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Abstract
The health management of railway signal equipment in the high-speed railway is a 
key link between intelligent operation and maintenance. Accurately predicting the 
health state of compensation capacitors is of great significance to ensure the reli-
able work of track circuits. This paper proposes an improved deep neural network 
algorithm focusing on the problem of long-term accurate health forecasts for com-
pensation capacitors. First, establishing a transmission state model for degradation 
mechanism mining, the difference function that can quantitatively evaluate features 
is defined by piecewise processing cab signaling receiving voltage. Introducing the 
degradation model, predictive driving under both model and data is implemented. 
Then, the convolutional neural networks and bidirectional long–short-term mem-
ory are combined and improved to construct a novel artificial intelligence combi-
nation strategy, while parameters are optimized based on the sparrow search algo-
rithm. Finally, facing the conditional repair of compensation capacitors, we set a 
reasonable threshold for the occurrence of hidden dangers to complete fault warn-
ing. This novel and practical approach effectively explores the procedure of prog-
nosis and health management, while the refined maintenance will better utilize cur-
rent monitoring information, helping the intelligence and accuracy of safety control 
decision-making.

Keywords Track circuit · Health state prediction · Compensation capacitor · Deep 
neural network · Sparrow search algorithm (SSA)

1 Introduction

To ensure the safe and efficient operation of the high-speed railway, the signal 
system is upgrading from fault repair to the frontier field of intelligent operation 
and maintenance [1]. The ZPW-2000 track circuit is the ground infrastructure 
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equipment of the Chinese train control system (CTCS), in which the compen-
sation capacitor is an important outdoor component for track circuit signal to 
transmit stably in rails. Due to their huge quantity, scattered installation, and vul-
nerability to environmental impact, the failure rate of compensation capacitors 
is remarkably higher than other equipment, bringing difficulties in field mainte-
nance. The failure may lead to the decreased transmission quality of track cir-
cuits, resulting in false occupancy indication or temporary degradation in the 
occurrence of onboard cab signals even threatening both railway operation and 
personal safety. The research on the fault prediction of compensation capacitors is 
the core task to improve track circuit safety, which helps to find equipment emer-
gencies and hidden dangers. However, the maintenance of compensation capaci-
tors does not meet the requirement of conditional repair, and the prognosis of its 
health state needs to be resolved urgently.

Many scholars have researched the health management issues of compensation 
capacitors from the perspectives of fault diagnosis and capacitance estimation 
in recent years. Debiolles proposed a method of combining partial least squares 
regression and the neural network to achieve failure monitoring of compensation 
capacitors [2]. They also established a transfer confidence model [3]. Oukhellou 
proposed the combination of empirical modal decomposition and Hilbert trans-
formation to achieve fault monitoring of compensation capacitors [4]. Oukhellou 
utilized pattern recognition and information fusion technology to propose a fail-
ure detection method for compensation capacitors based on the Dempster–Shafer 
belief function [5]. Xu established a mathematical model of the cab signaling-
induced voltage amplitude envelopes and achieved compensation capacitor fail-
ure diagnosis [6]. Yang established a deep hybrid nuclear network combination 
gated recurrent unit (GRU) model identification fault location and achieved com-
pensation capacitor fault positioning [7]. Feng constructed the valuation function 
to realize the online estimate of compensation capacitors [8]. Wang established a 
finite element model and proposed a regression calculation method for compensa-
tion capacitors [9]. However, limited by the difficulties of constructing an accu-
rate physics-of-failure model to describe the performance degradation properly, a 
health prognosis focusing on the compensating capacitor has yet to be studied. On 
the one hand, the railway signaling system can be defined as a complex one with 
diversity, correlation, and integrity features, including the interaction/coupling 
between numerous subunits and units, causing difficulty in exploring the spati-
otemporal evolution law of component states. On the other hand, in safety–criti-
cal compensation capacitor systems, there are various fault modes under high-
speed railway scenarios and complex interference conditions, presenting obvious 
limitations in quantitatively characterizing the relationship between data monitor-
ing and degradation levels. Noticeably, health state prediction is closely related to 
degradation mechanisms. Learning and acquiring failure knowledge is an effec-
tive way to deeply understand the causes and phenomena of degradation, thereby 
implementing proactive prevention.

The quantitative methods for degradation mechanisms are mainly divided into 
model and data driven, exploring the spatiotemporal evolution of component states 
in complex dynamic scenarios [10]. Because the model usually needs to utilize the 
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knowledge of time-varying loading conditions, environmental factors, internal struc-
ture, material properties, and failure mechanisms in the life cycle of compensation 
capacitors. The knowledge is practically difficult to describe by mathematical equa-
tions. The construction of the model may resort to multiple professional fields and 
complicated experiments, which are impractical and complex. Furthermore, since the 
signaling risk sources at the railway scenes are complex, dynamic, and diverse, his-
torical fault or degradation data with quality and quantity standards suitable for rea-
sonable estimation and prediction are arduous to collect under usual circumstances, 
which inevitably affects feature extraction. Therefore, we expect to describe the deg-
radation mechanism of compensation capacitors through a novel method to assist 
in extracting degradation knowledge, further changing the current maintenance lag. 
Even when the forecasted data volume insufficiently covers an entire cycle, health 
indicators can be extracted from knowledge to predict future evolution.

In the field of fault prediction for railway equipment, there have been some meth-
ods in recent years to effectively prevent railway safety incidents or accidents caused 
by personnel factors, geographical environment (including geological and climatic 
aspects), and equipment quality. Hu proposed the method for failure prognosis of the 
HVAP track circuit based on gray theory and expert systems [11]. Simone used long 
short-term memory (LSTM) deep learning algorithms to achieve predictive mainte-
nance of railway rolling stock equipment [12]. Kang established an online abnormal 
perception model based on the LSTM network to accurately forecast the automatic 
train protection (ATP) failure state in the high-speed railway [13]. Nevertheless, caused 
by equipment and system-level degradation, maintenance interventions planned before 
performance degradation or failure that we focus on fundamentally differ from fault 
occurrence probability and prediction after fault classification discussed above. Quan-
titative evaluation for the characteristics of compensation capacitors is complex, owing 
to the influence of multi-source heterogeneous factors. Compensation capacitor degra-
dation manifests as heterogeneity, possessing diverse degradation rules located in dif-
ferent spatial locations. The degradation feature may be manifested by the superposi-
tion of multiple heterogeneous compensation capacitors, while the redundant feature 
of ballast resistance interferes with the understanding of degradation laws. With the 
summary of transmission states and degradation rules, the refined and condition-based 
maintenance by automatically learning and extracting knowledge from massive data 
and heterogeneous information is challenging.

The degradation characteristics of compensating capacitors exhibit nonlinearity, 
which makes traditional prediction methods (such as regression methods and gray 
models) difficult to accurately describe and predict. Neural networks (NN) have 
advantages in nonlinear mapping [14]. Shi proposed an improved LSTM network 
for predicting ionospheric parameters [15]. Liao predicts the destination of taxi pas-
sengers based on BiLSTM [16]. Rubasinghe proposed CNN and LSTM to achieve 
long-term load forecasting [17]. However, LSTM suffers from insufficient global 
information learning from historical data and neglects the correlation between 
before and after time. Meanwhile, faced with long-term sequences, single CNN and 
BiLSTM networks still present problems of feature information loss, data structure 
information disorders, and insufficient feature recognition.
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Concerning the issue, this paper proposes a novel prediction framework based 
on an artificial intelligence combination strategy, which not only includes a bidi-
rectional structure of the BiLSTM neural network to learn the forward and back-
ward temporal relationships of sequences but also utilizes the ability of CNN [18] to 
extract hidden features from static information based on convolutional computation, 
as shown in Fig. 1. This integrated algorithm driven by the combination strategy is 
referred to as SLCBN in this paper. In the data acquisition aspect, the TCR induc-
tion antenna receives continuous track circuit voltage, thereby obtaining CSRV with 
compensation capacitor characteristics. The main contributions of proposing such a 
framework are as follows:

1. The SLCBN framework can describe the degradation mechanism, presenting the 
entire process of gradual deterioration or failure over time in the form of a failure 
mathematical model. Although the random dynamic effect of internal chemical 
reactions and external environmental changes cannot be inferred, the model can 
be combined with transmitted state information to provide more comprehensive 
knowledge.

2. Based on the spatiotemporal data characteristics of compensation capacitors, 
combining regularization theory and the modeling mechanism of CNN-BiLSTM 
[19], this paper establishes an SLCBN algorithm with L2 regularization, which 
prevents overfitting and improves model accuracy.

3. The framework is built to infer the trend of feature time series, in which param-
eters including the number of neurons, initial learning rate, and L2 regularization 

Fig. 1  A framework for predicting the health state of compensation capacitors based on a novel artificial 
intelligence combination strategy



11665

1 3

A novel health state prediction approach based on artificial…

coefficient are intelligently optimized by SSA. It has superior fitting, robustness, 
and applicability, avoiding the tedious hyperparameter tuning process.

The remainder of the paper is organized as follows: Sect. 2 constructs a degra-
dation feature extraction strategy based on the degradation model and transmission 
state model of compensation capacitors. Section 3 introduces methods and processes 
for setting up the SLCBN model. Taking the monitoring data of China’s high-speed 
railway field as the data source, Sect. 4 applies SLCBN to intelligently predict the 
health state of compensation capacitors, proving that the proposed method has sig-
nificant advantages in prognosis performance by comparison and validation, and 
completes fault warning from the perspective of abnormal state perception by defin-
ing and calculating related parameters. Finally, Sect.  5 is the conclusion of this 
paper.

2  Deterioration feature extraction of compensation capacitors

Quantitative evaluation of compensation capacitor characteristics based on long-
term dependence, heterogeneity, and uncertainty data is challenging. Referring to 
Fig. 2, compensation capacitor failure causes signal attenuation on the rail, result-
ing in a drop in receiving end voltage. Relying on the transmission line and four-
terminal network theory, a transmission state model is constructed, attempting to 
reflect the health state of compensation capacitors by CSRV. Next, we integrate the 
compensation capacitor degradation model with state knowledge to extract the dif-
ference function as a feature, effectively grasping the degradation law of capacitors 
within the scope of time and space.

Fig. 2  The transmission state model
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2.1  Transmission state modeling

Introducing the basic structure of track circuits [20] and the transmission lines 
theory [21], a transmission state simulation model is established to compute the 
dynamic characteristics of track circuits. Further, we analyze the correlation between 
the dynamic degradation of compensation capacitors and CSRV, providing theoreti-
cal support for health state prognosis.

Using the four-terminal network theory to analyze track circuit transmission and 
distribution issues, the locomotive is usually simplified into a shunting resistance. 
Taking the CRH-2 electric multiple units (EMU) [22] with 16 wheelsets as an exam-
ple, a simulated calculation model is given as shown in Fig. 2.

The calculation of signal transmission in track circuits can be equivalent to the 
cascade of four-terminal networks. Transmission matrixes are shown in Table 1.

To clarify the mapping relationship between the health state of compensation 
capacitors and CSRV, we establish a locomotive shunting model [23] as shown in 
Fig. 3.

In Fig. 3, V0 represents the output level of the transmitter; Tf expresses a four-ter-
minal network from the transmitter to the cab receiving end; Rf  denotes the equivalent 
of each wheel pair; I2 is the signal current that flows through the short-circuit wheel 
pair; Tj means a four-terminal network from an equivalent shunting point to the receiver 
terminal; ZR represents the receiving end impedance; Zj is the impedance from the 

Table 1  The transmission matrix of each module

Category A B C D

Analog cables NC cosh(�L) −Zc ∗ sinh (�L) − sinh (�L)∕Zc cosh(�L)

A matching transformer NP(Transmitter) n
1 2j

(
�L∕n

1
− n

1
∕�C

)
0 1∕n

1

A matching transformer NP(Receiver) 1∕n
2 2j

(
�L∕n

2
− n

2
∕�C

)
0 n

2

Rails Nx cosh(�x) −Zc ∗ sinh (�x) − sinh (�x) cosh(�x)

Compensation capacitors N
1
 ~ N

15
1 0 j�C

b
1

The shunting resistance N
Rf

1 1∕Rf 0 1
The attenuator NS s 0 0 1∕s

Fig. 3  Sub-equivalence four-terminal network model
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shunting resistance to the receiving end; and V2 indicates residual voltage. Then, the 
short-circuit current of the cab signal can be calculated as:

According to railway signal maintenance rules [24], the quantitative relationship of 
CSRV is as follows:

2.2  Construction of difference function based on state data

To clarify the correlation between the health state of compensation capacitors and 
CSRV, we introduce a transmission state model and simulate state data to analyze rel-
evant characteristics, constructing a difference function to quantitatively evaluate the 
health state of capacitors. Taking the mainstream ZPW-2000A track circuit of the high-
speed railway as an example, the relevant basic parameters are shown in Table 2 (as 
shown in Fig. 2) [25].

Since compensation capacitors and ballast resistance both significantly affect sig-
nal transmission in rail, we define a difference function to precisely estimate the health 
state, reducing the impact of heterogeneity factors and redundant features. CSRV is 
divided into several segments based on compensation capacitors, as shown in Eq. (3).

where n is the total number of capacitors in track circuit district. The difference 
function of V (i)

cm
(i = 1, 2,⋯ , n − 1) is defined as

(1)
I1 =

V0

Tf11 (x) ⋅ Rf + Tf12 (x) ⋅
(Rf+Zj(x))

Zj(x)

(2)V1 =
200

255
I1

(3)
{

V1
cm
a ∈

[
0, ac1

]

V (i+1)
cm

a ∈
[
aci, ac(i+1)

]
i = 1, 2,⋯ , n − 1

Table 2  Relevant basic 
parameters of jointless track 
circuit

Relevant basic parameters Symbol Value

Carrier frequency f 2300Hz

Total length of the track circuit L
0

1200m

Shunting resistance R
1
∼ R

16
0.15Ω

Value of compensation capacitors C 25μF

Output voltage level of the transmitter V
T

170V

Rail resistance RZ 2.1Ω∕km

Rail inductance LZ 1413μH∕km
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where i = 1, 2,⋯ , n ; V (i)

1
 and V (i)

2
 are the left and right boundary values, respectively.

Specifically, the main fault mode of compensation capacitors present capacity 
decrease [26]. We select the capacitor C8 as an example under different capacity 
values, i.e., 25  μF, 20  μF, and 15  μF, respectively. A simulation of three cases 
is shown in Fig.  4, where compensation capacitors at diverse positions exhibit 
various degradation characteristics, indicating significant heterogeneity. Also, a 
decline in the health state of C8 affects the amplitude of compensation capaci-
tors ahead. And the most influenced point is located at C7, while CSRV located 
at subsequent positions of C8 almost remains unchanged. Results show that as 
the capacity decreases, the difference function value increases monotonously. The 
proposed function is adapted to heterogeneous characteristics, which can more 
precisely quantify the deterioration evolution.

To further verify the M(i)
cm

 ’s effectiveness of this paper, we simulate and analyze 
CSRV under different ballast resistances. Accordingly, the ballast resistance is set 
at 4 Ωkm, 12 Ωkm, and 36 Ωkm [27], respectively. From the simulation results 
in Fig. 4, changing ballast resistance will hardly affect difference function values. 
It can be seen that the proposed difference function can eliminate the impact of 
redundant characteristics on prediction.

(4)

⎧
⎪
⎪
⎨
⎪
⎪
⎩

M(i)
cm

= V
(i)

1
− V

(i)

2

V
(i)

1
=

�
V (1)
cm
(0) i = 1

V (i)
cm

�
ac(i−1)

�
i ≠ 1

V
(i)

2
= V (i)

cm

�
aci

�

Fig. 4  The simulation results of CSRV. a Correlation between the health state of capacitors and CSRV; b 
correlation between ballast resistance and CSRV
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2.3  Feature extraction using degradation model and data‑driven approach

The data does not cover the full life cycle of compensation capacitors, which 
makes it difficult to provide complete support for prognosis technology. There-
fore, to solve this challenging problem, we innovatively propose to combine a 
degradation trend model with data driven, implementing feature extraction of 
compensation capacitors.

China’s high-speed railways adopt electrolyte capacitors [28]. Noticing that the 
combination of exponential and polynomial can better fit the changing trend of 
compensation capacitors, a dynamic degradation model is established, which is 
described by Eq.  (5) [29]. This model is based on regression analysis of exper-
imental data, which is sourced from NASA’s Prognostics Center of Excellence 
(PCoE).

where t denotes the cycle number or the time index; cap1 , cap2 , cap3 , cap4 , and cap5 
are parameters of the model, which are related to the internal impedance and aging 
rate of capacitors.

Based on transmission state data and a degradation trend model of compensa-
tion capacitors, we introduce the difference function to process a prediction train-
ing dataset with stubborn uncertainty factors, achieving quantitative processing 
for qualitative issues of invalidation mechanisms. Specifically, we employ a trans-
mission state model to calculate CSRV, and the dynamic degradation equation 
of capacitors is fitted based on the standard C8 capacity of 25 μF (as shown in 

(5)Deg(t) = cap1 × exp
(
cap2 × t

)
+ cap3 × t2 − cap4 × t + cap5

Fig. 5  Compensation capacitor capacity degradation curve
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Fig.  5). The difference function of system assessment can be calculated by (4) 
to extract features and obtain a training set, aiming to approach changes in the 
health state of on-site capacitors.

3  Predictive model based on artificial intelligence combination 
strategy

Inspired by CNN visual space features and BiLSTM cross-sequence time informa-
tion, we establish the CNN algorithmic model, select BiLSTM, and introduce SSA 
including the automatic parameter tuning model, completing SLCBN algorithm 
modeling and improvement based on artificial intelligence combination strategy.

3.1  Construction of SLCBN deep neural network

CNN is a feedforward neural network, which deeply digs out data through local con-
nections of neurons and convolution weight sharing. It performs high-dimensional 
mapping, effectively reducing the number of training parameters, and improving the 
efficiency of feature extraction, while significantly enhancing the fitting ability of 
the network. The CNN model mainly consists of three layers: input layer, hidden 
layer, and output layer, as shown in Fig. 6.

BiLSTM can learn the normal and reverse time-sequential relationship of 
sequences [30]. Figure 7 reveals the structure diagram. Forgotten gate f2(t) filters 
and retains results of the previous memory cell. The input gate i2(t) controls the cur-
rent input state. The output gate o2(t) commands the output state of the memory 
unit. c̃2(t) expresses the input memory cell. c2(t) denotes the output memory cell. 
h2(t) means the hidden state. x(t) and y(t) indicate the input and output at moment t , 
separately. � and tan h are activation functions of sigmoid and hyper bolic  tange nt, 
respectively.

Noticeably, the CNN and BiLSTM have predominance on digging features of grid-
like space and time sequence, respectively. To explore better forecast mechanisms and 
model training effects, we propose a novel approach toward health state prognosis 

Fig. 6  Schematic diagram of CNN structure

https://www.sciencedirect.com/topics/engineering/hyperbolic-tangent
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where a hybrid deep learning network consisting of the CNN, BiLSTM, and SSA, as 
shown in Fig. 8. Besides, different ideas have been attempted to introduce the network. 
Overfitting often occurs in network training, which reduces prediction accuracy. Thus, 
introducing L2 regularization to represent features, we normalize feature representa-
tions of natural and simulated sequences, which are generated by networks of different 
scales in a unified feature space. Factor matrices or variables can be regularized by add-
ing terms to the objective function:

in which �X is a hyperparameter, choosing by the user or automatically. The function 
hX(X) is

(6)min
X

1

2
X − T2

F
+ �XhX(X)

Fig. 7  BiLSTM structure diagram

Fig. 8  SLCBN framework
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As the inability of standard CNN to process one-dimensional data, the SLCBN 
model constructs feature vectors for time series by converting one-dimensional 
raw signals into two-dimensional matrices. To reduce the impact of dimensionality 
between different features, we supplement the batch normalization layer on the basis 
of CNN while extracted features are normalized, thereby improving the accuracy of 
health state prediction. Furthermore, the CNN also includes two convolutional lay-
ers and a pooling layer [31], which uses the ReLU function to accelerate the conver-
gence of the model. The SLCBN model constructs the feature representation of the 
time sequence through the CNN. After the feature vector is passed to the BiLSTM 
layer by the flatten dimensionality reduction layer, the hidden state of the degener-
ate feature vector will be generated, and each hidden layer is followed by a dropout 
layer that randomly discards some data. Finally, after three hidden layers complete 
the feature labeling, the output of the time series forecast tag is accomplished. For 
model training, an Adam optimizer with heavy decay is introduced to update the 
weight, and the iterative training mechanism of the model with a sliding window is 
used during the predicted phase, improving the accuracy of the network. The net-
work parameter configuration is shown in Table 3.

3.2  SLCBN parameters optimization

The important parameters of the SLCBN network have a significant impact on fore-
cast results. Traditionally, we select the number of neurons, initial learning rates, 
and L2 regularization coefficient according to the subject experience or grid opti-
mization, whereas these methods may lead to overfitting or underfitting [32]. How-
ever, accurately predicting the health state of compensation capacitors is crucial 
for the safety of the railway system. On the one hand, since the deep integration 
of railway systems, misjudgment of the health state of capacitors might initiate 
chain reactions under other branches through knowledge and functional interactions 
among branches, leading to railway system equipment failures and even casualties. 
On the other hand, the determination of fault threshold according to the quantita-
tive mapping of features and compensation capacitors determines its strict require-
ments for learning accuracy. Obviously, during algorithm designing, it is necessary 

(7)hX(X) =
1

2
X2
2

Table 3  Selection of some 
parameters for SLCBN network

Layer Setting Layer Setting

1 Conv1D_1 (1 × 2,10) 6 Dropout 0.3
2 Conv1D_2 (1 × 1,10) 7 BiLSTM SSA
3 MaxPooling (1 × 3,1) 8 Dropout 0.3
4 Flatten – 9 BiLSTM SSA
5 BiLSTM SSA 10 Dropout 0.3
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to maximally improve the model’s convergence and forecasting capability through 
parameter optimization [33].

As a new type of intelligent optimization algorithm, SSA is employed to optimize 
SLCBN network parameters, which is designed by imitating the foraging and anti-
predation behavior of sparrows [34]. The optimization goal of SSA is to compensate 
for the forecast error, so the adaptation function is the mean squared error (MSE) of 
the difference function. We determine the initial conditions of SSA based on mul-
tiple tests. After debugging and performance comparison, the best parameters are 
obtained, and the initial conditions and results of SSA are listed in Table 4.

4  Experimental verification and application

4.1  Preprocessing of measured datasets

Evaluating the effectiveness of the proposed SLCBN framework in practical case 
studies of the railway field, on-site data is applied as the test set (refer to Sect. 2.3 
for simulation training set acquisition) to verify the predictive performance for the 
algorithm proposed in this paper.

In terms of monitoring, onboard cab signals are recorded in real-time online 
throughout the entire process by the dynamic monitoring system (DMS) of the train 
control system. Consequently, CSRVs collected from the DMS are used to dem-
onstrate the effectiveness of our proposed method. It is worth noting that voltage-
related signals were collected every 2.5 m, whose typical signal characteristics are 
shown in Fig. 9, so the horizontal axis can directly convert into the distance between 
the locomotive and the track circuit receiving end. Calculated difference function 
values at different time points can be used as the testing set of the SLCBN model.

4.2  SLCBN model verification and comparison

Comprehensively evaluating the performance of the SLCBN algorithm for predict-
ing the health of compensation capacitors, we use 800 sets of simulation data as 
the training set and 17 sets of on-site measured data to verify the performance of 
the model, according to four evaluation indicators, as shown in Table  5, then set 
the total iteration epochs as max_epochs = 500 and the batch size of each training 
batch_size = 256 . The training set is used to reflect whether SLCBN performance 

Table 4  Initial conditions and results of SSA

Initial conditions Value Optimal parameters Optimal results

The number of sparrows S 10 The number of neurons 10

Discoverer accounts DA 20% Initial learning rates 0.01

The maximum iteration number iter
max

5 L2 regularization coefficients 0.01

Safety threshold ST 0.8
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exhibits positive gain during the training process, adjusting internal model hyper-
parameters defined as actual iteration epochs. Specifically, by observing curves of 
the loss value changing with iteration, training is stopped promptly to find the best 
balance between fitting performance and training speed when the model tends to 
converge. Figure 10 evaluates the training and testing results. It can be seen from 
the figure that as the number of epochs increases, the fitting level of the model is 
remarkably improved and the neural network loss value decreases, ultimately tend-
ing to stabilize without significant overfitting or underfitting. The RMSE for training 
and testing is 0.018 and 0.007, respectively, while the loss values of the two (i.e., the 
cross-entropy loss function: L(m, n) = −

∑
m∕lnq , where n is the forecasted value 

and m is the true value) eventually converge nearly zero.
Comparing the fitting level of multiple prediction algorithms, i.e., SLCBN, CNN-

BiLSTM, BiLSTM, LSTM, GRU [35], RNN, and CNN, training results indicate 
that the MAPE of the above seven algorithms is 0.03%, 0.09%, 0.2%, 0.29%, 0.3%, 
0.36%, and 0.27%, respectively. Figure 11 demonstrates the performance compari-
son results. As we can see from Fig. 11, the SLCBN model is basically in a stable 
state, with four columns (i.e., red column: RMSE, blue column: MSE, green col-
umn: MAE, and purple column: MAPE) all relatively low in height, indicating that 
different evaluation indicators have little impact on the model and are basically in a 
stable state. The histograms of other models are much higher than those of SLCBN, 
implying that the direct modeling of capacitor degradation data affects the effec-
tiveness of the algorithm, and this further indicates that SLCBN using regularized 
can mine the failure mechanism and internal knowledge of compensation capacitors, 
improving the stability and accuracy of our model. Noticeably, SLCBN exhibits 
high-precision prognosis performance with the best fitting performance, specifically 
RMSE = 0.00705, MSE = 0.00005, MAE = 0.00504, and MSE = 0.02608. Evidently, 
even in the case of a small test set, the algorithm in this paper can also forecast the 
difference function value with high accuracy, which has a significant advantage.

Regarding the obtained SLCBN model, we employ the 3D line chart to conveni-
ently visualize the comparison results of each evaluation indicator under seven algo-
rithms describing the optimal prognosis error, as shown in Fig. 12. Apparently, each 

Fig. 9  On-site CSRV curve

https://www.sciencedirect.com/topics/engineering/long-short-term-memory
https://www.sciencedirect.com/topics/engineering/recurrent-neural-network
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evaluation indicator of SLCBN is the smallest among seven algorithms, and it can 
be derived that the predictive algorithm 1 (i.e., dark blue curve: SLCBN) satisfies 
the optimal fitting ability under the evaluation by four indicators.

4.3  Application of abnormal perception

Proactively perceiving and even forecasting the potential degradation of the health 
state is positive for improving the safety and reliability level of railway signaling 
systems. Accordingly, by setting hidden danger thresholds in capacity, we aim to 
achieve compensation capacitor fault warning and online anomaly perception, solv-
ing the problem of delay in fault detection, diagnosis, and response.

When the depth network model predicts a 10% decrease in capacity, the alarm 
is triggered to achieve conditional repair. Meanwhile, an early warning is trig-
gered when capacity decreases by 5% . We set N as the forecasted total number of 
compensation capacitors. n1 indicates the number of correctly activated alarms. 
n2 denotes the number of correct early warnings. Then, the accuracy of alarm and 
early warning is expressed as y1 = n1∕N × 100% and y2 = n2∕N × 100% . In the 
capacity prediction aspect, the SLCBN model outputs a forecast of degradation 
data for capacitors in the next 17 months. Figure 13 illustrates prognosis results, 
indicating that among the 9-month (with a time interval of two months) predicted 
capacitance values using the measured dataset, there is no set of error warnings 

Fig. 10  Evaluation of SLCBN model results (left: training results and right: validation results). Training 
and validation results of a RMSE and b Loss
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indicating at the given threshold when forecasting the 5-th month warning and 
the 13-th month alarm, i.e., y1 = 100%, y2 = 100%. Although capacity prediction 
results have slight fluctuations, it does not affect the original intention of setting 

Fig. 11  Performance comparison of different prediction algorithms

Fig. 12  Algorithm performance comparison 3D line chart



11678 C. Wang et al.

1 3

thresholds and abnormal perception, and the fluctuation is within an acceptable 
range. Hence, the proposed failure warning mechanism is effective and feasible.

5  Conclusions

This paper proposes a health state prediction method based on deep learning, com-
pleting the compensation capacitor fault forecast applicable to complex and dynamic 
scenes of track circuits. The innovative work and conclusions are as follows:

(1) The degradation mechanism of compensation capacitors has been explored from 
long-term dependence, heterogeneity, and uncertainty knowledge. We establish 
a transmission state model for track circuits including compensation capacitors, 
and then introduce a defined difference function and a constructed degradation 
model to describe the failure law of capacitors.

(2) The methodology of SLCBN modeling is established. Focusing on the spa-
tiotemporal characteristics of data, we optimize CNN, BiLSTM, and SSA to 
construct and integrate the SLCBN network framework based on regularization. 
Moreover, training and verification are completed on the compensation capaci-
tor data set with invalidation mechanisms to achieve health state prognosis and 
mining. The results show that the SLCBN effect meets the best performance: 
RMSE = 0.00705, MSE = 0.0005, MAE = 0.00504, and MSE = 0.02608.

(3) The health state forecast can reflect the possibility of degradation and evolu-
tion of compensation capacitors. The constructed SLCBN provides a substantial 
body of knowledge for elucidating abnormal states and invalidation mechanisms. 
Through a series of calculations, the quantitative level of hazard threshold is 

Fig. 13  Prediction results of compensation capacitor health state
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obtained, which can perceive the possibility of abnormal states and achieve a 
100% accuracy rate for early warning.

In short, the deep neural network model built in this paper is helpful to effec-
tively and intelligently extract numerous sequence features from historical monitor-
ing information, successfully predicting the healthy state of compensation capacitors 
while improving maintenance efficiency, expected to benefit the “conditional repair” 
in intelligent maintenance of high-speed railway.
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