
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:13434–13474
https://doi.org/10.1007/s11227-024-05990-5

1 3

A novel multi‑level hybrid load balancing and tasks
scheduling algorithm for cloud computing environment

Nadim Elsakaan1 · Kamal Amroun1

Accepted: 9 February 2024 / Published online: 6 March 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Ensuring optimal load balancing is imperative for maintaining reliability and
upholding quality of service as specified in service-level agreements (SLAs) for
cloud computing providers. This research addresses the most common shortcomings
of existing state-of-the-art methods, which often lack responsiveness and struggle
to adapt to exponentially increasing demand, especially in the era of the internet of
things (IoT). The proposed hybrid approach surpasses current literature approaches
in performance metrics such as makespan, response time, number of cloudlet migra-
tions, and SLA violations. It operates on two levels, initially employing a k-means
clustering algorithm to group servers within each datacenter based on similar utili-
zation rates. Subsequently, a round-robin method allocates task groups sequentially
to non-overloaded clusters, and within each cluster, a genetic algorithm optimally
assigns tasks to servers. This multilayered approach facilitates hot-deployment and
scalability in operational cloud environments while promoting strong interoperabil-
ity and decoupling of core mechanisms missions. Simulation experiments conducted
on CloudSim Plus validate the superiority of our method, positioning it as a robust
solution for enhancing load balancing and tasks scheduling in cloud environments,
especially in the face of rapidly increasing IoT-related demands.

Keywords  Load balancing · Quality of service (QoS) · Service-level agreements
(SLAs) · Cloud computing · Hybrid approach · K-means clustering · Round-robin ·
Genetic algorithm · Makespan · Response time · Cloudlet migrations · Hot-
deployment · Scalability · Interoperability · CloudSim Plus

 *	 Nadim Elsakaan
	 nadim.elsakaan@univ-bejaia.dz

	 Kamal Amroun
	 kamal.amroun@univ-bejaia.dz

1	 LIMED Laboratory, Faculty of Exact Sciences, University of Bejaia, 06000 Bejaia, Algeria

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05990-5&domain=pdf

13435

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

1  Introduction

Cloud computing was a game-changer technology since its emergence nearly a
decade ago, the key feature behind this revolutionary paradigm is its ability to
provide resources like hardware or software as services over internet to individu-
als and companies. It offers a certain number of advantages like elasticity, pay as
you go, multi-tenancy and so on [1]. It is worth pointing that it must guarantee
sustainably users trust by maintaining availability, reliability and scalability. If
we take a closer look at how this technology works, we realize that behind the
simplicity of use and service delivery models, there is a set of extremely complex
mechanisms interoperating to ensure an optimal functioning [2].

Our work focuses on load balancing (LB) module which is one among these
mechanisms and is in charge of maintaining a fair workload distribution between
servers and virtual machines (VMs). The role of this component is crucial to
the operation of cloud services and to meet the service-level agreement (SLA).
Guaranteeing an optimal use of hardware resource and a fair distribution of the
workload helps to increase the global performance of the system by reducing the
makespan of useful jobs [3]. A lot of propositions have been made to face expec-
tations of cloud service providers in term of load balancing. When studying the
literature, we understand that these solutions can be categorized according to two
criteria impacting the manner in which workload distribution is made: first (i)
information on environment, tasks and resources. Then, (ii) step during which the
balancing occurs.

Indeed, while a first category to which we refer as being static acts only at
reception of new tasks and decides on how assigning them according to a set
of non-evolving information like tasks length and servers physical capabilities,
a second category regroups dynamic approaches which are continuously opera-
tional over time incorporating information on current workload on each server,
individual makespan of virtual machines and primitives like tasks or VMs migra-
tion to maintain an optimal utilization rate of all servers. A last category stands
for regrouping all approaches that combine static and/or dynamic approaches
together or with other complementary mechanisms to enhance performance of
load balancing and to mitigate common shortcomings [4, 5]. This is the way we
build in our proposal, by integrating complementary algorithms for hybridizing
load balancing and tasks scheduling.

There are several ways to approach load balancing problem and tasks sched-
uling. We commonly find solutions formulating it as a bin packaging problem,
clustering problem or even more like a path finding problem. Independently of
the formal modeling, we can describe the elements that constitute the problem we
are addressing as follows: given a set of tasks and a set of resources grouped into
virtual machines and physical hosts, how to decide for each task to which virtual
machine should it be assigned and which physical server should host which vir-
tual machine. It is important to keep in mind that each server is resource limited
in term of CPU , RAM , Storage and Bandwidth [6]. Once this has been achieved,
we need to monitor the evolution of the use of these same resources and the

13436	 N. Elsakaan, K. Amroun

1 3

makespan of servers and VMs to ensure fairness in the distribution of workloads
and enable an increase in datacenter performance by reducing metrics such as
waiting, execution, control and migration times.

The aim of this paper is to present a novel hybrid algorithm to ensure tasks
scheduling and load balancing in cloud environments. First of all, the choice of
this combination comes from the fact that a good workload balance starts with the
optimization of the tasks assignment procedure. Our algorithm goes through three
main stages: first (i) servers clustering: a k-means-based procedure is first trig-
gered to partition servers with similar occupation characteristics in a set of clus-
ters with bounded size. Then, (ii) tasks assignment is realized in two phases: first
using a round-robin algorithm to choose the cluster to which a set of tasks will be
assigned then using a genetic-based algorithm to select inside this cluster the servers
on which they will be scheduled. And finally (iii) load balancing: also requiring two
steps, the algorithm decides which cluster to unload and which servers exactly. Once
done the cloudlets are retrieved and sent (migration) to the global tasks scheduler
module to plan them again.

To realize this our architectural model embed following components, first we
introduce a new module called cluster manager which will ensure primitives relative
to creating and updating clusters. Then, we use a classical tasks scheduler at data-
center level qualified as global to which we add a local monitor in each cluster. And
finally, we propose the same organization for load balancer with a central module
and local probe in each cluster.

The method that we propose is based on realistic assumptions, using particular
configurations of already existing architectural components. The main contributions
of our work are:

•	 A hot-deployment enabled algorithm which can be deployed in already opera-
tional cloud environments.

•	 A highly scalable algorithm, thanks to the strategy grouping the servers in clus-
ters and operating at two levels, it keeps the same performance even if the num-
ber of servers and cloudlets in the datacenter is considerably increased.

•	 A very strong interoperability and complementary that avoids interference in
mission of each and redundancy of actions between clusters management, load
balancing and tasks scheduling mechanisms. This decreases the non-useful
delays related to cloud management and allows to considerably reduce the num-
ber of SLA violations.

To prove the validity of our approach, we implemented it using the standard cloud
simulator CloudSim plus. The results are very promising. Indeed, our approach out-
performs most recent and relevant works. For example, we achieved an SLA vio-
lation rate close to 8%, compared to an average of 18% for [7]. We also achieved
a reduction in the makespan per server and reduced the proportion of migrations
required to 12%, compared with a ratio varying from 19 to 35% according to the
proposal.

The rest of this paper is organized as follows: core concepts on cloud computing
and literature review of existing solutions to perform load balancing are given in

13437

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Sect. 2. Section 3 is dedicated to our proposition, we start it by formulating the prob-
lem statement, and then, introducing our architectural model with related assump-
tions, we finally depict our method and give corresponding algorithms. Results of
realized simulation are given and discussed in Sect. 4. Section 5 concludes our work
by giving a last overview and by opening perspectives for future works.

2 � Related works

In this section, we will first review core concepts and preliminary elements on cloud
computing, its core concepts and service providing models. Then, we will summa-
rize following respective categories that we consider to be the most pertinent and
recent works on load balancing.

Cloud computing was a game-changer technology since its emergence nearly a
decade ago, the key feature behind this revolutionary paradigm is its ability to pro-
vide resources as services directly over internet to individuals and companies. The
resource can be hardware or software or even take another form; it offers a certain
number of advantages like elasticity, pay as you go, multi-tenancy and so on [1, 8].

The cloud providers deliver services in several standardized manners among
which we retain [9]:

•	 IaaS (Infrastructure-as-a-Service): Hardware is delivered to client which is in
charge of installing all the stack components over material: operating systems,
middlewares, runtime environments and applications. The cloud provided is only
responsible on management of hardware part.

•	 PaaS (Platform-as-a-Service): The responsibility of the supplier is shifted a little
higher in the stack; he will be in charge of the installation and the management
of operating systems, middlewares and all required execution environments.

•	 SaaS (Software-as-a-Service): In this pattern client interacts with cloud services
via a GUI (graphical user interface), indeed all required services are delivered
as a ready to use application and provider is responsible on the entire building
stack.

After reviewing the different possible architectures and organizations for the opera-
tion of the cloud, we came to the conclusion that, regardless of the model, the archi-
tectural elements can be placed in one of the three levels as shown in Fig. 1:

•	 Requests handler: Covering a set of components in charge of collecting requests
from client and retrieving related information such as tasks length, priority,
deadline, required data and so on.

•	 Datacenter controller: It plays an orchestration role; on the one hand, it receives
information from the requests handler on tasks to schedule; on the other hand,
the resource manager provisions it with available resources. The controller then
applies a scheduling strategy to decide which tasks to assign to which VM, and
which host will receive which VM.

13438	 N. Elsakaan, K. Amroun

1 3

•	 Resources manager: In charge of monitoring states and utilization rates of hosts
and virtual machines, it provides crucial information on which the controller
relies to schedule tasks and to perform load balancing.

Load balancing (LB) is a critical module to ensure good functioning in cloud
environment; it aims to describe techniques in charge of distributing workload over
datacenter servers. In other words, it is the method used to maintain resource utili-
zation of servers in equilibrium and avoid to overload or underload some of them.
The load balancing can be achieved at one of the two levels: (i) virtual machines
(VM) level or (ii) hosts level. In first case, the load balancing algorithm deals with
workload on virtual machines, so it manages tasks distribution and migration over
virtual machines to maintain good workload partition conditions. In the second case,
it manages virtual machines distribution over physical servers.

A lot of approaches were proposed in the literature to perform load balanc-
ing in cloud environment, we will give insights on the most important ones in
Sects. 2.1–2.3. Whatever it is critical to first understand the used categorization.

Fig. 1   Cloud datacenter organizational architecture

13439

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Indeed, a classification of algorithms that is often encountered involves three main
classes which are depicted as follows [4]:

•	 Static approaches: This category of approaches relies on prior information on
jobs and servers/virtual machines capabilities to decide on tasks assigning pol-
icy.

•	 Dynamic approaches: In contrast to static methods, dynamic algorithms inte-
grate real-time information such as workload on resources and utilization rate to
decide on tasks affectation strategy.

•	 Hybrid approaches: Hybrid approaches are obtained by mixing static and
dynamic approaches in order to overcome lacks of each one. Even more lot of
researchers go further and make hybridization by combining load balancing tech-
niques with fault tolerance or tasks scheduling mechanisms.

There are other modules involved in the smooth running of jobs on the cloud that are
intrinsically linked to load balancing and cannot operate without close cooperation
between them.

The first mechanism is tasks scheduling which, considering a set of constraints,
decides for a set of tasks on which resource they should ideally be executed. This
can be achieved in a static or dynamic way regarding if the scheduler relies on prior
information on tasks and resources for taking decisions or if it continuously moni-
tor nodes behavior to decide which one is more suitable for a specific kind of job.
It can be preemptive so that tasks can be interrupted during running time or not, it
can operate in online or offline manner according to if tasks are directly planned on
resources or grouped in batches before [10].

The second mechanism is fault tolerance which measures the capacity of a system
to recover after a failure. A failure can be explained as a succession of undesirable
actions which lead the system to an unsuitable or a not specifications conform state.
Two main families of fault tolerance approaches can be introduced: (i) proactive: In
this case, the technical effort is focused on ways to anticipate the failure and reduce
its impact on the overall system. (ii) Reactive: In this case, means are concentrated
on the methods that make it possible to recover quickly after the fault occurrence
and try to bring back the system to the last known coherent state. A lot of known
approaches like hardware-redundancy, jobs replication, checkpoint and restart and
so on are utilized to ensure reliability, availability and integrity in cloud environ-
ment [11].

2.1 � Static load balancing methods

Static load balancing is a class of algorithms that allocate tasks to different resources
without considering their current states. Indeed, depending on the applied policy,
the algorithm will distribute new jobs equally or randomly over all treatment units
regardless to their actual workload [12].

Among the static load balancing methods, we can cite min–min algorithms
whose principle is to evaluate beforehand execution time of each task and to find the

13440	 N. Elsakaan, K. Amroun

1 3

one with the shortest duration. Once done, the algorithm locates the resource with
minimum completion time to perform this task and assigns it. Min–min approaches
repeat these steps until all jobs are done. The major shortcoming these methods are
suffering from is when the number of short tasks exceed the number of long ones
the allocation of resources is not optimal. Another category is the max–min which
overcomes this shortage by scheduling first larger tasks but it penalizes short ones
and increases their waiting time [4].

Lot of improvements were proposed to make these approaches that perform better
load balancing and reduce makespan. For example, Kokilavani et al. [13] proposed
to start their algorithm with a min–min phase, which provides a fast start by send-
ing the shortest tasks to be executed by the most efficient resources. In a second
step, the algorithm checks each resource makespan and retrieve tasks from ones
with heavy load and reassigns them to resources with short makespan. The principle
of the LBMM approach is simple, but they showed that it allows a reduction of the
global execution time and a better jobs distribution. Another group of researchers
goes further in improving min–min approach by proposing a new algorithm con-
sidering three key constraints in cloud environment which are quality of service,
tasks priority and cost of service. Their solution also passes by a first min–min step
where short tasks have initial higher priority; then, they rearrange load balance by
weighting these priorities by the three constraints (expressed as numerical values)
to produce dynamic priorities allowing to order all the jobs over the resources [14].
We can find in the literature approaches oriented toward particular use cases, or ones
based on meta-heuristics inspired from nature. An example that embodies both is
the proposition made by Zhan et al. [15] where they use a discrete particle swarm
optimization (PSO) for building a static load balancing algorithm which ensures
tasks distribution in cloud environment. They proposed an adaptation of functions
to update personal and global bests on one hand and to update velocity on the other
hand; this renders PSO performing better for this particular discrete problem avoid-
ing to be trapped in local optimums. As powerful as, they may be that these tech-
niques have the disadvantage of not being able to adapt to increasingly dynamic
cloud environments. Static approaches schedule tasks at the reception and rely on
a logic independent of real-time workload distribution; this does not allow them to
review the load distribution in a fluid way when the exploited resources utilization
evolves. In other words, static load balancing performs well in cloud environments
with reduced workload variability which is not always adequate given that there are
peak periods.

2.2 � Dynamic load balancing approaches

Dynamic load balancing techniques are the set of algorithms that consider real-time
information about the utilization rate and remaining makespan on each server before
deciding how to assign new jobs and in which manner to migrate already scheduled
ones. These approaches can be separated into two main categories according to their
calculation mode which are online or offline mode. In the first family of algorithms,

13441

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

tasks are assigned as they arrive in the system unlike offline mode which works by
batch since tasks are grouped then taken at predefined times [16].

A category of methods stands out as an ideal candidate to face the dynamic load
balancing challenge: nature-inspired meta-heuristics. By going through several
stages of adaptation, many researchers have succeeded in making it a dominant class
of approaches for dynamic LB. It is worth pointing that before proceeding to any
improvement of this kind of algorithm, it is necessary to define an adequate map-
ping between the parameters of the algorithm and the cloud environment on the one
hand and on the other hand to find a way to define novel search functions [17].

For example, the authors of [18] proposed an enhancement of bee colony optimi-
zation algorithm to realize a dynamic load balancing. This approach incorporates as
constraints avoiding at once virtual machines overloading and underloading, reduc-
ing makespan and the number of migration operations. The key idea behind the pro-
posed improvement is to use standard deviation of processing time on each VM as
input to the model of load balancing where a threshold is given separating VMs into
two groups: overloaded VMs modeled as honeybees and underloaded VMs modeled
as food. Considering that the approach is dynamic, the deviation values are updated
each time; a new task is received. On their side, Seyedeh et al. [7] have combined
two meta-heuristic approaches to better fit cloud SLA requirements. They first use
a firefly based algorithm to generate an initial population of possible task/resource
assignment then optimize it using an imperialist competitive algorithm (ICA). In
a first time, two instances of firefly algorithm are executed separately to find two
assignments: one achieving best makespan and the other for best load balancing.
The outputs of these heuristics are aggregated as multi-objective function for the
ICA algorithm which will incorporate the two constraints and attempt to produce
a workload balance ensuring a makespan as small as possible. Another approach
using a meta-heuristic bio-inspired is proposed in [19] where authors approach the
load balancing as a clustering problem: regrouping sets of virtual machines on phys-
ical servers with specified CPU and memory capacities. Clusters are first build by
randomly placing VMs according to a feasible distribution; then, they are updated
based on their respective workload to maximize remaining resources on each server
and eliminating workload on weakly utilized ones. Authors applied bat algorithm to
optimize global and local search for finding new cluster centers and speed up con-
vergence. This means reviewing the set of VMs and physical servers that make up
each of the clusters in order to dynamically maintain equity.

Many other works have been proposed and tried to create variants that improve a
subset of the performance criteria. This objective can be achieved by eliminating or
adding constraints depending on the service-level agreement and the type of service
provided, by modifying hyper-parameters of known models or by proposing new
fitness functions for meta-heuristics. Thus, Dalia et al. [20] add constraints not com-
monly considered by other researchers to their algorithm system. They add com-
plexity by dealing with simultaneous arrival of requests, the tasks that they consider
have priorities and a deadline is assumed for each job according to the relative ser-
vice-level agreement. The distinction point of this approach is that if the workload
on a server does not meet requirement of correct execution for a given task; then,
it is migrated to another one. Therefore, in order to realize an efficient workload

13442	 N. Elsakaan, K. Amroun

1 3

distribution, the authors integrated load balancing and task scheduling within the
same algorithm. Another example is given in [21] where the authors provide a vari-
ant of genetic algorithm which deals with performance degradation of VMs during
migration time and impact on tasks execution.

Authors of [22] dived deeper in key constraints integration by adding elasticity
to their model. Their architecture supports hardware proactive horizontal scale-up.
Indeed after assigning tasks a component of the resource broker monitors activity
on servers and estimate if there are scheduled tasks that will overhead their deadline
and decide to create new virtual machines to balance the workload.

It is worth pointing even if these meta-heuristics build the backbone around which
most of the load balancing algorithm in the cloud are built; other methods exist and
approach this problem by a different modeling or statement and take advantage of
the power of several different mathematical techniques.

We often meet in the literature fuzzy-based approaches to achieve tasks schedul-
ing and load balancing. We can observe that authors in [23] proposed a fuzzy-based
algorithm for multidimensional resource planning focusing on file sharing service
in cloud environment. The approach operates in three stages: first, (i) collecting
requests from users. Then, (ii) a trapezoidal fuzzification and fuzzy square inference
are utilized to achieve multidimensional resource scheduling. Finally, (iii) queuing
network is designed for the assigned tasks and resources. We can also find methods
relying on machine and deep learning such as the one proposed by Zhao et al. [24]
in which they combine a Q-learning approach with a neural network. They first rep-
resent the scheduling plan by a directed acyclic graph in which nodes are described
by a quaternion composed of a specific task, the cost of execution, cost of com-
munication and edges representing relation to successor tasks. The dynamic sched-
uler before planning a workflow by distributing its jobs on virtual machines calls
the algorithm to evaluate the execution scenario which is modeled in the form of a
graph and applies a reward function which helps the decision-making by emitting an
action to be applied by the scheduler. Another hybridization with a meta-heuristic
method is proposed by Jena et al. [25] where a particle swarm algorithm is com-
bined with a Q-learning approach used to adjust velocity of particle and global bests
to achieve quicker convergence toward optimal load balancing solution.

Dynamic approaches are responsive to constraints evolution in real-time; they
keep maintaining an equitable distribution of workload over time and balancing the
load flow as it occurs by taking into consideration the resource usage on each host.
The only disadvantage is that it suffers from compared to static methods that it gen-
erates some latency at the start of the LB and is bounded on reaction times even
with light and few tasks.

2.3 � Hybrid load balancing algorithms

Hybrid load balancing is a combination of static and dynamic approaches. It lever-
ages the strengths of each category to cover the gaps of the other; static methods
allow an initial quick distribution of tasks while dynamic algorithms maintain opti-
mal workload balancing over time. Hybridization is not limited to this combination

13443

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

and can be achieved by integration with other mechanisms such as fault tolerance or
dynamic task scheduling.

Bio-inspired meta-heuristics also form a cornerstone in the edifice of hybrid
approaches. Indeed, the literature of hybrid LB is rich in examples such as the prop-
osition made by Marwa et al. [26] where the authors combined swarm intelligence
of bee and ant colonies to build an osmotic hybrid optimization load balancing algo-
rithm. After an initial random distribution of jobs, an artificial bee colony is used for
quickly find overloaded and underloaded servers; then, an ant colony is used to find
optimal migration scheme for VM among osmotic servers.

In another proposal [27], a group of researchers has opted for the combination of
ant colonies with fuzzy models. While they also use ACO to find the suitable migra-
tion pattern, they integrate a fuzzy module to evaluate the quality of the returned
solution. To be more concise, the fuzzy part is used to update the pheromone traces
and thus accelerate the convergence process toward an optimal solution. In [28],
authors proposed to combine genetic algorithm and gravitational search method to
enhance searching procedure and reduce computing cost. The improvement comes
from hybrid method to calculate particles position at each step which is made by
using crossover technique combined with gravitational constant function. In [29],
authors combined a queuing model for managing virtual machines and a crow
search-based approach to improve tasks placement and reduce at once time wastage
and energy consumption.

Other researchers go further by hybridizing load balancing with proactive fault
tolerance mechanism. In [30], authors proposed to combine several reactive and pro-
active fault tolerance techniques with an accelerated decision-making procedure to
ensure quick recovery. The heart of the proposed method is a dynamic scheduling
approach which inserts replication as fundamental constraint. Haoran et al. [31] pro-
posed a similar combined approach by embedding fault tolerance and task schedul-
ing into their model which improves load balancing. The authors focus on hybrid
real-time tasks which they divided to data intensive, process intensive tasks or bal-
anced tasks; by doing the same with virtual machines, it increases the chances of
improving system performance and facilitates the work of the scheduler. They did
not stop here; they went further by mixing checkpoint and primary backup tech-
niques to generate the recovery policy and the corresponding task description.
Finally, they added resulting tasks list (including redundancy) as constraints to the
scheduler.

Huaiying et al. [32] have also proposed an approach to ensure quality of service
in edge-cloud by combining fault tolerance with task planning in order to maintain
equitable load balancing. The authors enhance classical primary/ backup fault toler-
ance approach by incorporating quality of service (QoS) constraints such as time-
based ones, the primary and copy tasks are then scheduled with a dedicated method
integrating an adjustment procedure that guarantees the placement of copies in a
such manner to reduce both recovery time in case of failure and overlapping in case
of well-functioning. A last example of this kind of hybridization is given in [33];
apart the planning aspect, the authors proposed a solution for monitoring activities
on the virtual machines which form logical clusters over physical hosts. They used
metrics built based on previous performance of each server that allows the system to

13444	 N. Elsakaan, K. Amroun

1 3

early anticipate deviations and behaviors that do not conform to specifications which
allows it to quickly resume from the last consistent checkpoint.

We have not provided an exhaustive list of the hybrid proposals that exist, and
it must be taken into account that many other works have been done. A last exam-
ple is given in [34] where authors rely on machine learning technique to enhance
resource utilization; they deal with horizontal and vertical load balancing. An agent
is trained using a custom reinforcement learning approach and is rewarding accord-
ing to the desirability of selected action which can be task assigning on a specific
virtual machine or migration on another host and so on. Other works deviate from
the mainframe application and focus on specific context like [35] which ensures a
dynamic resource provisioning for a specific usage in meteorological intensive data-
flows treatment.

As we have shown, hybrid approaches cover the shortcomings of static- or
dynamic-isolated techniques, they have the advantage of being more reactive; man-
aging more constraints and being faster in the distribution of tasks, they nevertheless
suffer from the drawback of being complex to implement.

2.4 � Comparative analysis

Table 1 provides a comparative analysis of the latest and most pertinent approaches
presented in this section, drawing upon structural criteria such as:

•	 The nature indicating whether the approach is static, dynamic or hybrid.
•	 Combination to describe the eventual integration with any other mechanism,

including fault tolerance or task scheduling.
•	 The core method or meta-heuristic forming the foundation of the approach.
•	 The benefits offered by the approach.
•	 The constraints or challenges encounter in its presentation.
•	 The performance metrics utilized for validation and assessment of the approach.

2.5 � Synthesis

Load balancing plays a crucial role in keeping cloud environments running
smoothly. Its performance has a direct impact on quality of service (QoS) and the
degree of compliance with service-level agreements (SLAs) with customers. Numer-
ous approaches have been proposed since the advent of the cloud to meet this need.
Firstly, static approaches were proposed, offering a rapid search for a balancing solu-
tion based on invariable information. Unfortunately, as they were unable to adapt
to changes in the environment and load variability, they were gradually replaced
by dynamic approaches. The latter rely on heuristics and attempt to find optimal
solutions by integrating variable constraints that were previously ignored. Although
dynamic approaches are effective, they are slow to execute. This has led to the emer-
gence of hybrid approaches, combining static methods for speed in finding a feasible

13445

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Ta
bl

e 
1  

C
om

pa
ris

on
 o

f l
oa

d
ba

la
nc

in
g

al
go

rit
hm

s

A
pp

ro
ac

h
N

at
ur

e
C

om
bi

na
tio

n
C

or
e

m
et

ho
d

M
er

its
Li

m
ita

tio
ns

M
et

ric
s

K
ok

ila
va

ni
 a

nd
 A

m
al

ar
-

et
hi

na
m

 [1
3]

St
at

ic
N

o
M

in
–M

in
Fa

st
N

ot
 a

da
pt

at
iv

e
M

ak
es

pa
n

M
ia

o
et

 a
l.

[1
5]

St
at

ic
N

o
Pa

rti
cl

e
Sw

ar
m

 O
pt

im
i-

za
tio

n
Fa

st
N

ot
 a

da
pt

at
iv

e
M

ak
es

pa
n

B
ab

u
an

d
Sa

m
ue

l [
18

]
D

yn
am

ic
N

o
B

ee
 c

ol
on

y
Fa

st
V

M
 le

ve
l m

ig
ra

tio
ns

M
ak

es
pa

n
Se

m
i-a

da
pt

at
iv

e
M

ig
ra

tio
ns

Sh
afi

q
et

 a
l.

[2
0]

H
yb

rid
Ta

sk
 sc

he
du

lin
g

O
pp

or
tu

ni
sti

c
lo

ad

ba
la

nc
in

g
Ia

aS
 le

ve
le

Ig
no

re
 c

om
m

on
 c

on
-

str
ai

nt
s

M
ak

es
pa

n

M
in

–m
in

O
pt

im
iz

e
re

so
ur

ce
Re

so
ur

ce
 u

til
iz

at
io

n
A

dh
ik

ar
i e

t a
l.

[1
9]

H
yb

rid
Ta

sk
 sc

he
du

lin
g

B
at

 fl
y

al
go

rit
hm

C
on

si
de

rs
 p

ric
in

g
Ig

no
re

 c
om

m
on

 c
on

-
str

ai
nt

s
M

ak
es

pa
n

Fl
ow

 ti
m

e
Re

so
ur

ce
 u

til
iz

at
io

n
Va

ni
th

a
an

d
M

ar
ik

ka
nn

u
[2

1]
D

yn
am

ic
N

o
G

en
et

ic
 a

lg
or

ith
m

Fa
st

La
ck

 o
f p

er
fo

rm
an

ce

ev
al

ua
tio

n
Pe

rfo
rm

an
ce

 d
eg

ra
da

tio
n

K
um

ar
 a

nd
 S

ha
rm

a
[2

2]
H

yb
rid

Ta
sk

 sc
he

du
lin

g
C

us
to

m
 m

et
ho

d
Fa

st
N

ot
 a

da
pt

at
iv

e
M

ak
es

pa
n

Ta
sk

-le
ve

l m
ig

ra
tio

n
H

ig
h

sc
al

ab
ili

ty
M

ig
ra

tio
ns

K
as

hi
ko

la
ei

 e
t a

l.
[7

]
H

yb
rid

Ta
sk

 sc
he

du
lin

g
Im

pe
ria

lis
t c

om
pe

tit
iv

e
al

go
rit

hm
Fa

st
C

om
pl

ex
ity

Re
so

ur
ce

 u
til

iz
at

io
n

So
rt

of
 fa

ul
t t

ol
er

an
ce

Fi
re

fly
 a

lg
or

ith
m

C
on

si
de

rs
 li

nk
ed

 ta
sk

s
La

ck
 o

f p
er

fo
rm

an
ce

ev

al
ua

tio
n

M
ak

es
pa

n

Pr
iy

a
et

 a
l.

[2
3]

H
yb

rid
Ta

sk
 sc

he
du

lin
g

Fu
zz

y-
ba

se
d

lo
gi

c
Ve

ry
-r

es
po

ns
iv

e
C

om
pl

ex
ity

Re
so

ur
ce

 u
til

iz
at

io
n

Fa
st

La
ck

 o
f p

er
fo

rm
an

ce

ev
al

ua
tio

n
Re

so
ur

ce
 o

pt
im

iz
at

io
n

13446	 N. Elsakaan, K. Amroun

1 3

Ta
bl

e 
1  

(c
on

tin
ue

d)

A
pp

ro
ac

h
N

at
ur

e
C

om
bi

na
tio

n
C

or
e

m
et

ho
d

M
er

its
Li

m
ita

tio
ns

M
et

ric
s

To
ng

 e
t a

l.
[2

4]
H

yb
rid

Ta
sk

 sc
he

du
lin

g
D

ee
p

Q
-le

ar
ni

ng
H

ig
hl

y-
ad

ap
ta

tiv
e

C
om

pl
ex

ity
M

ak
es

pa
n

Sc
al

ab
ili

ty
La

ck
 o

f p
er

fo
rm

an
ce

ev

al
ua

tio
n

R
ag

m
an

i e
t a

l.
[2

7]
H

yb
rid

Ta
sk

 sc
he

du
lin

g
A

nt
 c

ol
on

y
al

go
rit

hm
H

ig
hl

y
re

sp
on

si
ve

C
om

pl
ex

ity
Re

sp
on

se
 ti

m
e

Fu
zz

y-
ba

se
d

lo
gi

c
La

ck
 o

f p
er

fo
rm

an
ce

ev

al
ua

tio
n

G
am

al
 e

t a
l.

[2
6]

D
yn

am
ic

N
o

A
nt

 c
ol

on
y

al
go

rit
hm

En
ha

nc
e

Q
oS

 o
f s

er
vi

ce
C

om
pl

ex
ity

En
er

gy
 c

on
su

m
pt

io
n

B
ee

 c
ol

on
y

al
go

rit
hm

O
pt

im
iz

e
en

er
gy

 c
on

-
su

m
pt

io
n

La
ck

 o
f p

er
fo

rm
an

ce

ev
al

ua
tio

n
M

ig
ra

tio
ns

A
bo

ha
m

am
a

et
 a

l.
[3

0]
H

yr
bi

d
Fa

ul
t t

ol
er

an
ce

C
us

to
m

 m
et

ho
d

O
pt

im
iz

e
cl

ou
d

re
so

ur
ce

ut

ili
za

tio
n

fo
r r

ea
l-t

im
e

ap
pl

ic
at

io
n

C
om

pl
ex

ity
M

ak
es

pa
n

La
ck

 o
f p

er
fo

rm
an

ce

ev
al

ua
tio

n
C

hi
nn

at
ha

m
bi

 e
t a

l.
[3

3]
H

yb
rid

Fa
ul

t t
ol

er
an

ce
B

yz
an

tin
e

fa
ul

t t
ol

er
an

ce
Sy

nc
hr

on
ou

s c
he

ck
po

in
t-

in
g

w
hi

ch
 k

ee
ps

 a

gl
ob

al
 jo

b
co

ns
ite

nc
y

Ig
no

re
 c

om
m

on
 c

on
-

str
ai

nt
s

M
ak

es
pa

n
En

er
gy

 c
on

su
m

pt
io

n
Sl

ow
SL

A
 v

io
la

tio
ns

13447

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

solution and dynamic methods for optimizing these solutions. Hybrid approaches
are widely used today but suffer from the complexity in implementation phase.

3 � Our proposal

We discussed in the previous section of the existing solutions to achieve load bal-
ancing in cloud environments. We will now in this section introduce our novel
method, we first formalize the problem statement in Sect. 3.2, then expose the archi-
tectural model on which our proposal relies and its related assumptions respectively
in Sects. 3.3 and 3.1. Finally, we give an overview on the solution in Sect. 3.4 before
we dive deeper and depict it in algorithms within Sect. 3.5.

3.1 � Assumptions

In order to avoid confusion, it is important to make some assumptions upon which
our approach is built:

•	 The load balancing is realized at cloudlets level; therefore, once a cloudlet is
selected for migration it is forwarded to the global tasks scheduler to be planned
again.

•	 A workload is already present in the datacenter before the deployment of our
algorithm and is randomly distributed on the servers. A major advantage of our
approach is that it can ensure hot-deployment in already operational datacenters.
However, our framework can also be deployed in new datacenters without work-
load.

•	 We are only interested in the main resources of a server which are: the CPU ,
RAM , bandwidth , storage.

•	 A task is executed to completion without interruption and randomly utilizes vir-
tual machine resources according to a particular model (selected for simulation
scenario).

•	 A virtual machine is destroyed if it finishes executing tasks in its queue before
the scheduler has assigned it other tasks (there is no fully unoccupied virtual
machines).

3.2 � Problem statement

Keeping in mind that the main purpose of tasks scheduling and load balancing
hybrid algorithm is first to decide how to assign a task to a specific virtual machine
which is running on a particular server, then to focus on the manner that allows to
maintain a workload distribution such that it eliminates overloaded and underloaded
servers and try to bring them all within a moderate and fair usage level. In this sec-
tion, we will formalize the problem; we face and introduce used formulas.

In the following sections, the notations used, along with their corresponding
explanations, are summarized in Table 2.

13448	 N. Elsakaan, K. Amroun

1 3

The resources available in a datacenter constitute the set of resources accessible
at the servers level, and this can be expressed through Eqs. 1 and 2 [19]. Let assume
that each datacenter is composed of a set denoted S of N servers S = {S1, S2,… , Sn}
to which corresponds a set of Resources as described in Eq. 1:

where Rresource
i

(t) gives the remaining level of resource of server i at instant t. We
assume also that on each server evolve a set VM of M virtual machines such that:
VM = {vm1, vm2,… , vmn} . Each virtual machine lives on a physical server and has
dedicated resources, for example, the first vm assigned to the first host noted vm11
has as remaining resources at instant t as given by Eq. 2:

We assume that all virtual machines are initially of a same fixed amount of
resources: two CPU cores with each 5000 MIPS and four Go of RAM.

Each task has two main parameters which are length and resources utilization
model; we commonly also call this the cloudlet model. According to its type, a
cloudlet has a determined size (quantity in MIPS) and a variable percentage (from
0.2 to 0.8) of available resources utilization such as RAM. Table 3 gives an over-
view on available server types with corresponding resources (number of processing
cores, RAM and each core calculation capacity) and possible cloudlet sizes.

To formally articulate the problem, we will introduce crucial parameters and
associated equations in our approach. These parameters, commonly employed in the
literature, can be categorized into two main groups: (i) temporal-based parameters
[25], illustrated by Eqs. 3–9, and (ii) load-based parameters [19], represented by
Eqs. 10–15.

Eq. 3 allows the calculation of computation power of a host or a virtual machine:

(1)

Resources =
{
{R

cpu

1
(t),Rram

1
(t),Rbw

1
(t),Rstr

1
(t)}, {R

cpu

2
(t),Rram

2
(t),Rbw

2
(t),Rstr

2
(t)},… ,

{Rcpu
n

(t),Rram
n

(t),Rbw
n
(t),Rstr

n
(t)}

}

(2)R11(t) = {R
cpu

11
(t),Rram

11
(t),Rbw

11
(t),Rstr

11
(t)}

Table 2   Notations meaning

Notation Meaning Notation Meaning

R Resource CL Computation load
MIPS Million instructions per second RL RAM load
BW Bandwidth SL Storage load
STR Storage BDU Bandwidth utilization
CP Computation power RH Request handler
ET Execution time CM Cluster manager
CT Completion time GTS Global tasks scheduler
WT Waiting time LTS Local tasks scheduler
VM Virtual machine GLB Global load balancer
CUR​ Cluster utilization rate LLB Local load balancer
CMS Cluster makespan MMS Mean of makespan

13449

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

where P.U is the set of allocated processing units, |P.U| is its cardinality and
sizeof(p.u) is the individual capacity of a processing unit in millions of instructions
per second (MIPS).

The execution time of a task on a specific virtual machine is given by Eq. 4:

Equation 5 gives the full completion time of a task on a virtual machine:

where WTji is the waiting time of the taskj on the virtual_machinei and is given by
Eq. 6:

i.e: waiting time of a task on a specific virtual machine is the sum of completion
times of all preceding tasks.

We can now define the makespan as the main parameter which measures the
entire completion time of all tasks. It is respectively given on virtual machine,
hosts and clusters levels by 7, 8 and 9:

Now, we are done with temporal or time based parameters, we will move to define
the most important used load related parameters. The first of all estimates the load
on processing unit and is given by Eq. 10:

(3)CPi = |P.U| ∗ sizeof(p.u)

(4)ETji =
sizeof(taskj)

CPVMi

(5)CTji = WTji + ETji

(6)WTji =

j−1∑

k=1

CTki

(7)makespan(VMi) =

n∑

j=1

CTji

(8)makespan(hosti) = max{makespan(VMji)}

(9)makespan(clusteri) = max{makespan(serverji)}

Table 3   Hosts and cloudlets
configuration

Type CPU cores RAM (Go) Core size (MIPS) Cloud-
let size
(MIPS)

Small 2 8 5000 3000
Medium 4 16 10,000 5000
Large 8 32 15,000 7000
Extra large 16 64 30,000 10,000

13450	 N. Elsakaan, K. Amroun

1 3

In the same manner, we can obtain the load on the RAM and storage at a particular
timestamp by Eqs. 11 and 12, respectively:

This estimation is obvious, considering that on a particular a virtual machine, at a
specific timestamp, the load corresponds to the already present workload to which
we add the load induced by new assigned tasks and deduce load of finished ones.
The utilization of bandwidth on a virtual machine is obtained by summing the
amounts of data streams generated by active tasks and can be calculated with Eq. 13:

The global load score on a virtual machine is then given by Eq. 14:

where �, �, � and � are pondering and normalizing factors. Then, we can calculate
the load of a particular server by Eq. 15:

These formulas are common ones, and we will make use of them in our method in
order to build clusters, define a task scheduling strategy based on genetic algorithm
and improve load balancing within cloud environment.

3.3 � Architectural model

Our method is built upon the architectural organization shown in Fig. 2 which is
nearly similar to standard ones (see Fig. 1). Our method relies on hybridizing
between tasks scheduling and load balancing, it incorporates a new module called
clusters manager which is new and crucial to the purpose of this paper. We delib-
erately omit other components such as energy efficiency and so on. We will refer
to mechanisms operating at datacenter level as level-2 and ones operating at clus-
ters level as level-1. The major components/modules involved in our solution can be
described as follows:

•	 Requests handler (RH): It builds the interaction interface with end users. It
retrieves important information relative to each request like length and deadline.

(10)CLt
i
= CLt−1

i
+ CL(Taskst

ji
) − CL(finished_taskst

ji
)

(11)RLt
i
= RLt−1

i
+ RL(Taskst

ji
) − RL(finished_taskst

ji
)

(12)SLt
i
= SLt−1

i
+ SL(Taskst

ji
) − SL(finished_taskst

ji
)

(13)BDUt
i
=

n∑

i=1

data_stream(taski)

(14)Load(VMi) = � ∗ CLi + � ∗ RLi + � ∗ SLi + � ∗ BDUi

(15)Load(serveri) =

∑m

i=1
Load(VMji)

M

13451

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Each request is analyzed, modeled and transmitted to datacenter broker in the
form of a set of tasks.

•	 Datacenter broker (Broker): It is the central module responsible of coordination
of all other functional components; it receives information, controls consistency,
synchronizes and transmits commands to other modules.

•	 Clusters manager (CM): It is in charge of organizing clusters. In other words, it
builds and maintains clusters of servers inside a datacenter while relying on fol-
lowing criteria and primitives:

–	 Cluster size: Which is a dynamic parameter but for the first iteration, we ran-
domly fix it to the ratio defined as: N/50 where N is the total number of serv-
ers in the datacenter. It can take any integer value and experiments are per-
formed to determine its optimal value.

–	 Server utilization information: To be able to setup clusters, the module is fed
by information on utilization rates of the resources of each server, mainly:
CPU , RAM , Bandwidth , storage.

–	 Fusion and fission primitives: Dynamic thresholds are chosen to determine
when a subset of a cluster should leave it (fission) and create another auton-
omous cluster. Same mechanism is implemented and determined when and
which clusters should fusion to build a larger cluster.

•	 Cluster monitor: In the assigned cluster, it is responsible of monitoring the evo-
lution of resource utilization of servers. It is recommended to deploy it as a vir-
tual machine in each cluster (same recommendation for other local components)
since clusters are dynamic and change over time. It continuously collects data

Fig. 2   Our architectural model

13452	 N. Elsakaan, K. Amroun

1 3

from servers, aggregates them to statistical metrics and transmits deciding infor-
mation on which cluster manager relies to trigger fusion and fission primitives.

•	 Tasks scheduler: It corresponds to the classic module in charge of assigning
tasks to the VMs hosted by the servers; however, in our model, it acts on two
levels.

–	 Level-2 global tasks scheduler (GTS): It decides which of the least loaded
clusters will receive the incoming tasks.

–	 Level-1 local tasks scheduler (LTS): It is responsible within a cluster for deter-
mining which server and virtual machines will run the tasks assigned by the GTS.

•	 Load balancer: It is responsible of keeping a fair workload distribution among
servers in the cloud environment, it is also updated such that it operates within
two levels for our purpose:

–	 Level-2 global load balancer (GLB): It decides at datacenter level which clus-
ter (among overloaded ones) should be relieved of workload and to which
cluster (among underloaded ones) the tasks should be migrated.

–	 Level-1 local load balancer (LLB): It selects source servers from the origin
cluster for the cloudlets migration process. Sink ones within the destination
cluster are selected by local scheduler.

3.4 � Overview

Our approach is designed in a such manner to reduce complexity and delays in oper-
ations of tasks scheduling and load balancing. To meet this objective, we propose to
divide the datacenter into a set of clusters partitioned on four categories according to
the makespan and utilization rate of the servers composing them.

There are two ways to give an overall view of our solution. The first focuses on
the functional model which is depicted by Fig. 3 and can be broken down as follows:

1.	 Clustering: In a first phase, we use a k-means-based clustering procedure to divide
the servers into four major categories according to their respective utilization
rates and makespans. Once this is done, we divide the categories into clusters of
bounded sizes. Primitives that we have called fission and fusion allow clusters to
evolve in a quasi-cellular fashion, so that certain sub-groups of servers can leave
a cluster if they approach the centroid of another category. Two clusters can also
be merged if they are in the same category and meet particular size constraints.

2.	 Tasks scheduling: The second stage is dedicated to job scheduling, with the mod-
ule acting on two levels: (i) At datacenter level, a round-robin procedure is used
to decide which cluster a group of jobs will be assigned to. Then, (ii) at cluster
level, a genetic algorithm is used to assign tasks to the servers.

3.	 Load balancing: Load balancing stage begins as soon as the tasks are scheduled.
We have designed our solution in such a way that this mechanism focus on two
tasks: (i) identifying the clusters to be lightened and (ii) locating the servers to
be freed. Once done, the reallocation of released tasks is left to the scheduling
module.

13453

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Fig. 3   Functional model flowchart

13454	 N. Elsakaan, K. Amroun

1 3

The second perspective focus on architectural levels on which the mecha-
nisms act and can be depicted as follows:

1.	 At datacenter level: The mechanisms at this level deal with clusters and are
responsible of realizing their respective missions in an independent way while
relying on their local modules.

(a)	 Cluster manager: It is responsible for cluster creation and development.
During hot-deployment, it initiates the k-means-based clustering procedure.
It then supervises cluster evolution by gathering information from local
monitors and decides on fission and fusion operations.

(b)	 Global tasks scheduler: It is in charge of executing a round-robin procedure
between clusters to decide which will receive the next jobs. It groups tasks
into groups of size equal to the standard number of servers in a cluster, then
decides to which cluster to send them to.

(c)	 Global load balancer: It determines the overloaded clusters to be released by
applying a round-robin algorithm between clusters in the fourth category,
if any, and those in third category, if none exist.

2.	 At cluster level: The modules here act inside clusters and are in charge of realizing
their missions on servers while following instructions from global managers and
feeding them with local information.

(a)	 Cluster monitor: It is on the lookout for evolving information on its own
cluster like servers load and cluster size. It is continuously observing the
movement of the cluster center and its proximity to main categories cen-
troids. It is responsible for sending alerts regarding the Eulerian distance
to the cluster manager when a fission or fusion procedure needs to be trig-
gered.

(b)	 Local tasks scheduler: It receives groups of jobs to schedule from the global
module and applies a genetic algorithm to decide of tasks assignment over
the servers within the same cluster.

(c)	 Local load balancer: When called upon from the global load balancer, it
runs a particular function to calculate a score based on makespan and utili-
zation rate per server. It then rely on these scores to decide which cloudlets
should be retrieved from servers and migrated to another cluster.

This is just an overview of how the load balancing and tasks scheduling mech-
anisms work, depending on the architectural organization of the environment.
The following sub-section is dedicated to the details of each step.

3.5 � Our method

Our method goes through succession of steps and involves multiple algorithms; we
will detail each of them in this section.

13455

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

3.5.1 � Servers clustering

The power of our method lies in the fact that it reduces the amount of information
and constraints the task scheduling and load balancing modules should deal with. To
do this, it starts by decomposing the entire datacenter into clusters making the above
mechanisms act on size-reduced sets of hosts. We will first focus on how clusters are
built in the datacenter level then zoom to clusters level and explain fusion and fis-
sion primitives.

Intuitively, we can conceive a classification of servers according to the criteria
of makespan length and scores relative to resources utilization rate; those criteria
were previously calculated by the formulas 8 and 15 and allow to get the following
categories as shown in Fig. 4:

•	 Category 1: grouping servers with short makespan and low resource utilization
rate.

•	 Category 2: including servers with short makespan and high resource utilization
rate.

•	 Category 3: including servers with long makespan and low resource utilization
rate.

•	 Category 4: grouping servers with long makespan and high resource utilization
rate.

Category 1 represents underloaded servers while category 3 represents the worst
category since it regroups badly exploited servers and category 4 contains over-
loaded ones. The category considered to be ideal is category 2 which is made up of

Fig. 4   Server’s categories according to makespan and resource utilization score

13456	 N. Elsakaan, K. Amroun

1 3

servers that fairly use their resources and whose makespan is reduced. In the load
balancing algorithm proposed in 3.5.3, the migration operations will be made in
such manner to bring maximum number of servers within the category 2.

1.	 Cluster manager: In order to perform this clustering, we propose in Algorithm 1
to use k-means method:

•	 First, Algorithm 1 takes as input the list of servers and is expected to return a
set of clusters with corresponding servers.

•	 In order to realize k-means clustering, informative features on servers must
be modeled. We propose the feature representation given in lines 2 and 3,
respectively, using Eq. 8 for the first feature which is the makespan of the
server. Then, combining Eqs. 14 with 15 for calculating what we call resource
utilization rate score to build the second feature.

•	 Lines 7 and 8 allow initialization of what we call main centroids coordinates
to optimize running time in such a manner that those centroids are initially
positioned within the servers features range. Where k is the parameter speci-
fying the number of expected clusters which is four in this case.

•	 Line 11 calls a standard k-means clustering procedure. It takes as argument
a list of four main centroids generated randomly which should be updated
through several iterations by using Euclidean distance and the list of con-
cerned servers. It returns four clusters grouping servers with similar charac-
teristics. This classification around these four main centroids will serve as the
basis for our next primitives and algorithms.

•	 Finally, line 12 cuts clusters into smaller server pools to render them easier to
manage. It takes as input the list of clusters and the desired size which is here
equal to 50 and returns a list of clusters of limited size. Local centroids must
be recalculated for each cluster, and the CM (cluster manager) keeps track of
the initial four main centroids.

2.	 Local cluster monitor: Once created the CM (cluster manager) setups as a vir-
tual machine on each cluster a cluster monitor which is responsible of gathering
information on servers and transmitting them to the CM. The coordinates of the
four main centroids obtained from the k-means algorithm are transmitted to each
cluster monitor such that it can perform fusion and fission primitives.

•	 Fission: It is a function that allows to update clusters so that they stay consist-
ent.

–	 When the cluster monitor detects that the third of its server’s scores have
moved and become closer to one of the other three main centroids than to
local centroid, then it informs the cluster manager.

–	 The CM initiates a fission operation that produces two clusters.
–	 The CM installs a cluster monitor on the new cluster.
–	 Obviously, the original cluster updates its local centroid and the new one

calculates its own local center.

13457

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

•	 Fusion: It is a function that avoids overcrowding of clusters. The cluster man-
ager monitors clusters sizes and under some conditions can trigger clusters
fusion primitive:

–	 Two or more clusters are near to the same main centroid.
–	 Two or more clusters have number of participant servers under a thresh-

old, let it be 25. Tests can be conducted to evaluate its ideal value which
allows a better performance of the method.

–	 The cardinality of the union of two or more clusters does not exceed a cer-
tain threshold, assuming it is set to 75 for our case.

	  If the datacenter is free of workload at deployment of this framework, then
we ignore k-means clustering and split servers into groups of fixed size at the
beginning.

Algorithm 1   Servers clustering

Now that we have showed how clusters are built and determined the strategy by
which they will be managed; in other words, we have set the laws that govern their
evolution. We can move to the task assignment and load balancing algorithms.

3.5.2 � Tasks assignment and scheduling

After introducing the methods for creating and managing clusters, we will now
present the algorithms for assigning tasks. It is important to remember that we
have decomposed the datacenter into a set of clusters in such a way that we will
now be able to perform the desired operations at two levels: at the datacenter and
clusters one.

13458	 N. Elsakaan, K. Amroun

1 3

1.	 At datacenter level: At datacenter level, we focus on the method by which tasks
will be assigned to clusters. The global scheduler decides on which cluster to plan
some arriving tasks regardless to how it will be managed locally by the local tasks
scheduler module. To realize this, the global scheduler acts as following:

•	 First, it decides of the targeted category of clusters. It will obviously favor
clusters of category 1 since they contain underloaded servers, if there is no
cluster in this category GTS (global tasks scheduler) will explore the pos-
sibilities in class 3. The idea here being to be optimistic, as this category
underutilizes its resources, it could be possible to increase this ratio with-
out significantly impacting the makespan. As a last resort, it will choose
class 2 which represents the perfect exploitation model and should not be
disturbed.

•	 Then, it decides of the targeted cluster by using a round-robin algorithm.
Once the category is chosen, the global scheduler lists all corresponding
clusters first; then, it redirects the tasks it receives on these clusters in turn.
Depending on the parameter given to it which is equal to a certain number
of tasks, at the end of the scheduling of this number of tasks on the clus-
ters, it will repeat the verification of the first step.

	  We propose to start by defining an algorithm for finding clusters corresponding
to a specific category relative to the four main centroids. Algorithm 2 explains
how we do it.

	  Algorithm 3 relies on Algorithm 2 and allows to select the clusters that will be
concerned by round-robin tasks assignment procedure.

	  A last important procedure must be defined for the round-robin algorithm.
Algorithm 2 takes a list of selected clusters and only one task, it assigns the task
to one among these clusters and outputs the list of remaining others.

	  Now, we have defined all necessary functions, we can introduce the round-
robin method as shown in Algorithm 5.

2.	 At cluster level: The local tasks scheduler operate on cluster level and do not
interfere with the global scheduler policy. To perform local tasks, scheduling the
concerned module relies on a genetic algorithm. We opted for a genetic algorithm-
based approach because, firstly, it is a population-based method and this category
offers certain advantages such as the information sharing on the search space
among individuals, their ability to avoid local minima and their capability to
explore a larger portion of the solution space. Additionally, it is a swarm Intel-
ligence approach, meaning that it preserves the best solution found throughout
iterations, possesses fewer operators and has more easily adjustable parameters
[36]. While other approaches in the same family, such as PSO (Particle swarm
Optimization) and Bee Colony, do exist, genetic algorithms have the advantage
of better adaptability to multi-objective problems, a more flexible representation
of feasible solutions and a superior balance between exploration and exploitation.

13459

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Algorithm 2   Find clusters

Algorithm 3   Select clusters

Algorithm 4   Assign task

13460	 N. Elsakaan, K. Amroun

1 3

Algorithm 5   Round-robin tasks assignment among selected clusters

Configuration elements of the algorithm are given in Table 4 where CUR is clus-
ter utilization rate and CMS cluster makespan generated (added) by a particular
solution and can be obtained by Eqs. 16 and 17:

To perform cluster-level task scheduling, we chose to utilize a variant of genetic
algorithms due to their suitability for the nature of the problem, and the positive
outcomes observed in related studies. Designing a robust and efficient genetic algo-
rithm entails careful consideration of three key elements: (i) the generation of indi-
viduals and the population, (ii) the operators governing population evolution and
(iii) the procedure for executing these operations on individuals based on the fitness
function.

For the first-generation, we have to create a random population of feasible solu-
tions. We first create one feasible solution at once by generating an individual with
Algorithm 6 which incorporates as constraints the number of available servers and
arriving tasks and generates a random realizable solution.

(16)CUR =

∑N

1
URi

N

(17)CMS =

∑N

1
makespani

N ∗ max{makespani}

Table 4   Configuration of the genetic algorithm for local tasks assignment

Element Description

Coding Gene: binary value expressing if the ith server is in charge of a task
Chromosome/Individual: Vector of N genes where N is the number of

servers in the cluster. Each expresses a particular disposition which is a
feasible solution

Population: a set of individuals
Fitness function

Fitness = 1 −
CUR+CMS

2

Parents selection Elitist, tournament
Crossover Uniform crossover
Mutation Randomly made on each gene according to a fixed mutation rate threshold

13461

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Algorithm 6   Create an individual

Then, we repeat the procedure for individual creation of a certain desired number
of times to create the first generation population, this is explained in Algorithm 7.

Algorithm 7   Population generating algorithm

After generating a random set of individuals to build the first-generation of solu-
tions, we move on now to introduce the operators handling theses chromosomes.

The selection operator described by Algorithm 8 is the one that will allow choos-
ing the most adequate individuals. Those which will be the parents to be combined
and to reproduce. We have proposed a tournament selection method which offers
the advantage of speed, diversity and to allow the least good individuals to have a
chance to participate with better chromosomes in the creation of the new genera-
tion. The principle of the method is simple; it randomly selects a certain number of
individuals from the entire population and pits them against each other to select the
best one.

13462	 N. Elsakaan, K. Amroun

1 3

Algorithm 8   Tournament selection operator

The first evolutionary operator is the crossover operator described in Algorithm 9. It
is evolutionary in the sense that it allows to create a new generation from the original
population, this offspring is supposed to be composed of better solutions than the one
present in the parents’ generation. We decided that for this operator, we would use the
uniform crossover approach where each gene of the son is inherited from parent 1 or
2 according to a uniformly distributed probability. This means that a task will be ran-
domly scheduled on a particular server according to its initial assignment within first or
second solution according to a certain probability.

Algorithm 9   Crossover evolution operator

13463

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Now that all the elements that go into the operation of a genetic algorithm are
assembled, the overall orchestration is performed by Algorithm 10.

Algorithm 10   Genetic algorithm for in-cluster tasks scheduling

3.5.3 � Load balancing

The power of our approach lies on two elements: first, clustering which enables
management mechanisms to be operated on two levels and therefore to handle a
reduced number of entities, whether clusters at datacenter level or servers at cluster
level. The second element is the high decoupling in the missions of the latter mod-
ules. As we previously said, in load balancing step, we are only interested in one
question on two levels: which clusters to free up and which servers in particular to
lighten. This is because the load balancer is no longer in charge of migrating cloud-
lets, as the scheduler will reassign them to other servers on category one clusters.

1.	 At datacenter level: The first step in load balancing is to locate clusters within
the fourth category, those with high resource utilization rate and long makespan.

13464	 N. Elsakaan, K. Amroun

1 3

If the category 4 is free, then we try to find clusters of category three that have a
bad utilization rate but still have a long makespan. This can be achieved by using
Algorithm 11.

	  Once found, the clusters of category four or ones of category three if the fourth
one is empty should be lighten. A round-robin algorithm described in 12 is again
used at datacenter level to ensure fairness between clusters.

2.	 At cluster level: Once designated by the global load balancer, an instruction is sent
to the local load balancer which has to determine which servers must be freed and
which cloudlets must be migrated to another cluster. To reach this objective, the
load balancer start by calculating the mean of servers makespan noted {MMS}
in that cluster determined by Eq. 18:

 The last step of all in our method is realized thanks to Algorithm 13 which
is used by local load balancer to decide which cloudlets must be relieved from
servers and migrated to another cluster, the latter job is made by the global tasks
scheduler and is out of the scope of this algorithm.

Algorithm 11   SelectcClusters to unload

Algorithm 12   Round-robin to relieve selected clusters

(18)MMSCi
= Mean(Makespan(serverij))

13465

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Algorithm 13   Determine cloudlets to migrate

Now, we have explained our method in details by depicting each step, the role of
each architectural component and the strategies used to trigger primitives, we will
move in next section to explain our validation method, show details of implementa-
tion, discussing obtained results and comparing them to the best ones found in the
field literature.

4 � Experiments

In order to validate our method, we implemented it with the standard cloud simula-
tor called CloudSim plus. Table 5 shows what is needed to be implemented in term
of objects and corresponding parameters. CloudSim is an open-source simulation
library widely used for modeling and evaluating cloud computing systems. It ena-
bles researchers and developers to simulate cloud datacenters and applications to
assess their performance such as energy consumption, makespan and so on. Cloud-
Sim offers a simple, flexible interface for creating customized simulation scenarios.
It allows researcher to focus on implementation of their own algorithm like vir-
tual machine placement ones, tasks scheduling, load balancing and to assess them
according to a certain set of criteria like number of cloudlets migration [37]. Cloud-
Sim Plus comes into the game as an extension to the CloudSim simulation library,
offering advanced features and performance enhancements to speed up modeling
and simulating cloud computing environments [38].

The simulation was conducted on a laptop with following characteristics:

Table 5   Cloudsim simulation model and elements

Simulation Datacenter Hosts Virtual machine Cloudlets

Datacenter List of hosts CPU CPU Length (MIPS)
Broker VM allocation policy RAM RAM Utilization model
List of hosts Bandwidth Bandwidth
List of VMs Storage Storage
List of cloudlets Resource provisioner Cloudlet scheduler

13466	 N. Elsakaan, K. Amroun

1 3

•	 Processor: Intel ®Core ™i7-10510U CPU @ 1.80 GHz.
•	 RAM: 16 GO.
•	 OS: Windows 11 64 bit, x64-based processor.

In order to verify the veracity of the results obtained, we ran our algorithms in sev-
eral scenarios, varying key parameters such as the number of servers, cloudlets and
cluster sizes. We collected key indicators such as duration over the various stages
and number of operations, before carrying out a comparative and analytical study
against the methods, we considered to be the most relevant in the literature.

The collected metrics are obtained by calculating the mean values among a hun-
dred of repetitions for each scenario. Cloudlets and servers are generated with ran-
dom parameters as previously shown in Table 3 to make the scenarios more realistic.

4.1 � Experiment results

Table 6 introduces the main performance metrics, we used to evaluate the efficiency
of our method and to compare it with other approaches. Since the time involved in
load balancing processes is very negligible, we are only interested in three metrics
which are response time, number of migrations and of SLA violations.

We have estimated clustering time according to the number of servers within a
datacenter and for a variable cluster size, the obtained results are shown in Table 7.
In comparison, the [39] approach requires 4 s for clustering one thousand servers. In
regard of the parameters used with k-means, our approach enables realizing cluster-
ing operation within a very negligible time.

The parameters of the genetic algorithm are provided in Table 8. These param-
eters were selected after conducting simulations with various random configurations
using a grid search method. We chose the configuration that optimized performance
parameters such as response time and makespan, while minimizing SLA violations
and migrations. This configuration also significantly reduced the algorithm’s execu-
tion times.

Evaluating task scheduling means taking two durations into consideration: (i)
the durations required for the global scheduler to perform group tasks in batches
and round-robin execution to designate the target cluster, then (ii) the duration

Table 6   Evaluation metrics

Parameter Description

Duration Clusters management duration Clustering Primitives: fission and
fusion Tasks scheduling times: Round-robin among clusters
and Genetic algorithm inside a cluster

Migrations Number of cloudlets selected by local load balancer for migration
SLA violations Number of cloudlets violating the service-level agreement
Makespan Obtained by Eq. 8
Response time Refers to the time required by the load balancer to detect an

unbalanced situation and to determine cloudlets to migrate

13467

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Ta
bl

e 
7  

C
lu

ste
rin

g
du

ra
tio

n

N
um

be
r o

f s
er

ve
rs

20
00

50
00

10
,0

00
20

,0
00

C
lu

ste
r s

iz
e

50
10

0
20

0
50

0
50

10
0

20
0

50
0

50
10

0
20

0
50

0
50

10
0

20
0

50
0

C
lu

ste
rin

g
du

ra
tio

n
0.

02
0.

02
0.

02
0.

02
0.

02
0.

02
0.

02
0.

02
0.

03
0.

03
0.

04
0.

04
0.

05
0.

05
0.

05
0.

05

13468	 N. Elsakaan, K. Amroun

1 3

required for the local scheduler to run the genetic algorithm and assign tasks to
servers. The results obtained are detailed in Table 9. When we focus on overall
times, we see that smaller clusters deliver better performance, due to the fact that
round-robin time is negligible even when the number of clusters is large, and that
the genetic algorithm increases considerably in runtime as the number of servers
increases.

The results of Table 9 are represented in the graphs of Fig. 5. The graphs show
a certain irregularity: The regression is not totally linear between cluster sizes
and planning times. This easily observable phenomenon is due to the fact that
task characteristics and server capacities are generated randomly and results are
obtained by aggregating the outputs of the various scenarios repetitions in aver-
age values.

Table 8   Genetic algorithm
parameters

Parameter Value

Chromosome size Equal to cluster size, a
value among 50, 100,
200, 500

Population size 50 Individuals
Termination criteria 10 Generation
Crossover rate 0.6
Mutation rate 0.01

Table 9   Tasks scheduling duration

Number of servers 5000 10,000

Cluster size 50 100 200 500 50 100 200 500
Round-robin duration 0.002 0.002 0.002 0.002 0.005 0.005 0.005 0.005
Genetic algorithm duration 0.2 0.31 0.68 3.19 0.47 0.46 2.39 3.5
Total scheduling time 0.202 0.312 0.682 3.192 0.475 0.465 2.395 3.505

Fig. 5   Tasks scheduling duration according to cluster size

13469

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Table 10 summarizes the most relevant performance criteria of our approach.
We have measured those metrics for several possible cluster sizes. The major
observations can be summarized as follows:

•	 The number of cloudlets to migrate increases logically while increasing the
cluster size; this is due to the size of the tasks batches transferred by the global
scheduler to the cluster which is equal to the number of servers present in the
latter. The more the cluster receives tasks that are of variable sizes, the more the
load balancer decides to migrate a greater number of them which risk to fall in
SLA violations otherwise. It is important to note that the proportion of cloud-
lets to migrate remains near the ratio of 12% compared to the size of the cluster
(batch of tasks).

•	 The given makespan concerns one batch of tasks of random sizes. We can see
that it remains within a very interesting interval of values. Larger sized clusters
may have a longer makespan due to the greater variety in the characteristics of
the cloudlets that they receive.

•	 The number of SLA violations increases if the cluster is bigger. The greater the
number of tasks received, the greater the probability that some will violate the
SLA. It is also important to note that these violations remain below an accept-
able threshold of around 8%.

•	 The last row of the table shows the results of the load balancing module response
time evaluation. This time includes the designation of the cluster to be lightened
and the precision of the servers to be released. In other words, it encompasses
the delays from detecting an imbalance to determining the list of cloudlets to
migrate. It is easy to notice that the delays are negligible, in comparison the solu-
tion [23] requires 0.008 s to determine the tasks to migrate among a total of just
30.

Table 10   Global performance
evaluation

Cluster size 50 100 200 500

Migrations 5 13 20 76
Makespan 1.35 1.2 1.5 1.7
SLA violations 5 8 18 35
Response time 0 0.004 0.005 0.009

Table 11   Comparative analysis Makespan Migrations SLA violations

Our method 1.18 12% 8%
Jena et al. [25] 3.5 19% Unknown
Babu and Samuel [18] 8 35% Unknown
Kumar and Sharma [22] 3.8 Unknown 18%

13470	 N. Elsakaan, K. Amroun

1 3

We will now move to the comparative study. We start by comparing the main
metrics obtained for our method with some of the most relevant ones in the literature
of hybrid approaches. Table 11 gives a comparison between our method and selected
other ones according the the standard parameters. The results were estimated for
a datacenter of 2000 servers and with 2000 cloudlets. Our method presents a best
average makespan, a lower migration ratio and a considerably reduced amount of
SLA violations.

Fig. 6 represents the results given in Table 11. The left plot allows a visual com-
parison of our method and ones given in [25] and [18] according to the number of
performed cloudlets migrations. While the right graph compares our method with
[22] according to SLA violations. The red graphs are plotted to serve as marks.

The performance evaluation of our methods has produced very promising results,
the approach allows an excellent scalability and a reduction in delays, migrations
and SLA violations.

4.2 � Discussion

The simulations and experiments that we conducted demonstrated that our solu-
tion aligns with expectations regarding scalability. Outperforming recent literature,
it adapts effectively to highly dynamic environments, which is realistic scenario in
light of the rise of the internet of things. This scalability is achieved while main-
taining remarkable stability in response times, makespan, task migration count
and, most importantly, a consistently low number of SLA violations. The use of the
CloudSim Plus simulator, a standard for benchmarking this type of solution, has
enabled us to reliably position ourselves in comparison with other proposals. This
has even allowed us to identify limitations in existing solutions, whether in their
scalability, their inability to ensure hot-deployment, or the lack of validation against
both standard and crucial criteria that we have mentioned.

Our solution derives its strength from operating at two levels. By grouping serv-
ers based on their loads, we can focus on task scheduling by distributing them over
a fixed-size subset of machines. This enables swift cluster selection through round-
robin, and, with genetic algorithms operating on a static number of servers, accom-
modates a multitude of constraints to quickly find an optimal solution. Isolating
overloaded server sets through the same k-means-based clustering allows for a rapid
assessment of which clusters should be prioritized for offloading and which tasks
need to be rescheduled elsewhere. Thanks to this methodology, our approach out-
performs the most recent literature, as demonstrated in Table 11 and Fig. 6.

5 � Conclusion and perspectives

In this paper, we proposed a new hybrid approach to job scheduling and load bal-
ancing in cloud environments. This approach offers several advantages such as hot-
deployability, high scalability, decoupling and strong interoperability between the
mechanisms that manage the cloud ecosystem. The power of this approach lies in its

13471

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

Fi
g.

 6
  

M
ig

ra
tio

ns
 a

nd
 S

LA
 v

io
la

tio
ns

13472	 N. Elsakaan, K. Amroun

1 3

modus operandi: In the first stage, servers are clustered using an algorithm based on
k-means and criteria such as utilization rate and makespan, enabling us to approach
the problems we face on two scales: at the datacenter level and inside a cluster. The
tasks scheduler integrates two modules: one is global and relies on round-robin to
transfer task batches to a particular cluster, the other which is local calls a genetic
algorithm to assign tasks to servers. The load balancer also operates on these two
levels: a global module uses round-robin to designate the cluster to be released, then
a particular algorithm which uses an individual score to designate the servers to be
unloaded. The clustering mechanism also incorporates probes within each cluster
and forecasts their evolution to perform fission and fusion actions designed to main-
tain cluster coherence.

We were able to validate the performance of our approach by implementing it
with CloudSim plus, which produced very conclusive results in terms of makespan,
response times, SLA (service-level agreement) violations and cloudlet migrations.
The comparative study showed a clear improvement over the most recent and rel-
evant works in the literature. We will now be looking at future improvements, taking
advantage of the power of machine and deep learning to optimize cloudlet migration
processes and define more optimally the different threshold used to control actions
of our algorithms.

Author Contributions  Each author participated actively in conducting analyses, drafting sections of the
manuscript, editing and approving the final, submitted version.

Funding  This work has been sponsored by the General Directorate for Scientific Research and Techno-
logical Development, Ministry of Higher Education and Scientific Research DGRSDT, Algeria.

Data availability  This declaration is not applicable since we have not used any external resource or
dataset.

Declarations 

Ethical approval  This declaration is not applicable for the purpose of our work.

Competing interests  The authors have no competing interests as defined by Springer or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

References

	 1.	 Gopala M, Sriram K (2022) Edge computing vs. cloud computing: an overview of big data chal-
lenges and opportunities for large enterprises

	 2.	 Kavitha T, Hemalatha S, Saravanan T, Singh AK, Alam MI, Warshi S (2022) Survey on cloud com-
puting security and scheduling. 1–4

	 3.	 Alazzam H, Mardini W, Alsmady A, Enizat A (2019) Load balancing in cloud computing using
water flow-like algorithm. In: ACM International Conference Proceeding Series

	 4.	 Tawfeeg TM, Yousif A, Hassan A, Alqhtani SM, Hamza R, Bashir MB, Ali A (2022) Cloud
dynamic load balancing and reactive fault tolerance techniques: a systematic literature review
(SLR). IEEE Access 10:71853–71873

13473

1 3

A novel multi‑level hybrid load balancing and tasks scheduling…

	 5.	 Kumar P, Kumar R (2019) Issues and challenges of load balancing techniques in cloud computing: a
survey. ACM Comput Surv 51

	 6.	 Souravlas S, Anastasiadou SD, Tantalaki N, Katsavounis S (2022) A fair, dynamic load balanced
task distribution strategy for heterogeneous cloud platforms based on Markov process modeling.
IEEE Access 10:26149–26162

	 7.	 Kashikolaei SMG, Hosseinabadi AAR, Saemi B, Shareh MB, Sangaiah AK, Bian GB (2020) An
enhancement of task scheduling in cloud computing based on imperialist competitive algorithm and
firefly algorithm. J Supercomput 76:6302–6329

	 8.	 Qaisar F, Shahab H, Iqbal M, Sargana H, Aqeel M, Qayyum M (2023) Recent trends in cloud
computing and IoT platforms for it management and development: a review. Pak J Eng Technol
6:98–105

	 9.	 Hong J, Dreibholz T, Schenkel JA, Hu JA (2019) An overview of multi-cloud computing.
1055–1068

	10.	 Kumar M, Sharma SC, Goel A, Singh SP (2019) A comprehensive survey for scheduling techniques
in cloud computing. J Netw Comput Appl 143:1–33

	11.	 Rehman AU, Aguiar RL, Barraca JP (2022) Fault-tolerance in the scope of cloud computing. IEEE
Access 10:63422–63441

	12.	 Deepa T, Cheelu DD (2017) A comparative study of static and dynamic load balancing algorithms
in cloud computing. In: Proceedings of International Conference on Energy, Communication, Data
Analytics and Soft Computing (ICECDS-2017)

	13.	 Kokilavani T, Amalarethinam DIG (2011) Load balanced min–min algorithm for static meta-task
scheduling in grid computing. Int J Comput Appl 20:975–8887

	14.	 Liu G, Li J, Xu J (2012) An improved min-min algorithm in cloud computing. AISC 191:47–52
	15.	 Miao Z, Yong P, Mei Y, Quanjun Y, Xu X (2021) A discrete pso-based static load balancing algo-

rithm for distributed simulations in a cloud environment. Future Gener Comput Syst 115:497–516
	16.	 Arulkumar V, Bhalaji N (2021) Performance analysis of nature inspired load balancing algorithm in

cloud environment. J Ambient Intell Hum Comput 12:3735–3742
	17.	 Milan ST, Rajabion L, Ranjbar H, Navimipour NJ (2019) Nature inspired meta-heuristic algorithms

for solving the load-balancing problem in cloud environments. Comput Oper Res 110:159–187
	18.	 Babu KRR, Samuel P (2016) Enhanced bee colony algorithm for efficient load balancing and sched-

uling in cloud, vol 424. Springer, Berlin, pp 67–78
	19.	 Adhikari M, Nandy S, Amgoth T (2019) Meta heuristic-based task deployment mechanism for load

balancing in IAAS cloud. J Netw Comput Appl 128:64–77
	20.	 Shafiq DA, Jhanjhi NZ, Abdullah A, Alzain MA (2021) A load balancing algorithm for the data

centres to optimize cloud computing applications. IEEE Access 9:41731–41744
	21.	 Vanitha M, Marikkannu P (2017) Effective resource utilization in cloud environment through

a dynamic well-organized load balancing algorithm for virtual machines. Comput Electric Eng
57:199–208

	22.	 Kumar M, Sharma SC (2018) Deadline constrained based dynamic load balancing algorithm with
elasticity in cloud environment. Comput Electric Eng 69:395–411

	23.	 Priya V, Kumar CS, Kannan R (2019) Resource scheduling algorithm with load balancing for cloud
service provisioning. Appl Soft Comput J 76:416–424

	24.	 Tong Z, Chen H, Deng X, Li K, Li K (2020) A scheduling scheme in the cloud computing environ-
ment using deep q-learning. Inf Sci 512:1170–1191

	25.	 Jena UK, Das PK, Kabat MR (2022) Hybridization of meta-heuristic algorithm for load balancing
in cloud computing environment. J King Saud Univ Comput Inf Sci 34:2332–2342

	26.	 Gamal M, Rizk R, Mahdi H, Elnaghi BE (2019) Osmotic bio-inspired load balancing algorithm in
cloud computing. IEEE Access 7:42735–42744

	27.	 Ragmani A, Elomri A, Abghour N, Moussaid K, Rida M (2020) Faco: a hybrid fuzzy ant colony
optimization algorithm for virtual machine scheduling in high-performance cloud computing. J
Ambient Intell Hum Comput 11:3975–3987

	28.	 Chaudhary D, Kumar B (2019) Cost optimized hybrid genetic-gravitational search algorithm for
load scheduling in cloud computing. Appl Soft Comput J 83:10

	29.	 Satpathy A, Addya SK, Turuk AK, Majhi B, Sahoo G (2018) Crow search based virtual machine
placement strategy in cloud data centers with live migration. Comput Electric Eng 69:334–350

	30.	 Abohamama AS, Alrahmawy MF, Elsoud MA (2018) Improving the dependability of cloud envi-
ronment for hosting real time applications. Ain Shams Eng J 9:3335–3346

13474	 N. Elsakaan, K. Amroun

1 3

	31.	 Han H, Bao W, Zhu X, Feng X, Zhou W (2018) Fault-tolerant scheduling for hybrid real-time tasks
based on CPB model in cloud. IEEE Access 6:18616–18629

	32.	 Sun H, Yu H, Fan G, Chen L (2020) Qos-aware task placement with fault-tolerance in the edge-
cloud. IEEE Access 8:77987–78003

	33.	 Chinnathambi S, Santhanam A, Rajarathinam J, Senthilkumar M (2019) Scheduling and check-
pointing optimization algorithm for byzantine fault tolerance in cloud clusters. Clust Comput
22:14637–14650

	34.	 Ghasemi A, Haghighat AT (2020) A multi-objective load balancing algorithm for virtual machine
placement in cloud data centers based on machine learning. Computing 102:2049–2072

	35.	 Xu X, Mo R, Dai F, Lin W, Wan S, Dou W (2020) Dynamic resource provisioning with fault toler-
ance for data-intensive meteorological workflows in cloud. IEEE Trans Ind Inform 16:6172–6181

	36.	 Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61
	37.	 Goyal T, Singh A, Agrawal A (2012) Cloudsim: simulator for cloud computing infrastructure and

modeling. Proc Eng 38:3566–3572
	38.	 Filho MC, Oliveira RL, Monteiro CC, Inácio PR, Freire MM (2017) Cloudsim plus: A cloud com-

puting simulation framework pursuing software engineering principles for improved modularity,
extensibility and correctness. In: Proceedings of the IM 2017–2017 IFIP/IEEE International Sym-
posium on Integrated Network and Service Management

	39.	 Vasile MA, Pop F, Tutueanu RI, Cristea V, Kołodziej J (2015) Resource-aware hybrid scheduling
algorithm in heterogeneous distributed computing. Future Gener Comput Syst 51:61–71

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	A novel multi-level hybrid load balancing and tasks scheduling algorithm for cloud computing environment
	Abstract
	1 Introduction
	2 Related works
	2.1 Static load balancing methods
	2.2 Dynamic load balancing approaches
	2.3 Hybrid load balancing algorithms
	2.4 Comparative analysis
	2.5 Synthesis

	3 Our proposal
	3.1 Assumptions
	3.2 Problem statement
	3.3 Architectural model
	3.4 Overview
	3.5 Our method
	3.5.1 Servers clustering
	3.5.2 Tasks assignment and scheduling
	3.5.3 Load balancing

	4 Experiments
	4.1 Experiment results
	4.2 Discussion

	5 Conclusion and perspectives
	References

