
Vol:.(1234567890)

The Journal of Supercomputing (2024) 80:12910–12928
https://doi.org/10.1007/s11227-024-05923-2

1 3

SkewEngine: enhancing performance of intensive
calculations on regular meshes

Felipe Romero1,2 · Pilar M. Ortigosa2 · Gerardo Bandera1 · Luis F. Romero1

Accepted: 21 January 2024 / Published online: 24 February 2024
© The Author(s) 2024

Abstract
In various applications such as hyperspectral data manipulation, MRI data explora-
tion, or viewshed identification in digital elevation models, performing arithmetic
operations on each point of a data mesh that involves other points can lead to com-
putationally intractable problems. This paper presents SkewEngine, a tool designed
to improve the performance of intensive calculations on regular 2-D data meshes,
such as images, multispectral data volumes, or digital elevation models. SkewEn-
gine addresses this problem by reorganizing the mesh in memory according to a pre-
ferred spatial direction, enabling more efficient execution of intensive calculations.
It is demonstrated that SkewEngine offers significant speed improvements for vari-
ous test cases, suggesting its usefulness in a broader range of applications requiring
intensive data processing on regular meshes.

Keywords Hybrid computing · Regular mesh · Memory locality

 * Luis F. Romero
 felipe@uma.es

 Felipe Romero
 fr@uma.es

 Pilar M. Ortigosa
 ortigosa@ual.es

 Gerardo Bandera
 gbandera@uma.es

1 Departamento de Arquitectura de Computadores, Universidad de Málaga, Avda. Cervantes, 2,
29071 Málaga, Spain

2 Departamento de Informática, Universidad de Almería, CeIA3, C. Sacramento, s/n,
04120 Almería, Spain

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05923-2&domain=pdf

12911

1 3

SkewEngine: enhancing performance of intensive calculations…

1 Introduction

Challenges arise in numerous and diverse fields where a highly intensive calcula-
tion is imperative for every individual point within a 2-D or 3-D data mesh. Some
noteworthy cases include computations conducted on each pixel constituting an
image, every geographical point on a digital elevation model (DEM), or within
the dataset acquired from a magnetic resonance imaging procedure.

In specific scenarios, the level of arithmetic intensity becomes so high that it
renders the problem computationally intractable. To illustrate, let’s consider the
case of the viewshed of a specific point within a DEM. Contemplate a scenario
where the objective entails determining the observable extent of a given territory
from a designated location within that territory, as shown in Fig. 1.

To determine whether point A is visible from point B (where B is any other
location within the geographical context under consideration), it becomes imper-
ative to account for the elevation of all the points in the model, as any point a
priori could potentially obstruct the line of sight. Therefore, within a DEM, with
a dataset size of N = dimx × dimy , the computational complexity of the problem,
represented by big-O notation, would be of order O(N2) . However, this complex-
ity could be mitigated by exclusively considering points C closer to the A-B line
as potential obstructions. Nevertheless, the complexity of the problem, O(N1.5) ,
remains significantly high. For instance, noteworthy applications such as Google
Earth require several seconds to yield an approximate solution.

When the calculation of the viewshed is required not only for an observer situ-
ated at a specific location within a territory but also for arbitrary paths traversing
the terrain, regions of interest, or even the entirety of the territory, where any
point within a DEM serves as an observation point, the computational complexity
scales to O(N2.5) . Even with reduced precision, months of CPU time are usually
required for computations involving a typical-size model [1].

Fortunately, these types of problems belong to a category in which the param-
eters under examination are subject to decay based on geometric distance within
the data mesh. This decay can be linear or quadratic, with the latter being more
prevalent. In such scenarios, the influence of a distant point does not immedi-
ately impact, if at all, the occurrences at the opposite end of the geometry. These
issues are commonly simplified through processing involving a discrete set of
radial directions originating from a focal point under investigation. This approach

Fig. 1 Self–explaining figure of 1-D Viewshed seen from a tower

12912 F. Romero et al.

1 3

is taken because the radii are closer to each other at the point of view, thereby
resulting in a finer mesh near the study point, where it is most needed.

However, in such problems where the spatial locality of information becomes a
critical factor, the necessity arises to translate this spatial locality onto the data itself,
explicitly concerning memory storage. Consider the following example for elucida-
tion. Imagine the application of a filter in many lines parallel to the black arrow
on the image depicted in Fig. 2 (left panel). Any algorithm of significant complex-
ity, typically employed in computer graphics, such as the Fast Fourier Transform
(FFT), would be considerably more efficient if the data array were memory-aligned,
as exemplified by the distorted image on the right panel.

In this scenario, the spatial locality of data contributes significantly to optimi-
zation, allowing for more efficient computation due to the aligned memory struc-
ture. This alignment facilitates the operation of computationally demanding algo-
rithms, ultimately enhancing the efficiency of data processing operations in spatially
dependent problems.

This study’s proposition involves analyzing and utilizing the advantages of a
memory reorganization strategy. Primarily, the objective is to demonstrate that reor-
ganizing information using skewed data interpolation confers significant benefits,
particularly in scenarios characterized by exceptionally high levels of complexity.

Structured and unstructured mesh algorithms are a popular means of solving
problems across a broad range of disciplines, from texture mapping to computa-
tional fluid dynamics, and they are often dominated by computation and memory
overhead. On the one hand, enhancing memory organization for intensive calcula-
tions is a fundamental component of high-performance computing and parallel
processing. On the other, optimizing memory layout entails strategically structur-
ing data in memory to reduce the time spent accessing memory and to maximize
the proximity of relevant data, leading to significant improvements in computational
speed and efficiency. The work presented here is not the first that rewrites a mesh
to optimize memory access. See, for example, [2–4]. And, in the geographic scope,
both QGIS and CDO software offer command line tools for rotating and regridding

Fig. 2 Restructuring image data to a skewed array (110◦ case)

12913

1 3

SkewEngine: enhancing performance of intensive calculations…

geographical data sets [5, 6]. However, through systematic investigation and empiri-
cal evaluation, this research seeks to establish that implementing in-memory skewed
data interpolation offers substantial enhancements in computational efficiency and
problem-solving efficacy. In problems marked by computational intensity, this
technique proves to be highly advantageous, optimizing the utilization of memory
resources and accelerating computation by exploiting the inherent spatial relation-
ships within the data.

1.1 Background: the SDEM algorithm

In 2013, Tabik et al. [1] introduced an algorithm that accounts for radial dependency
in the computation of the viewshed, culminating in the development of an algorithm
capable of calculating this viewshed for all points within a DEM. This is achieved
through a discrete set of directional evaluations surrounding each point (typically
encompassing s = 360 directions). Specifically, within every one-degree angular
sector, the algorithm considers solely the data points situated along the central axis
of that sector.

By adopting this approach, the complexity of the original problem, originally
denoted as O(N2.5) , undergoes a notable reduction to O(s ⋅ N1.5) . This algorithmic
optimization significantly enhances computational efficiency while preserving a sig-
nificant level of accuracy in computing the viewshed across the DEM. The work by
Tabik et al. is a pivotal advancement, showcasing how targeted strategies, such as
radial dependency and discrete directional analysis, can yield substantial improve-
ments in solving complex spatial problems.

Furthermore, by employing a straightforward inversion of loops that, instead of
processing all the points of the DEM with an external loop and then calculating the
1-D viewshed in all sectors with the internal loop, the code leverages the pre-exist-
ing alignment of all data in a specific direction. This enables the computation of the
viewshed from all points along a given line in that direction.

In Fig. 3, the images in the inner row illustrate how, by reversing the loops, it
becomes possible to leverage the algorithm’s application on all points aligned in the
same direction as the outer loop. Four points within the territory have been selected
in the upper row, and the viewshed has been computed in four directions around
these points. In contrast, in the lower row, the viewshed of the study points are cal-
culated for each of the four computation directions. It can be seen that some points
benefit from the alignment of data employed in other calculations.

1.1.1 Skewed data storage

The concept of skewed data storage involves an intentional arrangement of data
that capitalizes on inherent patterns or relationships within the dataset. This stra-
tegic arrangement aims to optimize computational efficiency and processing speed
when performing specific operations on the data. By aligning data according to the
anticipated usage patterns, re-grided (skewed) data storage reduces memory access
latency and accelerates computation.

12914 F. Romero et al.

1 3

In cases where spatial relationships or dependencies exist within the data, skewed
storage can exploit these patterns to streamline operations. For instance, aligning
data in memory according to the anticipated access patterns in spatial computations
can significantly enhance the overall performance of algorithms. Using skewed data
storage, computational tasks involving complex calculations and intricate depend-
encies can be expedited, making it a valuable strategy in various computational
contexts.

Recently, Romero et al. introduced a significant modification to the algorithm [7],
which addresses two critical aspects to enhance performance further.

1. Spatial locality exploitation: Given a specific sector, if only the remaining points
within the same line will be utilized, the proposal suggests aligning the corre-
sponding data along the same memory line. This approach capitalizes on spatial
locality, minimizing memory access delays and optimizing data processing.

2. Parallelism and GPU usage: The modified algorithm exploits parallelism when
considering a sector wherein only points along the same line will be utilized (thus
eliminating cross-line dependencies). This involves concurrently processing all
lines, benefiting from graphics processing units (GPUs) capabilities for enhanced
computational efficiency.

By strategically addressing these aspects, the revised algorithm showcases a notable
advancement, demonstrating the potential for substantial improvements in memory
management and computational speed. Integrating spatial locality and parallel pro-
cessing, coupled with GPU utilization, represents a sophisticated approach to tack-
ling complex spatial problems with heightened efficiency and efficacy.

Thus, the sDEM algorithm (derived from skew-DEM, skewed digital eleva-
tion model) emerges, founded upon strategically arranging data in memory to suit

Fig. 3 Loop exchange. Above, for each point, the viewshed is calculated in all sectors. Below, for each
sector, the 1-D viewshed is calculated for all points

12915

1 3

SkewEngine: enhancing performance of intensive calculations…

computations along specific directions. The algorithm’s core principle is under-
pinned by the notion that the costs associated with the “deconstruction and recon-
struction of the map” are justifiable given the magnitude of computations to be exe-
cuted on the inherently “skewed” data state.

The sDEM algorithm exploits spatial locality and parallel processing by adopting
this approach. The effort invested in reorganizing the data structure aligns with the
computational intensity of the subsequent calculations, ultimately leading to sub-
stantial gains in overall performance and enabling the exploration of new frontiers in
computational geography.

2 A framework for memory data optimization

This work proposes to generalize and extend this idea to any algorithm using a tem-
plate independent of the algorithm. To do this, the skewEngine tool is presented: a
code packaged in a C++ class that facilitates the most tedious part of the many algo-
rithms that can benefit from the proposal. Specifically, the engine would be respon-
sible for reorganizing the data of regular meshes so that they are aligned in memory
(considering the necessary interpolation) and that, at the end of the algorithm, relo-
cates the data to its original location through an interpolation in the reverse direc-
tion. In particular, the class is designed to consider the following sequence of stages:

1. Data input (a DEM, an image,...)
2. Data allocation for each device (CPU or GPU) See Sect. 3.
3. Thread deployment and skewEngine objects initialization
4. Directional iteration (e.g., over 360 Directions). Each iteration is assigned to a

different device. Thus, each CPU/GPU will receive several sectors to perform
different operations.

(a) Data preparation (skew interpolation)
(b) Data processing using CPU and/or GPU (external function)
(c) Data restore (deskew interpolation)

5. Recollection from device results.

It is also proposed that the class (skewEngine) be used for any data type (integers,
floats, doubles, or pixels, for example) using C++ templates and that it handles eve-
rything related to data preparation and collection of results.

2.1 Operations of the SkewEngine class

The SkewEngine class within the proposed framework encapsulates a range of oper-
ations that collectively facilitate the efficient execution of algorithms while optimiz-
ing memory utilization and parallelism. These operations are designed to seamlessly
integrate with various computational tasks, regardless of the specific algorithm

12916 F. Romero et al.

1 3

employed. The class, specifically, will carry out its operations in the following
stages:

• Stage 3: A skewEngine object will be created in each thread to which a computa-
tion device corresponds. These objects have been called Engines.

• In stage 4.a, the engine takes care of “skewing” the input data
• In stage 4.b, an external function applies the supposedly expensive algorithm:

• In stage 4.c, the engine takes care of unskewing the results.
• In stage 5, a critical section retrieves and reduces the data from the engines.

Note that an “identity function” can be easily implemented as one of the available
“expensive functions.” This function would have a triple role. First, as a debug, since
a deconstructed and reconstructed data volume should be almost identical. Secondly,
it determines the rounding errors involved in the interpolation processes. Finally, it
is used to estimate the extra cost involved in data reorganization and, consequently,
to assess whether it is worth taking advantage of the algorithm.

3 SkewEngine implementation

Let’s consider a 2-D image or map (everything can be extrapolated to 3-D, nested, as
explained in Sect. 5) to which we want to apply the algorithm. First of all, it must be
considered that:

• Aligned data can be processed in both directions, so only 180◦ directions will be
considered in 1◦ precision calculations.

• The 180 sectors are classified into four sets to make the algorithm more straight-
forward and efficient. The boundaries of the sets depend on the aspect ratio of the
input data. In particular, variable fAngle = atan(dimy∕dimx) determines that:

Figure 4 shows four angles of each of the sets.
Before proceeding to skew the data, four variations of the input image or model

are prepared, which we could call Normal-Normal (input0), Transpose-Normal
(input1), Transpose-Mirror (input2) and Normal-Mirror (input3), and which will
correspond to the data inputs that the algorithm would need as replacement of the
original data, depending on the angle. These variations are observed in Fig. 5.

12917

1 3

SkewEngine: enhancing performance of intensive calculations…

In this way, the algorithm will not have to differentiate access patterns based
on the sign of the tangent, nor will it be limited to square meshes. The processing
is similar in all four cases. It consists of skewing the input data through a simple
interpolation mechanism, represented in Fig. 6.

Several simple parameters must be calculated, such as the skew angle
(newAngle), the vertical and horizontal dimensions of the corresponding input
version (dimo , dimi) (subindexed with o for outer and i for inner), the skew-
ness (skewness = tan(newAngle)), and the vertical drift for the last column
(offset = dimi ∗ skewness).

It must be considered that when skewing the input data (from rectangle to
rhomboid), each input element will be located in the same column but in an inter-
mediate place between two rows of the destination array. For that reason, we need
to calculate a pair of vectors that only depend on the column index: target and
weight, where target is the number of rows a given point goes down (rounded
down), and weight a weighting factor, based on the skewed location of the point,
between target and target + 1 . In the previous image, these parameters are repre-
sented in red. Note that they do not depend on the row.

Fig. 4 Four angles corresponding to different sets

Fig. 5 Image variations corresponding to 4 angles in different sets

12918 F. Romero et al.

1 3

The number of rows to process on the skewed model, skewHeight, will be calcu-
lated, as well as the limits of each row (first[i] and last[i]), which depend on newAn-
gle, offset , and on dimi , dimo (Algorithm 1). In short, these two vectors define the
shape of the rhomboid, as shown in Fig. 6, on the left.

Algorithm 1 Calculation of skew limits

Finally, the model is skewed (Algorithm 2).

Fig. 6 Graphical representation of the parameters necessary for skewing a model

12919

1 3

SkewEngine: enhancing performance of intensive calculations…

Algorithm 2 Model skew

3.1 Intensive computations onto skewed data

Once the data are prepared, the intensive algorithm is a simple loop, which can be
executed with nested (and embarrassing) parallelism since each row is independent,
as shown in Algorithm 3.

Algorithm 3 Kernel execution

It must be observed that the space has been warped, so the distances applied in
the algorithm (if needed) have a scale factor of 1 vertically and 1/cos(newAngle)
horizontally. Consequently, the interpolation of skewEngine is bilinear.

3.2 Reduction

Finally, when a CPU or GPU finishes processing the sectors that have been allocated
to it, the process of interpolating the results back to the unskewed location is much
simpler since it is unnecessary to compute new parameters. After that, the algorithm
goes on to a critical reduction phase. The corresponding thread can have allocated
sector data of more than one type of the four sets, so it relies on four boolean vari-
ables. At this point, the mirrored or transposed data returns to the original location.

The implementation of skewEngine has been done in C++, using the OpenMP
library to distribute processing threads between the different cores. Typically, 180
sectors are used, so the degree of parallelism is sufficient so that there is hardly any
load imbalance in computers with 16 cores or less. The code also implements the
optional transfer of skewed models to a GPU so that the kernel of a given angle can
run on it. For GPUs, skewEngine has been written in both CUDA and OpenCL.

12920 F. Romero et al.

1 3

A unitary kernel has also been implemented, where the kernel becomes just a
loop with the simple equality skewOutput[i][j] = skewInput[i][j] . In addition, dif-
ferent study cases have been implemented. In all of them, it is only necessary to
define a void type method, whose only argument is the object of the skewEngine
class corresponding to the sector. The usual case is that the programmer only has
to change a line skewer− > kernel = chosenFunction for his case study. For exam-
ple, for the Total Viewshed:

The skewEngine code is publicly available in a Github repository [8].

4 Case studies

The excellent results obtained by the sDEM [9] algorithm for calculating the
total viewshed were the primary motivation for developing the skewEngine tool.
However, in sDEM, some deficiencies were detected that have been corrected in
this work, which focuses on the fact that sDEM does not prepare the data before
processing but simultaneously does the skewing job, applies the algorithm, and
rebuilds the original data. In addition to being tremendously complex code and
hardly exportable to other cases, sDEM has yet to differentiate between the four
sets described above. Hence, it includes numerous branches that slow down the
code, especially on GPUs. The implementation of the total viewshed algorithm
with skewEngine has been precisely (following the straightforward implementa-
tion of the identity) the first case study considered. However, to check the ease
of implementing other codes with the proposed model, we have chosen two addi-
tional cases for image filtering: Motion blurred Cepstrum transform and Radon
transform. Table 1 shows the architectures used in this work.

The following sections provide a summary of the results of the case studies.
However, it is imperative to previously isolate the time spent in the two phases in
which the skewEngine tool is involved since it is what will serve to identify the
applications in which it is worth using it.

Table 1 Computer architectures used in the case studies

Machine Laptop-PC Desktop–PC Server HPC node

CPUs 6xP 4xE Intel 8x Intel 32x Intel 64x Intel
i7-13620H i7-10700K Xeon E5-2698 v3 Xeon E5-2698 v4

GPUs 1x NVidia 1x NVidia 4x NVidia 8x NVidia
Ampere RTX4050 Ampere RTX4080 Maxwell GTX980 Volta V100

12921

1 3

SkewEngine: enhancing performance of intensive calculations…

4.1 Case 1: identity

To estimate the cost of the skew and deskew stages, an identity kernel has been used
(the data is deconstructed and reconstructed without intermediate calculations)
in its versions for CPU and GPU. One hundred eighty sectors have been selected
and applied to two different data sets: an RGB picture of 2122 × 2122 pixels and a
DEM of a mountainous area of 2000 × 2000 points. For simplicity, only the results
obtained, at runtime, for the picture are shown since the scaling of time with size
is practically linear (The DEM is 12.5% faster than the image). The results are dis-
played in Table 2.

In these results, only 10, 15, 30, and 60 cores of those available in the respec-
tive machines have been used to be divisors of the number of sectors (180) and
thus discount the load imbalance. All available GPUs have been used. Moreover,
the code can choose a CPU or GPU using a task farm paradigm, so the best times
(always with GPUs) could be reduced if they receive the collaboration of the CPUs,
although it is hardly worth it in any of the architectures. In any case, very reasonable
times are observed on data sets of similar sizes, especially if skewEngine is going to
be applied to algorithms that can take minutes, hours, and even days.

4.2 Case 2: total viewshed

As described in Sect. 1.1, the total viewshed determines the surface of a territory
that is visible by an observer, calculated for all possible locations of the observer.
Given any observer’s location, his visibility is determined in a discrete set of equally
distributed s radiating directions. With skewEngine, and given a discrete direction, it
is easy to calculate the viewshed to all points on the same line, reusing all the eleva-
tion data.

In previous works [9–11], most of the elevation models used have sizes around
2500×2500 points. These dimensions are enough to cover, for example, the surface
of a 200 km2 National Park, with a resolution of 10 ms. Considering that a line of
data has a size of (at most) 2–4 thousand elevation data and that usually each data
is only 2 bytes, it is expected that all the information of a line fits in a core’s L1
cache. However, due to the very nature of the algorithm, the number of operations is
hundreds of millions of FLOPs per line, which, when executed with hardly any L1
cache misses, produces very high performance in all the architectures used in this
work.

Table 2 Elapsed time for the identity kernel

Machine Laptop-PC Desktop–PC Xeon Server HPC node

CPUs (OpenMP) 1.45 s. 1.83 s. 2.86 s. 1.10 s.
GPUs (CUDA) 0.31 s. 0.15 s. 0.89 s. 0.20 s.
GPUs (OpenCL) 3.22 s. 1.09 s. 1.21 s. 0.28 s.

12922 F. Romero et al.

1 3

Without going into specific details of the results, it should be noted that in the
worst case (desktop computer, using only the CPUs), the execution time was 59 s.
for the 25 M point model of Sierra de las Nieves Park in Spain and improving the
sDEM results by 10%. However, the GPU did the calculations in just 3.5 s, while
sDEM requires 10.2 s. It should be taken into account that the calculation tools used
in Geographic Information Systems, such as gdal-viewshed, or GRASS [6, 12] do
their operations in a few seconds for the calculation of a single viewshed, instead of
25 million of them, which means that our model is 6–7 orders of magnitude faster.

4.3 Case 3: Cepstrum transform for motion blur filtering

The purpose of this study is not to demonstrate the performance of an applica-
tion like the one referenced in the previous subsection but its usefulness in quickly
implementing more efficient versions of other algorithms. For that, we have chosen
two applications that require very intensive calculations. The first is the local Cep-
strum transform, applied to a motion-blurred image. The Cepstrum transform is a
mathematical technique used to analyze the spectral structure of a signal in the cep-
stral domain [13, 14]. It is defined as the Fourier transform of the logarithm of the
signal’s power spectrum. Its formula is expressed as follows:

where x(t) represents the signal in the time domain, and � is the delay variable. In
motion-blurred images, the cepstral domain aids in identifying coefficients that char-
acterize the direction and intensity of the motion responsible for the image blur. No
experiments have been identified in the literature that calculate the pixel-centered
cepstral transform for each pixel within an image, likely due to its computationally
intensive nature. Cepstral analysis is typically applied to the entire image, focusing
on detecting camera motion rather than the distinct objects within the scene. This
limitation is evident in the image in Fig. 7, where various objects become blurred in
different directions and at varying speeds.

C(�) = F
−1
[
log

(
|F[x(t)]|2

)]

Fig. 7 Blurred image by objects with different movements

12923

1 3

SkewEngine: enhancing performance of intensive calculations…

Using the skewEngine framework, the Cepstrum transform has been implemented
to operate on each image pixel across 360 different directions, employing window
sizes of 32, 64, and 128 pixels in radius. The execution times vary between 1 and
3 min for a 4-megapixel image. However, the most noteworthy aspect is that this
implementation has been achieved in just a few hours, attributed mainly to the effi-
ciency and facilitation provided by the framework.

4.4 Case 4: Radon transform

The Radon transform is a mathematical tool used in radiology for reconstructing
images of objects from measurements of X-rays or other forms of radiation. The
Radon transform measures the amount of radiation passing through the object from
a discrete set of directions. It converts this information into a two-dimensional or
three-dimensional image of the object. This process is called tomography and is
commonly used in medicine to visualize the internal structures of the human body
and in other areas of science for the inspection of materials or the investigation of
the nature of an object. Mathematically, the Radon transform is defined as the inte-
gral of the image along all the lines that pass through a fixed point in space. In other
words, the amount of radiation passing through the object along that direction is
measured for each direction, and this information is integrated along all the lines in
that direction.

The result of the Radon transform is a function that represents the sum of the pro-
jections along each possible direction. This function is called a sinogram and is used
as input for the reconstruction of the image. The reconstruction is done using filtered
back-projection, which involves taking each projection of the sinogram, rotating
it, and then “projecting it back” along the corresponding direction in space. After
applying it in all directions, the result of this process is accumulated to produce the
reconstructed image of the object.

The Local Radon Transform (LRT) is a variant of the Radon Transform used to
analyze images in local domains. Unlike the standard Radon transform, which uses
information from the image projection in all possible directions, LRT uses a local
analysis window on the image to calculate the Radon transform. This allows analysis
of the image in a more detailed and adaptive way to the local characteristics of the
picture. LRT has several applications, including image texture analysis, edge detec-
tion, and image segmentation. It is also used in fields such as nondestructive inspec-
tion of materials, medical visualization, and astronomy. The Local Radon Transform
(LRT) has a higher computational cost than the standard Radon transform. This is
because the LRT requires the calculation of the Radon transform for each local win-
dow in the image, which can be computationally intensive, so SkewEngine is the
most suitable tool for it.

In this work, both the local and the general or standard Radon transform have
been implemented. However, only data for comparison is presented for the stand-
ard case since it is the only software available in the literature. In particular, we
have compared our results with the two most used and efficient applications:

12924 F. Romero et al.

1 3

SciKit [15] (in Python) and Astra Toolbox [16], for Matlab. In both cases, the
binary code of the respective kernel is in C++ and also in CUDA in the case of
Astra.

The image we have chosen for the Radon transform is a photograph of
1500 × 1000 pixels. However, one of the applications mentioned internally
stretches the images so that they are circumscribed in a circle, and this, in turn,
in a square, so we have preferred to create a dummy image of 2122 × 2122 pixels
so that the comparison is on equal conditions, and although it hurts the results
of skewEngine, which can do the job without using this halo. In all applications,
the resulting image after applying the algorithm has been identical (using a ramp
filter) and is shown in Fig. 8.

Table 3 summarizes the comparison results, demonstrating the high perfor-
mance of skewEngine, even though it is not a particularly computationally expen-
sive algorithm.

As can be seen, Astra Toolbox, which uses CUDA, is the one that obtains the
best results. This is due to the cost of reorganizing the data in memory, which in
this case represents almost 70% of the total cost; it is not worth it for an appli-
cation with so little computational cost. Furthermore, due to the halo, skewEn-
gine had to multiply the number of pixels by two to make this comparison, even
though the algorithm does not need it. But the most surprising thing is that only
four lines of code were required for its implementation with skewEngine:

Fig. 8 Original image, and image restored from the sinogram

Table 3 Elapsed time for the Radon Transform

SKE (Xeon Server) SKE (Desktop-PC) Scikit (Desktop-PC) Astra (Desktop-PC)

CPUs 1.46 s. 2.03 s. 10.58 s. –
GPUs (CUDA) 0.49 s. 0.317 s. – 0.316 s.

12925

1 3

SkewEngine: enhancing performance of intensive calculations…

Thus, the tool’s performance and the very high productivity in programming
tools that take advantage of it are revealed.

5 A 3‑D extension for skewEngine

Data processing, which is already expensive in two dimensions due to the inter-
connection of all data points, becomes even more challenging in three dimensions.
Therefore, any solution to this problem must be based on the same premises as our
previous proposal for two dimensions. First, we need to reduce the infinite num-
ber of directions for data processing, similar to how it was addressed in the 2-D
azimuthal discretization using skewEngine, which divided the space by default into
360◦ . For instance, the elegant Fibonacci spiral provides a potential equitable dis-
tribution of axes in 3-D. Secondly, the data volume could be realigned in memory
through a two-phase skewing and interpolation process using the skewEngine tool.
Intuitively, if we describe any of the three-dimensional axes in terms of longitude
and latitude, the first skewing phase would align the information with zero longi-
tude. In the second phase, each of the previously skewed planes would be aligned
with zero latitude (Fig. 9).

6 Conclusions

The correct alignment of data in computer memory is an increasingly important
factor in designing efficient algorithms that process structured data intensively. In
the case of regular meshes of two or more dimensions, the algorithms that perform
operations in a specific direction that is different from the central alignment direc-
tion (the one that coincides with the storage sequence of the corresponding data)
will have an access pattern to the data that is almost entirely random, and conse-
quently, causes innumerable cache misses that can be catastrophic, especially in the
case of large volumes of data, such as those generated in a computed tomography
scan or radio astronomy.

Realigning data in the direction corresponding to algorithm operations is a rela-
tively expensive operation if the volume of data is large. Still, since its computa-
tional complexity is linear and scales quite well, it may be worth the cost of doing
so. The reorganization of information, as long as the operations of the algorithms
have higher complexities.

In the experiments shown in this work, corresponding to three computational
problems of high and medium complexity, such as the total viewshed in digital ele-
vation models, the parameterization of motion blur images, and the two-dimensional

12926 F. Romero et al.

1 3

Radon transform, it has been shown that the information realignment is already
worthwhile in algorithms of medium complexity, surpassing even the best-published
results, and produces spectacular improvements, of several orders of magnitude, in
the most complex problems.

To facilitate the use of the mesh interpolation and extrapolation algorithms in
the n chosen directions (which are the stages that precede and follow any algorithm
that performs its operation in a specific direction), a C++ class named skewEngine
has been developed by leveraging the inherent parallelism of interpolation through
OpenMP, OpenCL and CUDA. skewEngine simplifies and accelerates the most
complex aspect of this paper’s case studies. Moreover, skewEngine is designed to
facilitate the implementation of other data-intensive computational algorithms on
regular meshes using arbitrary processing directions.

All the experiments have been conducted using computations in equally distrib-
uted directions in two dimensions (usually in 360 directions and n = 180 axes). As
data processing on each axe is entirely independent, it is possible to exploit parallel-
ism up to that number using multithreading and minimal effort.

Fig. 9 A 3-D skewing process, using a multi-plane skewEngine in two stages

12927

1 3

SkewEngine: enhancing performance of intensive calculations…

The speedup results, shown in Fig. 10, clearly demonstrate this, being particularly
evident for the two applications where computational intensity is high (Viewshed
and Cepstrum). Additionally, except for the HPC node, the computers were not used
exclusively during the tests. In the two applications with minimal computational
load (Identity and Radon), it becomes evident that the system time spent on creating
and destroying OpenMP threads, which grows linearly, eventually dominates and
penalizes the speedup, as predicted by Amdahl’s law. However, these data only rein-
force the idea that skewEngine requires a threshold beyond which it is worth using.

Finally, guidelines for a 3-dimensional implementation of the skewEngine tool
are also presented, using a fair set of three-dimensional search directions computed
using the Fibonacci spherical spiral. In this last case, preliminary results have been
published [17] in which unstructured data of thousands of molecules, using numeri-
cal interpolation, are interpolated to regular meshes that are later projected into
images, and which have been used to train a neural network. By reconverting and
structuring the information, tens of millions of images have been generated in just a
few seconds.

Author contributions All authors contributed equally to the design of the work and the organization of
the paper. Felipe Romero was responsible for the majority of the programming work.

Funding Funding for open access publishing: Universidad Málaga/CBUA. Funding for open access
charge: Universidad de Málaga/CBUA. This work has been financed by the Spanish Ministry of Sci-
ence and Technology through the National Plan project PID2022-136575OB-I00, by the Andalusian
Government and FEDER funds through the UMA20-FEDERJA-127 project, and by the University of
Malaga (PIE22-099). We also thank the Supercomputing and Bioinformatics Service of the University
of Malaga and the Spanish Supercomputing Network for facilitating access to the Picasso and Loginexa
Supercomputers.

Fig. 10 Speedup of skewEngine for the 4 case studies on the 4 computers in Table 1

12928 F. Romero et al.

1 3

Declarations

Conflict of interest The authors have no competing interests as defined by Springer or other interests that
might be perceived to influence the results and/or discussion reported in this paper.

Ethical approval Not applicable.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 1. Tabik S, Zapata EL, Romero LF (2013) Simultaneous computation of total viewshed on large high
resolution grids. Int J Geogr Inf Sci 27(4):804–814. https:// doi. org/ 10. 1080/ 13658 816. 2012. 677538

 2. Park N (2002) Improving memory hierarchy performance using data reorganization. PhD thesis,
USA. AAI3093966

 3. Voutchkov I, Keane A, Shahpar S, Bates R (2018) (Re-) meshing using interpolative mapping and
control point optimization. J Comput Des Eng 5(3):305–318. https:// doi. org/ 10. 1016/j. jcde. 2017. 12.
003

 4. Iryanto S, Muttaqien FH, Sadikin R (2020) Irregular grid interpolation using radial basis function
for large cylindrical volume. J Comput Sci Inf 13(1):17–23

 5. Schulzweida U (2022) CDO user guide. Zenodo. https:// doi. org/ 10. 5281/ zenodo. 71129 25
 6. QGIS Development Team (2023) QGIS geographic information system. QGIS Association. https://

www.qgis.org
 7. Sanchez-Fernandez AJ, Romero LF, Bandera G, Tabik S (2021) VPP: visibility-based path plan-

ning heuristic for monitoring large regions of complex terrain using a UAV onboard camera. IEEE J
Select Top Appl Earth Obs Remote Sens. https:// doi. org/ 10. 1109/ JSTARS. 2021. 31349 48

 8. Romero F (2023) SkewEngine: mesh reorganization for computing intensive applications. GitHub.
https://github.com/luisfromero/skewEngine

 9. Sanchez-Fernandez AJ, Romero LF, Bandera G, Tabik S (2021) A data relocation approach for ter-
rain surface analysis on multi-GPU systems: a case study on the total viewshed problem. Int J Geogr
Inf Sci 35(8):1500–1520. https:// doi. org/ 10. 1080/ 13658 816. 2020. 18442 07

 10. Cervilla AR, Tabik S, Vias J, Merida M, Romero LF (2016) Total 3D-viewshed map: quantifying
the visible volume in digital elevation models. Trans GIS. https:// doi. org/ 10. 1111/ tgis. 12216

 11. Tabik S, Romero LF, Zapata EL (2011) High-performance three-horizon composition algorithm for
large-scale terrains. Int J Geogr Inf Sci 25(4):541–555

 12. GDAL/OGR contributors (2020) GDAL/OGR geospatial data abstraction software library. Open
Source Geospatial Foundation. Open Source Geospatial Foundation. https://gdal.org

 13. Radon J (1986) On the determination of functions from their integral values along certain mani-
folds. IEEE Trans Med Imaging 5(4):170–176. https:// doi. org/ 10. 1109/ TMI. 1986. 43077 75

 14. Oppenheim AV, Schafer RW (2014) Discrete-time signal processing, 3rd edn. Pearson, London
 15. Pedregosa F et al (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
 16. Aarle W, Palenstijn W, De Beenhouwer J, Altantzis T, Bals S, Batenburg K, Sijbers J (2015) The

ASTRA toolbox: a platform for advanced algorithm development in electron tomography. Ultrami-
croscopy 157:35–47. https:// doi. org/ 10. 1016/j. ultra mic. 2015. 05. 002

 17. Romero F, Romero LF, Ortigosa PM (2022) Reconocimiento de fármacos mediante inteligencia
artificial. In: XXXII Jornadas Sarteco, Alicante, Spain

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1080/13658816.2012.677538
https://doi.org/10.1016/j.jcde.2017.12.003
https://doi.org/10.1016/j.jcde.2017.12.003
https://doi.org/10.5281/zenodo.7112925
https://doi.org/10.1109/JSTARS.2021.3134948
https://doi.org/10.1080/13658816.2020.1844207
https://doi.org/10.1111/tgis.12216
https://doi.org/10.1109/TMI.1986.4307775
https://doi.org/10.1016/j.ultramic.2015.05.002

	SkewEngine: enhancing performance of intensive calculations on regular meshes
	Abstract
	1 Introduction
	1.1 Background: the SDEM algorithm
	1.1.1 Skewed data storage

	2 A framework for memory data optimization
	2.1 Operations of the SkewEngine class

	3 SkewEngine implementation
	3.1 Intensive computations onto skewed data
	3.2 Reduction

	4 Case studies
	4.1 Case 1: identity
	4.2 Case 2: total viewshed
	4.3 Case 3: Cepstrum transform for motion blur filtering
	4.4 Case 4: Radon transform

	5 A 3-D extension for skewEngine
	6 Conclusions
	References

