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Abstract
In various applications such as hyperspectral data manipulation, MRI data explora-
tion, or viewshed identification in digital elevation models, performing arithmetic 
operations on each point of a data mesh that involves other points can lead to com-
putationally intractable problems. This paper presents SkewEngine, a tool designed 
to improve the performance of intensive calculations on regular 2-D data meshes, 
such as images, multispectral data volumes, or digital elevation models. SkewEn-
gine addresses this problem by reorganizing the mesh in memory according to a pre-
ferred spatial direction, enabling more efficient execution of intensive calculations. 
It is demonstrated that SkewEngine offers significant speed improvements for vari-
ous test cases, suggesting its usefulness in a broader range of applications requiring 
intensive data processing on regular meshes.
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1  Introduction

Challenges arise in numerous and diverse fields where a highly intensive calcula-
tion is imperative for every individual point within a 2-D or 3-D data mesh. Some 
noteworthy cases include computations conducted on each pixel constituting an 
image, every geographical point on a digital elevation model (DEM), or within 
the dataset acquired from a magnetic resonance imaging procedure.

In specific scenarios, the level of arithmetic intensity becomes so high that it 
renders the problem computationally intractable. To illustrate, let’s consider the 
case of the viewshed of a specific point within a DEM. Contemplate a scenario 
where the objective entails determining the observable extent of a given territory 
from a designated location within that territory, as shown in Fig. 1.

To determine whether point A is visible from point B (where B is any other 
location within the geographical context under consideration), it becomes imper-
ative to account for the elevation of all the points in the model, as any point a 
priori could potentially obstruct the line of sight. Therefore, within a DEM, with 
a dataset size of N = dimx × dimy , the computational complexity of the problem, 
represented by big-O notation, would be of order O(N2) . However, this complex-
ity could be mitigated by exclusively considering points C closer to the A-B line 
as potential obstructions. Nevertheless, the complexity of the problem, O(N1.5) , 
remains significantly high. For instance, noteworthy applications such as Google 
Earth require several seconds to yield an approximate solution.

When the calculation of the viewshed is required not only for an observer situ-
ated at a specific location within a territory but also for arbitrary paths traversing 
the terrain, regions of interest, or even the entirety of the territory, where any 
point within a DEM serves as an observation point, the computational complexity 
scales to O(N2.5) . Even with reduced precision, months of CPU time are usually 
required for computations involving a typical-size model [1].

Fortunately, these types of problems belong to a category in which the param-
eters under examination are subject to decay based on geometric distance within 
the data mesh. This decay can be linear or quadratic, with the latter being more 
prevalent. In such scenarios, the influence of a distant point does not immedi-
ately impact, if at all, the occurrences at the opposite end of the geometry. These 
issues are commonly simplified through processing involving a discrete set of 
radial directions originating from a focal point under investigation. This approach 

Fig. 1   Self–explaining figure of 1-D Viewshed seen from a tower
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is taken because the radii are closer to each other at the point of view, thereby 
resulting in a finer mesh near the study point, where it is most needed.

However, in such problems where the spatial locality of information becomes a 
critical factor, the necessity arises to translate this spatial locality onto the data itself, 
explicitly concerning memory storage. Consider the following example for elucida-
tion. Imagine the application of a filter in many lines parallel to the black arrow 
on the image depicted in Fig. 2 (left panel). Any algorithm of significant complex-
ity, typically employed in computer graphics, such as the Fast Fourier Transform 
(FFT), would be considerably more efficient if the data array were memory-aligned, 
as exemplified by the distorted image on the right panel.

In this scenario, the spatial locality of data contributes significantly to optimi-
zation, allowing for more efficient computation due to the aligned memory struc-
ture. This alignment facilitates the operation of computationally demanding algo-
rithms, ultimately enhancing the efficiency of data processing operations in spatially 
dependent problems.

This study’s proposition involves analyzing and utilizing the advantages of a 
memory reorganization strategy. Primarily, the objective is to demonstrate that reor-
ganizing information using skewed data interpolation confers significant benefits, 
particularly in scenarios characterized by exceptionally high levels of complexity.

Structured and unstructured mesh algorithms are a popular means of solving 
problems across a broad range of disciplines, from texture mapping to computa-
tional fluid dynamics, and they are often dominated by computation and memory 
overhead. On the one hand, enhancing memory organization for intensive calcula-
tions is a fundamental component of high-performance computing and parallel 
processing. On the other, optimizing memory layout entails strategically structur-
ing data in memory to reduce the time spent accessing memory and to maximize 
the proximity of relevant data, leading to significant improvements in computational 
speed and efficiency. The work presented here is not the first that rewrites a mesh 
to optimize memory access. See, for example, [2–4]. And, in the geographic scope, 
both QGIS and CDO software offer command line tools for rotating and regridding 

Fig. 2   Restructuring image data to a skewed array ( 110◦ case)
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geographical data sets [5, 6]. However, through systematic investigation and empiri-
cal evaluation, this research seeks to establish that implementing in-memory skewed 
data interpolation offers substantial enhancements in computational efficiency and 
problem-solving efficacy. In problems marked by computational intensity, this 
technique proves to be highly advantageous, optimizing the utilization of memory 
resources and accelerating computation by exploiting the inherent spatial relation-
ships within the data.

1.1 � Background: the SDEM algorithm

In 2013, Tabik et al. [1] introduced an algorithm that accounts for radial dependency 
in the computation of the viewshed, culminating in the development of an algorithm 
capable of calculating this viewshed for all points within a DEM. This is achieved 
through a discrete set of directional evaluations surrounding each point (typically 
encompassing s = 360 directions). Specifically, within every one-degree angular 
sector, the algorithm considers solely the data points situated along the central axis 
of that sector.

By adopting this approach, the complexity of the original problem, originally 
denoted as O(N2.5) , undergoes a notable reduction to O(s ⋅ N1.5) . This algorithmic 
optimization significantly enhances computational efficiency while preserving a sig-
nificant level of accuracy in computing the viewshed across the DEM. The work by 
Tabik et al. is a pivotal advancement, showcasing how targeted strategies, such as 
radial dependency and discrete directional analysis, can yield substantial improve-
ments in solving complex spatial problems.

Furthermore, by employing a straightforward inversion of loops that, instead of 
processing all the points of the DEM with an external loop and then calculating the 
1-D viewshed in all sectors with the internal loop, the code leverages the pre-exist-
ing alignment of all data in a specific direction. This enables the computation of the 
viewshed from all points along a given line in that direction.

In Fig.  3, the images in the inner row illustrate how, by reversing the loops, it 
becomes possible to leverage the algorithm’s application on all points aligned in the 
same direction as the outer loop. Four points within the territory have been selected 
in the upper row, and the viewshed has been computed in four directions around 
these points. In contrast, in the lower row, the viewshed of the study points are cal-
culated for each of the four computation directions. It can be seen that some points 
benefit from the alignment of data employed in other calculations.

1.1.1 � Skewed data storage

The concept of skewed data storage involves an intentional arrangement of data 
that capitalizes on inherent patterns or relationships within the dataset. This stra-
tegic arrangement aims to optimize computational efficiency and processing speed 
when performing specific operations on the data. By aligning data according to the 
anticipated usage patterns, re-grided (skewed) data storage reduces memory access 
latency and accelerates computation.
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In cases where spatial relationships or dependencies exist within the data, skewed 
storage can exploit these patterns to streamline operations. For instance, aligning 
data in memory according to the anticipated access patterns in spatial computations 
can significantly enhance the overall performance of algorithms. Using skewed data 
storage, computational tasks involving complex calculations and intricate depend-
encies can be expedited, making it a valuable strategy in various computational 
contexts.

Recently, Romero et al. introduced a significant modification to the algorithm [7], 
which addresses two critical aspects to enhance performance further. 

1.	 Spatial locality exploitation: Given a specific sector, if only the remaining points 
within the same line will be utilized, the proposal suggests aligning the corre-
sponding data along the same memory line. This approach capitalizes on spatial 
locality, minimizing memory access delays and optimizing data processing.

2.	 Parallelism and GPU usage: The modified algorithm exploits parallelism when 
considering a sector wherein only points along the same line will be utilized (thus 
eliminating cross-line dependencies). This involves concurrently processing all 
lines, benefiting from graphics processing units (GPUs) capabilities for enhanced 
computational efficiency.

By strategically addressing these aspects, the revised algorithm showcases a notable 
advancement, demonstrating the potential for substantial improvements in memory 
management and computational speed. Integrating spatial locality and parallel pro-
cessing, coupled with GPU utilization, represents a sophisticated approach to tack-
ling complex spatial problems with heightened efficiency and efficacy.

Thus, the sDEM algorithm (derived from skew-DEM, skewed digital eleva-
tion model) emerges, founded upon strategically arranging data in memory to suit 

Fig. 3   Loop exchange. Above, for each point, the viewshed is calculated in all sectors. Below, for each 
sector, the 1-D viewshed is calculated for all points
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computations along specific directions. The algorithm’s core principle is under-
pinned by the notion that the costs associated with the “deconstruction and recon-
struction of the map” are justifiable given the magnitude of computations to be exe-
cuted on the inherently “skewed” data state.

The sDEM algorithm exploits spatial locality and parallel processing by adopting 
this approach. The effort invested in reorganizing the data structure aligns with the 
computational intensity of the subsequent calculations, ultimately leading to sub-
stantial gains in overall performance and enabling the exploration of new frontiers in 
computational geography.

2 � A framework for memory data optimization

This work proposes to generalize and extend this idea to any algorithm using a tem-
plate independent of the algorithm. To do this, the skewEngine tool is presented: a 
code packaged in a C++ class that facilitates the most tedious part of the many algo-
rithms that can benefit from the proposal. Specifically, the engine would be respon-
sible for reorganizing the data of regular meshes so that they are aligned in memory 
(considering the necessary interpolation) and that, at the end of the algorithm, relo-
cates the data to its original location through an interpolation in the reverse direc-
tion. In particular, the class is designed to consider the following sequence of stages: 

1.	 Data input (a DEM, an image,...)
2.	 Data allocation for each device (CPU or GPU) See Sect. 3.
3.	 Thread deployment and skewEngine objects initialization
4.	 Directional iteration (e.g., over 360 Directions). Each iteration is assigned to a 

different device. Thus, each CPU/GPU will receive several sectors to perform 
different operations. 

(a)	 Data preparation (skew interpolation)
(b)	 Data processing using CPU and/or GPU (external function)
(c)	 Data restore (deskew interpolation)

5.	 Recollection from device results.

It is also proposed that the class (skewEngine) be used for any data type (integers, 
floats, doubles, or pixels, for example) using C++ templates and that it handles eve-
rything related to data preparation and collection of results.

2.1 � Operations of the SkewEngine class

The SkewEngine class within the proposed framework encapsulates a range of oper-
ations that collectively facilitate the efficient execution of algorithms while optimiz-
ing memory utilization and parallelism. These operations are designed to seamlessly 
integrate with various computational tasks, regardless of the specific algorithm 
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employed. The class, specifically, will carry out its operations in the following 
stages:

•	 Stage 3: A skewEngine object will be created in each thread to which a computa-
tion device corresponds. These objects have been called Engines.

•	 In stage 4.a, the engine takes care of “skewing” the input data
•	 In stage 4.b, an external function applies the supposedly expensive algorithm:

•	 In stage 4.c, the engine takes care of unskewing the results.
•	 In stage 5, a critical section retrieves and reduces the data from the engines.

Note that an “identity function” can be easily implemented as one of the available 
“expensive functions.” This function would have a triple role. First, as a debug, since 
a deconstructed and reconstructed data volume should be almost identical. Secondly, 
it determines the rounding errors involved in the interpolation processes. Finally, it 
is used to estimate the extra cost involved in data reorganization and, consequently, 
to assess whether it is worth taking advantage of the algorithm.

3 � SkewEngine implementation

Let’s consider a 2-D image or map (everything can be extrapolated to 3-D, nested, as 
explained in Sect. 5) to which we want to apply the algorithm. First of all, it must be 
considered that:

•	 Aligned data can be processed in both directions, so only 180◦ directions will be 
considered in 1◦ precision calculations.

•	 The 180 sectors are classified into four sets to make the algorithm more straight-
forward and efficient. The boundaries of the sets depend on the aspect ratio of the 
input data. In particular, variable fAngle = atan(dimy∕dimx) determines that:

Figure 4 shows four angles of each of the sets.
Before proceeding to skew the data, four variations of the input image or model 

are prepared, which we could call Normal-Normal (input0), Transpose-Normal 
(input1), Transpose-Mirror (input2) and Normal-Mirror (input3), and which will 
correspond to the data inputs that the algorithm would need as replacement of the 
original data, depending on the angle. These variations are observed in Fig. 5.
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In this way, the algorithm will not have to differentiate access patterns based 
on the sign of the tangent, nor will it be limited to square meshes. The processing 
is similar in all four cases. It consists of skewing the input data through a simple 
interpolation mechanism, represented in Fig. 6.

Several simple parameters must be calculated, such as the skew angle 
(newAngle), the vertical and horizontal dimensions of the corresponding input 
version ( dimo , dimi ) (subindexed with o for outer and i for inner), the skew-
ness ( skewness = tan(newAngle) ), and the vertical drift for the last column 
( offset = dimi ∗ skewness).

It must be considered that when skewing the input data (from rectangle to 
rhomboid), each input element will be located in the same column but in an inter-
mediate place between two rows of the destination array. For that reason, we need 
to calculate a pair of vectors that only depend on the column index: target and 
weight, where target is the number of rows a given point goes down (rounded 
down), and weight a weighting factor, based on the skewed location of the point, 
between target and target + 1 . In the previous image, these parameters are repre-
sented in red. Note that they do not depend on the row.

Fig. 4   Four angles corresponding to different sets

Fig. 5   Image variations corresponding to 4 angles in different sets
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The number of rows to process on the skewed model, skewHeight, will be calcu-
lated, as well as the limits of each row (first[i] and last[i]), which depend on newAn-
gle, offset , and on dimi , dimo (Algorithm 1). In short, these two vectors define the 
shape of the rhomboid, as shown in Fig. 6, on the left.

Algorithm 1   Calculation of skew limits

Finally, the model is skewed (Algorithm 2).

Fig. 6   Graphical representation of the parameters necessary for skewing a model
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Algorithm 2   Model skew

3.1 � Intensive computations onto skewed data

Once the data are prepared, the intensive algorithm is a simple loop, which can be 
executed with nested (and embarrassing) parallelism since each row is independent, 
as shown in Algorithm 3.

Algorithm 3   Kernel execution

It must be observed that the space has been warped, so the distances applied in 
the algorithm (if needed) have a scale factor of 1 vertically and 1/cos(newAngle) 
horizontally. Consequently, the interpolation of skewEngine is bilinear.

3.2 � Reduction

Finally, when a CPU or GPU finishes processing the sectors that have been allocated 
to it, the process of interpolating the results back to the unskewed location is much 
simpler since it is unnecessary to compute new parameters. After that, the algorithm 
goes on to a critical reduction phase. The corresponding thread can have allocated 
sector data of more than one type of the four sets, so it relies on four boolean vari-
ables. At this point, the mirrored or transposed data returns to the original location.

The implementation of skewEngine has been done in C++, using the OpenMP 
library to distribute processing threads between the different cores. Typically, 180 
sectors are used, so the degree of parallelism is sufficient so that there is hardly any 
load imbalance in computers with 16 cores or less. The code also implements the 
optional transfer of skewed models to a GPU so that the kernel of a given angle can 
run on it. For GPUs, skewEngine has been written in both CUDA and OpenCL.
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A unitary kernel has also been implemented, where the kernel becomes just a 
loop with the simple equality skewOutput[i][j] = skewInput[i][j] . In addition, dif-
ferent study cases have been implemented. In all of them, it is only necessary to 
define a void type method, whose only argument is the object of the skewEngine 
class corresponding to the sector. The usual case is that the programmer only has 
to change a line skewer− > kernel = chosenFunction for his case study. For exam-
ple, for the Total Viewshed:

The skewEngine code is publicly available in a Github repository [8].

4 � Case studies

The excellent results obtained by the sDEM [9] algorithm for calculating the 
total viewshed were the primary motivation for developing the skewEngine tool. 
However, in sDEM, some deficiencies were detected that have been corrected in 
this work, which focuses on the fact that sDEM does not prepare the data before 
processing but simultaneously does the skewing job, applies the algorithm, and 
rebuilds the original data. In addition to being tremendously complex code and 
hardly exportable to other cases, sDEM has yet to differentiate between the four 
sets described above. Hence, it includes numerous branches that slow down the 
code, especially on GPUs. The implementation of the total viewshed algorithm 
with skewEngine has been precisely (following the straightforward implementa-
tion of the identity) the first case study considered. However, to check the ease 
of implementing other codes with the proposed model, we have chosen two addi-
tional cases for image filtering: Motion blurred Cepstrum transform and Radon 
transform. Table 1 shows the architectures used in this work.

The following sections provide a summary of the results of the case studies. 
However, it is imperative to previously isolate the time spent in the two phases in 
which the skewEngine tool is involved since it is what will serve to identify the 
applications in which it is worth using it.

Table 1   Computer architectures used in the case studies

Machine Laptop-PC Desktop–PC Server HPC node

CPUs 6xP 4xE Intel 8x Intel 32x Intel 64x Intel
i7-13620H i7-10700K Xeon E5-2698 v3 Xeon E5-2698 v4

GPUs 1x NVidia 1x NVidia 4x NVidia 8x NVidia
Ampere RTX4050 Ampere RTX4080 Maxwell GTX980 Volta V100
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4.1 � Case 1: identity

To estimate the cost of the skew and deskew stages, an identity kernel has been used 
(the data is deconstructed and reconstructed without intermediate calculations) 
in its versions for CPU and GPU. One hundred eighty sectors have been selected 
and applied to two different data sets: an RGB picture of 2122 × 2122 pixels and a 
DEM of a mountainous area of 2000 × 2000 points. For simplicity, only the results 
obtained, at runtime, for the picture are shown since the scaling of time with size 
is practically linear (The DEM is 12.5% faster than the image). The results are dis-
played in Table 2.

In these results, only 10, 15, 30, and 60 cores of those available in the respec-
tive machines have been used to be divisors of the number of sectors (180) and 
thus discount the load imbalance. All available GPUs have been used. Moreover, 
the code can choose a CPU or GPU using a task farm paradigm, so the best times 
(always with GPUs) could be reduced if they receive the collaboration of the CPUs, 
although it is hardly worth it in any of the architectures. In any case, very reasonable 
times are observed on data sets of similar sizes, especially if skewEngine is going to 
be applied to algorithms that can take minutes, hours, and even days.

4.2 � Case 2: total viewshed

As described in Sect. 1.1, the total viewshed determines the surface of a territory 
that is visible by an observer, calculated for all possible locations of the observer. 
Given any observer’s location, his visibility is determined in a discrete set of equally 
distributed s radiating directions. With skewEngine, and given a discrete direction, it 
is easy to calculate the viewshed to all points on the same line, reusing all the eleva-
tion data.

In previous works [9–11], most of the elevation models used have sizes around 
2500×2500 points. These dimensions are enough to cover, for example, the surface 
of a 200 km2 National Park, with a resolution of 10 ms. Considering that a line of 
data has a size of (at most) 2–4 thousand elevation data and that usually each data 
is only 2 bytes, it is expected that all the information of a line fits in a core’s L1 
cache. However, due to the very nature of the algorithm, the number of operations is 
hundreds of millions of FLOPs per line, which, when executed with hardly any L1 
cache misses, produces very high performance in all the architectures used in this 
work.

Table 2   Elapsed time for the identity kernel

Machine Laptop-PC Desktop–PC Xeon Server HPC node

CPUs (OpenMP) 1.45 s. 1.83 s. 2.86 s. 1.10 s.
GPUs (CUDA) 0.31 s. 0.15 s. 0.89 s. 0.20 s.
GPUs (OpenCL) 3.22 s. 1.09 s. 1.21 s. 0.28 s.
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Without going into specific details of the results, it should be noted that in the 
worst case (desktop computer, using only the CPUs), the execution time was 59 s. 
for the 25 M point model of Sierra de las Nieves Park in Spain and improving the 
sDEM results by 10%. However, the GPU did the calculations in just 3.5 s, while 
sDEM requires 10.2 s. It should be taken into account that the calculation tools used 
in Geographic Information Systems, such as gdal-viewshed, or GRASS [6, 12] do 
their operations in a few seconds for the calculation of a single viewshed, instead of 
25 million of them, which means that our model is 6–7 orders of magnitude faster.

4.3 � Case 3: Cepstrum transform for motion blur filtering

The purpose of this study is not to demonstrate the performance of an applica-
tion like the one referenced in the previous subsection but its usefulness in quickly 
implementing more efficient versions of other algorithms. For that, we have chosen 
two applications that require very intensive calculations. The first is the local Cep-
strum transform, applied to a motion-blurred image. The Cepstrum transform is a 
mathematical technique used to analyze the spectral structure of a signal in the cep-
stral domain [13, 14]. It is defined as the Fourier transform of the logarithm of the 
signal’s power spectrum. Its formula is expressed as follows:

where x(t) represents the signal in the time domain, and � is the delay variable. In 
motion-blurred images, the cepstral domain aids in identifying coefficients that char-
acterize the direction and intensity of the motion responsible for the image blur. No 
experiments have been identified in the literature that calculate the pixel-centered 
cepstral transform for each pixel within an image, likely due to its computationally 
intensive nature. Cepstral analysis is typically applied to the entire image, focusing 
on detecting camera motion rather than the distinct objects within the scene. This 
limitation is evident in the image in Fig. 7, where various objects become blurred in 
different directions and at varying speeds.

C(�) = F
−1
[
log

(
|F[x(t)]|2

)]

Fig. 7   Blurred image by objects with different movements
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Using the skewEngine framework, the Cepstrum transform has been implemented 
to operate on each image pixel across 360 different directions, employing window 
sizes of 32, 64, and 128 pixels in radius. The execution times vary between 1 and 
3 min for a 4-megapixel image. However, the most noteworthy aspect is that this 
implementation has been achieved in just a few hours, attributed mainly to the effi-
ciency and facilitation provided by the framework.

4.4 � Case 4: Radon transform

The Radon transform is a mathematical tool used in radiology for reconstructing 
images of objects from measurements of X-rays or other forms of radiation. The 
Radon transform measures the amount of radiation passing through the object from 
a discrete set of directions. It converts this information into a two-dimensional or 
three-dimensional image of the object. This process is called tomography and is 
commonly used in medicine to visualize the internal structures of the human body 
and in other areas of science for the inspection of materials or the investigation of 
the nature of an object. Mathematically, the Radon transform is defined as the inte-
gral of the image along all the lines that pass through a fixed point in space. In other 
words, the amount of radiation passing through the object along that direction is 
measured for each direction, and this information is integrated along all the lines in 
that direction.

The result of the Radon transform is a function that represents the sum of the pro-
jections along each possible direction. This function is called a sinogram and is used 
as input for the reconstruction of the image. The reconstruction is done using filtered 
back-projection, which involves taking each projection of the sinogram, rotating 
it, and then “projecting it back” along the corresponding direction in space. After 
applying it in all directions, the result of this process is accumulated to produce the 
reconstructed image of the object.

The Local Radon Transform (LRT) is a variant of the Radon Transform used to 
analyze images in local domains. Unlike the standard Radon transform, which uses 
information from the image projection in all possible directions, LRT uses a local 
analysis window on the image to calculate the Radon transform. This allows analysis 
of the image in a more detailed and adaptive way to the local characteristics of the 
picture. LRT has several applications, including image texture analysis, edge detec-
tion, and image segmentation. It is also used in fields such as nondestructive inspec-
tion of materials, medical visualization, and astronomy. The Local Radon Transform 
(LRT) has a higher computational cost than the standard Radon transform. This is 
because the LRT requires the calculation of the Radon transform for each local win-
dow in the image, which can be computationally intensive, so SkewEngine is the 
most suitable tool for it.

In this work, both the local and the general or standard Radon transform have 
been implemented. However, only data for comparison is presented for the stand-
ard case since it is the only software available in the literature. In particular, we 
have compared our results with the two most used and efficient applications: 
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SciKit [15] (in Python) and Astra Toolbox [16], for Matlab. In both cases, the 
binary code of the respective kernel is in C++ and also in CUDA in the case of 
Astra.

The image we have chosen for the Radon transform is a photograph of 
1500 × 1000 pixels. However, one of the applications mentioned internally 
stretches the images so that they are circumscribed in a circle, and this, in turn, 
in a square, so we have preferred to create a dummy image of 2122 × 2122 pixels 
so that the comparison is on equal conditions, and although it hurts the results 
of skewEngine, which can do the job without using this halo. In all applications, 
the resulting image after applying the algorithm has been identical (using a ramp 
filter) and is shown in Fig. 8.

Table  3 summarizes the comparison results, demonstrating the high perfor-
mance of skewEngine, even though it is not a particularly computationally expen-
sive algorithm.

As can be seen, Astra Toolbox, which uses CUDA, is the one that obtains the 
best results. This is due to the cost of reorganizing the data in memory, which in 
this case represents almost 70% of the total cost; it is not worth it for an appli-
cation with so little computational cost. Furthermore, due to the halo, skewEn-
gine had to multiply the number of pixels by two to make this comparison, even 
though the algorithm does not need it. But the most surprising thing is that only 
four lines of code were required for its implementation with skewEngine:

Fig. 8   Original image, and image restored from the sinogram

Table 3   Elapsed time for the Radon Transform

SKE (Xeon Server) SKE ( Desktop-PC) Scikit ( Desktop-PC) Astra ( Desktop-PC)

CPUs 1.46 s. 2.03 s. 10.58 s. –
GPUs (CUDA) 0.49 s. 0.317 s. – 0.316 s.
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Thus, the tool’s performance and the very high productivity in programming 
tools that take advantage of it are revealed.

5 � A 3‑D extension for skewEngine

Data processing, which is already expensive in two dimensions due to the inter-
connection of all data points, becomes even more challenging in three dimensions. 
Therefore, any solution to this problem must be based on the same premises as our 
previous proposal for two dimensions. First, we need to reduce the infinite num-
ber of directions for data processing, similar to how it was addressed in the 2-D 
azimuthal discretization using skewEngine, which divided the space by default into 
360◦ . For instance, the elegant Fibonacci spiral provides a potential equitable dis-
tribution of axes in 3-D. Secondly, the data volume could be realigned in memory 
through a two-phase skewing and interpolation process using the skewEngine tool. 
Intuitively, if we describe any of the three-dimensional axes in terms of longitude 
and latitude, the first skewing phase would align the information with zero longi-
tude. In the second phase, each of the previously skewed planes would be aligned 
with zero latitude (Fig. 9).

6 � Conclusions

The correct alignment of data in computer memory is an increasingly important 
factor in designing efficient algorithms that process structured data intensively. In 
the case of regular meshes of two or more dimensions, the algorithms that perform 
operations in a specific direction that is different from the central alignment direc-
tion (the one that coincides with the storage sequence of the corresponding data) 
will have an access pattern to the data that is almost entirely random, and conse-
quently, causes innumerable cache misses that can be catastrophic, especially in the 
case of large volumes of data, such as those generated in a computed tomography 
scan or radio astronomy.

Realigning data in the direction corresponding to algorithm operations is a rela-
tively expensive operation if the volume of data is large. Still, since its computa-
tional complexity is linear and scales quite well, it may be worth the cost of doing 
so. The reorganization of information, as long as the operations of the algorithms 
have higher complexities.

In the experiments shown in this work, corresponding to three computational 
problems of high and medium complexity, such as the total viewshed in digital ele-
vation models, the parameterization of motion blur images, and the two-dimensional 
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Radon transform, it has been shown that the information realignment is already 
worthwhile in algorithms of medium complexity, surpassing even the best-published 
results, and produces spectacular improvements, of several orders of magnitude, in 
the most complex problems.

To facilitate the use of the mesh interpolation and extrapolation algorithms in 
the n chosen directions (which are the stages that precede and follow any algorithm 
that performs its operation in a specific direction), a C++ class named skewEngine 
has been developed by leveraging the inherent parallelism of interpolation through 
OpenMP, OpenCL and CUDA. skewEngine simplifies and accelerates the most 
complex aspect of this paper’s case studies. Moreover, skewEngine is designed to 
facilitate the implementation of other data-intensive computational algorithms on 
regular meshes using arbitrary processing directions.

All the experiments have been conducted using computations in equally distrib-
uted directions in two dimensions (usually in 360 directions and n = 180 axes). As 
data processing on each axe is entirely independent, it is possible to exploit parallel-
ism up to that number using multithreading and minimal effort.

Fig. 9   A 3-D skewing process, using a multi-plane skewEngine in two stages
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The speedup results, shown in Fig. 10, clearly demonstrate this, being particularly 
evident for the two applications where computational intensity is high (Viewshed 
and Cepstrum). Additionally, except for the HPC node, the computers were not used 
exclusively during the tests. In the two applications with minimal computational 
load (Identity and Radon), it becomes evident that the system time spent on creating 
and destroying OpenMP threads, which grows linearly, eventually dominates and 
penalizes the speedup, as predicted by Amdahl’s law. However, these data only rein-
force the idea that skewEngine requires a threshold beyond which it is worth using.

Finally, guidelines for a 3-dimensional implementation of the skewEngine tool 
are also presented, using a fair set of three-dimensional search directions computed 
using the Fibonacci spherical spiral. In this last case, preliminary results have been 
published [17] in which unstructured data of thousands of molecules, using numeri-
cal interpolation, are interpolated to regular meshes that are later projected into 
images, and which have been used to train a neural network. By reconverting and 
structuring the information, tens of millions of images have been generated in just a 
few seconds.
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