
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:12043–12061
https://doi.org/10.1007/s11227-024-05889-1

1 3

Data stream classification in dynamic feature space using
feature mapping

Reza Sajedi1  · Mohammadreza Razzazi1 

Accepted: 4 January 2024 / Published online: 7 February 2024
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature
2024

Abstract
Stream learning in dynamic feature space has evolved into an immensely popular
field. This problem assumes that each instance of the data stream may have differ-
ent features, and the feature spaces of the classifier and the instances may also dif-
fer. Such assumptions are more relevant to real-world applications dealing with data
streams, where dimensions are not predetermined and fixed. This study introduces
a general algorithm for data stream classification in dynamic feature space using
feature mapping. In contrast with the other studies, the proposed algorithm is not
based on a specific classifier and can cooperate with any classifier best suited for an
intended application. It discovers the relationship between the features and estimates
the unavailable features previously observed by the classifier. This technique helps
to exploit the full potential of the classifier. Furthermore, empirical experiments
and comparisons with modern methods demonstrate that the proposed algorithm
achieves higher accuracy.

Keywords  Algorithm · Online machine learning · Varying feature space · Feature
evolution

1  Introduction

In recent years, stream learning, a.k.a. online learning or incremental learning,
has garnered significant attention. Prior to this, offline/batch learning algorithms
were prevalent. However, in certain applications, such as stock market prediction,
intrusion detection, and recommender systems, where regular model updates are
essential, these traditional methods prove inefficient [19, 26, 27]. Infinite length,

 *	 Reza Sajedi
	 r.sajedi@aut.ac.ir

	 Mohammadreza Razzazi
	 razzazi@aut.ac.ir

1	 Department of Computer Engineering, Amirkabir University of Technology, Tehran, Iran

http://orcid.org/0000-0002-8422-4989
http://orcid.org/0000-0002-3936-6355
http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-024-05889-1&domain=pdf

12044	 R. Sajedi, M. Razzazi

1 3

concept drift, concept evolution, feature drift, and feature evolution are some
of the well-known challenges that stream learning deals with. The phenomenon
of concept drift occurs when the relation between the input data and the target
variable changes over time [6] (data distribution variation), and the meaning of
concept evolution is the emergence of new classes in the data stream [22]. In
feature drift, it is assumed that the set of features is fixed and finite. However,
the relevance of the selected features may decrease over time, leading to a reduc-
tion in model efficiency [1]. On the other hand, feature evolution posits that each
instance of the data stream may have different independent variables [21].

In this research, the main focus is on the challenge of feature evolution. This challenge
is also known as dynamic feature space, varying feature space, incremental/decremental
features, or capricious data stream. Many real-world applications face this challenge. For
example, in document classification, each document may contain different words [17]. In
environment monitoring systems or health-care systems which are based on the Internet
of Things, some old sensors may be replaced with new sensors, and the feature space
of instances may differ from the feature space of the classifier [13, 32]. In recommender
systems, new items are continuously added [15, 23]. In general, any problem dealing with
data stream may face this challenge.

This research presents a general algorithm for data stream classification in
dynamic feature space using feature mapping (DCDF2M). The assumption is made
that features can change in any order; thus, the features in each instance of the data
stream may differ from those in the preceding or subsequent instance. Each instance
may contain new features that the classifier has not seen before. Also, some features
previously observed by the classifier may be unavailable. The proposed algorithm
exploits the full potential of the classifier for prediction by discovering relationships
between features and estimating unavailables. Importantly, the algorithm is general,
meaning that it is not tied to a specific classifier and can cooperate with any high-
performance classifier in a desired application. To empirically validate the algo-
rithm, experiments were conducted on ten datasets, and the results were compared
with two existing algorithms, generative learning with streaming capricious data
(GLSC) [9] and online learning from varying features (OLVF) [2]. These algorithms
share the same assumptions in problem definition. The findings demonstrate that the
proposed algorithm achieves higher accuracy. The contributions of this study can be
summarized as follows:

•	 Introducing a general algorithm for data stream classification in dynamic feature
space using feature mapping.

•	 Using a baseline model to estimate unavailable features and proving an upper
bound for the estimation error.

•	 Evaluating the algorithm through empirical experiments, comparing its perfor-
mance with two state-of-the-art algorithms, and demonstrating higher accuracy.

The subsequent sections are structured as follows: Sect. 2 provides an overview of
the relevant literature. In Sect. 3, the proposed algorithm is delineated. The evalua-
tion scenario is explicated, and the results are scrutinized in Sect. 4. Lastly, Sect. 5
encapsulates the concluding remarks of this study.

12045

1 3

Data stream classification in dynamic feature space using…

2 � Related work

Several studies have made restrictive assumptions about how the features can
evolve. In [31], the concept of a trapezoidal data stream has been introduced, in
which each instance of the data stream must contain all the features previously
observed; that is, each new instance’s length must be greater than or equal to the
previous one.

In [11], the assumption is made regarding the presence of an overlapping
period. During this short period, the instances must contain all the old and new
features to learn the relation between these two feature spaces. After the overlap-
ping period, all old features must disappear, and all new features must appear
simultaneously. In the extended version of this study, the concept drift challenge
is also considered [33]. Another version [12] is presented in a semi-supervised
setting. In [20], which assumes the existence of the overlapping period, deep
learning is used to discover the relationship between features.

Some other studies do not impose restrictive assumptions on how features
change. These more realistic studies operate under the assumption that each
instance in the data stream may possess different features compared to its preced-
ing or subsequent instance. The current work also adopts such an assumption in
the problem definition.

In [2], the OLVF algorithm is proposed, which learns to classify feature spaces
and instances simultaneously. The algorithm dynamically projects the instance clas-
sifier and the training instance onto their shared feature subspace for prediction. The
feature space classifier predicts the projection confidence for the given feature space.
The instance classifier is updated by following the empirical risk minimization prin-
ciple, and the strength of the constraints is scaled with the projection confidence.
The distinction between OLVF and DCDF2M lies in the fact that OLVF is specifi-
cally tailored to the support vector machine (SVM) classifier, while DCDF2M is
general and can cooperate with any classifier. OLVF solely utilizes the available fea-
tures in each instance for classification. In contrast, DCDF2M employs the feature
mapping technique to estimate the values of unavailable features, thereby homog-
enizing the feature space of the instance with that of the classifier.

In [8, 9], the GLSC algorithm has been introduced. Similar to DCDF2M, this
algorithm is designed to estimate unavailable features by discerning relationships
among features. Another variant of the algorithm has been presented within a semi-
supervised setting [10]. Additionally, an alternative version has been proposed,
accommodating features with mixed types rather than solely numerical values
[29]. The distinction between GLSC and DCDF2M is as follows: GLSC is specifi-
cally tied to the logistic regression (LR) classifier, whereas DCDF2M is general. In
GLSC, the relationships between pairs of features are not considered independent
of each other. Conversely, in DCDF2M, the modeling of relationships is conducted
by observing the condition of independence, resulting in improved performance
in scenarios where the feature space undergoes substantial changes. In GLSC, it is

12046	 R. Sajedi, M. Razzazi

1 3

assumed that all features have a linear relationship with each other. In contrast, the
DCDF2M algorithm allows for the modeling of polynomial relations.

3 � Proposed algorithm

The task involves the classification of data streams in a dynamic feature space. The
binary mode is considered, but it can be extended to multiclass using some tech-
niques like one-versus-rest (OvR) [3]. At each round t, an instance xt ⊂ 𝔽 ×ℝ is
received where � = {f1, f2, f3,⋯} denotes the set of all possible features, and ℝ
denotes the set of real numbers. After predicting the class label ŷt = H(xt) , the true
label yt ∈ {+1,−1} is revealed. The classifier H is updated using the prediction
result and ground truth. It will be demonstrated how to exploit the feature mapping
technique to have a better prediction ŷt = H(xt ∪ x

�

t
) by estimating unavailable fea-

ture’s values x′

t
 for each instance.

3.1 � Data structure

In order to model the relationships between features and store data, a data structure
is required. The graph is selected as the preferred data structure. It can be repre-
sented using either an adjacency matrix or an adjacency list. Due to the dynamic
nature inherent in the problem, a preference may exist for the adjacency list. The
choice between a directed or an undirected graph depends on the nature of the rela-
tionship between features. An undirected graph is deemed suitable for linear rela-
tionships between features, whereas a directed graph is considered more appropriate
for mapping through polynomial regression. This choice arises from the fact that a
two-sided map between a pair of features cannot be achieved using a single regres-
sion model when multiple coefficients need to be learned. Consequently, the directed
graph is employed to address this general case. Features are treated as vertices and
maps as edges, as illustrated in Fig. 1.

Fig. 1   A sample feature space
modeled using a graph

12047

1 3

Data stream classification in dynamic feature space using…

Each feature (vertex) f has a property denoted by If  , which stores the list of
incoming edges. It also preserves some other properties required for the normaliza-
tion process. Each directed map (edge) mi,j which connects fi to fj has five properties:

•	 Nmi,j : Number of observed instances in which both fi and fj are present
•	 �mi,j

 : Mean of values of fj
•	 Mmi,j

 : Map function
•	 Emi,j : Sum of squared map errors
•	 Ēmi,j : Sum of squared mean errors

3.2 � Normalization

Due to the broad range of raw data values, correct functioning of objective func-
tions is impeded in certain machine learning algorithms without normalization.
Another consideration for the incorporation of normalization is its role in signifi-
cantly expediting the convergence of gradient descent [14]. Feature standardization,
a.k.a. Z-score normalization, involves assigning zero mean and unit-variance values
to each feature. This approach has been widely employed for normalization across
various machine learning algorithms [16]. To achieve this, the mean of each feature
is subtracted from its respective values, and the result is then divided by the standard
deviation of the feature. However, a challenge arises in the context of data streams,
as it is impractical to ascertain the mean and standard deviation values before pro-
cessing the entire dataset. To address this issue, normalization is performed by com-
puting running statistics, commonly referred to as moving statistics. The underlying
concept is to estimate the mean and update it as new values become available, apply-
ing the same principle to the standard deviation [28]. Consequently, the normaliza-
tion process can be outlined as follows:

Where �t,f is the mean, st,f is the running sum of squares, and �t,f is the running
standard deviation of feature f at the moment t. The feature set of instance xt is
denoted by Sxt

 . The value associated with feature f in instance xt is represented by
xt,f .

(1)

∀f ∈ Sxt
∶

Nt,f = Nt−1,f + 1

�t,f = �t−1,f +
xt,f − �t−1,f

Nt,f

st,f = st−1,f + (xt,f − �t−1,f) × (xt,f − �t,f)

�t,f =

√
st,f

Nt,f

xt,f =
xt,f − �t,f

�t,f

12048	 R. Sajedi, M. Razzazi

1 3

3.3 � Feature mapping

Feature mapping involves a regression task wherein the relationship between pairs
of features is learned. The association between two variables can be perceived as
either linear or characterized by higher degrees, such as polynomials [7]. In this con-
text, the general case is taken into consideration, specifically addressing polynomial
regression. The univariate map function is defined as follows:

Where D is the degree hyperparameter, and xi is the value of feature fi in instance
x. The purpose of regression analysis is to learn the unknown parameters � . These
parameters are estimated by minimizing a cost/loss function, specifically squared
loss (a.k.a. L2 loss) in this case:

The stochastic gradient descent (SGD) technique [18] is employed to minimize this
cost function. To achieve this, it is necessary to calculate the gradient of the cost
function:

At each round t, upon receiving an instance xt from the data stream, the maps
between each pair of features within that instance are updated. Through this process,
the evolving relationship between the features is incrementally learned. The update
of each map involves the assignment of new values to its five properties. The new
value of each property is contingent upon its prior value in the preceding round. The
procedure for updating the maps is delineated in Eq. 5.

(2)M(xi) =

D∑
d=0

�dx
d
i
= �0 + �1xi + �2x

2

i
+⋯ + �Dx

D

i

(3)J(�) = (M(xi) − xj)
2

(4)▿�J(�) =

⎡⎢⎢⎢⎢⎢⎢⎣

�J(�)

��0
�J(�)

��1
�J(�)

��2

⋮
�J(�)

��D

⎤⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎣

2(M(xi) − xj)

2xi(M(xi) − xj)

2x2
i
(M(xi) − xj)

⋮

2xD
i
(M(xi) − xj)

⎤⎥⎥⎥⎥⎥⎦

(5)

∀fi, fj ∈ Sxt
∶

Nt,mi,j
= Nt−1,mi,j

+ 1

𝜇t,mi,j
= 𝜇t−1,mi,j

+
xt,j − 𝜇t−1,mi,j

Nt,mi,j

Ēt,mi,j
= Ēt−1,mi,j

+ (xt,j − 𝜇t−1,mi,j
) × (xt,j − 𝜇t,mi,j

)

Et,mi,j
= Et−1,mi,j

+ (xt,j −Mmi,j
(xt,i))

2

𝜃t,Mmi,j

= 𝜃t−1,Mmi,j

− 𝜂▿𝜃J(Mmi,j
(xt,i))

12049

1 3

Data stream classification in dynamic feature space using…

After the maps have been updated, the estimation of unavailable features becomes
possible through the utilization of the available ones. These features, missing in the
instance xt , have been observed in preceding instances and subsequently incorpo-
rated into the feature space. A learned relationship may exist between these una-
vailable features and the features present in the current instance. Consequently, by
employing the maps established up to moment t, the estimation of unavailable fea-
tures allows for the optimal utilization of the classifier in prediction.

The set of available features in the instance xt is denoted by Sxt
 , and the set

encompassing all features observed in prior instances up to moment t is repre-
sented by Ft . Therefore, the set of unavailable features in the instance xt is derived
by computing the difference between these two sets ( Ft − Sxt

 ). To estimate each
unavailable feature fj ∈ Ft − Sxt

 , the relevant maps from the available features Sxt

to fj must be selected. The coefficient of determination, a widely recognized cri-
terion in regression analysis [4], is employed for the selection of such maps. The
calculation of this criterion for each map is as follows:

The coefficient of determination measures the performance of the learned regres-
sion model compared with a baseline model that only reports the mean of the target
variable, independent of any other variable. If the map error is less than the mean
error, the coefficient of determination becomes greater than zero, indicating a bet-
ter performance of the learned model compared with the baseline model. If the map
error is greater than the mean error, the coefficient of determination becomes less
than zero. In such cases, the baseline model performs better than the learned model,
and using that map for proper estimation is not recommended. The presence of a
negative coefficient of determination may signify the occurrence of under-fitting or a
failure to converge within the regression model. This issue may arise due to various
factors, including an inadequate number of instances for updating the map, improp-
erly tuned hyperparameters, an abundance of noise or outlier, and the absence of
a polynomial relationship between the features situated on either side of the map.
Therefore, one of the necessary conditions for selecting a map will be as follows:

Where R is a hyperparameter determining the coefficient of determination threshold
for selecting a map. It is often assumed to be zero, but assigning higher values is
also possible, which will be explained further.

Another consideration in the selection of a map involves establishing the min-
imum number of instances in which the features on both sides of the map are
observed simultaneously. While a map may attain a high coefficient of determi-
nation with only one or two updates, there exists the potential for the presented
instances to be noisy, and those features may not be observed simultaneously
in subsequent instances. In such scenarios, the map with the highest coefficient
of determination is employed to estimate each of the two unavailable features

(6)R2

mi,j
= 1 −

Emi,j

Ēmi,j

R2

mi,j
∈ (−∞, 1]

(7)R2

mi,j
> R R ∈ [0, 1)

12050	 R. Sajedi, M. Razzazi

1 3

in subsequent instances, leading to the possibility of inappropriate values. To
address this concern, an additional necessary condition is defined for the selec-
tion of a map:

Where C is a hyperparameter that determines the threshold for selecting a map after
the number of times it has been updated. � denotes the set of whole numbers.

Finally, the estimation of unavailable features is conducted under all the afore-
mentioned conditions, as illustrated in Eq. 9. For each unavailable feature, the
weighted average of the estimated values associated with the selected maps is com-
puted. The coefficients of determination associated with each map serve as the
weights, determining the contribution of each map to the estimation.

3.4 � Theoretical analysis

As previously indicated, the estimation of unavailable features is accomplished
using Eq. 9. If no appropriate map is identified to estimate an unavailable feature
fj , its value is implicitly considered zero. Given that the normalization is conducted
based on the standard normal distribution, zero represents the mean of fj up to the
moment t. Consequently, if C is sufficiently large, in accordance with Eq. 10, the
mean error becomes an upper bound for the estimation error. Thus, the performance
of the proposed algorithm in feature estimation will never deteriorate beyond the
performance of the baseline model.

3.5 � Time and space complexity

The pseudocode of DCDF2M is demonstrated in Algorithm 1. In each iteration,
upon receiving each instance xt , adding new features to the feature space and nor-
malization, which are specified in lines 4 and 5, takes O(|xt|) . Updating the maps in
line 6 is done in O(|xt|2) . Estimating unavailable features in line 7 takes O(|Ft|2) . The

(8)Nmi,j
> C C ∈ �

(9)
x
�

t
=

�
fj∈Ft−Sxt

(fj,

∑
mi,j∈Ifj

R2
mi,j

×Mmi,j
(xt,i)

∑
mi,j∈Ifj

R2
mi,j

)

s.t. fi ∈ Sxt
, R2

mi,j
> R, Nmi,j

> C

(10)
∞∑
t=1

∑
fj∈Ft−Sxt

∑
mi,j∈Ifj

min(Et,mi,j
, Ēt,mi,j

) ⩽

∞∑
t=1

∑
fj∈Ft−Sxt

∑
mi,j∈Ifj

Ēt,mi,j

12051

1 3

Data stream classification in dynamic feature space using…

time complexity of label prediction and classifier update in lines 8–10 depends on
the chosen classifier H . If H is a linear classifier like logistic regression, this process
is done in O(|Ft+1|) . Therefore, DCDF2M’s time complexity will be O(|Ft|2 + |xt|2) ,
provided that the chosen classifier H does not exceed this limit.

Learning the relationships between features and storing the maps requires
O(|Ft|2) space. The amount of space consumed by the classifier H also varies. If we
consider logistic regression for H , its space complexity will be O(|Ft|) . Therefore,
DCDF2M’s space complexity will be O(|Ft|2) , provided that the chosen classifier H
does not exceed this limit.

Algorithm 1   DCDF2M

3.6 � Pruning weak maps

As previously mentioned, should the performance of a map be inferior to that of
the baseline model, it is precluded from utilization. The storage and updating of
such maps in successive iterations prove futile, leading to escalated memory usage
and execution time. The identification and pruning of these inefficient maps can
be accomplished by validating a specific condition during the update step. Conse-
quently, the following condition is defined:

Where C̄ is a hyperparameter that determines a threshold for pruning a weak map
after the number of times it has been updated. In simpler terms, this condition states
that if a map does not satisfy condition 7 after C̄ times updating, it can be pruned.

Sometimes, adequate resources may be unavailable to update and store all maps
in high dimensions. In such cases, only the most essential maps can be preserved by
assigning higher values to the hyperparameter R . This technique can prove highly
effective in accelerating algorithm execution and reducing memory usage.

(11)R2

mi,j
≤ R and Nmi,j

> C̄ C̄ ∈ � ∶ C̄ ≥ C

12052	 R. Sajedi, M. Razzazi

1 3

4 � Experiments

In this section, DCDF2M’s performance is evaluated compared with two contem-
porary algorithms, GLSC and OLVF. To ensure a fair comparison of the results,
the same evaluation scenario and metric is followed [2, 9]. The primary metric for
evaluation is accuracy. It is important to note that the concern regarding the appro-
priateness of accuracy arises primarily in the context of imbalanced datasets. In this
case, since the datasets are nearly balanced, this concern is not applicable.

In addition to accuracy, run time and memory usage are also evaluated. In
stream mining, where real-time processing is crucial, understanding the neces-
sary computational resources is imperative. Assessments of run time and memory
usage offer valuable insights into the algorithm’s efficiency and scalability. They
contribute to a comprehensive evaluation of its practical utility and feasibility for
deployment in resource-constrained environments. These considerations extend
beyond task-specific metrics, providing a holistic perspective on the algorithm’s
performance and applicability in stream mining scenarios, as evidenced by their
utilization in various studies [9, 25, 30].

To simulate a dynamic feature space, a parameter called removing ratio is
defined, and experiments are performed for values of 0.25, 0.5, and 0.75. The
removing ratio determines how many features should be removed from each
instance. For example, when the removing ratio is equal to 0.5, half of the fea-
tures of each dataset’s instance are removed uniformly at random. The experi-
ments are repeated 20 times for each dataset and removing ratio, and the mean
of the results is reported. In each repetition, the order of the instances is shuffled.

As the proposed algorithm is designed to be general, three well-known classifi-
ers have been selected for the hyperparameter H : logistic regression (LR), Gauss-
ian Naive Bayes (GNB), and Hoeffding tree (HT). This selection leads to the
generation of three variants of DCDF2M. These classifiers have been employed
using the River library, with default hyperparameters. The River library imple-
ments common data mining and machine learning algorithms with an online
approach, professionally utilized for processing and analyzing data streams [24].
Other hyperparameters of DCDF2M are set as follows: D = 1 , R = 0.1 , C = 5 ,
and C̄ = 20 . These values were determined through a process of trial and error.
The proposed algorithm exhibits insensitivity to hyperparameters, and it has been
observed that utilizing these values uniformly across all datasets results in accept-
able performance.

Table 1   Specifications of the
experiment environment CPU Intel(R) Core(TM)

i7-4800MQ
2.70GHz

RAM 8GB
OS Windows 10 64-bit
Lang Python 3.10.2
Lib River 0.15.0

12053

1 3

Data stream classification in dynamic feature space using…

It is important to note that conducting the experiment in different environ-
ments may yield varying results, exerting a significant influence on execution
time. Factors such as the processor, memory, operating system, programming lan-
guage, and libraries in the experiment environment play a crucial role in shaping
the outcomes. The specifications of the experiment environment employed in this
research are detailed in Table 1.

4.1 � Datasets

Experiments are conducted on ten datasets selected from the UCI repository [5].
These datasets, sourced from various applications, are commonly employed for
binary classification tasks. Notably, these datasets align with those utilized in two
recent studies [2, 9]. Their deliberate selection aims to ensure a fair comparison
between the proposed algorithm and the aforementioned studies. Additional infor-
mation regarding the number of features and instances in each dataset is provided in
Table 2.

4.2 � Results

In this subsection, the experimental results are delineated with respect to accuracy,
run time, and memory usage individually. The performance of the proposed algo-
rithm is evaluated through a comprehensive analysis and discussion of these results,
making comparisons with the GLSC and OLVF algorithms.

4.2.1 � Accuracy

In Table 3, the accuracy of algorithms is reported for three different removing ratios
in each dataset. Overall, there was no significant difference in the accuracy values
between the two algorithms, GLSC and OLVF. However, DCDF2M’s superiority

Table 2   Characteristics of the
datasets used in experiments

Dataset Features Instances

Diabetes 8 768
Magic 10 19020
German 20 1000
Svmguide3 22 1243
WDBC 30 569
Ionosphere 33 351
Spambase 57 4601
Splice 60 3190
A8A 123 22696
DNA 180 3186

12054	 R. Sajedi, M. Razzazi

1 3

Table 3   Accuracy of the algorithms in each dataset using three different removing ratios

Alg./Ds Diabetes (0.25) Diabetes (0.50) Diabetes (0.75)

DCDF2M (LR) 0.727 ± 0.011 0.698 ± 0.007 0.661 ± 0.007
DCDF2M (GNB) 0.724 ± 0.012 0.700 ± 0.009 0.668 ± 0.014
DCDF2M (HT) 0.719 ± 0.012 0.691 ± 0.009 0.654 ± 0.012
GLSC 0.690 ± 0.013 0.661 ± 0.015 0.619 ± 0.015
OLVF 0.699 ± 0.014 0.677 ± 0.010 0.621 ± 0.016

 Alg./Ds Magic (0.25) Magic (0.50) Magic (0.75)

DCDF2M (LR) 0.765 ± 0.002 0.735 ± 0.003 0.707 ± 0.002
DCDF2M (GNB) 0.722 ± 0.003 0.710 ± 0.003 0.698 ± 0.005
DCDF2M (HT) 0.749 ± 0.007 0.705 ± 0.005 0.691 ± 0.006
GLSC 0.730 ± 0.013 0.699 ± 0.003 0.649 ± 0.003
OLVF 0.745 ± 0.002 0.696 ± 0.003 0.649 ± 0.003

 Alg./Ds German (0.25) German (0.50) German (0.75)

DCDF2M (LR) 0.724 ± 0.009 0.708 ± 0.010 0.699 ± 0.002
DCDF2M (GNB) 0.674 ± 0.035 0.638 ± 0.032 0.638 ± 0.022
DCDF2M (HT) 0.698 ± 0.004 0.697 ± 0.003 0.697 ± 0.004
GLSC 0.622 ± 0.016 0.611 ± 0.013 0.571 ± 0.015
OLVF 0.645 ± 0.009 0.616 ± 0.015 0.575 ± 0.015

 Alg./Ds Svmguide3 (0.25) Svmguide3 (0.50) Svmguide3 (0.75)

DCDF2M (LR) 0.782 ± 0.007 0.771 ± 0.005 0.767 ± 0.005
DCDF2M (GNB) 0.781 ± 0.014 0.761 ± 0.020 0.733 ± 0.026
DCDF2M (HT) 0.777 ± 0.007 0.767 ± 0.005 0.763 ± 0.003
GLSC 0.590 ± 0.020 0.594 ± 0.020 0.592 ± 0.015
OLVF 0.620 ± 0.013 0.612 ± 0.009 0.610 ± 0.012

 Alg./Ds WDBC (0.25) WDBC (0.50) WDBC (0.75)

DCDF2M (LR) 0.947 ± 0.006 0.931 ± 0.008 0.889 ± 0.010
DCDF2M (GNB) 0.923 ± 0.007 0.914 ± 0.006 0.890 ± 0.009
DCDF2M (HT) 0.921 ± 0.008 0.913 ± 0.008 0.883 ± 0.017
GLSC 0.931 ± 0.007 0.925 ± 0.009 0.897 ± 0.013
OLVF 0.928 ± 0.010 0.916 ± 0.012 0.896 ± 0.013

 Alg./Ds Ionosphere (0.25) Ionosphere (0.50) Ionosphere (0.75)

DCDF2M (LR) 0.815 ± 0.010 0.780 ± 0.021 0.712 ± 0.018
DCDF2M (GNB) 0.828 ± 0.014 0.803 ± 0.020 0.754 ± 0.019
DCDF2M (HT) 0.818 ± 0.018 0.783 ± 0.027 0.736 ± 0.020
GLSC 0.673 ± 0.027 0.704 ± 0.018 0.671 ± 0.027
OLVF 0.698 ± 0.011 0.685 ± 0.016 0.668 ± 0.021

 Alg./Ds Spambase (0.25) Spambase (0.50) Spambase (0.75)

DCDF2M (LR) 0.886 ± 0.003 0.853 ± 0.007 0.787 ± 0.005
DCDF2M (GNB) 0.675 ± 0.020 0.669 ± 0.013 0.644 ± 0.015

12055

1 3

Data stream classification in dynamic feature space using…

over these two algorithms is quite evident. When the removing ratio was equal to
0.25 or 0.5, at least one of the variants of DCDF2M outperformed both algorithms
in all datasets.

When the removing ratio was 0.75, at least one of the DCDF2M’s variants had
better performance in seven datasets. In the WDBC and Spambase datasets, the
GLSC algorithm had the best performance, while the OLVF algorithm performed
better in the DNA dataset. However, their difference compared with the best variant
of DCDF2M was negligible, with a margin of only about 1%.

Among the DCDF2M’s variants, LR had the best performance in most cases. Only
in the Ionosphere and Splice datasets did the GNB and HT variants perform better.

On average, considering the results of all datasets and different removing
ratios, the overall accuracy of DCDF2M is 7.1% higher than the average accuracy
of GLSC and OLVF. For a more convenient comparison, the accuracy results are
also represented using box plot in Fig. 2.

Moreover, the progressive accuracy of the algorithms in six datasets with a
removing ratio of 0.5 is demonstrated in Fig. 3. These graphs depict the accuracy

The highest accuracy value associated with the best performing algorithm for each dataset and removing
ratio is indicated in bold

Table 3   (continued)

 Alg./Ds Spambase (0.25) Spambase (0.50) Spambase (0.75)

DCDF2M (HT) 0.694 ± 0.013 0.671 ± 0.013 0.632 ± 0.014
GLSC 0.873 ± 0.006 0.846 ± 0.005 0.797 ± 0.007
OLVF 0.843 ± 0.006 0.806 ± 0.007 0.752 ± 0.009

 Alg./Ds Splice (0.25) Splice (0.50) Splice (0.75)

DCDF2M (LR) 0.747 ± 0.006 0.695 ± 0.007 0.621 ± 0.009
DCDF2M (GNB) 0.813 ± 0.007 0.761 ± 0.007 0.669 ± 0.008
DCDF2M (HT) 0.812 ± 0.007 0.760 ± 0.008 0.664 ± 0.014
GLSC 0.708 ± 0.011 0.677 ± 0.013 0.618 ± 0.009
OLVF 0.750 ± 0.004 0.697 ± 0.006 0.626 ± 0.008

 Alg./Ds A8A (0.25) A8A (0.50) A8A (0.75)

DCDF2M (LR) 0.825 ± 0.001 0.811 ± 0.002 0.787 ± 0.001
DCDF2M (GNB) 0.347 ± 0.021 0.375 ± 0.019 0.415 ± 0.026
DCDF2M (HT) 0.759 ± 0.003 0.758 ± 0.003 0.758 ± 0.002
GLSC 0.707 ± 0.002 0.699 ± 0.003 0.675 ± 0.003
OLVF 0.695 ± 0.001 0.686 ± 0.002 0.652 ± 0.003

 Alg./Ds DNA (0.25) DNA (0.50) DNA (0.75)

DCDF2M (LR) 0.878 ± 0.004 0.827 ± 0.005 0.735 ± 0.005
DCDF2M (GNB) 0.860 ± 0.005 0.814 ± 0.006 0.721 ± 0.007
DCDF2M (HT) 0.836 ± 0.020 0.782 ± 0.034 0.713 ± 0.019
GLSC 0.803 ± 0.012 0.782 ± 0.009 0.718 ± 0.005
OLVF 0.865 ± 0.003 0.821 ± 0.004 0.740 ± 0.006

12056	 R. Sajedi, M. Razzazi

1 3

of different algorithms from the initial reception of the first instance from the
data stream to the final instance. As observed, in most datasets, accuracy gradu-
ally increases with the acquisition of more instances. In the Magic dataset, which
contains a relatively large number of instances, the accuracy of most algorithms
reaches a constant value after a certain point, displaying minimal further change.

Fig. 2   Representation of the accuracy results using box plot

Fig. 3   Progressive accuracy of the algorithms in six datasets with a removing ratio of 0.5

12057

1 3

Data stream classification in dynamic feature space using…

This occurrence illustrates the convergence and stability of data distribution
throughout the experiment. In the context of the classification problem, if it can
be ensured that the data distribution remains constant, the number of instances
can be restricted, and the model can be updated only when the distribution of the
data undergoes changes. This approach is particularly relevant as labeling each
instance is typically an expensive process. The aforementioned considerations are
primarily associated with topics such as active learning and concept drift, which
fall outside the scope of this research. However, acknowledging these aspects can
stimulate valuable contemplation for the refinement of the proposed algorithm
and the initiation of future research in this domain.

4.2.2 � Run time

As previously mentioned, DCDF2M’s time complexity is O(|Ft|2 + |xt|2) . Time
complexities of GLSC and OLVF are O(|xt|2 × |Ft|) and O(|Ft| + |xt|) , respec-
tively. The run time of the algorithms in the experimental test, reported in
Table 4, is also as expected.

The OLVF algorithm had the fastest run time compared with all other algo-
rithms, while the GLSC algorithm had the longest. On average, DCDF2M’s run
time was lower than GLSC. In GLSC, edges were created between all previously
observed features with each new feature observed, whereas in DCDF2M, edges
were only created between pairs of features that were observed simultaneously.
Additionally, if some pairs of features were found to be unrelated, the edges were
removed, leading to a reduction in the run time of DCDF2M compared with
GLSC.

Among the different DCDF2M’s variants, LR had the lowest run time. The
results of the run time are also represented using box plot in Fig. 4.

Table 4   Run time of the algorithms (Seconds)

Ds./Alg DCDF2M (LR) DCDF2M (GNB) DCDF2M (HT) GLSC OLVF

Diabetes 0.15 0.23 0.21 0.19 0.05
Magic 3.52 5.54 5.52 5.40 1.13
German 0.49 0.66 0.63 0.59 0.10
Svmguide3 0.71 0.94 0.89 0.70 0.11
WDBC 0.50 0.59 0.62 0.54 0.07
Ionosphere 0.47 0.57 0.60 0.41 0.05
Spambase 3.64 4.48 4.81 11.18 0.80
Splice 3.62 4.42 4.75 8.61 0.57
A8A 35.11 44.81 46.33 233.40 7.71
DNA 32.34 34.34 36.00 69.45 1.53

12058	 R. Sajedi, M. Razzazi

1 3

4.2.3 � Memory usage

The algorithms’ memory usage is reported in Table 5. OLVF had the lowest mem-
ory usage, as its space complexity is O(|Ft|) . The space complexity of DCDF2M
and GLSC is O(|Ft|2) . The experimental results indicated that the memory con-
sumption of GLSC is lower than DCDF2M, as DCDF2M stores five properties
for each pair of features, whereas GLSC only stores one weight for each pair.

Among the different DCDF2M’s variants, LR had the lowest memory usage,
while HT had the highest. The results are also represented using box plot in
Fig. 5.

Fig. 4   Representation of the run time results using box plot

Table 5   Memory usage of the algorithms (KB)

Ds./Alg DCDF2M (LR) DCDF2M (GNB) DCDF2M (HT) GLSC OLVF

Diabetes 17 67 79 12 7
Magic 42 104 772 14 8
German 77 202 224 40 13
Svmguide3 107 238 335 43 14
WDBC 127 315 345 90 20
Ionosphere 141 347 380 103 20
Spambase 450 808 1682 303 37
Splice 475 852 909 326 38
A8A 1950 2723 9837 1319 75
DNA 5516 6653 6823 3234 119

12059

1 3

Data stream classification in dynamic feature space using…

5 � Conclusion

In this research, the problem of data stream classification in dynamic feature
space, where changes in features can occur in an arbitrary order, was investigated.
An algorithm named DCDF2M was introduced, employing a feature mapping
technique to homogenize the feature spaces and harness the full potential of the
classifier. This algorithm, characterized by its generality, is not contingent upon a
specific classifier, allowing users the flexibility to select the most suitable classi-
fier for their intended application. Empirical evaluation of the algorithm involved
the generation of three variants using different classifiers. Experiments were con-
ducted on ten datasets, demonstrating its superiority over OLVF and GLSC, the
latest algorithms that share the same assumptions about the problem. On average,
the algorithm exhibited a 7.1% improvement in accuracy. In terms of execution
time, this algorithm falls within the mid-range and consumes more memory com-
pared to its competitors. To summarize, Table 6 provides a comparison of the key
characteristics of the algorithms.

Fig. 5   Representation of the memory usage results using box plot

Table 6   Comparing the key characteristics of the algorithms

Characteristic/algorithm OLVF GLSC DCDF2M

Average accuracy 0.716 0.711 0.785
Time complexity O(|F

t
| + |x

t
|) O(|x

t
|2 × |F

t
|) O(|F

t
|2 + |x

t
|2)

Space complexity O(|F
t
|) O(|F

t
|2) O(|F

t
|2)

General No No Yes
Feature mapping No Yes Yes

12060	 R. Sajedi, M. Razzazi

1 3

As previously mentioned, data stream classification confronts various chal-
lenges such as concept drift, concept evolution, feature drift, and feature evolution
(dynamic feature space). This research specifically addressed one of these chal-
lenges. However, it is evident that for the application of the proposed algorithm in
real-world scenarios and the acquisition of reliable results, all challenges must be
taken into consideration. The demonstrated superiority of the proposed algorithm
in its basic state suggests potential for gradual development in the future research
endeavors by addressing additional challenges. Incorporating each challenge into
the algorithm can be explored as a distinct avenue for further research, aligning
with common practices in the literature.

Author Contributions  Authors contributed equally to this work.

Funding  No funding was received for conducting this study.

Data Availability Statement  All datasets are publicly available, and the sources are cited.

Declarations 

Conflict of interest  The authors have no competing interests to declare that are relevant to the content of
this article.

Consent for publication  The authors give full consent for publication.

Financial/non‑financial interests  The authors have no relevant financial or non-financial interests to dis-
close.

Ethics approval and consent to participate  No ethical issue is involved. This research involves no human
participants or animals.

References

	 1.	 Barddal JP, Gomes HM, Enembreck F (2015) A survey on feature drift adaptation. In: 2015 IEEE
27th International Conference on Tools with Artificial Intelligence (ICTAI), IEEE, pp 1053–1060

	 2.	 Beyazit E, Alagurajah J, Wu X (2019) Online learning from data streams with varying feature
spaces. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 3232–3239

	 3.	 Bishop CM, Nasrabadi NM (2006) Pattern recognition and machine learning, vol 4. Springer
	 4.	 Draper NR, Smith H (1998) Applied regression analysis, vol 326. Wiley, New York
	 5.	 Dua D, Graff C (2017) UCI machine learning repository. http://​archi​ve.​ics.​uci.​edu/​ml
	 6.	 Gama J, Žliobaitė I, Bifet A et al (2014) A survey on concept drift adaptation. ACM Comput Surv

46(4):1–37
	 7.	 Hartley HO (1961) The modified gauss-newton method for the fitting of non-linear regression func-

tions by least squares. Technometrics 3(2):269–280
	 8.	 He Y, Wu B, Wu D, et al (2019) Online learning from capricious data streams: a generative

approach. In: International Joint Conference on Artificial Intelligence Main Track
	 9.	 He Y, Wu B, Wu D et al (2020) Toward mining capricious data streams: a generative approach.

IEEE Trans Neural Netw Learn Syst 32(3):1228–1240
	10.	 He Y, Yuan X, Chen S, et al (2021) Online learning in variable feature spaces under incomplete

supervision. In: Proceedings of the AAAI Conference on Artificial Intelligence, pp 4106–4114

http://archive.ics.uci.edu/ml

12061

1 3

Data stream classification in dynamic feature space using…

	11.	 Hou BJ, Zhang L, Zhou ZH (2017) Learning with feature evolvable streams. Adv Neural Inf Process
Syst 30:1417–1427

	12.	 Hou BJ, Yan YH, Zhao P, et al (2021) Storage fit learning with feature evolvable streams. In: Pro-
ceedings of the AAAI Conference on Artificial Intelligence, pp 7729–7736

	13.	 Hou C, Zhou ZH (2017) One-pass learning with incremental and decremental features. IEEE Trans
Pattern Anal Mach Intell 40(11):2776–2792

	14.	 Ioffe S, Szegedy C (2015) Batch normalization: accelerating deep network training by reducing
internal covariate shift. In: International Conference on Machine Learning, PMLR, pp 448–456

	15.	 Jakomin M, Bosnić Z, Curk T (2020) Simultaneous incremental matrix factorization for streaming
recommender systems. Expert Syst Appl 160:113685

	16.	 Joel G (2015) Data science from scratch. O’Reilly Media
	17.	 Katakis I, Tsoumakas G, Vlahavas I (2006) Dynamic feature space and incremental feature selection

for the classiflcation of textual data streams. In: Proceedings of ECML/PKDD-2006 International
Workshop on Knowledge Discovery from Data Streams. Springer, pp 107–116

	18.	 Kiefer J, Wolfowitz J (1952) Stochastic estimation of the maximum of a regression function. Ann
Math Stat, pp 462–466

	19.	 Li YF, Gao Y, Ayoade G, et al (2019) Multistream classification for cyber threat data with heteroge-
neous feature space. In: The World Wide Web Conference, pp 2992–2998

	20.	 Lian H, Atwood J, Hou BJ et al (2022) Online Deep Learning from Doubly-Streaming Data. In:
Proceedings of the 30th ACM International Conference on Multimedia (MM)

	21.	 Masud MM, Chen Q, Gao J et al (2010a) Classification and novel class detection of data streams in
a dynamic feature space. In: Joint European Conference on Machine Learning and Knowledge Dis-
covery in Databases. Springer, pp 337–352

	22.	 Masud MM, Chen Q, Khan L, et al (2010b) Addressing concept-evolution in concept-drifting data
streams. In: 2010 IEEE International Conference on Data Mining, IEEE, pp 929–934

	23.	 Matuszyk P, Spiliopoulou M (2017) Stream-based semi-supervised learning for recommender sys-
tems. Mach Learn 106:771–798

	24.	 Montiel J, Halford M, Mastelini SM et al (2021) River: machine learning for streaming data in
python. J Mach Learn Res 22(1):4945–4952

	25.	 Nakatani S (2022) Memory efficient stream processing for iot devices. In: 2022 International Con-
ference on Algorithms, Data Mining, and Information Technology (ADMIT), IEEE, pp 129–139

	26.	 Singh T, Kalra R, Mishra S et al (2022) An efficient real-time stock prediction exploiting incremen-
tal learning and deep learning. Evol Syst pp 1–19

	27.	 Vinagre J, Jorge AM, Al-Ghossein M et al (2022) Preface to the special issue on dynamic recom-
mender systems and user models. User Model User-Adap Inter 32(4):503–507

	28.	 Welford B (1962) Note on a method for calculating corrected sums of squares and products. Tech-
nometrics 4(3):419–420

	29.	 Wu D, Zhuo S, Wang Y, et al (2023) Online semi-supervised learning with mix-typed streaming
features. In: Proceedings of the 37th AAAI Conference on Artificial Intelligence (AAAI)

	30.	 Yang L, Shami A (2021) A lightweight concept drift detection and adaptation framework for IOT
data streams. IEEE Intern Things Magaz 4(2):96–101

	31.	 Zhang Q, Zhang P, Long G et al (2016) Online learning from trapezoidal data streams. IEEE Trans
Knowl Data Eng 28(10):2709–2723

	32.	 Zhang Y, Chen Y, Yu H et al (2021) A feature adaptive learning method for high-density SEMG-
based gesture recognition. Proc ACM Interact Mob Wearable Ubiquitous Technol 5(1):1–26

	33.	 Zhang ZY, Zhao P, Jiang Y, et al (2020) Learning with feature and distribution evolvable streams.
In: International Conference on Machine Learning, PMLR, pp 11317–11327

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and
applicable law.

	Data stream classification in dynamic feature space using feature mapping
	Abstract
	1 Introduction
	2 Related work
	3 Proposed algorithm
	3.1 Data structure
	3.2 Normalization
	3.3 Feature mapping
	3.4 Theoretical analysis
	3.5 Time and space complexity
	3.6 Pruning weak maps

	4 Experiments
	4.1 Datasets
	4.2 Results
	4.2.1 Accuracy
	4.2.2 Run time
	4.2.3 Memory usage

	5 Conclusion
	References

