
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:12247–12272
https://doi.org/10.1007/s11227-023-05886-w

1 3

LBB: load‑balanced batching for efficient distributed 
learning on heterogeneous GPU cluster

Feixiang Yao1 · Zhonghao Zhang1 · Zeyu Ji1 · Bin Liu1,2,3 · Haoyuan Gao1

Accepted: 26 December 2023 / Published online: 9 February 2024 
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 
2024

Abstract
As the cost of deep learning training increases, using heterogeneous GPU clusters 
is a reasonable way to scale cluster resources to support distributed deep learning 
(DDL) tasks. However, the commonly used synchronous stochastic gradient descent 
(SSGD) algorithm based on the bulk synchronous parallel (BSP) model suffers from 
stragglers in heterogeneous clusters, resulting in a significant reduction in training 
efficiency. To overcome this challenge, we propose load-balanced batching (LBB) 
to eliminate stragglers in DDL workloads. LBB first formulates the load balancing 
problem and builds performance models for all workers in DDL workloads, which is 
achieved by analyzing the relationship between DDL iteration time and each work-
er’s local batch size. Then the LBB balances all workers’ workloads by coordinating 
local batch sizes. In particular, the LBB greatly mitigates static stragglers and severe 
dynamic stragglers by solving the load balancing problem and eliminates strag-
glers by batch size fine-tuning during training. LBB is implemented in PyTorch, 
and extensive experiments are performed on a heterogeneous server equipped with 
four GPUs with three different models. The experimental results verify the effec-
tiveness of LBB on standard benchmarks, demonstrating that LBB can significantly 
reduce training time by 64.57%, 59%, and 5.4% compared to SSGD, local SGD, and 
FlexRR, respectively, without sacrificing accuracy.

Keywords  Distributed deep learning · Synchronous SGD · Heterogeneous GPU 
cluster · Straggler · Batch size

1  Introduction

Recently, deep neural networks (DNNs) have made tremendous progress in many 
application domains [1, 2], but achieving optimal performance requires train-
ing increasingly complex and large models on massive datasets, which takes an 
enormous amount of computation time [3–5]. As a result, distributed training 

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05886-w&domain=pdf


12248	 F. Yao et al.

1 3

has become more mainstream, with examples ranging from AlexNet [6] to Mega-
tron-LM [7] and GPT3 [8]. These models require increasingly large clusters with 
effective distributed training methods to reduce the training time.

SGD (stochastic gradient descent) is a widely employed gradient descent algo-
rithm that leverages a single-sample stochastic gradient instead of the full gradi-
ent in each iteration, thereby reducing computational overhead. The prevailing 
distributed training approach is data-parallel SSGD (synchronous stochastic gra-
dient descent), an extension of SGD. In this method, each local working node on 
a device computes gradients using its own small batch of data, subsequently add-
ing these gradients to the global model. The results are aggregated in a synchro-
nized manner. Numerous studies and experiments have shown that SSGD with 
a fixed and average local batch size performs well on homogeneous clusters in 
terms of both time and performance [9].

However, due to the rapid upgrade in hardware, clusters often consist of vari-
ous types of accelerator. To fully exploit the available computing resources, it is 
common to use heterogeneous clusters for training DDL tasks [10–12]. The per-
formance of each worker may be degraded due to performance interference from 
co-located applications, or the cluster may contain servers with very different 
resource configurations. SSGD ignores these differences, treating all workers with 
the same batch size and requiring them to wait for all workers to complete gradi-
ent aggregation before the next iteration. However, this approach may give rise to 
the straggler problem, where some workers take longer to compute local gradi-
ents than others, causing the remaining workers to wait until the slowest worker 
has completed its computation and communication. In distributed deep learning 
(DDL), the straggler problem caused by resource heterogeneity is becoming an 
increasingly important issue that researchers are trying to solve [12–14]. Figure 2 
shows a distributed training system with three workers: worker1 , worker2 , and 
worker3 , ranked from strongest to weakest. If the workers are given equal amounts 
of training data (i.e., the same local mini-batch size), worker1 will complete its 
computation first and become idle, waiting for the other workers. This will cause 
worker2 to become idle as well, waiting for worker3 to complete its computation 
before synchronizing the gradient. This straggler effect can diminish cluster utili-
zation and cause substantial idle time, resulting in inefficient use and wastage of 
computational resources.

Combining previous studies with our experiments, stragglers can be divided into 
two categories: static and dynamic. The former category refers to workers whose per-
formance consistently lags behind their peers due to differences in hardware capabili-
ties. In contrast, the latter category of stragglers emerges over time and is the result of 
resource contention among multiple tasks sharing a cluster. Although previous studies 
suggest that dynamic stragglers are the primary problem [14], recent experiments [12, 
15] confirm that the performance degradation caused by static stragglers is more pro-
nounced in heterogeneous environments. Several algorithms have been proposed over 



12249

1 3

LBB: load‑balanced batching for efficient distributed learning…

the years to solve the straggler problem. Relaxing synchronization conditions is a com-
mon approach, but it can slow down convergence or even prevent it from converging 
[14, 16]. Although many new DDL-oriented load balancing techniques have been pro-
posed [17–19], they often face significant communication overhead or are not timely 
enough. These studies have improved the system’s ability to tolerate stragglers, but they 
are typically limited to homogeneous environments and are rarely conducted in hetero-
geneous environments.

The aim of this research is to examine the effect of stragglers on the training effi-
ciency of DDL and propose solutions to improve it. First, it is feasible to balance the 
load of DDL by assigning different local mini-batch sizes to different workers based on 
earlier studies [20] and gradient accumulation [21]. Then, we propose a novel approach 
called LBB to solve the straggler problem more rapidly and precisely based on the 
above deduction. LBB is a load balancing method specifically designed for DDL, par-
ticularly suitable for batch processing tasks like SGD. It optimizes the batch size for 
each worker before training to balance computation time and significantly mitigate 
static stragglers. Unlike other existing methods that balance in every epoch [22], LBB 
dynamically rebalances the load of all workers more rapidly among iterations. To ver-
ify the training efficiency of LBB, extensive experiments are conducted on a hetero-
geneous server equipped with four GPUs with three different models. And four highly 
representative DNN models are trained on CIFAR10 and CIFAR100 datasets [23]. 
Experimental results demonstrate that LBB can adapt to most DNN models trained on 
different datasets. Furthermore, the results showed that LBB maintains the high sta-
tistical efficiency of synchronous training while achieving high throughput similar to 
asynchronous training.

The main contributions of this paper are as follows:

•	 A novel LBB method is proposed to eliminate both static stragglers and dynamic 
stragglers by assigning local batch sizes based on their performance, which can 
improve the utilization of heterogeneous clusters.

•	 The load balancing problem in distributed deep learning is mathematically formu-
lated by analyzing the iteration process and modeling the performance of GPUs. 
This provides the foundation for LBB coordination algorithm to balance the load by 
coordinating local batch sizes.

•	 The LBB coordination algorithm is presented in this paper to eliminate stragglers. 
It first mitigates static stragglers by assigning appropriate batch sizes to workers 
before training. And then, it can rapidly predict optimal batch size for dynamic 
stragglers in model training, for which the load balancing is well solved.

The rest of this paper is organized as follows. Section 2 provides background informa-
tion and a review of the relevant literature on the problem of stragglers. Section 3 pre-
sents the details of LBB, including how the LBB works and how it addresses the strag-
gler problem. Section 4 describes the experimental design and analysis of the results 
obtained from the experiments. Finally, Sect. 5 of the paper presents the concluding 
remarks and future directions for this research.



12250	 F. Yao et al.

1 3

2 � Background and related work

2.1 � Background

2.1.1 � Distributed training

When training a DNN model in a distributed environment, the process typically 
involves three steps that are iterated repeatedly. These steps are: firstly, computing 
the loss through a forward pass; secondly, computing the gradients through a back-
ward pass; and thirdly, updating the parameters through an optimizer step. The con-
cept of data parallelism is widely applicable in this framework. Essentially, multiple 
copies of a model can be created, with each worker assigned a portion of the training 
data to perform the forward and backward passes independently. The model replicas 
can then synchronize either their gradients or updated parameters, depending on the 
algorithm being used. Among existing approaches, distributed data parallel based 
on SSGD is a dominant strategy due to its minimally intrusive nature [24, 25]. This 
has two implications: First, it ensures mathematical equivalence between the results 
obtained from distributed training and those obtained from local execution; second, 
it does not require any changes to the architecture of the DNN models or their inter-
nal operations, and changes to the optimizer may be unnecessary or equivalently 
implemented. The above features make SSGD-based distributed data parallelism the 
dominant training method today, and it performs well on homogeneous dedicated 
clusters, such as Facebook’s well-known work training ImageNet in an hour [20].

2.1.2 � Heterogeneity in data centers and clouds

Resource heterogeneity is a common feature in modern data centers and cloud envi-
ronments where applications are often deployed on clusters of servers (VMs) with 
varying capacities and sizes. To reduce the high computational cost of distributed 
model training, utilizing low-cost transient VMs such as low-priority transient VMs 
as much as possible is a crucial technique for reducing training costs [26, 27]. This 
approach may involve using a heterogeneous cluster consisting of multiple transient 
VMs with different GPUs in a DDL task [26]. However, the use of transient VMs 
can also be subject to performance interference from unrelated tasks issued by the 
cloud provider, or even be shut down, making the assumption that all workers have 
equal and constant performance in a DDL task invalid. In summary, DDL tasks that 
can tolerate the heterogeneity of resources and the performance fluctuations of the 
cluster can benefit greatly from running on the modern data center.

2.1.3 � Training challenges in heterogeneous environments

Performing DDL tasks in heterogeneous environments can result in a problem 
known as stragglers. There are two types of stragglers: static stragglers caused by 



12251

1 3

LBB: load‑balanced batching for efficient distributed learning…

using different GPU models and dynamic stragglers caused by sharing resources. 
SSGD-based approaches are often ineffective due to these stragglers. While static 
stragglers are more problematic, dynamic stragglers cannot be ignored.

To solve the straggler problem in distributed deep learning, researchers have 
explored various algorithms beyond SSGD. However, these methods often improve 
the cluster’s throughput rate but sacrifice statistical efficiency. The throughput rate 
measures the computational speed of a cluster, typically quantified by the aver-
age number of samples trained per second or the average elapsed time per itera-
tion. Statistical efficiency evaluates the effectiveness of the distributed optimization 
algorithm by examining the convergence speed, which is determined by the relation-
ship between training time, validation accuracy, and training loss. These research 
results suggest that static stragglers are more detrimental to statistical efficiency and 
can even nullify the benefits of some algorithms entirely [14]. Up to this point, the 
majority of techniques employed for DDL on heterogeneous clusters have encoun-
tered significant difficulties in achieving high levels of both statistical efficiency and 
throughput rate.

2.2 � Related work

2.2.1 � Bypassing stragglers with relaxed synchronization

The delays caused by stragglers are mainly due to synchronization constraints. 
Therefore, a straightforward idea for addressing this issue is to relax the synchro-
nization constraints. For instance, ASGD [16] completely relaxes the synchroniza-
tion constraints for all worker threads and proves that the strategy can be used for 
non-convex optimization problems. However, asynchronous training leads to stale 
gradients, which is caused by the gradients that are calculated based on an older 
version of the local model. Stale gradient usually can negatively impact the conver-
gence speed and final convergence accuracy of the DNN model. To overcome this 
challenge, there are some major approaches as follows:

The first approach aims to compensate for the stale gradients by using various 
techniques. For example, Zheng et  al. proposed a method based on Taylor expan-
sion and Hessian approximation to compensate for stale gradients [28]. SHAT [29] 
improved the model update algorithm by considering the difference between the 
workers’ model and the global model to improve the convergence of asynchronous 
training.

The second approach focuses on finding a trade-off between the level of syn-
chrony and the training speed by using limited synchrony instead of strict synchrony 
as in the case of SSGD. A notable example is the SSP [14] algorithm proposed by 
Ho et al., which updates the model with a staleness threshold, reducing staleness and 
improving the final accuracy of the model. Another example is the N-Soft algorithm 
[30], which updates the model based on the average of the gradients of 1

n
 ready work-

ers, while n is the cluster size. There have been several recently proposed methods 
that combine the ASGD and SSGD, such as [31] and [32].



12252	 F. Yao et al.

1 3

Based on the experimental results of these approaches, although these approaches 
show an improvement over ASGD, they still result in a loss of accuracy compared 
to SSGD. Therefore, to the best of our knowledge, all current approaches that aim to 
reduce training time using ASGD inevitably lead to some reduction in the accuracy 
of the model.

2.2.2 � Eliminating stragglers by load balancing

Load balancing is a crucial aspect of distributed computing and can be accom-
plished through either static or dynamic load balancing techniques. However, tra-
ditional load balancing assumes that workloads can be partitioned and transferred 
sequentially, which is not suitable for DDL workloads that process data in batches. 
To address this issue, several researchers have developed static and dynamic load 
balancing techniques specifically for DDL.

Static load balancing assigns the workload to each task based on its performance 
before the task begins, as Moreno-Álvarez et  al. [18] have done. However, this 
method is not adaptable to changes in worker performance and may not be effective 
for modern deep learning workloads that process data in batches using parallel pro-
cessing accelerators.

To overcome the limitations of static load balancing to accommodate perfor-
mance fluctuations in the training process, many dynamic load balancing methods 
have been proposed. Dynamic load balancing is a more flexible technique that redis-
tributes or coordinates the workload at runtime.

FlexRR [17], proposed by Harlap et al., monitors the real-time progress of work-
ers and shifts the workload from slower workers to faster workers as needed. While 
this method is generally more effective than static load balancing, it also has high 
computational and communication costs for progress monitoring, status collection, 
and workload migration, which may not be appropriate for resource-intensive DDL 
tasks.

Similar to N-Soft [30], Eagar-SGD [33] uses decentralized partial synchroni-
zation for improving the training efficiency of heterogeneous clusters. DLB [22], 
LB-BSP [34], and BOA [19] integrate static and dynamic load balancing based on 
SSGD to improve training efficiency but still face challenges in handling perfor-
mance fluctuations quickly. But these methods cannot rebalance rapidly when meet-
ing performance fluctuations.

While these approaches above achieve effective load balancing on heterogene-
ous clusters, they either introduce asynchronicity that impairs model convergence or 
require several epochs to rebalance the load. Thus, there is still room for improve-
ment in terms of efficiency.

3 � Load‑balanced batching method

This section discusses the LBB method, which is designed to alleviate the strag-
gler problem in DDL (distributed deep learning) tasks. The section begins with an 
analysis of the time model of each training iteration to formulate the load balancing 



12253

1 3

LBB: load‑balanced batching for efficient distributed learning…

problem. Then, the LBB coordination method is explained in detail along with its 
implementation details. The overall architectural diagram is depicted in Fig. 1. LBB 
first collects performance information by running several batches on each GPU, and 
then LBB formulates load balancing strategies for various GPUs based on the analy-
sis results. Subsequently, the CPU monitors the GPU during task execution to detect 
any dynamic dropout issues and takes appropriate proactive measures. The LBB 
method aims to improve the efficiency of DDL training by minimizing the impact of 
stragglers on the overall training time. Table 1 shows the symbols commonly used in 
this paper and their corresponding interpretations.

3.1 � Iteration time modeling and problem formulation

To solve the straggler problem in synchronous SGD, it is important to ensure that 
each worker’s execution time is as uniform as possible during each iteration. To 
study and analyze this process, a model is required. The duration of an iteration Titr 
consists of two parts: computation time Tcomp and communication time Tcomm . The 
computation time Tcomp is determined by the local batch size, while the communica-
tion time Tcomm depends on the straggler’s delay and the communication settings of 
the cluster.

3.1.1 � Computation time modeling

The computation time for training a deep learning model can be analyzed as the 
sum of the operation time for each hidden layer in the network. For each iteration 
in the training process, computations are performed on each layer, including feed 

Fig. 1   Training DNN model with fixed batch size on heterogeneous devices



12254	 F. Yao et al.

1 3

forward and back propagation operations. For example, in a convolution neural net-
work (CNN), there are two main types of hidden layers: convolution layers and fully 
connected layers. Given a mini-batch size B, the feed forward operation time for 
a convolution layer is denoted by Tconv(B) , and the forward computation time for 
a fully connected layer is denoted by Tfc(B) , respectively. In cuDNN, the underly-
ing implementation library of mainstream DNN operators’ forward and backward 
passes is implemented as matrix multiplication [35], and the computation time can 
be expressed as a linear function of the input batch size. In fact, modern DNN mod-
els consist of different hidden layers, and their utilization of GPU resources var-
ies. High-end GPUs exhibit a significant unsaturation effect for light computational 
tasks, resulting in inefficient GPU utilization. This unsaturation effect is repre-
sented by the insignificant increase in computation time as the task size (batch size) 
increases, instead of the expected linear growth. There are a large number of experi-
ments indicating that the overall relationship between batch size and computation 
time shows a linear correlation. However, when the batch size is small, a nonlinear 
correlation is observed, meaning that computation time does not increase propor-
tionally with the batch size. Therefore, a cubic polynomial can be used to fit the 
relationship between batch size and computation time for all GPUs.

LBB uses a cubic polynomial to more accurately model GPU performance dur-
ing profiling phase, while a linear function is used for online coordination during the 
training loop. The variables a0, a1, a2, a3 are employed to fit the direct relationship 
between Tcomp and B. The performance of workeri can then be expressed as Equation 
(1).

3.1.2 � Communication time modeling

LBB employs an all-reduce communication approach, which typically involves 
multiple nodes participating simultaneously rather than individually, to minimize 
the total communication time in the cluster. The all-reduce operation is typi-
cally performed by a group of multiple workers and requires all workers in the 
group to be ready before data transfer can begin. In heterogeneous environments, 
when faster workers complete their computations, they must wait for stragglers 
to finish their computations and initiate all-reduce communication before the 
actual data transfer can begin. Therefore, the actual data transfer time is defined 
as the time from when the last worker completes its computation to the end of 
communication.

The process is shown in Fig. 2. As a result, communication time in a single itera-
tion consists of two components: waiting time and data transfer time. The waiting 

(1)Tcompi
(B) =

{

ai
3
B3 + ai

2
B2 + ai

1
B1 + a0

ai
1
B + a0



12255

1 3

LBB: load‑balanced batching for efficient distributed learning…

time is determined by the computation time of the fastest worker and the slowest 
straggler. The communication time Tcommi

 for each worker can be calculated using 
Tcommi

= max{Tcompi
} − Tcompi

+ Ttrans , where Ttrans is the time required for data 
transfer. Since all-reduce is a synchronous and blocking communication method, the 
value of Ttrans will be the same for all workers and depends primarily on the size of 
the communication volume and communication configuration of the cluster. Tcomm 
can be considered as a function related to the local batch size of all workers. There-
fore, to optimize communication time, it is crucial to reduce the waiting time, which 
can be achieved by mitigating the straggler effect.

3.1.3 � Local and global iteration time

This paper defines the local execution time of workeri as the sum of the time required 
for gradient calculation, denoted by Tcompi

 , and the time required for gradient 

Fig. 2   Training DNN model with fixed batch size on heterogeneous devices

Table 1   Main symbols and their 
respective explanations

Symbols Explanations

n Cluster size
D Dataset
worker

i
GPU

i

B Global batch size
B
i

The local batch size of worker
i

Blim
i

The maximum local batch size on worker
i

Tcomp
i

The computation time on worker
i

Tcomm
i

The time required for gradient aggrega-
tion communication on worker

i

Ttrans Fixed communication time overhead
Titer Time during one iteration



12256	 F. Yao et al.

1 3

aggregation communication, denoted by Tcommi
 . The jth iteration time for workeri can 

be expressed as follows, based on the modeling described in Sects. 3.1.1 and 3.1.2:

For the global iteration time in the jth iteration Tj

iter
 , the calculation time is 

max{T
j
compi

} and the communication time is min
{

Tj
commi

} . For a cluster, an iteration is 
time consuming: 
Tj
iter = max{Tj

compi} +min{Tj
commi

} = max{Tj
compi} +min{max{Tj

compi} − Tj
compi + Ttrans} , where 

Ttrans is constant and therefore is not the optimization target of this paper, and the 
minimum value of max{T

j
compi

} − T
j
compi

 is 0, so this equation is converted to 
T
j

iter
= max{T

j
comp} + Ttrans.

3.1.4 � Problem formulation

The batch coordinator is responsible for coordinating the local batch size of 
each worker under a given global batch size. As discussed in Sect.  3.1, short-
ening the computation time of each iteration can be achieved by minimizing 
Titer = min(max{Tcompi

} + Ttrans) , where Ttrans is a constant. This problem can be 
transformed into minimizing max{Tcompi} , which can be further transformed into 
minimizing Tcompi

+ min(max{Tcompi
} − min{Tcompi

}) , where Tcompi
 is a function of 

the local batch size. Therefore, the LBB’s task is to find the optimal local batch 
size vector that minimizes max{Tcompi

} − min{Tcompi
} , which balances the work-

load across workers and reduces overall training time.

In Eq. (3), Bi is constrained to be greater than or equal to 0 and less than Blimi
 , where 

Bi equal to 0 means that workeri should not participate in the training task. This is 
typically because the worker’s computational power is not sufficient enough to com-
pensate for the communication overhead. Additionally, Bi should be limited by the 
size of workeri ’s GPU memory, denoted by Blimi

 . Finally, the sum of all local batch 
sizes ( Bi ) should be equal to the global batch size (B), since B is an important hyper-
parameter defined by the training task.

(2)T
j

itri
(B) = Tj

compi
+ Tj

commi

(3)

min
B⃗=(B1,B2,…,Bn)

�

max
i∈{1,2,…n}

{Tcompi
} − min

i∈{1,2,…n}
{Tcompi

}

�

s.t. Tcompi
= Tcompi

(Bi);
n
∑

i=1

Bi = B,B ≥ 0.



12257

1 3

LBB: load‑balanced batching for efficient distributed learning…

3.2 � LBB coordination algorithm

Algorithm 1   Profiling phase



12258	 F. Yao et al.

1 3

Algorithm 2   LBB coordinator algorithm

Algorithm 3   worker
i
 training algorithm

LBB is designed to reduce the computation time for each iteration by coordinat-
ing the local batch size of all workers. This is achieved by minimizing the differ-
ence between the longest and shortest computation times. LBB uses an independent 



12259

1 3

LBB: load‑balanced batching for efficient distributed learning…

process called the LBB coordinator to accomplish this task, which ensures that the 
training process is not disturbed by the LBB coordinator. The LBB coordinator has 
three main functions: profiling, evaluation of straggler effects, and coordination of 
local batch sizes for all workers. These functions are explained in detail in this sec-
tion. Additionally, this section also discusses how to perform gradient aggregation 
under the LBB-guided training method.

3.2.1 � Profiling phase

The paper proposes a profiling phase to obtain suitable parameters for fitting each 
worker’s performance model in LBB. To collect the runtime information of each 
worker as fitting samples, LBB introduces an optional profiling phase before train-
ing, which is described in function worker() of Alg. 1. The profiling phase sam-
ples data pairs of local iteration time and local mini-batch size, with sampling 
points set at 2p . When the local batch size is small, this allows for dense sampling, 
as the relationship between GPU computation time and batch size may not be lin-
ear. Lines 10–12 describe when an OOM (Out of Memory) error is encountered 
during sampling. The approximate batch size upper bound of the current worker is 
recorded. Alg. 1 exhibits a time complexity of O(n log k) and a space complexity 
of O(n(k + log k)) , where n represents the cluster size and k denotes the maximum 
batch size. This suggests that the time-space cost of Alg. 1 is relatively modest. The 
profiling phase is a one-time execution carried out prior to the commencement of 
training. It typically entails the execution of hundreds of dataset samples on each 
compute node. In comparison with the entire training process, this step incurs a time 
overhead of only two to three seconds, which is considered negligible. After the pro-
filing phase, the coordinator fits the performance models of each worker based on 
these sample points in line 25 and then solves Eq. (3) to get the optimal batch size 
for all workers in line 28. The local batch size for all workers is then set based on 
the results. Although the profiling phase is optional, the coordinator can also fit the 
performance models of each worker based on real-time performance during training.

3.2.2 � Straggler effect

Before discussing the behavior of the coordinator during training, it is necessary to 
define an indicator to describe the straggler effect in the cluster. For an iteration, if 
stragglers exists, other nodes will wait for the stragglers. The longest idle time is 
determined by the difference between the longest gradient computation time and the 
shortest gradient computation time. This paper denotes the straggler effect SE as the 
proportion of the longest idle time to the total computation time in an iteration, i.e., 
the straggler effect represents the proportion of time wasted due to slow nodes in the 
total iteration time as shown in Eq. (4) where Tcomp denotes the average computation 
time. The coordinator collects the real-time computation time of each worker during 
the computation and calculates the SE. Based on the SE, the coordinator performs 
various coordination actions. In LBB, if SE is less than RT as defined in Alg. 2, it 
indicates that  the stragglers are eliminated, achiveing load balanced  in the cluster. 
The assessment of straggler effects is conducted on the CPU and does not impact 



12260	 F. Yao et al.

1 3

GPU training. This process will take a few milliseconds, resulting in negligible time 
overhead.

3.2.3 � Batch coordinator

The behavior of LBB coordinator is determined by two thresholds called the fine-
tuning threshold and rapid-tuning threshold. If SE is below the fine-tuning thresh-
old, it means that the delay time caused by stragglers is minimal, and the local batch 
size for all workers does not need to be adjusted. If SE is smaller than the rapid-tun-
ing threshold, it means that the straggler is only slightly behind the other nodes, so 
LBB coordinator will use fine-tuning. Furthermore, if SE is greater than the rapid-
tuning threshold, it indicates that the straggler is significantly lagging behind the 
other nodes, resulting in significant performance waste, and LBB coordinator will 
use rapid-tuning. Algorithm 2 explains the coordination methods of the LBB coordi-
nator. For fine-tuning, as shown in lines 10–14, the local batch size of the worker 
who takes the least time in the current iteration is increased. Conversely, the local 
batch size of the worker that takes the longest time in the current iteration is 
decreased. The increase or decrease step in the batch size is usually 1. For rapid-
tuning, it is only adopted when SE is larger than rapid-tuning threshold. When SE is 
higher than the rapid-tuning threshold, it indicates that the current local batch size is 
not suitable for real-time GPU performance due to thermal throttling or other com-
putation tasks interfering with the GPU’s computational resources, leading to sig-
nificant fluctuations in worker performance. In such cases, the coordinator replaces 
the current performance model with a new one based on newly collected informa-
tion about computation time and local batch size as shown in function Build_
RoughModel() in Alg. 2. The LBB coordinator uses the last collected CBi and 
CTcompi

 to build the immediate performance model, as shown in Eq. (1). Here, ai
0
 can 

be estimated from a0 in the performance model of the profiling phase as a rough 
estimate of the startup overhead of workeri , while ai

1
 can be estimated by 

CTcompi
−ai

0

Bi

 as 
the real-time throughput. According to the experimental validation of Fig. 3, it can 
be assumed that the modified performance model can also reflect the actual 
performance.

In Alg. 2, the LBB coordinator performs a batch update for each worker, repeated 
n times, and this process requires a request for constant level space, which is released 
when it is used up. This indicates that Alg. 2 can complete the task in a very short 
time and using very little space.

The LBB coordinator uses the new performance model in Eq. (3) to calculate the 
new local batch size for each worker, which is called rapid-tuning. Through several 
experiments, it has been found that the straggler effect of the cluster usually decreases 
to below 0.1 after one iteration of rapid-tuning, indicating that rough balancing has 
been achieved. After a few rounds of fine-tuning, the execution time of all workers 

(4)SE =
max

{

Tcompi

}

−min
{

Tcompi

}

Tcomp



12261

1 3

LBB: load‑balanced batching for efficient distributed learning…

can be balanced quite well. This will be confirmed with experiments in Sect.  4.4. 
This simple model is used to achieve rapid-tuning in the batch coordination phase, 
because slowly adjusting the batch size to balance the execution time of all workers in 
the cluster through fine-tuning requires more iterations and is less timely.

Furthermore, rapid-tuning cannot guarantee perfect cluster balancing at once, 
resulting in SE remaining above the rapid-tuning threshold and continuous rapid-
tuning without effectively reducing SE. To address this issue, LBB introduces an 
observation window where only fine-tuning is allowed to avoid continuous rapid-
tuning. LBB also prioritizes fine-tuning for workers that are significantly slower than 
other nodes to achieve better performance. These are some miscellaneous details of 
the implementation of the LBB that are not described in Alg. 2 for conciseness and 
ease of reading.

LBB employs Alg. 3 to dynamically adjust the batch size throughout the train-
ing process, ensuring that dynamic stragglers do not significantly impede training 
efficiency. In Alg. 3, there are a total of m iterations, each worker has to execute 
m times, so the time complexity is O(nm), also only need to apply for the constant 
level space and release it after use, so the space complexity is O(1).

3.2.4 � Gradient aggregate

During each iteration of the training process, the task of workeri is as follows: 
Firstly, obtain the local batch size for this iteration from the LBB coordinator, 
denoted as Bi or CBi . Next, retrieve a batch of data from the dataset as input, cal-
culate the corresponding gradient gi , and record the time used for this iteration, 
denoted as CTcompi

 . The gradient communication and the sending of (CBi, CTcompi
) 

to LBB coordinator happen at the same time, so the overhead of LBB is over-
lapped. LBB initiates non-blocking gradient communication via torch.distribu-
tion.all-reduce to achieve the above process. At the end of each training round, 
the gradients computed by all workers are aggregated. This is achieved by taking 
the weighted average of each worker’s gradient, where the weight is the local 
batch size for each worker. To synchronize the gradients, each worker computes 
its local weighted gradient using Glocal =

GiBi

B
 , where Gi and Bi are the gradient 

and batch size of workeri , respectively. Then, all workers communicate with each 
other to aggregate the global gradient by summing all local weighted gradients. 
By correcting with GiBi

B
 , each sample is updated equally in terms of parameter 

updating, regardless of any inconsistency in batch size. Consequently, for an 
independent and identically distributed dataset, LBB can achieve the same level 
of statistical efficiency as SSGD, which is considered the optimal approach. This 
conclusion is verified in Sect. 4.3.

4 � Experiment

This section presents experimental results that demonstrate the effectiveness of 
LBB. Firstly, we verify the accuracy of the performance model in fitting the actual 
GPU performance. Next, we investigate and compare the training speed of LBB in 



12262	 F. Yao et al.

1 3

the presence of static stragglers with various synchronous training methods, includ-
ing synchronous SGD (SSGD), One-Shot Averaging (OSA), and local SGD [36] 
with different local step(H) configurations. In addition, asynchronous methods such 
as N-Soft Sync are compared with LBB to provide a comprehensive understanding 
of its throughput rate. Furthermore, we evaluate the impact of dynamic batch tun-
ing and demonstrate how it can handle cluster performance fluctuations. Overall, 
the experimental results demonstrate that LBB outperforms the other synchronous 
and asynchronous methods in terms of both training speed and throughput rate, and 
that dynamic batch tuning can further improve its performance in handling varying 
cluster conditions.

4.1 � Experiment setup

Several classic and representative deep learning models, such as ResNet-18 
[37], ViT-B/16 [38], ShuffleNet v2 [39], and EfficientNet-B1 [40], are trained on 
CIFAR10 and CIFAR100 datasets with a global batch size of 512 and a learning rate 
of 0.1 (except for the ViT-B/16 model, which had a learning rate of 0.0001). The 
training is conducted for 120 epochs with cosine annealing learning rate decay. To 
simplify the experiment, SGD optimization method without momentum is used in 
experiments.

All experiments are conducted using a custom machine with four GPUs, consist-
ing of two GTX 1070s ( worker1 and worker2 ), one Tesla M40 ( worker3 ), and one 
GTX 750 ( worker4 ) added as a straggler to the cluster. The GPUs are of three differ-
ent models from two architectures as shown in Table 2. One GTX 1070 is directly 
connected to the CPU via PCIe 3.0 x8, while the other GPUs are connected via PCIe 
3.0 x4 to bypass the limitations of the B660 chipset on the motherboard while each 
lane of PCIe 3.0 can provide up to 985 MB/s connection speed.

The benchmark datasets chosen for this research are CIFAR10 and CIFAR100. 
The CIFAR10 dataset comprises 60,000 32 × 32 color images divided into 10 
classes, each consisting of 6000 images. It is organized into 50,000 training images 
and 10,000 test images, separated into five training batches and one test batch, with 
10,000 images each. Similarly, the CIFAR100 dataset comprises 100 classes of 600 
images each, with 500 training images and 100 test images per class. Although both 
datasets contain diverse images, CIFAR100 has 100 classes, while CIFAR10 has 
only 10. These datasets are commonly used in the deep learning community to eval-
uate image recognition models.

Table 2   Experiment environment

Model Architecture CUDA cores Single precision 
performance

GPU memory

worker1 Tesla M40 Maxwell 3072 6.844 Tflops 24GB GDDR5
worker2 GTX 1070 Pascal 1920 6.463 Tflops 8GB GDDR5
worker3 GTX 1070 Pascal 1920 6.463 Tflops 8GB GDDR5
worker4 GTX 750 Maxwell 512 1.111 Tflops 2GB GDDR5



12263

1 3

LBB: load‑balanced batching for efficient distributed learning…

4.2 � Verifying performance model and mitigation of static stragglers

To verify the accuracy of LBB’s profiling and constructed performance models, a 
validation is performed in this section. By collecting performance sample points 
from each worker during the profiling phase, LBB is able to construct perfor-
mance models for each worker, as shown in Fig. 3. The resulting models showed 
that workers of the same type had similar performance trends, while workers of 
different types had significantly different performance trends, providing valuable 
insights into the coordination process. Pearson correlation and Spearman correla-
tion can be calculated from the experimental results in Fig. 3. The Pearson corre-
lation assesses the strength of the linear relationship between two variables, while 

Table 3   Comparison of 
computation time with and 
without load balancing

SSGD Balanced

Local batch 
size B

i

T
comp

i

 (ms) Local batch 
size B

i

T
comp

i

 (ms)

worker1 128 81.81 167 104.94
worker2 128 81.49 167 104.14
worker3 128 85.39 158 103.46
worker4 128 392.92 20 104.41
Cluster 512 392.92 512 104.94

Table 4   Accuracy of the performance models for different workers in LBB

Profiling-based solution Rapid-tuning-based solution

B
i T̂

comp
i

 (ms) Error (%) B
i T̂

comp
i

 (ms) Error (%)

worker1 166 103.68 1.20 165 108.97 3.84
worker2 166 103.09 − 1.01 165 109.66 5.30
worker3 160 104.02 − 0.52 160 110.24 0.41
worker4 20 37.60 − 6.52 22 92.06 − 11.83
Cluster 512 104.02 − 0.87 512 110.24 0.50

Fig. 3   Comparing GPU performance for training ResNet-18 on CIFAR10: GTX 1070s and Tesla M40 
show similar results, while GTX 750 lags behind



12264	 F. Yao et al.

1 3

the Spearman correlation is a nonparametric statistic that gauges the monotonic 
relationship between two variables. The relationship between each worker’s com-
putation time and its local batch size is well fitted with the Pearson correlation 
coefficient and the Spearman correlation coefficient between the fitted and actual 
values of all workers exceeding 0.99. This theoretically proves the validity of our 
method. These results demonstrate a strong correlation between the local batch 
size and computation time, affirming the accuracy of our performance model in 
reflecting the actual performance of all workers in the cluster.

Table 3 shows the unbalanced computation time caused by the load imbalance 
of SSGD, and the overall computation time of the cluster is dragged down by the 
straggler. Table 4 shows the mini-batch sizes coordinated by LBB based on the 
performance model, with the global mini-batch size set to 512. The table shows 
that the performance model effectively captures the relationship between compu-
tation time and local batch size for each worker. But there is an exception, dur-
ing the rapid-tuning phase, when LBB uses a simple linear regression model, the 
worker4 (GTX 750) exhibits poor prediction accuracy, which is consistent with 
the results shown in Fig.  3. This is due to the fact that the GTX 750’s graph-
ics memory is not sufficient for the corresponding training task, which causes 
PyTorch to try to use a different low-level implementation for computing the 
operators in the DNN model, resulting in a more nonlinear relationship between 
its batch size and actual computation time. This is caused by enabling the torch.
backends.cuDNN.benchmark parameter, which is a common method to accelerate 
DNN model training.

LBB coordinator uses the performance model to determine the appropriate 
batch size for each worker and then compares the predicted computation time to 
the actual computation time. For most workers, the deviation rate is low, indicat-
ing that the performance model is accurate and the batch coordination strategy is 
appropriate. Therefore, the static straggler is greatly mitigated or even eliminated. 
As shown in Fig. 4, by assigning appropriate local batch sizes to different work-
ers, the time to train ResNet-18 on CIFAR10 for one epoch is reduced from an 
average of 62.44 s to 22.12 s.

Fig. 4   Comparison of ResNet-18 training times per epoch with different methods: H = 2 means that 
model does a synchronization every two iterations, 1-Soft means 1-Soft Sync, and OSA means One-Shot 
Averaging



12265

1 3

LBB: load‑balanced batching for efficient distributed learning…

4.3 � Training efficiency

In this section, the training efficiency of LBB will be reviewed before introducing 
dynamic stragglers. The efficiency of LBB will be described in terms of statistical 
efficiency and training throughput. First, the statistical efficiency of LBB will be 
verified by comparing it with SSGD to see whether it affects the statistical efficiency 
of synchronous training. Then, the statistical efficiency of LBB will be compared 
with other methods used to mitigate stragglers. Finally, the throughput and end-to-
end training time of LBB will be compared with other algorithms.

Statistical efficiency: Before discussing throughput and dynamic coordination, it 
is necessary to verify the statistical efficiency of LBB. In this experiment, the statis-
tical efficiency of LBB is verified in two steps. First, four representative models are 
trained using LBB and SSGD on the CIFAR10 and CIFAR100 datasets. This step is 
performed to verify that LBB, as a method based on SSGD and adapted to heteroge-
neous clusters, does not compromise the excellent convergence of SSGD. As shown 
in Fig. 5, LBB showed a statistical efficiency very similar to SSGD in all eight train-
ing tasks. Next, it is necessary to compare the statistical efficiency of LBB with that 
of other parallel algorithms. As shown in Fig. 4, methods based on synchronization, 
such as SSGD, local SGD, and LBB, exhibit highly similar convergence and are sig-
nificantly better than the asynchronous N-Soft Sync method. In conclusion, we have 
verified that LBB maintains the excellent statistical efficiency of SSGD and is not 
inferior to other parallel algorithms.

Fig. 5   Training different DNN models on CIFAR10 and CIFAR100 with SSGD and LBB



12266	 F. Yao et al.

1 3

In this experiment, the throughputs of different training strategies are reflected in 
the time used for each epoch, with shorter times indicating higher throughput. For 
synchronous training methods, SSGD, local SGD, and OSA can be seen as similar 
methods with different local step sizes. As the local step size increases, the number 
of communications and the communication cost decrease, and this is reflected in the 
overall reduction in time consumption, as shown in the left half of Fig. 4. However, 
even though LBB has no reduction in the number of communications, it still has a 
high throughput rate due to the good load balancing. Therefore, compared to SSGD, 
local SGD-based methods (local SGD and OSA), and 2-Soft, LBB can reduce the 
per-epoch time by 64.57%, 59%, and 5.4%, respectively.

Overall, LBB’s statistical efficiency is comparable to SSGD and better than 
asynchronous parallel methods, while maintaining a comparable throughput 
rate to asynchronous parallel methods. These factors ultimately lead to a sig-
nificant increase in model training speed, achieving higher model accuracy in 
less time without compromising model convergence. As shown in Fig. 6, LBB 
and 2-Soft Sync are the fastest to complete 120 epochs, taking less than 3000 s. 
However, using LBB resulted in significantly higher convergence accuracy and 

Fig. 6   Traning ResNet-18 on CIFAR10 with different algorithm



12267

1 3

LBB: load‑balanced batching for efficient distributed learning…

lower validation loss than training with 2-Soft Sync. Although other synchro-
nous parallel strategies are able to converge the model to similar accuracy as 
LBB, they take significantly more time. Compared to OSA, LBB saved almost 
half the time, while compared to SSGD, LBB saved about 70% of the time. The 
performance of the synchronous training algorithms is mainly affected by the 
presence of severe stragglers, the GTX 750, which significantly slows down 
other workers. This also indicates that LBB is effective in dealing with extreme 
static stragglers.

4.4 � Verifying mitigation of both static and dynamic stragglers

This section presents a case study that illustrates how LBB mitigates the straggler 
effect in distributed deep learning systems. In this study, we conducted experiments 
using the four-GPU machine mentioned above to train ResNet-18. We designed a 
program to simulate the situation where each worker is disturbed in a controlled 
manner. Specifically, the program cyclically increases the computation time of a par-
ticular GPU by about 50 ms. The changes in computation time are shown in Fig. 7a. 
This figure shows that the computation time of the disturbed GPUs increased by 
about 50 ms (as indicated by the upward vertices), while the computation time of the 
GPU with the disturbance removed decreased by about the same amount (as indi-
cated by the downward vertices). To mitigate dynamic stragglers, the LBB coor-
dinator continuously monitors SE across the cluster. When significant perturba-
tions are detected, the LBB coordinator quickly coordinates the batch size of each 
worker using a rapid-tuning mechanism. Figure 7c illustrates this mechanism, where 
the LBB coordinator adjusts the local batch size of each worker in real time, and 
the SE decreases rapidly. The rebalancing of computation times and batch sizes is 
shown in Fig. 7b, where the batch size of each worker is adjusted to ensure optimal 
performance of the distributed system. This mechanism effectively ensures that the 
entire cluster can train deep neural network models efficiently even in the presence 
of disturbances.

Specifically, as shown in Fig. 7, at the beginning of training, all workers are in a 
balanced computation time, and SE is below the tuning threshold most of the time, 
so almost no batch coordination occurs. Then, near iteration 25, the Tesla M40 in 
the cluster suffers from our introduced disturbance, the computation time increases, 
it becomes a new straggler, and SE increases dramatically, as shown in Fig. 7a, c. 
The LBB coordinator monitors this change, and SE exceeds the rapid-tuning thresh-
old, so the rapid-tuning mechanism is triggered. Subsequently, SE still exceeds the 
fine-tuning threshold, so LBB continues to fine-tune the batch size until SE falls 
below the fine-tuning threshold. At iteration 140, SE rises dramatically again and 
exceeds the rapid-tuning threshold due to a newly introduced disturbance for GTX 
750. However, rapid-tuning is not triggered immediately due to the remedy men-
tioned at the end of Sect. 3.2 being triggered.



12268	 F. Yao et al.

1 3

5 � Conclusion

The straggler problem resulting from a heterogeneous GPU cluster is a bottleneck 
of data parallelism with synchronous strategies. To alleviate this problem, this paper 
proposes an innovative load balancing method LBB designed for data parallelism in 
heterogeneous environments. LBB reduces waiting costs by assigning appropriate 
local batch sizes to all workers before and during training, which is implemented 
in PyTorch by the LBB coordinator at a low cost. The performance model of GPU 
workers and formulation of load balancing problems built by LBB accurately reflect 
the heterogeneous cluster’s performance. These provide a strong theoretical foun-
dation for LBB’s load balancing. Based on these, LBB can greatly mitigate static 
stragglers before training. It also rebalances severe dynamic stragglers rapidly, while 
mild dynamic stragglers can be eliminated through batch size fine-tuning. Exten-
sive experimental results demonstrate LBB’s effectiveness in load balancing and 

Fig. 7   Graph a shows the change in computation time when a disturbance is intentionally injected into 
each worker. Graph c shows the LBB coordinator monitoring the straggler effect of the cluster, while 
graph b shows how it coordinates the batch size of all workers



12269

1 3

LBB: load‑balanced batching for efficient distributed learning…

improving utilization in heterogeneous clusters. As a result, LBB maintains high 
convergence speed based on synchronous training while effectively addressing strag-
gler issues. In the future, we plan to integrate LBB with communication optimiza-
tions, which will further increase LBB’s efficiency and scalability.

Acknowledgments  The authors would like to acknowledge the support of National Natural Science 
Foundation of China under grant No. 62376226, the Shaanxi’s Key Research and Development Program 
under grant 2023-ZDLNY-63, the Xianyang’s Key Research and Development Program under grant No. 
L2022-ZDYF-NY-019, and the Key Research and Development Program of Shaanxi under grants No. 
2019ZDLNY07-06-01 and No. 2020NY-098.

Author contributions  FY proposed the idea, participated in the protocol design, authored the main sec-
tions of the paper, and produced the figures and tables. BL supervised the research and proofread the 
manuscript as the supervisor. HG participated in constructing the experimental workflow.

Funding  This work is supported by National Natural Science Foundation of China under grant No. 
62376226, the Shaanxi’s Key Research and Development Program under grant 2023-ZDLNY-63, the 
Xianyang’s Key Research and Development Program under grant No. L2022-ZDYF-NY-019, and the 
Key Research and Development Program of Shaanxi under grants No. 2019ZDLNY07-06-01 and No. 
2020NY-098.

Data availability  The public datasets of CIFAR10 and CIFAR100 [23] used in the research are available 
at https://​www.​cs.​toron​to.​edu/​kriz/​cifar.​html.

Code availability  The authors will release LBB implementation for reproducibility after it is organized. 
The code will be released on https://​github.​com/​FLYIN​G37520/​LBB.

Declarations 

Conflict of interest  The authors declare that they have no competing interests as defined by Springer or 
other interests that might be perceived to influence the results and/or discussion reported in this paper.

 Ethics approval  Not applicable.

 Consent to participate  Not applicable.

 Consent for publication  Not applicable.

References

	 1.	 Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017) 
Attention is all you need. In: Advances in neural information processing systems, vol 30

	 2.	 Jiang P, Ergu D, Liu F, Cai Y, Ma B (2022) A review of Yolo algorithm developments. Proc Comput 
Sci 199:1066–1073. https://​doi.​org/​10.​1016/j.​procs.​2022.​01.​135

	 3.	 Saharia C, Chan W, Saxena S, Li L, Whang J, Denton E, Ghasemipour SKS, Ayan BK, Mahdavi 
SS, Lopes RG, Salimans T, Ho J, Fleet DJ, Norouzi M (2022) Photorealistic text-to-image diffusion 
models with deep language understanding. arXiv:​2205.​11487 [cs.CV]

	 4.	 Ramesh A, Pavlov M, Goh G, Gray S, Voss C, Radford A, Chen M, Sutskever I (2021) Zero-shot 
text-to-image generation. In: Proceedings of the 38th International Conference on Machine Learn-
ing, vol 139, pp 8821–8831

	 5.	 Radford A, Kim JW, Hallacy C, Ramesh A, Goh G, Agarwal S, Sastry G, Askell A, Mishkin P, 
Clark J, Krueger G, Sutskever I (2021) Learning transferable visual models from natural language 
supervision. In: Proceedings of the 38th International Conference on Machine Learning, vol 139, pp 
8748–8763. https://​proce​edings.​mlr.​press/​v139/​radfo​rd21a.​html

https://www.cs.toronto.edu/kriz/cifar.html
https://github.com/FLYING37520/LBB
https://doi.org/10.1016/j.procs.2022.01.135
http://arxiv.org/abs/2205.11487
https://proceedings.mlr.press/v139/radford21a.html


12270	 F. Yao et al.

1 3

	 6.	 Krizhevsky A, Sutskever I, Hinton GE (2017) Imagenet classification with deep convolutional neu-
ral networks. Commun ACM 60(6):84–90. https://​doi.​org/​10.​1145/​30653​86

	 7.	 Shoeybi M, Patwary M, Puri R, LeGresley P, Casper J, Catanzaro B (2020) Megatron-LM: training 
multi-billion parameter language models using model parallelism. arXiv:​1909.​08053 [cs.CV]

	 8.	 Brown T, Mann B, Ryder N, Subbiah M, Kaplan JD, Dhariwal P, Neelakantan A, Shyam P, Sastry 
G, Askell A, Agarwal S, Herbert-Voss A, Krueger G, Henighan T, Child R, Ramesh A, Ziegler 
D, Wu J, Winter C, Hesse C, Chen M, Sigler E, Litwin M, Gray S, Chess B, Clark J, Berner C, 
McCandlish S, Radford A, Sutskever I, Amodei D (2020) Language models are few-shot learners. 
In: Advances in neural information processing systems, vol 33, pp 1877–1901

	 9.	 Tang Z, Shi S, Chu X, Wang W, Li B (2020) Communication-efficient distributed deep learning: a 
comprehensive survey. arXiv:​2003.​06307 [cs.CV]

	10.	 Gan S, Jiang J, Yuan B, Zhang C, Lian X, Wang R, Chang J, Liu C, Shi H, Zhang S, Li X, Sun T, 
Yang S, Liu J (2021) Bagua: scaling up distributed learning with system relaxations. Proc VLDB 
Endow 15(4):804–813. https://​doi.​org/​10.​14778/​35035​85.​35035​90

	11.	 Jiang J, Cui B, Zhang C, Yu L (2017) Heterogeneity-aware distributed parameter servers. Associa-
tion for Computing Machinery, New York, pp 463–478. https://​doi.​org/​10.​1145/​30359​18.​30359​33

	12.	 Narayanan D, Santhanam K, Kazhamiaka F, Phanishayee A, Zaharia M (2020) Heterogeneity-aware 
cluster scheduling policies for deep learning workloads. In: 14th USENIX Symposium on Operating 
Systems Design and Implementation (OSDI 20), pp 481–498. https://​www.​usenix.​org/​confe​rence/​
osdi20/​prese​ntati​on/​naray​anan-​deepak

	13.	 Kim H, Song C, Lee H, Yu H (2023) Addressing straggler problem through dynamic partial all-
reduce for distributed deep learning in heterogeneous GPU clusters. In: IEEE International Confer-
ence on Consumer Electronics (ICCE), pp 1–6. https://​doi.​org/​10.​1109/​ICCE5​6470.​2023.​10043​527

	14.	 Ho Q, Cipar J, Cui H, Lee S, Kim JK, Gibbons PB, Gibson GA, Ganger G, Xing EP (2013) More 
effective distributed ML via a stale synchronous parallel parameter server. In: Advances in neural 
information processing systems, vol 26

	15.	 Kavarakuntla T, Han L, Lloyd H, Latham A, Akintoye SB (2021) Performance analysis of distrib-
uted deep learning frameworks in a multi-GPU environment. In: 20th International Conference on 
Ubiquitous Computing and Communications (IUCC/CIT/DSCI/SmartCNS), pp 406–413. https://​
doi.​org/​10.​1109/​IUCC-​CIT-​DSCI-​Smart​CNS55​181.​2021.​00071

	16.	 Keuper J, Pfreundt F-J (2015) Asynchronous parallel stochastic gradient descent: a numeric core 
for scalable distributed machine learning algorithms. In: Proceedings of the Workshop on Machine 
Learning in High-Performance Computing Environments. MLHPC ’15. Association for Computing 
Machinery, New York. https://​doi.​org/​10.​1145/​28348​92.​28348​93

	17.	 Harlap A, Cui H, Dai W, Wei J, Ganger GR, Gibbons PB, Gibson GA, Xing EP (2016) Addressing 
the straggler problem for iterative convergent parallel ML. In: Proceedings of the Seventh ACM 
Symposium on Cloud Computing. Association for Computing Machinery, New York, pp 98–111. 
https://​doi.​org/​10.​1145/​29875​50.​29875​54

	18.	 Moreno-Alvarez S, Haut JM, Paoletti ME, Rico-Gallego JA, Diaz-Martin JC, Plaza J (2020) Train-
ing deep neural networks: a static load balancing approach. J Supercomput 76:9739–9754

	19.	 Yang E, Kang D-K, Youn C-H (2020) BOA: batch orchestration algorithm for straggler mitigation 
of distributed DL training in heterogeneous GPU cluster. J Supercomput 76:47–67

	20.	 Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, He K (2018) 
Accurate, large minibatch SGD: training imagenet in 1 hour. arXiv:​1706.​02677 [cs.CV]

	21.	 Tao Z, Li Q (2018) eSGD: communication efficient distributed deep learning on the edge. In: USE-
NIX Workshop on Hot Topics in Edge Computing (HotEdge 18). USENIX Association, Boston

	22.	 Ye Q, Zhou Y, Shi M, Sun Y, Lv J (2022) DLB: a dynamic load balance strategy for distributed 
training of deep neural networks. IEEE Trans Emerg Top Comput Intell. https://​doi.​org/​10.​1109/​
TETCI.​2022.​32202​24

	23.	 Krizhevsky A, Hinton G et al (2009) Learning multiple layers of features from tiny images
	24.	 Li S, Zhao Y, Varma R, Salpekar O, Noordhuis P, Li T, Paszke A, Smith J, Vaughan B, Damania 

P et  al (2020) Pytorch distributed: experiences on accelerating data parallel training. arXiv:​2006.​
15704 [cs.CV]

	25.	 Gitman YYI, Ginsburg B (2017) Scaling SGD batch size to 32k for imagenet training. arXiv:​1708.​
03888 [cs.CV]

	26.	 Li S, Walls RJ, Xu L, Guo T (2019) Speeding up deep learning with transient servers. In: IEEE 
International Conference on Autonomic Computing (ICAC), pp 125–135. https://​doi.​org/​10.​1109/​
ICAC.​2019.​00024

https://doi.org/10.1145/3065386
http://arxiv.org/abs/1909.08053
http://arxiv.org/abs/2003.06307
https://doi.org/10.14778/3503585.3503590
https://doi.org/10.1145/3035918.3035933
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://www.usenix.org/conference/osdi20/presentation/narayanan-deepak
https://doi.org/10.1109/ICCE56470.2023.10043527
https://doi.org/10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00071
https://doi.org/10.1109/IUCC-CIT-DSCI-SmartCNS55181.2021.00071
https://doi.org/10.1145/2834892.2834893
https://doi.org/10.1145/2987550.2987554
http://arxiv.org/abs/1706.02677
https://doi.org/10.1109/TETCI.2022.3220224
https://doi.org/10.1109/TETCI.2022.3220224
http://arxiv.org/abs/2006.15704
http://arxiv.org/abs/2006.15704
http://arxiv.org/abs/1708.03888
http://arxiv.org/abs/1708.03888
https://doi.org/10.1109/ICAC.2019.00024
https://doi.org/10.1109/ICAC.2019.00024


12271

1 3

LBB: load‑balanced batching for efficient distributed learning…

	27.	 Li S, Walls RJ, Guo T (2020) Characterizing and modeling distributed training with transient cloud 
GPU servers. In: IEEE 40th International Conference on Distributed Computing Systems (ICDCS), 
pp 943–953. https://​doi.​org/​10.​1109/​ICDCS​47774.​2020.​00097

	28.	 Zheng S, Meng Q, Wang T, Chen W, Yu N, Ma Z-M, Liu T-Y (2017) Asynchronous stochastic gra-
dient descent with delay compensation. In: International Conference on Machine Learning, vol 70, 
pp 4120–4129. PMLR. https://​proce​edings.​mlr.​press/​v70/​zheng​17b.​html

	29.	 Ko Y, Kim S-W (2022) SHAT: a novel asynchronous training algorithm that provides fast model 
convergence in distributed deep learning. Appl Sci. https://​doi.​org/​10.​3390/​app12​010292

	30.	 Zhang W, Gupta S, Lian X, Liu J (2016) Staleness-aware async-SGD for distributed deep learn-
ing. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp 
2350–2356

	31.	 Li S, Mangoubi O, Xu L, Guo T (2021) Sync-switch: hybrid parameter synchronization for dis-
tributed deep learning. In: IEEE 41st International Conference on Distributed Computing Systems 
(ICDCS), pp 528–538. https://​doi.​org/​10.​1109/​ICDCS​51616.​2021.​00057

	32.	 Zhao X, Papagelis M, An A, Chen BX, Liu J, Hu Y (2019) Elastic bulk synchronous parallel model 
for distributed deep learning. In: IEEE International Conference on Data Mining (ICDM), pp 1504–
1509. https://​doi.​org/​10.​1109/​ICDM.​2019.​00198

	33.	 Li S, Ben-Nun T, Girolamo SD, Alistarh D, Hoefler T (2020) Taming unbalanced training work-
loads in deep learning with partial collective operations. Association for Computing Machinery, 
New York, pp 45–61. https://​doi.​org/​10.​1145/​33324​66.​33745​28

	34.	 Chen C, Weng Q, Wang W, Li B, Li B (2020) Semi-dynamic load balancing: efficient distributed 
learning in non-dedicated environments. Association for Computing Machinery, New York, pp 431–
446. https://​doi.​org/​10.​1145/​34191​11.​34212​99

	35.	 Chetlur S, Woolley C, Vandermersch P, Cohen J, Tran J, Catanzaro B, Shelhamer E (2014) cuDNN: 
efficient primitives for deep learning. arXiv:​1410.​0759 [cs.CV]

	36.	 Stich SU (2018) Local SGD converges fast and communicates little. arXiv:​1805.​09767 [cs.CV]
	37.	 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings 

of the IEEE Conference on Computer Vision and Pattern Recognition, pp 770–778
	38.	 Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner T, Dehghani M, Min-

derer M, Heigold G, Gelly S et al (2020) An image is worth 16x16 words: transformers for image 
recognition at scale. arXiv:​2010.​11929 [cs.CV]

	39.	 Ma N, Zhang X, Zheng H-T, Sun J (2018) Shufflenet v2: practical guidelines for efficient CNN 
architecture design. In: Proceedings of the European Conference on Computer Vision (ECCV)

	40.	 Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: 
International Conference on Machine Learning, pp 6105–6114

Publisher’s Note  Springer Nature remains neutral with regard to jurisdictional claims in published maps 
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted 
manuscript version of this article is solely governed by the terms of such publishing agreement and 
applicable law.

Authors and Affiliations

Feixiang Yao1 · Zhonghao Zhang1 · Zeyu Ji1 · Bin Liu1,2,3 · Haoyuan Gao1

 *	 Zeyu Ji 
	 zeyu.ji@nwafu.edu.cn

 *	 Bin Liu 
	 liubin0929@nwsuaf.edu.cn

	 Feixiang Yao 
	 feixiang@nwsuaf.edu.cn

https://doi.org/10.1109/ICDCS47774.2020.00097
https://proceedings.mlr.press/v70/zheng17b.html
https://doi.org/10.3390/app12010292
https://doi.org/10.1109/ICDCS51616.2021.00057
https://doi.org/10.1109/ICDM.2019.00198
https://doi.org/10.1145/3332466.3374528
https://doi.org/10.1145/3419111.3421299
http://arxiv.org/abs/1410.0759
http://arxiv.org/abs/1805.09767
http://arxiv.org/abs/2010.11929


12272	 F. Yao et al.

1 3

	 Zhonghao Zhang 
	 2022051057@nwsuaf.edu.cn

	 Haoyuan Gao 
	 gaohaoyuan@nwsuaf.edu.cn

1	 College of Information Engineering, Northwest A&F University, Yangling, China
2	 Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture and Rural Affairs, 

Northwest A&F University, Yangling, China
3	 Shaanxi Key Laboratory of Agricultural Information Perception and Intelligent Service, 

Northwest A&F University, Yangling, China


	LBB: load-balanced batching for efficient distributed learning on heterogeneous GPU cluster
	Abstract
	1 Introduction
	2 Background and related work
	2.1 Background
	2.1.1 Distributed training
	2.1.2 Heterogeneity in data centers and clouds
	2.1.3 Training challenges in heterogeneous environments

	2.2 Related work
	2.2.1 Bypassing stragglers with relaxed synchronization
	2.2.2 Eliminating stragglers by load balancing


	3 Load-balanced batching method
	3.1 Iteration time modeling and problem formulation
	3.1.1 Computation time modeling
	3.1.2 Communication time modeling
	3.1.3 Local and global iteration time
	3.1.4 Problem formulation

	3.2 LBB coordination algorithm
	3.2.1 Profiling phase
	3.2.2 Straggler effect
	3.2.3 Batch coordinator
	3.2.4 Gradient aggregate


	4 Experiment
	4.1 Experiment setup
	4.2 Verifying performance model and mitigation of static stragglers
	4.3 Training efficiency
	4.4 Verifying mitigation of both static and dynamic stragglers

	5 Conclusion
	Acknowledgments 
	References




