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Abstract
Reconfigurable devices such as field-programmable gate arrays (FPGAs) offer flex-
ible solutions to workload acceleration with high energy efficiency. Despite such a 
potential advantage, they often reveal hard to program by application programmers. 
High-level synthesis languages have been developed to provide higher-level abstrac-
tions, allowing the developers to define the FPGA behavior using an imperative 
programming approach based on C/C++ languages. However, such approaches still 
leave the developer with the responsibility to harness the low-level optimizations 
required to develop efficient FPGA programs. Along this line, this paper introduces 
FSPX, a framework helping programmers to develop FPGA-accelerated data stream 
processing (DSP) applications. The approach provides a high-level Python API to 
develop the data-flow graph of operators, which is automatically translated into an 
efficient Vitis source code targeting Xilinx devices. The execution of the bitstreams 
implementing two benchmark applications showcases the efficiency of using FPGAs 
for DSP workloads. In general, FSPX provides, with a reasonable time-to-solution, 
higher performance compared with state-of-the-art DSP frameworks.
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1 Introduction

An increasing number of applications need to process huge volumes of data in the 
form of data streams, i.e., unbounded sequences of inputs received at high speed. 
Applications in this domain often rely on the data stream processing [1] (DSP) 
computing paradigm to process continuous streams and extract valuable data on 
the fly. According to this paradigm, applications are data-flow graphs executed 
on the underlying physical computing resources by stream processing engines 
(SPEs), which facilitate their development and deployment.

DSP requires the use of parallel hardware to deliver high throughput and low 
latency. Traditional SPEs (e.g., Apache Storm [3] and Flink [2]) are designed for 
distributed environments, where the focus is to efficiently and seamlessly process 
multiple applications on homogeneous clusters. Some specialized SPEs target 
scale-up machines equipped with multi-core CPUs and GPUs (e.g., as in [13]). 
However, a significant challenge lies in the expressiveness of such tools in terms 
of supported applications. Many existing systems focus on specific DSP domains 
(such as relational algebra [4] or Complex Event Processing [8]), making their 
API very user-friendly and abstracting most of the low-level implementation 
details. However, this specialization often sacrifices flexibility, making the execu-
tion of generic applications operating on any data type unfeasible.

Field-programmable gate arrays (FPGAs) are powerful accelerators but notori-
ously challenging to program. Writing code using RTL (register transfer level) 
languages requires specific engineering expertise. In recent years, high-level syn-
thesis (HLS) tools [7] have been developed to address this challenge. While HLS 
languages offer high-level programming abstractions, developing efficient hard-
ware designs to run on FPGAs is still a hard task and needs code that can be 
efficiently synthesized by the compiler. To make DSP accessible on FPGAs, new 
approaches are needed to simplify application development while maintaining 
high flexibility in terms of the variety of applications supported. In this regard, 
the literature is lacking: programmer-friendly approaches are restricted to specific 
domains (e.g., relational algebra), while general-purpose use cases are addressed 
by relatively few incomplete works (i.e., in terms of features supported) or with 
implementations no longer maintained or targeting obsolete FPGA devices (more 
details in §6).

This paper presents FSPX, a framework to accelerate general-purpose DSP appli-
cations on FPGAs. Our approach starts with a user-friendly Python DSL (domain-
specific language) to define the data-flow of operators, declaring the kinds of opera-
tors and their interconnection topology in an easy manner. The execution of such a 
Python program produces, through a code generation process, the code targeting the 
FPGA platform. Such a code efficiently implements operators, and their intercon-
nection with predefined data distribution policies, and addresses the replication of 
operators to increase processing throughput on the device. So, the application pro-
grammers are no longer responsible for the low-level implementation details, while 
they are requested to provide the business logic code of each operator as a sequential 
program (e.g., incorporated in functors having the right signature).



13050 A. Ottimo et al.

1 3

The specific research contributions of this paper are the following:

• FSPX extends the previous work of FSP [15], which was capable of generating 
OpenCL device code for Intel FPGAs only. We introduce a new code generation 
layer to target Xilinx FPGAs, preserving all the compatible features of FSP;

• we design a new device library from scratch developed for Vitis HLS, imple-
menting efficient data-flow components (e.g., to perform data distribution, data 
collection, and operator replication) tailored for Xilinx FPGAs. The library 
includes all the components needed by the device runtime, greatly simplifies the 
code generation process, and minimizes the resulting code footprint;

• the experimental evaluation is based on two real-world streaming applications. 
The evaluation shows that FSPX considerably outperforms industrial and 
research SPEs (i.e., Apache Flink and WindFlow [13]);

• the source code of FSPX and all the applications implemented with all frame-
works used in the comparison have been released open source1.

The paper is organized as follows. §2 introduces the main concepts of the DSP para-
digm and the FPGA architecture. §3 provides an overview of FSPX and its Python 
DSL. §4 shows the implementation in detail, both the device library and the host 
library. §5 presents the experimental evaluation with the results in terms of through-
put and latency. §6 outlines related works and §7 draws the conclusion of this paper.

2  Background

In this section, we review the basic concepts needed to understand the paper. We 
focus on the DSP paradigm first and then give the essential information about 
FPGAs and their programming model.

2.1  Data stream processing

DSP applications can be modeled as data-flow graphs, where arcs are unbounded 
data streams and vertices are operators doing intermediate computational stages 
applied over the inputs to produce outputs. In relational streaming applications (i.e., 
the ones that can be developed using SQL-like formalisms [4]), operators are the 
ones of relational algebra (e.g., projection, selection, joins) while graphs have regu-
lar structures (e.g., trees). In general-purpose DSP [19], which is the paradigm of 
our interest, graphs are generic and operators execute generic computations.

Figure 1 shows an example of a DSP application having one source, two inter-
mediate operators, and a sink. This structure is the logical one, showing only opera-
tors and their connections. However, the application can expose different parallelism 
exploitation patterns [16]. In particular, each operator can be internally replicated 
to work in parallel on different inputs as shown in Fig. 2, which can be considered 

1 FSPX is available at this link: https://github.com/blackwut/FSPX.
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the physical view of the graph. Replicas are instances of the same processing logic 
working on different inputs distributed by the previous operator. Data distributions 
can follow different dispatching policies: the round-robin policy tries to assign the 
same number of inputs to the replicas by distributing them in a circular manner to 
the destinations, while the key-by policy assigns all inputs having the same key (e.g., 
a specific field of the input) to the same replica.

Depending on the nature of the computation, operators can be stateless, if their 
outputs depend on the inputs only. Otherwise, operators are stateful if they maintain 
a state used to compute outputs. A very common pattern is to use stateful opera-
tors with a key-by dispatching policy (i.e., partitioned-stateful operators [1]), where 
each distinct key is associated with a separated state object accessed privately by the 
replica receiving inputs having that key.

2.2  FPGA architectures

An FPGA is an integrated circuit consisting of a grid of configurable hardware 
blocks. Unlike CPUs and GPUs, which have a fixed hardware structure executing 
instructions, FPGAs build custom hardware to implement a program. The basic 
structure of an FPGA is made of look-up tables (LUTs) performing logic operations, 
flip-flops (FFs) storing register data, wires and I/O pads implementing the intercon-
nects between blocks. To enhance the computational density and efficiency, modern 
FPGAs combine basic elements with specialized hardware blocks, including: block 
random access memory (BRAM) storing and transferring data between on-chip 
resources, digital signal processing implementing common fixed-point and floating-
point arithmetic, and I/O blocks employed to communicate with external devices 
such as micro-controllers or off-chip memories.

Fig. 2  Physical view of a DSP 
application having four opera-
tors with different numbers of 
replicas each

Fig. 1  Logical view of a DSP application having four operators
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FPGA programming techniques employ hardware description languages [7] 
(HDL), such as Verilog or VHDL, to describe digital circuits, either behaviorally or 
structurally. However, a recent trend is to use high-level synthesis (HLS) languages 
and tools to raise the level of abstraction and to reduce the design time. Both aca-
demia and industry have been involved in releasing HLS tools to develop, verify the 
functional correctness, debug, and synthesize FPGA hardware starting from a code 
written in C/C++ or using other programming languages.

2.3  Vitis HLS

Vitis HLS [11] is a tool allowing developers to design and synthesize hardware from 
an application code written using C/C++ and OpenCL. We describe the main con-
cepts of Vitis HLS that are useful to understand the core choices of our work and the 
used jargon.

We refer to a kernel as a coarse-grained computational unit defined by a top-level 
function in the source code of a Vitis HLS program. Kernels can take advantage of 
dataflow and pipelining optimizations to perform their computations in parallel on 
the FPGA resources, leading to a significant performance improvement. Dataflow 
parallelism within the kernel source code can be achieved by adding the #pragma 
HLS DATAFLOW directive. This way, functions called within the top-level ker-
nel function are synthesized as separate units that can run in parallel according to 
their data dependencies. Communications between functions are performed through 
streams, which are usually synthesized as FIFO queues on the FPGA hardware.

Multiple kernels are typically integrated into larger FPGA designs to create com-
plex applications. Integrating kernels into larger designs involves connecting kernels 
and interfacing with other components of the FPGA. Kernels can communicate with 
each other using special streams implementing the AXI4-Stream protocol. Vitis also 
provides a host runtime system, which is a software library for controlling and inter-
acting with the FPGA. It enables host-to-device (H2D) and device-to-host (D2H) 
memory copies, and kernel launching from the host code. Vitis kernels have several 
memory ports that can be mapped to different memory resources in the system (e.g., 
HBM banks) to optimize the bandwidth of kernel-to-memory connectivity in order 
to read data produced by the host program, as well as to write results that will be 
consumed by the host program, efficiently.

3  FSPX overview

FSPX supersedes our prior work FSP [15], which was aimed at generating DSP 
applications targeting Intel FPGAs only. FSPX is instead capable of generating 
code for both Intel and Xilinx FPGAs, producing the appropriate code for the cho-
sen target. The general aim is to lower the effort in the development of DSP applica-
tions that want to exploit FPGA devices to accelerate their processing. To enable 
the targeting of both platforms, we introduce an abstraction layer within the code 
generation module to facilitate the production of the right source code for the target 
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FPGA device. Furthermore, we implemented from scratch a novel library of device 
components (shortly called device library) that will be combined and used to syn-
thesize data-flow graphs on Xilinx FPGAs, which is the main focus of this paper.

The development of an FSPX application targeting Xilinx FPGAs is fully 
described by the workflow in Fig. 3. In this perspective, FSPX shares the same pro-
gramming model of FSP and the same goal of targeting general-purpose stream 
processing applications, where operators can execute arbitrary code and not built-in 
functions like in relational stream processing. We achieve this goal by hiding the use 
of HLS from the application programmer, since the kernel definitions, and the use of 
HLS streams to perform the data-flow on the device are completely done by the gen-
erated code, while the programmer is only involved in defining the sequential code 
of the operators using plain C/C++ (with some optional code annotations to help 
the FPGA compiler). In fact, while HLS languages are often considered high-level 
approaches for FPGA programming, they are still low-level from the perspective of 
a traditional stream processing programmer, who is usually a data scientist or practi-
tioner without the adequate expertise to cope with HLS programming in an efficient 
and productive manner.

To develop an application in FSPX, we start by defining the application and 
its operators using the domain-specific language (DSL) introduced by FSP. Such 
a DSL has been extended enabling the programmer to specify the class of target 
FPGA architecture (i.e., Intel or Xilinx), in order to generate the right code imple-
menting the data-flow graph. The DSL is expressed in the Python programming lan-
guage and allows the high-level definition of the data-flow, i.e., to identify the used 
operators and how they are interconnected. We currently support the following types 
of computing operators that will be implemented on the FPGA hardware resources:

• The Map operator applies a user-defined function on each input by producing a 
corresponding output having the same or a different data type

• The Filter operator removes from the stream all inputs for which a user-defined 
predicate is evaluated to false

Fig. 3  FSPX workflow to develop a DSP application leveraging Xilinx FPGAs
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• The FlatMap operator applies a user-defined function on each input and pro-
duces zero or more outputs. Outputs are of the same data type but can differ from 
the input data type.

In addition to computing operators, FSPX also provides two built-in memory opera-
tors that interact with the host program:

• The MemoryReader operator produces an input stream feeding computing opera-
tors on the FPGA by continuously forwarding data arriving from the host pro-
gram;

• The MemoryWriter operator collects the stream of results from computing opera-
tors and makes them continuously available to the host program.

Each FSPX operator can be parallelized by running more functionally equivalent 
replicas that will work on different inputs in parallel, as introduced in §2. From the 
DSL perspective, the programmer specifies the degree of parallelism of each opera-
tor (i.e., number of replicas), and the dispatching policy to route outputs produced 
by the operator to the next destination replicas. The dispatching policies provided by 
FSPX are the following:

• Round-Robin (RR): the operator replica delivers its outputs to the replicas of the 
next operator in a circular manner, thus balancing the number of inputs assigned 
to each replica of the next operator. This policy makes use of so-called Blocking 
streams, meaning that the sending operator replica is blocked until the chosen 
receiver operator replica can accept a new input

• Load-Balancing (LB): the operator replica delivers outputs in a circular manner 
as with the RR policy. This policy is non-blocking, so if the receiving operator 
replica cannot receive a new input, the sender tries to deliver it to another desti-
nation operator replica in the next clock cycle

• Key-By (KB): inputs having the same key (the key value can be extracted from 
the input through a user-defined function) are always sent to the same replica of 
the next operator

• Broadcast (BR): the sending operator replica sends a copy of each output to all 
the replicas of the destination operator.

Analogously, FSPX allows the programmer to choose the gathering policy, which 
controls how an operator replica receives data from the replicas of the previous 
operator. RR and LB policies can be used for this purpose, by polling data in a block-
ing or non-blocking manner, respectively.

After defining the structure of the pipeline and specifying for each operator the 
number of replicas and the chosen dispatching and gathering policies, FSPX gen-
erates a C++ code for the device (called pipeline skeleton in Fig. 3) using Jinja2 
[17]. The device implementation (partially generated and partially using the device 
library functions of FSPX) contains several pieces of the pipeline logic that are effi-
ciently implemented for the device without any programming effort by the FSPX 
user. However, since FSPX is aimed at supporting general-purpose streaming 



13055

1 3

Boosting general‑purpose stream processing with…

applications with operators doing arbitrary computations expressed in imperative 
code, the produced pipeline skeleton is not ready to run, but it must be completed by 
the programmer with the specification of the user-defined functors (one per opera-
tor) that must respect a given signature based on the operator type (denoted as oper-
ator functors in Fig. 3).

In the next part, we describe more in detail the DSL and the code generator of 
FSPX.

3.1  Domain‑specific language

In this section, we introduce the DSL provided to the user to design a DSP appli-
cation in FSPX. To declare an operator, the developer instantiates the FOpera-
tor class. Listing 1 shows the declaration of a map operator that is replicated two 
times, gathering inputs from the previous operator with a LB policy, and dispatching 
results of datatype output_t with the KB policy.

Listing 1: Example of declaring a Map operator, with two replicas, gathering inputs 
with LB gather policy, and dispathching output t results with KB policy

A stateless operator, excluding memory operators, can become stateful by add-
ing a buffer to store its state. Such a buffer is a memory space that the user decides 
to make available to the operator, where it can store historical information about 
the received inputs, and can be used to compute results in a generic stateful man-
ner. Listing 2 shows how to add a private and a local buffer to an operator. Private 
buffers are synthesized by the compiler with registers and should be used to store 
variables or arrays with few elements. A local buffer is instead implemented in dedi-
cated on-chip memory blocks and can be useful to store a small state. If the operator 
is replicated, each replica has its own buffer as specified for the operator.

Listing 2: Functions to add private and local buffers to an operator
The application is eventually declared by creating a FApplication object 

as shown in the first line of Listing 3. The programmer can specify the destination 
folder where to generate the source code (i.e., a directory named myApp), the input 
datatype of the pipeline (e.g., in the example the MemoryReader operator will accept 
inputs of input_t type), and the target platform on which the application should 
run (e.g., a Xilinx FPGA). The developer must add the two memory operators and 
the application operators in the right order. By calling the generate_code() 
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method, FSPX generates the device code, which mainly consists of the kernel 
instantiating the specific pipeline of computing operators, which in turn makes use 
of a set of components that we implemented in the device library.

Listing 3: Example of declaring and generating code for an application with 
FSPX

3.2  Code generation

The Python DSL is used by the programmer to express a pipeline with an arbitrary 
number of operators (each having an arbitrary number of replicas) connected using 
a set of available dispatching and gathering policies. By running the Python script 
with the DSL program, some Jinja2 template files will be instantiated by passing as 
parameters the values of a set of Python variables used in the DSL. A Jinja2 tem-
plate contains variables and expressions that will be replaced with the provided val-
ues when the template is rendered.

The generated code consists of a set of kernels as represented in Fig. 4 by refer-
ring to the pipeline example in Fig. 2. It contains the declaration and definition of 
the MemoryWriter and MemoryReader kernels, as well as of the so-called Com-
pute kernel encapsulating the computing operators. The code of such kernels instan-
tiates and refers to a set of C++ template functions (with Vitis annotations) that 
belong to the device library of FSPX, where each function corresponds to specific 

Table 1  Lines of code of FSPX 
to generate code based on the 
target FPGA

Target Jinja2 Host Device Other Total

Intel 1168 1409 - - 2577
Xilinx 168 1160 1279 84 2691

Fig. 4  Implementation of a DSP application in FSPX targeting Xilinx FPGAs



13057

1 3

Boosting general‑purpose stream processing with…

components of the device part for which the code has been already implemented 
(e.g., dispatching components or gathering components adopting the different avail-
able policies). Analogously, the host program will use the API provided by the 
header files belonging to the host library of FSPX, to interact with the Memory-
Reader and MemoryWriter kernels properly.

Such an approach minimizes the size of the generated code, keeping it small and 
moving most of the implementation burden to the device and host library files. This 
approach is quite different compared with what was done for the Intel targets [15], 
since in such a version most of the device code was generated with Jinja2, includ-
ing all kernels and the whole implementation of the data-flow components. Table 1 
quantifies these differences.

When targeting Xilinx FPGAs, Jinja2 templates occupy only 168 lines of code, 
while more than a thousand lines were necessary for the templates in the case of 
Intel FPGAs. The most remarkable difference is in the device library, actually absent 
for Intel targets (i.e., the whole device implementation is generated through Jinja2 
every time the DSL program is run).

4  Implementation

In this section, we focus on the device code for the Xilinx FPGAs. This includes the 
code generated through Jinja2 from the DSL, and the device library containing sev-
eral template functions instantiating the various components for an efficient FPGA 
implementation of the pipeline.

The device code implements the physical pipeline of operators with replication. It 
is composed of three main conceptual parts: i) the input generator part, ii) the com-
pute part, and iii) the output drainer part. Figure 4 depicts a logical representation of 
the code of the physical pipeline in Fig. 2.

The input generator part is essentially composed of one or more instances of the 
MemoryReader operator, each reading data from a specified global buffer (i.e., a 
memory buffer allocated on the FPGA off-chip memory) and generating the stream 
of individual inputs. The compute part contains the computing operators. The output 
drainer part is composed of one or more instances of the MemoryWriter operator, 
each receiving data from the previous operators and storing them in specified global 
buffers.

4.1  Stream abstractions

Vitis HLS provides the hls::stream<Type, Depth> template class, which 
represents a unidirectional data stream facilitating efficient communication between 
hardware modules. The hardware implementation varies depending on the template 
parameter Type. It allows the use of any C++ native data type, Vitis HLS arbi-
trary precision type (e.g., ap_int<>), or user-defined struct types. When any 
of these types are used, the compiler generates a First-In-First-Out (FIFO) queue of 
size Depth. This hardware implementation can be used to transmit data between 
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modules within the same kernel. However, when working with streams between 
independent kernels, it is essential to employ the AXI4-Stream protocol. In such a 
case, the hls::axis<> interface is used to wrap the data type, ensuring that the 
compiler implements streams that adhere to the protocol.

To enhance code simplicity and prevent mistakes during code generation, we have 
designed a class for each type of stream, both having the same member functions. 
As a result, the classes and functions of the device library can accept both stream 
types as template arguments and use them interchangeably. The fx::stream<T, 
D> class wraps the type of a stream used within the same kernel, while the 
fx::axis<T, D> wraps a stream using the AXI4-Stream protocol. This design 
enables us to achieve parametric polymorphism at compile time. Hereinafter, we 
refer to a generic stream implementing the AXI4 protocol as axis.

Both streams and axis types internally consist of two independent sub-streams: 
the data sub-stream, used to exchange data items, and the eos stream, which car-
ries the end-of-stream (EoS) signal. These internal sub-streams can be managed 
independently by calling the associated functions to write, read, check for empti-
ness, and check for fullness. It is worth noting that the write member function (of 
both fx::stream<T, D> and fx::axis<T, D>) sends out not only the data 
item in the data sub-stream but also a 0 value in the eos sub-stream. The EoS 
signal will be transmitted by a specific write_eos member function that writes 1 
in the eos sub-stream.

4.2  Memory operators

During the execution, data exchange between the host program and the FPGA pipe-
line occurs through the off-chip global memory of the device. The host program 
copies data on global buffers that will be read by MemoryReaders and delivered to 
the FPGA pipeline. Results computed by the FPGA pipeline will be stored by Mem-
oryWriters in global buffers that are copied into the host memory by the host pro-
gram. The MemoryReader operator implements the reading of new inputs from pre-
viously allocated global buffers and forwards them to the compute kernel through 
proper axis streams.

In our design, global buffers used by a single MemoryReader reside in a single 
HBM2 memory bank, which is accessed by the MemoryReader operator through 
a single memory port. To exploit more HBM2 banks if available, MemoryReader 
operators can be replicated, each having a dedicated host thread pushing new data 
onto global buffers allocated in a given HBM2 bank, and associated with a given 
MemoryReader replica.

A simplified implementation of the MemoryReader operator is shown in List-
ing 4. The outermost for loop reads count lines of size W bits from the global 
buffer in. In the innermost for loop, each line is then unpacked into individual 
data items of type T and sent to the compute kernel. Finally, the operator can 
propagate the end-of-stream (EoS) signal if requested. This implementation, with 
a proper choice of the W parameter, allows the FPGA hardware implementing the 
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MemoryReader to better exploit the memory bandwidth, by reading W bits for each 
memory request.

Listing 4: MemoryReader implementation (W: bus width, T: output datatype)
The MemoryWriter operator is structured into two distinct stages working in a 

pipeline manner as depicted in Fig, 5, to ensure efficient bursts accessing the off-
chip global memory. The first stage called Line Filler (LF) collects the data items 
originating from the preceding operator and packs them into a line of size W bits. 
When a new line is formed, this stage forwards it to the subsequent stage called 
Bursty Writer (BW) through a stream lines with depth 2 ⋅ K.

When a given number K > 0 of lines have been collected and transmitted by 
LF and buffered in the stream lines, LF writes the number of lines K in a sec-
ond stream bursts transmitted to the same stage BW. In the second stage, BW 
is continuously waiting for new data from the stream bursts. As soon as the 
constant K is read from that stream, BW starts reading all the buffered K lines 
from the stream lines and writes each one at a proper offset of a global buffer 
out in the off-chip memory, which has been properly created by the host program 
before running the MemoryWriter kernel. Since the number of lines to be written 
is known before starting the first write, the generated FPGA hardware can aggre-
gate write requests in a single burst request to the memory, improving the memory 
bandwidth utilization. Furthermore, at the steady state, the two stages work in par-
allel: the first one is filling lines of the next burst and buffering them into lines, 
while the second stage is writing lines of the previous burst in memory.

Fig. 5  Graphical representation 
of the MemoryWriter imple-
mentation
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4.3  Compute kernel

All the computing operators of the pipeline are instantiated inside the compute 
kernel. We choose to implement it as a free-running kernel, i.e., a kernel starting 
on the FPGA automatically when the bitstream is loaded, and thus it does not 
need any interaction with the host program. In addition, it has no memory input 
or output ports and thus interacts with other kernels through axis streams only. 
The general structure of the kernel is shown in Listing 5 by referring to the exam-
ple represented in Fig. 4.

This kernel is produced by the code generator. It makes use of several func-
tions whose implementation is part of the device library. Each function is the 
implementation of a specific component of the FSPX runtime system, and such 
components are interconnected through fx::stream instances forming the 
data-flow graph implementation as sketched in Fig.  4. During the process of 
compilation of the kernel, through the Vitis HLS compiler, such components 
will be properly synthesized as separate hardware units. To do that, we use the 
#pragma HLS DATAFLOW directive to instruct the compiler in synthesizing 
each function as an independent and parallel hardware unit.

Listing 5: Compute kernel generated by FSPX
The compute kernel accepts input and output axis streams as parameters, 

allowing the interconnection with MemoryReaders producing data streams by 
reading from global buffers, and with MemoryWriters receiving outputs from the 
kernel and writing them in global buffers.

An emitter is a component having a single input stream and more output 
streams, and implementing a specific dispatching policy. In the data-flow graph, 
we use some emitters to interface each MemoryReader with the replicas of the 
first operator in the pipeline. Each MemoryReader communicates with the repli-
cas of the first operator through a dedicated emitter. This is done at line 10, where 
the fx::Emitter function is instantiated with template arguments representing 
the policy type (in this example we use the KB policy), and the number of Mem-
oryReaders and replicas of the first operator. The function generates a number 
of components implementing the given dispatching policy that are equal to the 
number of MemoryReaders, as specified by the second template argument. The 
fx::Emitter takes in input the two axis streams from the MemoryReaders 
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(in), and the streams to be used to connect with the replicas of the first operator. 
Since the dispatch policy chosen by the user for the MemoryReader is KB, the 
user is requested to provide the keyby_fun lambda function that specifies how 
to extract the key attribute from each input_t data item. Listing  6 shows an 
example of this lambda function.

Listing 6: Lambda function to extract the key from an input t data item
Other more complex dispatching policies (like LB) are supported. This policy 

uses non-blocking streams and, before sending a new data item to an operator rep-
lica via the associated stream, the routing component checks if the stream is full. If 
it is full, it tries to dispatch the current data item to the next replica operator in the 
next clock cycle. This dispatch policy should be used when the subsequent opera-
tor replicas may have different II. This can happen, for example, when the subse-
quent operator is a FlatMap, which decides the number of dispatched data items at 
runtime. In this case, each FlatMap replica might produce a data item at each clock 
cycle, so it can have a different output rate during the application execution.

The operators are instantiated and replicated using the fx::Replicate library 
function. This function, described in detail afterward, is responsible for replicating 
the operator and the components to connect each replica to the subsequent and pre-
ceding ones through streams. Lastly, the fx::Collector function connects the 
replicas of the final operator in the pipeline to the MemoryWriters, by implementing 
the gather policy chosen. In the example, the policy is LB.

This implementation schema of the data-flow has been designed to reduce the 
number of axis streams that would connect MemoryReaders and MemoryWriters 
to the compute kernel. This is done by having dedicated emitters and collectors 
before the first operator and after the last one, instead of connecting each Memory-
Reader directly with the operator replicas with dedicated axis streams (symmetri-
cally for the MemoryWriter). Consequently, we save the resources that would be 
required for the implementation of the AXI4 protocol for a large number of axis 
streams.

4.3.1  Replication

The replication of each computing operator (we assume here a map and a fil-
ter as an example) is achieved through the use of the template function 
fx::Replicate<> , which is shown in Listing 7.
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 Listing 7: Implementation of fx::Replicate<>
This function has a set of template parameters describing the operator type OP_T, 

the number of replicas PAR, the type of the functional logic to call on each input 
FUN_T, the gathering and dispatching policies IPOLICY and OPOLICY, the num-
ber of emitters N of the previous stage of the pipeline, the number of collectors K 
of the next stage of the pipeline, the type of the input streams ISTR and of the out-
put streams OSTR, and the type KEY_EXTRACTOR_T of the logic used to extract 
the key attribute from the inputs. The body of the function is composed of a fully 
unrolled for loop. Within this loop, the template function fx::Replica<> is 
invoked, leading to the creation of PAR replicas. The DATAFLOW directive declared 
at the start of the body function is essential to instruct the synthesis tool to generate 
replicas as independent and parallel hardware units.

The template function fx::Replica<> in Listing 8 shows the internal struc-
ture of an operator replica, which has similar template parameters of the calling 
fx::Replicate<> function. The structure is a three-staged pipeline made of a 
collector, the operator replica, and an emitter, as shown in Fig. 4.
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Listing 8: Implementation of fx::Replica<>
The collector implements the gathering policy associated with the operator as 

specified by the template parameter IPOLICY. At each clock cycle, it selects the 
input stream to read from and pulls a new data item from it. Then, it forwards 
the data item to the operator through the c2o stream (collector-to-operator). At 
lines 15–21, a chain of compile-time if statements is employed to conditionally 
instantiate the operator based on the template parameter OP_T. Finally, the emit-
ter receives the resulting data items of the operator computation from the o2e 
stream (operator-to-emitter). It is responsible for routing processed data items to 
the next operator replica implementing the dispatch policy associated with the 
operator as specified by the template parameter OPOLICY.

4.3.2  Operator structure

Listing 9 shows the implementation of the Map operator (the implementation of 
the other supported operators is omitted for the sake of space).

At line 6, the functor FUN_T is instantiated. This functor must respect the sig-
nature void(input_t, output_t &) based on the operator type. It must 
be provided by the user and define the business logic code of the operator. For 
this reason, FSPX generates a stub with the right signature in the generated code, 
and the programmer is expected to fill the business logic code before compiling 
the code with the Vitis compiler. Within the while loop, the functor is applied 
on each input data item read from the istr stream, producing the result that is 
stored in the out variable. Then, the result is written to the ostr stream. When 
the EoS signal arrives, the loop stops and the EoS signal is forwarded to all the 
replicas of the next operator.
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Listing 9: Implementation of the Map operator

4.4  Host library

The potential performance gain of using FPGAs might be nullified by the overhead 
of H2D and D2H data transfers. Therefore, FSPX provides a host library to miti-
gate the communication overhead by using data batching and K-Buffering optimiza-
tions. The host library includes the StreamGenerator class abstracting the low-level 
actions to push new inputs to a MemoryReader operator, and the StreamDrainer 
class to collect results from a MemoryWriter operator in an easy manner by the 
application programmer. More details will be given in this section.

4.4.1  Data batching

Transferring inputs one by one to the FPGA results in low communication band-
width, which may drastically reduce the application throughput. Therefore, FSPX 
adopts a strategy that groups data items in batches, and transfers them to/from the 
FPGA as a whole. The batch size is a user-configurable parameter for both Stream-
Generator and StreamDrainer interfaces. Small batches (e.g., of a few hundred 
bytes) can lower computational latency but drastically reduce throughput because of 
the communication overheads. Large-sized batches (e.g., order of kilobytes or mega-
bytes) often increase throughput at the expense of latency, so a balance should be 
found based on the performance requirements dictated by the application use case. 
To help users achieve optimal throughput levels with our framework, the host library 
includes the fx::batch_size_hint<T>() function. This function is designed 
to return a batch size that is likely to maximize transfer bandwidth. This simple heu-
ristic is based on the observation that batches having sizes of at least 2MB are often 
sufficiently large to amortize H2D and D2H data transferring overheads in most of 
the experiments that we conducted with FSPX.

In terms of kernels, by referring to Fig. 4, we observe that while the compute 
kernel is a free-running kernel always running on the FPGA, MemoryReader and 
MemoryWriter kernels have a life-cycle strictly related to a given batch. Every 
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time a host thread using the StreamGenerator interface pushes data forming a new 
batch, the batch is copied from a host buffer to a global buffer on the device. Then, 
a MemoryReader kernel is launched to read that buffer and to start the streaming 
to the pipeline in the compute kernel. Analogously, once a MemoryWriter kernel 
is launched, it fills a batch in global memory with data items received from the last 
operator in the pipeline. Once the buffer is filled (or if the EoS signal is present), 
the MemoryWriter terminates and a host thread transfers the results from the global 
buffer to a host buffer. After that, a new MemoryWriter can be launched assigning 
the same or a different global buffer.

4.4.2  K‑Buffering

A naive solution serializes the H2D and D2H transfers with MemoryReader and 
MemoryWriter executions. Therefore, there is a gap in time between one kernel exe-
cution and the next one. We call this time interval kernel downtime. To minimize the 
kernel downtime, FSPX employs a generalization of the double-buffering optimiza-
tion that we call the K-Buffering technique. The idea is to overlap the data trans-
fers of the next up to K − 1 batches while the currently running kernel is using the 
previous one. The StreamGenerator and the StreamDrainer adopt this technique by 
allocating K > 1 buffers in global memory before the application starts. During the 
application lifetime, buffers that have been consumed are recycled to avoid repeated 
allocations and deallocations.

The implementation requires special care. The StreamGenerator API directly 
copies a batch from a host buffer to an available buffer in global memory and 
enqueues the execution of the associated MemoryReader kernels. Once a new batch 
is ready to be transferred, the StreamGenerator can copy it into a different available 
buffer and enqueues a new kernel execution. When all global buffers are in use, the 
StreamGenerator awaits the completion of the oldest execution, ensuring that at least 
a global buffer becomes available for overwriting. This implementation ensures that 
data transfer remains continuous and minimizes the kernel downtime.

The StreamDrainer API, to ensure the overlapping of data transfers with the exe-
cution of MemoryWriter kernels, allocates K different buffers in global memory to 
be filled with output results from the pipeline, and enqueues the same number of 
executions of the MemoryWriter kernels (each working on a different global buffer). 
This way, once a MemoryWriter execution is complete, the StreamDrainer can 
transfer the results back from the global buffer to a host buffer of the application 
and enqueues a new execution of the MemoryWriter working on the same buffer 
in global memory. At the end of the computation, the EoS signal arrives and the 
StreamDrainer waits for the K − 1 MemoryWriter executions to terminate.

The number of buffers K is a user-configurable parameter for both StreamGenera-
tor and StreamDrainer interfaces. When K is too high, the application performance 
can degrade since there are too many transfers in parallel, thus resulting in lowered 
transfer efficiency. On the other hand, when K is too low, it can lead to low effi-
ciency since it does not allow transfers to be properly overlapped with kernel execu-
tion. To help the user find a good value of K, the host library offers the function 
fx::kbuffers_hint<size_t>() that calculates K as a function of the batch 
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size. The idea of this simple heuristic solution is to adopt at least two buffers (to 
enable double buffering) if the size of the batch is more than 2MiB. Otherwise, the 
function returns the number of buffers needed to achieve an overall size of at least 
2MiB.

5  Evaluation

We evaluate FSPX on the Xilinx Alveo U50 Data Center Acceleration Card. 
The FPGA includes 872K LUTs, 1743K registers, 5952 DSP slices, 1344 BRAM 
of 36Kb each, and accesses 8GiB off-chip HBM2 memory. The host machine 
is equipped with two CPUs Intel Xeon E5-2650 V3 and 128GiB of DDR4 at 
2133MHz Quad-channel. Each CPU has 10 cores (20 hardware threads) sharing an 
Intel Smart Cache L3 of 25MiB. Each core has a clock rate of 2.3GHz (3.0GHz 
Turbo Frequency) and an L2 cache of 256KiB. The FPGA is connected to the host 
machine through the PCIe Gen3x16. Bitstreams are generated using the Vitis v++ 
v2023.1 compiler within the Vitis Core Development Kit 2023.1. The host pro-
gram is compiled with g++ 11.4.0 with the -O3 optimization flag. FSPX appli-
cations use the OpenCL standard implemented by Xilinx with the Xilinx Runtime 
Library (XRT).

We also provide a comparison with a scale-out open-source SPE and a scale-up 
research SPE. More specifically, we compare with Flink [2] (version 1.9.0) compiled 
with OpenJDK 11, which is a widely popular SPE to process data streams at scale, 
and WindFlow [13], a research project for scale-up multicore-based architectures 
written in C++17. Since Flink and WindFlow exploit CPU cores only, to provide a 
fairer comparison we run them on a more modern machine equipped with an Intel 
i7-12700K and 16GiB DDR4 at 3600MHz. The CPU has 8 Performance cores with 
Hyper-Threading running at 4.8GHz, and 4 Efficiency cores running at 3.7GHz, for 
a total of 20 threads. The cores share an Intel Smart Cache L3 of 25MiB. So doing, 
we compare the performance achieved by FSPX using the U50 board (released in 
2019) against the performance obtained by WindFlow/Flink running on a modern 
Intel CPU (released in 2021).

5.1  Benchmark applications

We have chosen two applications from DSPBench [5], which is an established 
benchmark repository for DSP applications. This choice is the result of the evalu-
ation of the available applications by taking into account two aspects: the first is 
related to the fact that FSPX is currently able to express arbitrarily long pipelines of 
operators (each with its parallelism degree), while some applications in DSPBench 
are more complex DAGs; second, some applications use in the business logic code 
of their operators some external libraries (e.g., for geo-localization) whose porting 
on FPGA is not straightforward and, in general, is outside the evaluation of FSPX 
and so the scope of this paper.
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SpikeDetection (SD2) analyzes a stream of sensor readings and checks for spikes. 
We implement it on the FPGA as a logical pipeline of four operators: a Memory-
Reader, a stateful Map (AverageCalculator) emitting a moving average value com-
puted over a counting window, a Filter (SpikeDetector) evaluating if the current 
sensor reading is a spike, and a MemoryWriter. The Map operator implements a 
key-partitioned sliding window. To efficiently compute the moving average, the 
business logic code of the operator uses the shift register pattern [22]. The Filter 
implements a simple Boolean predicate, so only records respecting the predicate are 
delivered to the MemoryWriter.

FraudDetection (FD3) processes a stream of credit card transactions to detect 
frauds. We implement it on the FPGA as a logical pipeline of three operators: a 
MemoryReader, a stateful FlatMap (Predictor) applying a Markov model to calcu-
late the probability of fraud, which emits the current transaction if that probability 
is higher than a given threshold value, and a MemoryWriter. The FlatMap keeps a 
subset of the last transactions per credit card identifier and computes the probability 
of being a fraud using a static matrix of values of the Markov model, which is stored 
in the on-chip memory blocks.

We also consider a modified version of FD that incorporates two stateful opera-
tors in the compute kernel. The idea of this version (called FraudFreqDetection, 
shortly FFD) is to add a stateful Map (FrequencyEvaluator) after the predictor oper-
ator. Timestamps are initially assigned by the host program when data items are gen-
erated. This operator updates the count of frauds for each type of transaction.4

In the experimental evaluation, we consider two performance metrics. The first 
is related to the speed of the FPGA pipeline, i.e., its throughput, measured as the 
total number of inputs processed per second. We count the number of inputs that the 
MemoryReader operators can transmit to the rest of the pipeline (all such inputs are 
completely processed before termination) and we divide this count by the running 
time of the whole program (i.e., host program and the FPGA pipeline). The sec-
ond metric is the so-called latency, computed as the average time between the time 
instant when an output result is received by the host program after the FPGA com-
putation, and the timestamp attribute incorporated in the output itself. Each times-
tamp is then propagated in the outputs up to the host program after the FPGA pro-
cessing. In the case of operators using more inputs to compute the same output, the 
timestamp of the last input contributing to the output is propagated for the latency 
evaluation.

5.2  Resource utilization and performance

Tab.  2 summarizes the resource utilization and the frequency of the bitstreams 
implementing SD and FD applications with parallelism from one to six. The 

2 SpikeDetection source code: https:// github. com/ black wut/ FSPX/ Apps/ Spike Detec tion
3 FraudDetection source code: https:// github. com/ black wut/ FSPX/ Apps/ Fraud Detec tion
4 FraudFreqDetection source code: https:// github. com/ black wut/ FSPX/ Apps/ Fraud FreqD etect ion

https://github.com/blackwut/FSPX/Apps/SpikeDetection
https://github.com/blackwut/FSPX/Apps/FraudDetection
https://github.com/blackwut/FSPX/Apps/FraudFreqDetection
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generated code and the device library components (e.g., emitters and collectors, 
MemoryReaders and MemoryWriters), as well as the specific implementation of the 
business logic functions within the operator replicas, allow obtaining an Initiation 
Interval (II) of one, meaning that every operator replica can process one new input 
per clock cycle. As a result, the theoretical throughput provided by the bitstream 
can be predicted as the product of the parallelism of the operators (we suppose the 
same parallelism degree for each operator) and the operating frequency FMax of 
the bitstream as obtained by the Vitis compiler. The table also reports the measured 
throughput, which corresponds to the actual throughput that we measured by run-
ning properly modified bitstreams where no H2D and D2H interactions with the host 
program are needed. Indeed, such bitstreams are capable of generating randomly 
input data without reading from the global memory, as well as results are not written 
in global buffers. These throughput results confirm that the FPGA implementation 
of the data-flow (i.e., operators interconnection, dispatching, and gathering policies) 
behaves as expected. In terms of utilized FPGA resources, the table shows that their 
utilization increases with parallelism, mainly because of the replication of the com-
puting operators that require more hardware resources on the boards. The BRAM 
increase is mainly due to the replication of the MemoryReader and the Memory-
Writer operators, which consume 57.5 and 16.5 BRAM per instance.

5.3  Throughput evaluation

We evaluate the throughput obtained by the applications described in 5.1 with FSPX 
in the realistic setup where a host program continuously feeds the FPGA pipeline 
with new batches to compute, and results produced by the pipelines are continuously 

Table 2  Resources utilization and maximum frequency (FMax) of SD and FD bitstreams with different 
parallelism degrees

App. Par. LUT REG BRAM DSP II FMax MHz Theoretical 
throughput M 
inputs/sec

Measured 
throughput M 
inputs/sec

SD 1 16,715 21,673 74 40 1 300 300 299.40
2 33,801 41,921 148 80 1 300 600 598.80
3 53,910 65,695 222 132 1 300 900 898.21
4 70,181 85,111 296 160 1 300 1200 1197.61
5 93,977 111,433 370 220 1 300 1500 1497.01
6 116,288 135,348 444 264 1 296 1776 1769.41

FD 1 23,387 37,275 274 155 1 265 265 254.99
2 47,689 73,598 348 310 1 300 600 509.99
3 74,403 114,886 447 477 1 293 879 764.98
4 96,462 151,012 496 620 1 300 1200 1019.97
5 126,927 193,172 620 795 1 300 1500 1274.96
6 153,963 232,902 744 954 1 290 1740 1529.95
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read by the host program. In the throughput calculation, to measure the whole runt-
ime of the program, we exclude the setup and the release of the OpenCL resources 
at the beginning and the end of the execution. We report in the plots, with a dotted 
red line, the maximum PCIe bandwidth measured with a bandwidth profiling bench-
mark provided by Vitis to test the data transfer rate (H2D) to the FPGA device with 
the OpenCL APIs with a specific buffer size. In this evaluation, for both SD and FD 
applications, the input data size is 8 bytes and the output data size is 16 bytes.

SD is a fine-grained application and its output rate is heavily dependent on the 
threshold used by the Filter operator. Therefore, we execute this application with 
two threshold values: 0.25 and 0.025. Figure 6a shows the results with the threshold 
value set to 0.025. The plot reports the throughput in terms of inputs per second and 
the corresponding in GiB/s. The achieved throughput is nearly optimal with paral-
lelism 1 and 2 (i.e., it approximately matches the theoretical throughput provided 
by the FPGA pipeline according to the bitstream FMax), while for the other con-
figurations of parallelism, it slightly grows but with clear sub-ideal performances. 
The main reason is that, with this chosen threshold value, the Filter operator drops 
more than 95% of the processed items with a single source, and an average of 34% 
with multiple sources, with a minimum of 15 − 25% with large batches. By con-
sidering that the output data size is 16 bytes (so larger than the input data size), 
and since the dropping rate of the Filter is quite low with large batches with such 
a threshold value, the maximum throughput is limited by the StreamDrainer in the 
host program. We reach approximately 8.75 GiB/s of the D2H bandwidth, which 
corresponds to an exploitation of the H2D bandwidth (as reported in the figure) of 
4.69 GiB/s. By setting the threshold to 0.25 (Fig. 6b), the Filter removes more than 
99% items from the stream. In this case, with parallelism up to 4, we are very close 
to the trend of the H2D data rate measured by the Vitis profiling tool with the same 
batch sizes.

Figure 7a shows the achieved throughput by FD by varying the parallelism degree 
of the operators and the input batch size. With parallelism 1 and 2, the application 
achieves almost the theoretical performance reported in Table 2. Starting from par-
allelism equal to 4, the application reaches its peak performance of 1,050 millions of 
inputs per second.

Fig. 6  Throughput of SD with 0.025 (a) and 0.25 (b) threshold configurations by varying the parallelism 
and the batch size
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Although the FFD application is a modified version of FD with two state-
ful operators in the compute kernel instead of one like in FD, its performance 
remains unaffected. Indeed, Fig. 7b shows the throughput trend of FFD and it is 
clear that mirrors the one obtained by FD.

Finally, we evaluate the impact of the K-Buffering technique. We select FD 
with parallelism 1 while we variate the used batch size. Figure 8 reports the result 
with a fairly small batch size (512 inputs), a medium batch size (4,096 inputs), 
and a large batch size (32,768 inputs) according to our previous experiments. 
With a small batch size, increasing the number of buffers up to three leads to a 
remarkable throughput increment. However, with 4 and 6 buffers, we obtain a 
significant increment of 5.09× and 7.62× , respectively. With 8 buffers the perfor-
mance gain is slightly lower than 7.9× . With a medium batch size, we observe a 
quick increment up to 6 buffers. Using 8 buffers is no more beneficial. With the 
largest used batch size, the impact of 2 and 3 buffers is still significant, obtaining 
2.33× and 2.88× higher throughput. However, with 4 or more buffers there is no 
additional gain.

In summary, FSPX achieves satisfactory throughput levels, although a certain 
margin of improvement is still possible to completely saturate the H2D and D2H 
memory bandwidth provided by the PCIe interconnect of the machine. However, 

Fig. 7  (a) Throughput of FD by varying the parallelism and the batch size. (b) Throughput of FFD by 
varying the parallelism and the batch size

Fig. 8  Impact of the K-Buffering technique on FD using different batch sizes
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DSP applications exacerbate this issue, since batches need to be continuously pro-
duced from external sources and cannot be pre-allocated and pre-filled in memory.

5.4  Latency evaluation

To measure the latency, we modify the bitstreams of the two applications to incor-
porate a timestamp (4 bytes) value in each input and output value. We collected the 
statistics by taking 1,024 samples per second and we reported the 5th, 25th, 50th, 
75th, and 95th percentiles of the latency distribution.

In FSPX, the latency is affected by many factors, including the size of the input 
and output batches, the parallelism of the MemoryReader/MemoryWriter, and con-
sequently the one of the StreamGenerator/StreamDrainer in the host program. Fig-
ure 9 shows the latency obtained by SD with a threshold equal to 0.025. With mul-
tiple sources of input streams (i.e., parallelism >1 ), we experience higher latency 
with larger batches, as expected. With a single source, we empirically found that 
more than 90% of the data items processed are removed from the output stream, 
while with multiple sources only 30 − 40% . As a result, with parallelism equal to 1 
the latency is much higher compared to the other configurations because the output 
batches need more time to be filled.

Fig. 9  Latency of SD by varying the parallelism and the batch size

Fig. 10  Latency of FD by varying the parallelism and the batch size
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An analogous behavior can be observed for FD in Fig. 10. In that case, the batch 
size affects latency as expected. Also, higher parallelism contributes to increased 
latency notably with large batches. We point out that FSPX can achieve stable 
latency results, even in the presence of multiple concurrent/parallel data transfers 
from and to the FPGA device, which is of great importance for latency-sensitive 
applications requiring stable processing delays.

5.5  Comparison with state‑of‑the‑art SPEs

In this last part of the paper, we discuss the performance results achieved by FSPX 
against state-of-the-art SPEs. As it will be presented in §6, a direct comparison with 
other DSP frameworks targeting FPGAs revealed impossible. This is mainly due to 
the lack of FPGA tools having the same flexibility of FSPX in offloading the pro-
cessing of whole pipelines on the FPGA. Furthermore, some works do not publicly 
provide their source code or, in other cases, the projects are quite dated and the tar-
geted FPGA platforms obsolete. We refer to §6 for further details.

For the above reasons, we consider a comparison with two SPEs targeting the 
execution on traditional computing platforms. The first is Apache Flink [2], an open-
source SPE targeting scale-out systems with a runtime system written in Java. It 
represents a de-facto standard SPE widely adopted by practitioners and researchers 
in the DSP domain. The second is WindFlow [13], a C++ DSP library specifically 
optimized for scale-up multi-core architectures. So doing, we showcase the effi-
ciency of FSPX compared with industrial and research SPEs.

We use the source code of SD and FD provided by [5], which still includes Flink 
and WindFlow implementations of the two applications. To make a fair compari-
son, the applications have been slightly adapted to use the same input data size and 
output data size of the FPGA versions developed in FSPX, and with identical con-
figuration parameters of the stateful operators. We tested the two applications using 
different configurations of parallelism per operator and batch size (the latter is avail-
able only in WindFlow, since Flink processes inputs one at a time only).

We point out that the performance results of FSPX are collected using a machine 
(equipped with two Intel CPUs released in 2014) equipped with the U50 FPGA 
board (released in 2019), while the experimental results of WindFlow and Flink 
have been collected using a different host equipped with a more modern Intel CPU 
(released in 2021) in order to have a comparison not necessarily in favor of the 
FPGA board.

Figure 11 reports the best throughput achieved for SD and FD. We report dif-
ferent cases: Flink, WindFlow, WindFlow using a batch size of 1,024 inputs 
(denoted by WindFlow+B), FSPX-1 is the FSPX bitstream with parallelism 
1 per operator while FSPX-4 is the version with 4 replicas per operator. We 
report an additional case denoted by FSPX-Max, which represents the execu-
tion of FSPX with parallelism 4 per operator, where we use the bitstream version 
previously used in our analysis to measure the peak throughput. We recall that 
FSPX-Max does not incorporate a timestamp value to gather latency measure-
ments per input, so reducing the input size and the impact on the PCIe bandwidth 
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consumption to transfer the same amount of data. In all cases, all versions of 
FSPX in the figure are executed with batches of 32,768 inputs, which represents 
the best choice.

On average, FSPX is capable of achieving 26.6× and 34.1× higher throughput 
against Flink and WindFlow with no-batching for SD, and 84.3× and 54× for FD. 
The use of batching in WindFlow demonstrates a performance boost of approxi-
mately 13.5× and 1.3× for SD and FD, respectively. By considering the Max con-
figuration, FSPX achieves 43.6× and 4.1× better throughput for SD, and 140× and 
69.2× for FD, outperforming, respectively, Flink and WindFlow in a remarkable 
manner.

In terms of latency, Fig. 12 shows the latency distribution of the different ver-
sions used before for the throughput comparison. As we can observe, although 
Flink does not adopt batching, its implementation targeting scale-out archi-
tectures (so incorporating useless data serialization/deserialization) exhibits 
a median latency of around 4ms for both applications, while WindFlow with-
out batching provides latencies in the order of microseconds, so three orders of 
magnitudes lower. However, these two implementations sustain relatively low 
throughput (in the order of a few million inputs/second). With relatively small 

Fig. 11  Throughput comparison between FSPX and state-of-the-art SPEs

Fig. 12  Latency comparison between FSPX and state-of-the-art SPEs
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batching of 1K inputs, WindFlow provides higher throughput at the expense of 
latency, which becomes quite unstable, going from sub-milliseconds to hundreds 
of milliseconds (SD), or from a few milliseconds to almost 10 seconds (FD). We 
can observe instead that the behavior of FSPX is quite satisfactory: in all cases, it 
provides stable latency results, with a median in the order of a few milliseconds. 
Median latencies appear comparable with WindFlow (which however adopts 
smaller batches) and lower than Flink, confirming that FSPX generates FPGA 
bitstreams that provide highly efficient and reliable performance results.

5.6  Performance of using Vitis Host Memory

In this section, we evaluate throughput and latency when using Vitis Host Memory 
(VHM). This feature can be enabled on some data center platforms to let kernels 
access directly the host memory without making a memory copy on the off-chip 
memory of the FPGA device. The use of VHM requires changing the host program 
and the device memory port configuration. To enable such a feature, the user can 
specify it by adding the parameter HOSTMEM=1 when compiling with the generated 
makefile. FSPX set all the memory ports to HOST[0] for the kernel link configura-
tion to instruct the compiler to use VHM instead of the off-chip memory.

Figure  13 shows the experimental results obtained by the SD application with 
parallelism set to five, using VHM against the copy approach (named baseline in the 
plots). As we can see in Fig. 13a, the use of VHM results in a significant throughput 
improvement, more remarkable in percentage with small batches where the over-
heads of the copies in off-chip memory dominate. Therefore, VHM allows pushing 
the throughput of FSPX more closely to the theoretical PCIe bandwidth. In terms 
of latency (see Fig. 13b), VHM generally produces slightly higher latencies than the 
baseline since the reading and access time to the host memory is generally slower 
than using the off-chip memory directly.

Fig. 13  (a) Vitis Host Memory throughput evaluation of SD application by varying the batch size. (b) 
Vitis Host Memory latency evaluation of SD application by varying the batch size
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5.7  Final considerations

The experimental results show the great benefit of using FPGAs for stream process-
ing applications since FPGA-based implementations greatly outperform CPU imple-
mentations based on standard SPEs both in terms of throughput and latency. The 
actual performance is limited by the available host–device PCIe bandwidth, which 
still allows for achieving several hundreds of millions per second.

Traditional SPEs, based on CPU processing only, provide much lower perfor-
mance due to the limited physical parallelism available, and their sources of over-
heads as studied in prior works [23]. The high potential of FPGAs is however coun-
terbalanced by their programming approach, usually more complicated than the use 
of traditional SPEs offering high-level APIs friendly for data scientists and practi-
tioners in this field. FSPX tries to fill also this gap, answering the need for new pro-
gramming models for stream processing on FPGAs that hide (at least partially) the 
use of reconfigurable hardware as much as possible to permit a user-friendly way to 
exploit FPGA-based accelerators for the standard users of this application domain.

6  Related works

Considerable attention has been recently given to the use of hardware accelerators 
to speed up the execution of DSP applications. Such kind of hardware facilities are 
quite popular nowadays, both as PCIe boards of scale-up servers and on embedded 
systems as system-on-chip architectures. The papers addressing the challenge of 
using FPGAs for DSP focus on different aspects of the problem: most of them are 
related to specific use cases, for which a high-level programming approach hiding 
the complexity of FPGA programming has been given, in other (few) cases instead 
the focus was on the expressiveness of such tools in terms of variety of applications 
supported.

One work belonging to the first category is Glacier [14], a library supporting rela-
tional algebra queries over Xilinx FPGAs. Although based on boards of the same 
vendor as the ones targeted by FSPX (although older models since the paper was 
published in 2009), Glacier is strictly bounded to relational algebra applications, 
without any support to generic streaming algorithms working on unstructured 
streams. Along the same vein, the work in [20] proposes a tool to accelerate a class 
of DSP applications to detect complex event patterns in data streams. They propose 
efficient ways to execute automata on FPGAs. Analogously to Glacier, the domain 
of supported applications is narrow although the proposed approach is quite high 
level from the programmer’s perspective.

A few papers have proposed approaches for general-purpose DSP targeting 
FPGAs. F-Storm [21] in an extension of Apache Storm featuring a new bolt (opera-
tor) interface to offload the processing on FPGAs. Although advocating a user-
friendly programming model to incorporate FPGA computing in Storm, F-Storm 
actually requires adequate levels of expertise by the application programmer, since 
the development of OpenCL kernels is part of the business logic code of the oper-
ator, so under user responsibility. Furthermore, such a prototype has been mostly 
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evaluated on benchmarks (run on an Arria10 PCIe board) not usual for DSP and 
outside the domain of streaming analytics (e.g., linear algebra kernels). Recently, 
a similar approach has been described in [12] for Storm and evaluated on small 
Cyclone-V Altera FPGAs. This project shares several limitations with F-Storm since 
one single operator per benchmark has been accelerated on the FPGA and not com-
plete pipelines. Unfortunately, both projects are not currently maintained and their 
source node has not been publicly made available to the community.

A broader system to support FPGAs for several application domains like Machine 
Learning, Compressing, and Parsing is Fleet [18]. It requires the user to provide 
pieces of RTL code (Register Transfer Language) to process streams of tokens. 
However, the RTL code can be generated by a high-level program written in Scala, 
so targeting programmability. This approach looks promising, although the sup-
ported applications are very different from traditional DSP queries commonly used 
in analytics. Therefore, Fleet’s contribution appears orthogonal to FSPX, and more 
DSP-oriented high-level programming approaches are still needed.

Other papers accelerate specific compute-intensive DSP operators on FPGAs. 
ShuntFlow [9] specifically targets sliding-window aggregation for a set of predefined 
associative binary operators, while other operators of the application run on CPU 
only. Although window-based operators are an important component of several DSP 
workloads, FSPX targets the processing of whole graphs of operators on FPGAs, 
while specific implementations for special classes of stateful operators will be the 
focus of our future works. Along the same line, we mention NetFPGA [10], a system 
supporting line-rate packet processing for network monitoring on FPGAs. Although 
such a domain is part of DSP, the approach is bounded to this use case only, and the 
FPGA bitstream is generated starting from a representation of the query using P4 
[6], a special-purpose language for programming network devices.

7  Conclusions and future work

This paper presented FSPX, a programming framework to develop DSP applica-
tions exploiting FPGAs. This work extends the FSP prototype framework by adding 
an abstraction layer within the code generation module, and completely new device 
and host libraries, to produce tailored code for Xilinx FPGAs. The programmer 
develops the data-flow graph using a Python DSL. By running the Python program, 
a Vitis skeleton code is generated, which uses the new device library components of 
FSPX. The programmer is in charge of completing the implementation by providing 
the business logic code of the operators as proper functors. The compilation pro-
duces the bitstream to run on the FPGA. The experimental results show the effec-
tiveness of FSPX, which outperforms open-source SPEs both in terms of through-
put and latency.
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