS and BLIS, showing 10.69× 
and 1.72× higher performance, respectively. But its performance lags behind of 
MKL. In every instance of A ⋅ BT panel–panel multiplication, OURS routine outper-
formed both BLIS and OPENBLAS, while delivering performance comparable to 
MKL when m = n = 40,000 , but it surpassed MKL when m = n = 24,000, 32,000 
and 36,000, respectively.

The performance results of QR factorization are illustrated in Fig. 14a–c for sin-
gle, four, and sixteen nodes KNL, respectively. For a signle-node configuration, QR 
factorization with MKL performs the best among all settings for matrix sizes less 
than 20,000. For matrix sizes greater than that OURS implementation demonstrated 
better performance. Similar trends are observed for the configurations of the four 
nodes. MKL remained top-performing on a matrix size of less than 40,000, followed 
closely by OURS. The performance of QR factorization using the OURS implemen-
tation remains comparable to that of MKL for larger matrix sizes. In the case of 

Fig. 15   Performance of a AT
⋅ B when n = 40 and b A ⋅ BT when k = 40 on SKL
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16 nodes configurations, the MKL and OURS implementations again demonstrated 
better performance. These results highlight that the OURS routine exhibits competi-
tive performance compared to the MKL routine. For the largest evaluated matrix 
sizes, OURS routine performed better than MKL, OPENBLAS, and BLIS. It out-
performed MKL, OPENBLAS, and BLIS on a single node by 1.08× , 4.71× , and 
1.84× , respectively. On four nodes OURS routine performed better than its com-
petitors by 1.06× , 4.07× , and 1.72× , respectively. On 16 nodes, MKL outperformed 
OURS routine by 1.02× . However, OURS routine performed better than OPENB-
LAS and BLIS by 2.58× and 1.41× , respectively.

Fig. 16   Performance of QR factorization for nb = 40 on a 1 node, b 4 nodes, and c 16 nodes SKL
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4.3 � Results on Skylake Scalable Processor (SKL) cluster

On SKL the results of AT
⋅ B matrix–panel multiplication operation using our rou-

tine are shown in the Fig. 15a. We compared the OURS routine with MKL, OPEN-
BLAS and BLIS. The performance of MKL is higher until the matrix size reaches 
14,000, and then degrades for large matrices. The OURS implemented routine dem-
onstrated better performance than MKL, BLIS, and OPENBLAS when dealing with 
matrices larger than 16,000. OURS routine achieved higher performance of MKL, 
OPENBLAS, BLIS when m = k = 40, 000 by the factor of 1.33× , 4.11× , and 1.17× , 
respectively. For A ⋅ BT panel–panel multiplication performance is presented in 
Fig. 15b. In this scenario, the OURS routine performed better than MKL, OPEN-
BLAS, and BLIS when the matrix size was greater than 8,000. Specifically, when 
m = n = 40, 000 OURS routine achieved higher performance of MKL, OPENB-
LAS, BLIS by the factor of 1.30× , 1.57× , and 1.26× , respectively. The performances 
of QR factorization using MKL, OURS, BLIS, and OPENBLAS on single, four, and 
sixteen nodes configuration on SKL are presented in Fig. 16a–c, respectively. The 
QR factorization performance of the OURS routine was better than that for other 
routines when the matrix sizes were greater than 28,000, 64,000, and 96,000 for 
1, 4, and 16 nodes, respectively. Overall, our routine shows a significant improve-
ment in the QR factorization performance, particularly for larger matrix sizes. For 
the largest evaluated matrix sizes, OURS routine emerged as the top performer. It 
was followed in performance by BLIS, MKL, and OPENBLAS, respectively.

5 � Conclusion and future work

This paper presents an optimization of the matrix multiplication routine to enhance 
the performance of QR factorization. While our previously developed approach 
showed comparable results for LU factorization, the performance of QR factoriza-
tion was found to be suboptimal due to limitations in the matrix multiplication rou-
tine, particularly for the AT

⋅ B matrix–panel multiplication.
To address these performance issues, we investigated the behavior of the OUR_

DGEMM and identified the need for different kernels tailored to the specific shapes 
of the matrices involved in the QR factorization. This insight led to the optimization 
of the existing routine for A ⋅ BT panel–panel multiplication and the development of 
a new routine for AT

⋅ B matrix–panel multiplication. Using our previous implemen-
tation, we determined that it is impossible to achieve comparable performance for 
matrix–panel multiplication when n is less than 220.

Our proposed approach demonstrated a significant improvement in the QR fac-
torization performance of both KNL and SKL multiprocessors in multinode clus-
ter environments. We also conducted a comparative analysis by benchmarking our 
routines against popular libraries, such as Intel MKL, OPENBLAS, and BLIS. The 
results showed better performance of our routines on the targeted architectures.

In future work, we intend to investigate the performance issues of matrices with 
different shapes and develop kernels to optimize their performance. This strategic 
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endeavor is consistent with our goal of increasing the efficiency of matrix multipli-
cation operations. Furthermore, we intend to widen our investigation by developing 
an auto-tuner and extending it to a multinode cluster environment. This endeavor 
will allow us to optimize these kernels and examine their adaptability to the hard-
ware characteristics on which they are running.
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