
Vol.:(0123456789)

The Journal of Supercomputing (2024) 80:11741–11761
https://doi.org/10.1007/s11227-023-05883-z

1 3

Boosting HPC data analysis performance
with the ParSoDA‑Py library

Loris Belcastro1,3 · Salvatore Giampà3 · Fabrizio Marozzo1,3 · Domenico Talia1,3 ·
Paolo Trunfio1,3 · Rosa M. Badia2 · Jorge Ejarque2 · Nihad Mammadli2

Accepted: 23 December 2023 / Published online: 2 February 2024
© The Author(s) 2024

Abstract
Developing and executing large-scale data analysis applications in parallel and dis-
tributed environments can be a complex and time-consuming task. Developers often
find themselves diverted from their application logic to handle technical details
about the underlying runtime and related issues. To simplify this process, ParSoDA,
a Java library, has been proposed to facilitate the development of parallel data min-
ing applications executed on HPC systems. It simplifies the process by providing
built-in scalability mechanisms relying on the Hadoop and Spark frameworks. This
paper presents ParSoDA-Py, the Python version of the ParSoDA library, which
allows for further support of commonly used runtimes and libraries for big data
analysis. After a complete library redesign, ParSoDA can be now easily integrated
with other Python-based distributed runtimes for HPC systems, such as COMPSs
and Apache Spark, and with the large ecosystem of Python-based data processing
libraries. The paper discusses the adaptation process, which takes into consideration
the new technical requirements, and evaluates both usability and scalability through
some case study applications.

Keywords Big data analysis · Parallel computing · HPDA · PyCOMPSs · Spark ·
HPC

1 Introduction

Writing and running big data analysis applications in highly parallel and distrib-
uted environments is often a challenging job. Developers often have to distract
themselves from application logic to focus on defining technical details about the
underlying runtime and related issues. Many researchers are working on design-
ing and implementing tools and algorithms to extract useful information from huge
amounts of data [1]. In such cases, the use of parallel and distributed data analysis
techniques, frameworks (e.g., Hadoop or Spark) is crucial to handle the size and

Extended author information available on the last page of the article

http://crossmark.crossref.org/dialog/?doi=10.1007/s11227-023-05883-z&domain=pdf

11742 L. Belcastro et al.

1 3

complexity of the data being analyzed. However, many users find it challenging to
utilize such solutions for addressing big data challenges due to the programming
skills required to implement appropriate data analysis methods on complex distrib-
uted systems and runtimes. ParSoDA (parallel social data analytics) [2] is a Java-
based programming library for simplifying the development of parallel data and
social media mining applications executed on HPC systems. Differently from other
existing systems, ParSoDA was specifically designed to implement parallel scala-
ble data analysis applications, with a particular focus on data gathered from social
media. It provides scalability mechanisms based on two of the most popular parallel
processing frameworks, Hadoop and Spark, which are fundamental to provide effi-
cient and scalable services as the amount of data to be managed grows [3]. However,
to further improve the library’s capabilities in terms of usability, ease of program-
ming, and support for further runtimes and libraries, a new version of ParSoDA,
based on Python, is of strategic interest. Python is known for its simple and read-
able syntax, making it accessible to both beginners and experienced programmers.
Moreover, a rich ecosystem of data analysis libraries is available in Python, such as
NumPy and Pandas, which significantly expedites writing complex operations with
minimal code.

This paper presents ParSoDA-Py, the Python version of the ParSoDA library,
which enables the execution of ParSoDA-based applications on various Python-
based distributed runtimes designed for HPC systems, such as COMPSs and Apache
Spark, via PyCOMPSs and PySpark, respectively. Making the ParSoDA library
available in Python involved addressing new technical requirements and considering
some use cases discussed in the previous scientific papers that describe the library
[2].

The contents of this paper are organized as follows. Section 3 presents an over-
view of the ParSoDA library. Section 4 discusses the implementation of ParSoDA
on top of PyCOMPSs. Section 5.3 presents performance results of ParSoDA on
PyCOMPSs and compares them with performance of ParSoDA on Spark. Finally,
Sect. 6 concludes the paper.

2 Related work

Research in the field of frameworks and libraries aimed at improving the develop-
ment of data analysis applications for high-performance computing (HPC) environ-
ments is a popular and evolving topic. Most current solutions are often limited to
certain application contexts and, therefore, adaptable to solving only specific types
of problems. Some recent surveys have attempted to provide a broad and up-to-date
overview of such frameworks and libraries, with particular focus on efficient pro-
cessing of large amounts of data. [3–5].

As data to be processed grow exponentially, organizations and researchers face
increasing challenges in terms of computing capabilities. This requires the utiliza-
tion of high-performance computing resources, such as multi-core systems, cloud
infrastructure, and multi-cluster configurations, coupled with parallel and distributed

11743

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

algorithms. This strategic approach ensures reasonable response times in the face of
this data deluge [6].

In this context, many researchers are actively engaged in developing tools and
algorithms aimed at extracting valuable insights from the large amounts of data, like
those coming from social media platforms. Some research projects consider not only
the data analysis task, but also procedures including data processing tasks needed
for building social data applications. In particular, these projects aim at helping sci-
entists to implement all the steps that compose social data mining applications with-
out the need to implement common operations from scratch. One notable frame-
work in this domain is SOCLE [7], designed to optimize data preparation for social
data analysis applications. It includes a versatile three-tier architecture, an algebraic
framework, and a domain-specific language tailored for defining data preparation
operations in social applications. For instance, SOCLE provides users with opera-
tors for data pruning, data enrichment, and data transformation and normalization.
Although SOCLE’s utility has been demonstrated in social applications like rec-
ommendation and analytics, there is a lack of studies assessing its scalability, and
detailed framework requirements remain undisclosed. In another vein, Cuesta et al.
[8] introduced a framework aimed at simplifying the extraction and analysis of Twit-
ter data, where developers can expand its functionality by creating additional aggre-
gation tasks using Python’s MapReduce capabilities. The framework also offers pre-
built modules for carrying out sentiment analysis and generating reports. SODATO
(SOcial Data Analytics Tool) [9] represents an online tool tailored for programming
data analytics tasks involving social data. It leverages APIs from social media plat-
forms to gather data, followed by a combination of web and console applications
for batch-based preprocessing, data aggregation, and data analysis. In particular,
SODATO provides methods for different types of analysis, including sentiment anal-
ysis, keyword analysis, content performance analysis, and social influence analysis.
Zhou et al. [10] proposed a general unsupervised framework engineered for discov-
ering events in Twitter datasets. The framework involves a pipeline process encom-
passing filtering, extraction, and categorization phases. During the filtering stage, a
lexicon-based approach selects tweets relevant to events. Subsequently, events are
extracted from these filtered tweets and grouped into categories using an unsuper-
vised Bayesian model named the latent event & category model (LECM). You et al.
[11] introduced a cloud-based framework tailored for developing social data analy-
sis applications, with a focus on supporting smart cities and smart mobility. This
comprehensive framework consists of five key components: data collection, data
preprocessing, data analysis, data presentation, and data storage. It facilitates data
collection from various sources, including social media platforms (e.g., Twitter and
Foursquare) through their public APIs, as well as other internet sources like web-
sites, blogs, and files. The data preprocessing component offers functions for data
cleansing, filtering, and normalization. Subsequently, the data analysis component
equips users with essential analysis methods, such as K-Means, DBSCAN, and self-
organizing map, to facilitate data analysis.

Many other research efforts focused on analytics frameworks for scientific data,
leveraging large-scale parallel computing approaches. PyOphidia [12] is a Python
library designed to offer a high-level and programmatic interface for carrying out

11744 L. Belcastro et al.

1 3

large-scale data analytics on large multi-dimensional scientific datasets. It repre-
sents the Python binding of the Ophidia framework [13], an open-source software
framework designed for the management and analysis of large-scale scientific data,
particularly multidimensional datacubes. Additionally, it supports workflow execu-
tion on HPC systems, also facilitates integration with well-established modules
from the Python scientific ecosystem. FastFlow [14] and DSParLib [15] both serve
as high-level C++ libraries for parallel programming, emphasizing pattern-based
approaches. While DSParLib introduces new implementations for the pipeline and
farm patterns in stream processing, FastFlow provides a broader range of patterns
suitable for different computation types. It is worth noting that FastFlow supports
multi-node systems through ZeroMQ and process creation, whereas DSParLib uti-
lizes MPI for these purposes. GrPPI [16] is another C++ library focusing on com-
posable and generic interfaces for parallel patterns, which has been widely explored
for distributed computing using MPI. Programmers need only implement parallel
patterns once, choosing the desired runtime at compile time.

In contrast to the systems mentioned above, ParSoDA-Py distinguishes itself by
being specifically engineered to ease the implementation of big data analysis appli-
cations for execution on both HPC systems and cloud. Its features allow the efficient
and scalable provision of data processing services, especially as the volume of data
to be managed expands. In particular, the execution logic of ParSoDA-Py is com-
pletely abstracted from the execution environment, allowing it to potentially be used
on top of a wide range of runtimes.

3 ParSoDA

ParSoDA (parallel social data analytics) [2] is a programming library originally
developed for simplifying the development environment of parallel social media
mining applications executed on high-performance computing systems. However, in
its current version it can be used for designing general data analysis and machine
learning applications on HPC systems. To achieve this goal, ParSoDA provides a
set of widely used functions for processing and analyzing data collected from social
media and other sources, which can be used to extract useful knowledge and pat-
terns (e.g., topics trends, user mobility, user opinions). ParSoDA defines a general
framework for a data analysis application that includes a number of steps (i.e., data
acquisition, filtering, mapping, partitioning, reduction, analysis, and visualization),
and provides a predefined (but extensible) set of functions for each data processing
step. Thus, an application developed with ParSoDA is expressed by a concise code
that specifies the functions invoked at each step. For each of these steps, ParSoDA
provides a predefined set of functions. Users are free to extend this set with their
own functions. For example, for the data acquisition step, ParSoDA provides crawl-
ing functions for gathering data from different source and from some of the most
popular social networks (Twitter and Flickr), while for the data filtering step, Par-
SoDA provides functions for filtering geotagged items based on their position, time
of publication, and contained keywords.

11745

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

Figure 1 illustrates the execution flow of ParSoDA on a Spark cluster, composed
of one or more master nodes and multiple slave nodes. Specifically, the main steps
are executed within two Spark stages that run on a set of worker nodes. A stage is a
set of independent tasks executing functions that do not need to perform data shuf-
fling (e.g., transformation and action functions). Specifically: data filtering and map-
ping are executed within the first stage (Stage 0), while data partitioning and reduc-
tion are executed within the second stage (Stage 1). Concerning the remaining steps
(data acquisition, data analysis, and data visualization), they are not strictly depend-
ent on Spark. These steps have the flexibility to be executed either in parallel on
multiple worker nodes or locally by the master node(s). It is important to note that
executing them locally does not imply sequential execution, as the master node can
leverage alternative parallel runtimes such as MPI to perform parallel computations.

4 ParSoDA‑Py

In previous works, we demonstrated that ParSoDA is suitable for running scal-
able data analysis applications on cloud and HPC systems exploiting both Apache
Hadoop [17] and Spark [18]. Starting from the Java version of ParSoDA, a complete
redesign of the library has been done by adopting a bridge design pattern for sup-
porting different execution runtimes and data crawlers. The design took into account
new technical requirements that further simplify the development of data analysis
applications, taking into consideration the dynamically typed capabilities of Python.
This is achieved by structuring the applications as sequences of computation blocks.

ParSoDA-Py has been developed according to the open-closed principle (OCP)
[19], which is one of the core concepts of the software design patterns. This design
approach ensures that the core functionality of the library remains unaltered,
maintaining stability and reliability, while simultaneously allowing for the exten-
sion of its capabilities to accommodate different execution runtimes. In particular,

Fig. 1 Execution flow of Par-
SoDA on Apache Spark

11746 L. Belcastro et al.

1 3

ParSoDA-Py provides a trade-off between an immutable core and the flexibility
needed for seamless integration with evolving technologies and runtimes. The Java
version of ParSoDA has been implemented in accordance with the same principle,
but with a less efficient outcome, as it did not foresee the possibility of having a
unified core code shared across different runtimes. Indeed, the two existing Java
versions of ParSoDA, supporting Hadoop and Spark, were developed and compiled
specifically for the runtime on which they were executed. In contrast, ParSoDA-Py
introduces a more flexible and efficient approach, enabling the reuse of the core
components and the possibility of defining specific drivers to support new runtimes.
This feature not only enhances flexibility but also streamlines the development and
maintenance process. Additionally, compared to the previous version of the library,
ParSoDA-Py has introduced support for distributed crawling to achieve better per-
formance when retrieving data from remote sources.

The usability of ParSoDA-Py is significantly better than that of ParSoDA, espe-
cially since adopting the more concise syntax of the Python language makes it eas-
ier to develop an application. Differently from the Java version of ParSoDA, where
workflow steps are executed directly on the Apache Hadoop/Spark environment,
ParSoDA-Py delegates the execution to an abstract driver. This introduces a new
level of abstraction that separates the application code from the underlying execu-
tion runtime, ensuring greater usability (e.g., the same code can be executed on a
different runtime by simply changing the driver in use) and enhanced compatibility
with an extensible set of runtimes.

In the remainder of this section, design and implementation details, along with
innovative features, of ParSoDA-Py will be discussed. In particular, Sect. 4.1
describes the architectural design of ParSoDA-Py, Sect. 4.2 presents detailed
insights into the integration process with PyCOMPSs, and Sect. 4.3 discusses the
features of the data crawling component.

4.1 Design of the architecture

ParSoDA-Py retains the same main concepts of ParSoDA, but having been rede-
signed for Python, it needed to improve some features, such as data acquisition
mechanisms. This step is the main difference between the execution flow of Par-
SoDA and ParSoDA-Py, which is specified further below. Another important differ-
ence is that a developer must define the initial number of partitions or partition size.
This initial partitioning has the effect of parallelizing the reading of data with some
specialized crawlers. As shown in Fig. 2, for each block, developers are required to
specify one or more functions. Specifically, ParSoDA-Py defines a general structure
for a social data analysis application that is composed by the following steps:

• Data acquisition it is possible to run multiple crawlers in parallel; the collected
social media items are parsed and converted in an internal format suitable to be
processed by the next steps. The driver of a specific runtime will take care, under
the hood, of partitioning the data into chunks and distributing them to workers
for parallel processing. ParSoDA-Py also introduces Parser classes to convert

11747

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

social data items into a structured format. These classes can be easily created or
extended by programmers, enabling them to simultaneously read data from vari-
ous sources and transform it into a standardized object format.

• Data filtering this step filters the social media items according to a set of filtering
functions.

• Data mapping this step transforms the information contained in each social
media item by applying a set of map functions.

• Data partitioning during this step, data are partitioned into shards by a primary
key and then sorted by a secondary key.

• Data reduction this step aggregates all the data contained in a shard according to
the provided reduce function.

• Data analysis this step analyzes data using a given data analysis function to
extract the knowledge of interest.

• Data visualization at this final step, a visualization function is applied on the data
analysis results to present them in the desired format.

Figure 3 shows a UML diagram of the main components used to define an appli-
cation in ParSoDA-Py. In particular, the diagram highlights SocialDataApp, one of
the most important classes of the library, and its setter methods that must be used to
build a social data analysis application. All other classes are the main components
that define each step of the ParSoDA workflow, except the ParsodaDriver, which
is instead used for executing the ParSoDA workflow on the underlying runtime
environment.

In order to define a new application, a programmer must create a ParsodaDriver
instance and a SocialDataApp object using it. The ParsodaDriver class is responsi-
ble for interfacing with the ParSoDA application workflow within the chosen under-
lying runtime environment. The programmer defines a ParSoDA application in a
descriptive way, specifying its components (such as crawlers, filters, mapper, and
reducer). Subsequently, the SocialDataApp object is employed to execute the work-
flow presented in Fig. 1. This execution involves translating it into a sequence of
invocations of the ParsodaDriver methods, which then execute these steps within the
underlying environment.

Fig. 2 Execution flow of ParSoDA-Py

11748 L. Belcastro et al.

1 3

Figure 4 shows the bridge design pattern used for implementing multiple execu-
tion environments for ParSoDA. It defines an abstraction, the SocialDataApp class,
which defines the high-level operations of a social data analysis application, and an
implementor, the ParsodaDriver class, which provides the low-level operations. A
valid instance of ParsodaDriver must provide the implementation of some methods
that grant access to some parallel patterns, such as flatMap, filter and groupByKey,
a method for getting the final result (i.e., collect), and some other functions for set-
ting up and down the runtime (e.g., init_environment, dispose_environment). The

Fig. 3 Class diagram of the main ParSoDA-Py components

Fig. 4 Bridge pattern used to specify the execution environment for a ParSoDA-Py application

11749

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

SocialDataApp class is specifically designed to effectively use such parallel patterns
for executing ParSoDA applications. It is worth noting that the execution flow of a
ParSoDA application is runtime-agostic, which means it remains unchanged even
when changing the execution environment. Furthermore, integration with new dis-
tributed systems is facilitated. In particular, ParSoDA-Py provides four execution
drivers:

• ParsodaSingleCoreDriver a driver that implements parallel patterns as simple
sequential algorithms on a single core, on the local machine, which can be useful
for testing purposes.

• ParsodaMultiCoreDriver it runs the application locally, based on Python’s
Thread Pools.

• ParsodaPySparkDriver it runs the application on a Spark cluster through the
PySpark library.

• ParsodaPyCompssDriver it runs the application on a COMPSs cluster by exploit-
ing the PyCOMPSs binding to gain access to the COMPSs runtime.

4.2 Integration with PyCOMPSs

The reason for utilizing Python in statistical analysis applications is its increasing
relevance in the field. Python is supported by several robust libraries that are valu-
able for statistical purposes, narrowing the gap with dedicated analysis tools like
Matlab and R. To ensure its usability in large projects, appropriate parallelization
techniques should be incorporated.

PyCOMPSs [20] is the Python binding of COMPSs, a task-based programming
environment that facilitates the development of parallel computational workflows in
Python. In this approach users program their Python scripts in a sequential fash-
ion and annotate the functions to be run as asynchronous parallel tasks. A runtime
system is in charge of exploiting the inherent concurrency of the script, detecting
the data dependencies between tasks and spawning them to the available resources.
PyCOMPSs supports the execution of the Python applications in distributed com-
puting platforms, including large clusters, clouds, and container-managed clusters.
Applications are deployed following the master-worker paradigm, with the main
script and the COMPSs runtime running in one node. The runtime starts the execu-
tion of the sequential script, and at each invocation of an annotated function, a node
is added to a task-dependency graph. In this graph, nodes denote tasks and edges
denote data dependencies between tasks that are identified by the runtime based on
hints available in the annotations. The COMPSs runtime takes care of the orches-
tration of the whole application: task scheduling, resource allocation, data transfers
between nodes when needed, and so on.

PyCOMPSs include the distributed dataset (DDS) [21], a lightweight library pro-
viding an interface that can be used by programmers for loading data from basic
Python data structures, generators, or files, distributing the data on available nodes,
and running some of the most common big data operations on it. To take advantage
of DDS, the user should first load the data to a new instance of it. Once one of the

11750 L. Belcastro et al.

1 3

load functions is called, the data will be partitioned and sent to the available nodes.
Subsequently, the user can perform any of DDS operations to manipulate the data by
invoking methods on the DDS instance. In the DDS environment, the initial data are
always distributed on an arbitrary number of partitions and passed from one task to
another as future objects until the programmer synchronizes or collects it. Addition-
ally, it is possible to create a new DDS with a list of future objects from user-defined
functions or send data from a DDS instance to other user-defined functions as future
objects without retrieving it on the master node. This flexibility gives programmers
an opportunity to use DDS methods anywhere in the code, mixing the data from
those methods with their own functions without sticking to predefined data opera-
tions, as well as replacing some methods with DDS ones on an existing project. Spe-
cifically, DDS provides a range of parallel and distributed data operators, including
load, filter, map, group_by_key, and collect.

ParSoDA-Py has been extended to support DDS, ensuring the effective integra-
tion of the ParSoDA data partitioning model with that provided by PyCOMPSs.
Specifically, the integration with PyCOMPSs has been done by defining a new
driver class, namely ParsodaPyCompssDriver, which implements different data
transformer methods such as filter(), flatmap(), and group_by_key(), whose execu-
tions are delegated to a DDS object instantiated transparently during the initializa-
tion of the environment. Each transformer is applied to data partitions provided by
crawlers, as described in Sect. 4.3.

4.3 Data crawling

The Java version of ParSoDA was initially designed to read files from HDFS, the
local file-system or to collect data from specific social media (i.e., Flickr and Twitter)
using predefined crawlers. However, it does not provide the possibility of exploiting
other forms of parallel data reading from one or more remote sources, which can
significantly limit performance in several application cases. The data crawling com-
ponent of ParSoDA-Py has been completely redesigned to overcome this limitation,
introducing a level of abstraction in data management that improves its flexibility.
In ParSoDA-Py, to read one or more data sources, a developer must provide one or
more instances of concrete subclasses derived from the crawler abstract class. Spe-
cifically, there are two different types of crawlers that can be defined:

• Local crawler it directly reads the data source from the node on which the appli-
cation is launched, which is typically the master node. Subsequently, the read
data are appropriately partitioned among the nodes of the underlying execution
environment. The method of partitioning these data must be specified by the
driver associated with the execution environment. Additionally, the application
developer can choose the number of partitions by providing an optional param-
eter to the constructor of the SocialDataApp.

• Distributed crawler it performs source partitioning, enabling the provision of
iterable objects. Each iterable object refers to a specific remote partition of the
source upon request. For example, if the source is an HTTP endpoint, a crawler

11751

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

can be defined to utilize paging and provide an iterable object for reading each
page. In this scenario, the ParsodaDriver is capable of sending each iterable
object to a specific node within the system, facilitating parallel reading of the
data source.

As illustrated in Fig. 5, when developing a new crawler, developers have to
implement the get_partitions abstract method of the Crawler class. This method
is responsible for providing one or more source partitions, represented as iterable
objects. The method also accepts a parameter to suggest the number of partitions.
However, it is important to note that the crawler is not obligated to strictly adhere
to this partitioning constraint. It has the flexibility to return a different number of
partitions, either fewer or more, than the specified value. Each partition is an iterable
object that provides instances of the SocialDataItem class.

To facilitate the reading of social data items from local files on the master node,
ParSoDA-Py provides the LocalFileCrawler class. This class is an implementation
of the abstract MasterCrawler class, which is a non-distributed crawler extending
the more generic Crawler class. The LocalFileCrawler class requires it to be initial-
ized by specifying an instance of the Parser class. A Parser is an invocable object
designed to process a line of text and return a standard SocialDataItem object.

5 Study case applications

This section discusses the use of the ParSoDA-Py library for developing data analysis
applications that can be executed on supported runtimes through their Python bind-
ings. Specifically, the latest version of ParSoDA-Py offers compatibility with two popu-
lar runtimes, COMPSs and Spark, leveraging the PyCOMPSs and PySpark bindings,
respectively. We carried out a large set of experiments to evaluate usability and perfor-
mance of ParSoDA-Py on two data analysis applications that process data published

Fig. 5 APIs used for defining new crawlers and new parsers for social data items

11752 L. Belcastro et al.

1 3

on Twitter. The first application aims at discovering sequential patterns in user move-
ments, so as to find the most common routes followed by users. On the other hand,
the second application focuses on discovering the sentiment of social media posts by
analyzing its textual content. The analysis was carried out by analyzing a large dataset
of social media posts that refer to the center of Rome.

The remainder of this section is organized as follows. Section 5.1 describes the
code of the trajectory mining application, built with ParSoDA-Py to run on top of both
COMPSs and Spark. Section 5.2 presents the implementation of the sentiment analy-
sis application, which analyzes a large dataset of 180 GB of social media posts from
Twitter. Finally, Sect. 5.3 discusses scalability tests for evaluating turnaround time and
speed-up.

5.1 Sequential pattern mining

This section discusses how to write an application that processes social media data to
extract the sequential pattern in user movements, which represents the trajectories fol-
lowed by users among popular places-of-interest (PoIs) in the center of Rome. Initially,
we will develop an application for execution on COMPSs. Subsequently, we will dem-
onstrate that running the same application on Spark is a straightforward process, requir-
ing only the utilization of a different driver class. It is worth noting that ParSoDA-Py’s
functions are intentionally designed to be agnostic about the underlying runtime, ensur-
ing compatibility and ease of transition between different execution environments.

Listing 1 illustrates the main function of a sequential pattern mining application,
built using ParSoDA-Py. To begin, a ParsodaPyCompssDriver is created (line 1), which
is why the application is designed for execution on COMPSs through PyCOMPSs. In
particular, the PyCOMPSs driver does not require any parameters since PyCOMPSs is
externally configured by invoking the runcompss command-line tool. Once the driver
has been created, a SocialDataApp object is defined, passing as arguments the applica-
tion’s name and the driver (line 2). Optionally, the programmer can also specify the
desired number of partitions to be created when loading data. During the crawling
phase, a dataset containing social media posts, collected in the area around Rome, is
loaded. (line 3). This dataset is stored in a network file storage accessible to all work-
ers in the COMPSs cluster. To reduce data access latency, a DistributedFileCrawler is
used. As described in the previous section, this specialized crawling class facilitates
reading the source file, dividing it into chunks, and assigning the charge of loading the
data chunks to the respective worker responsible for processing them. Consequently,
the master node no longer needs to distribute the data among workers, as each worker
independently retrieves the necessary data over the network. In such a way, it is possi-
ble to reduce the load of the master node and significantly improve data transfer times.

11753

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

Listing 1 Trajectory mining application running on COMPSs
During the filtering phase, a function, namely isGeotagged, is used to filter

out posts having valid geotagged information (line 4). ParSoDA-Py library also
provides the possibility of passing a sequence of filtering functions, which are
subsequently chained to apply multiple filters to the input data.

The map function FindPoI (line 5) converts each geotagged post into a tuple
⟨userId, ⟨datetimePost,PoI⟩⟩ , where userId is the unique user identifier, datetime-
Post is the creation timestamp of the post, and PoI is the name of the Point-of-
Interest (PoI) in which the post have been created. Generally, PoIs refer to tourist
attractions, such as monuments, squares or bridges, or to business places, such as
airports, shopping malls or train stations. A user trajectory can be represented as
a sequence of PoIs visited by a user. For analyzing users’ behavior, it is useful to
understand whether a user visited or not a PoI. Since information on a PoI is gen-
erally limited to an address or to GPS coordinates, it is hard to match trajectories
with PoIs. For this reason, it is useful to define the so-called regions-of-interest
(RoIs) that represent the boundaries of the PoIs’ area [22]. For these reasons, the
function FindPoI receives in input a file (RomeRoIs.kml), containing the list of
the RoIs of the most popular PoIs in Rome.

To extract the temporally ordered sequence of PoIs visited by a single user, the
tuples must be aggregated by user id and sorted by timestamp. Taking as input
the output of the mapping phase, the partitioning phase applies secondary sort
function (line 6) to aggregate tuples by user id, i.e., the primary key, and then sort
tuples in each group by timestamp, i.e., the secondary key.

During the reduction phase, a specific reduce class called ReduceByTrajecto-
ries (line 7) is used to transform all the social media posts of a single user into
a list of daily trajectories across PoIs. This class is designed to accept a single
parameter, which represents the minimum trajectory length to be taken into
account. Subsequently, all the trajectories computed during the reduction phase
are gathered and forwarded to the subsequent phase for analysis.

The Gap-BIDE [23] algorithm is used as a data analysis function (line 8).
This algorithm is a sequential pattern mining algorithm, which takes as input a
collection of sequences and mines frequent sequences. The data analysis class
has three parameters, which are the minimum support, the minimum and the
gap. For the data visualization phase, the SortGapBIDE class is specified to

11754 L. Belcastro et al.

1 3

perform the data visualization function (line 9). The class receives three param-
eters: the input dataset containing user trajectories, the sort direction (descend-
ing order), and the minimum length of trajectories to be produced in output.

Finally, the application is submitted to the COMPSs cluster by invoking the
execute method on the SocialDataApp object we have defined (line 10).

5.2 Sentiment analysis

Listing 2 shows the same approach proposed by Chin et al. [24], we tested
the Python implementation of the ParSoDA library through a sentiment min-
ing application, which determines the sentiment (e.g., positive or negative) of
each post according to the emojis it contains. Emojis are picture characters or
pictographs that originated on Japanese mobile phones in the late 1990s but
gained worldwide popularity in text-based communication with the introduction
of smartphones supporting input and rendering of emoji characters. By analyz-
ing the sentiment of 1.6 million human-annotated tweets, Noval et al. [25] con-
structed an emoji sentiment lexicon called the Emoji Sentiment Ranking (ESR).
This lexicon includes the most frequently used emojis and their corresponding
attributes. The attributes encompass the emoji’s pictorial representation, occur-
rences, Unicode code point, Unicode name, negativity, neutrality, and positivity
regressed with position, as well as its sentiment score. To calculate the senti-
ment score of each post, we summed the ESR scores of the emojis it contains.
The resulting calculation determined the post’s sentiment: positive if the total
score is greater than 0, negative if it is less than zero, and neutral if it is zero
[26].

Listing 2 Sentiment analysis application running on COMPSs
It is worth noting that ParSoDA-Py significantly simplifies the development

process, leading to a very concise code. Once the driver has been chosen, a pro-
grammer has just to define the functions to be used at each step, without wor-
rying about managing the underlying runtime. In fact, thanks to a high level of
abstraction, ParSoDA-Py allows writing Python functions to execute the same
functions in parallel on different runtimes (e.g., COMPS and Spark), simply
changing the class of the driver in use (e.g., using the ParsodaPySparkDriver
class for running the same application using PySpark).

11755

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

5.3 Performance evaluation

We carried out several experiments to evaluate and compare the performance of Par-
SoDA-Py on top of PyCOMPSs and PySpark, varying the dataset size and the num-
ber of cores used for execution. In particular, our specific focus was on assessing the
two applications described using some datasets of social media posts with a different
size (10 GB, 20 GB, 40 GB, and 180 GB).

The goal of the evaluation is to assess the parallel execution time and scalabil-
ity of the ParSoDA-Py applications, obtained by varying the number of CPU cores
exploited. In particular, the following performance parameters have been considered:

• Turnaround time the amount of time elapsed from the submission of an applica-
tion to its end;

• Speed-up the ratio of the turnaround time using 1 worker node to the turnaround
time using n worker nodes, which indicates how much performance gain is
obtained by distributing data over an increasing number of nodes;

• Scale-up the turnaround time when the problem size is increased linearly with
the number of CPU cores, which measures the capability of the system to man-
age increasing loads when computational resources are added to accommodate
that growth.

5.3.1 Sequential pattern mining

Figures 6, 7, 8 illustrate the turnaround time and relative speed-up of the sequen-
tial pattern mining application as the number of cores increases, considering dif-
ferent dataset sizes (10 GB, 20 GB, and 40 GB of geotagged posts). The results
reported in the figures for the different dataset sizes show a turnaround time that

Fig. 6 Trajectory mining application: execution time and speed-up of ParSoDA-Py using COMPSs and
Spark, with a 10 GB dataset

11756 L. Belcastro et al.

1 3

significantly decreases as the number of cores increases. In particular, Fig. 8a shows
the execution time of the application when processing the 40 GB dataset. Using
COMPSs, the turnaround time decreases from 10.9 h when using 8 CPU cores to
0.69 h when utilizing 256 CPU cores. Using Spark, the turnaround time is higher,
in fact it decreases from 13.3 h when using 8 CPU cores to 0.9 h when utilizing 256
CPU cores. As illustrated in Fig. 8b, the speed-up using the 40 GB dataset is good,
with values that are close to ideal up to 64 cores. More in detail, for COMPSs the

Fig. 7 Trajectory mining application: execution time and speed-up of ParSoDA-Py using COMPSs and
Spark, with a 20 GB dataset

Fig. 8 Trajectory mining application: execution time and speed-up of ParSoDA-Py using COMPSs and
Spark, with a 40 GB dataset

11757

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

speed-up is 1.97× on 16 cores, 3.85× on 20 cores, and 5.61× on 64 cores; for Spark,
the speed-up is 1.91× on 16 cores, 3.78× on 32 cores, and 7.41× on 64 cores.

When comparing the performance of the two runtimes, COMPSs and Spark, it is
worth noting that, on average, COMPSs outperformed Spark by 15.7% in terms of
turnaround time. This performance improvement can influence the perceived speed-
up values achieved by COMPSs, which may appear worse than those achieved by
Spark. However, it’s essential to consider that COMPSs’ baseline (turnaround time
with 8 cores) is significantly lower than Spark’s baseline.

Figure 9 directly compares the scale-up of ParSoDA-Py on top of both COMPSs
and Spark, showing the turnaround time obtained when the dataset size increases
proportionally to the number of CPU cores used (i.e., from 10 GB using 8 cores, to
40 GB using 32 cores). This experiment is crucial for ensuring that the library can
effectively handle an increase in data volume. In particular, the results shown in the
figure highlight the system’s ability to maintain constant execution times when the
allocated cores increase proportionally to the size of the dataset. In particular, using
the 10 GB with 8 cores, the turnaround time of the trajectory mining application
is 2.74 h for COMPSs and 3.42 for Spark, for 20 GB with 16 cores is 2.79 h for
COMPSs and 3.39 h for Spark, while for 40 GB with 32 cores is 2.8 h for COMPSs
and 3.52 h for Spark. Overall, the results show that the system is able to manage the
increasing computing load by increasing the number of processors.

5.4 Sentiment analysis

Figure 10 illustrates the execution time and relative speed-up of the sentiment analy-
sis application, obtained with a dataset containing 180GB of posts. Also in this case,
the results highlight a good reduction in the turnaround time as the number of cores
increases, as the execution time decreases from 17.58 h on 8 CPU cores to 0.96 h
on 256 CPU cores (Fig. 10a). Moreover, the speed-up is close to ideal values up to
64 cores (1.97× on 16 cores, 3.92× with 32 cores, and 6.26× on 64 cores). Also in
this case, comparing the turnaround, COMPSs outperformed Spark by 20.6%. As
discussed for the previous case study application, this performance difference influ-
ences the perceived speed-up of Spark (2.0× on 16 cores, 3.92× on 32 cores, and

Fig. 9 Trajectory mining appli-
cation: scale-up of ParSoDA-Py
on top of COMPSs and Spark

11758 L. Belcastro et al.

1 3

7.68× on 64 cores), which apparently is better than that one achieved by COMPSs
(Fig. 10b).

6 Conclusions

This paper focused on parallel data analysis and the challenges associated with the
mining of large volumes of data, especially those coming from social media plat-
forms. To address these challenges, the ParSoDA library was introduced as a power-
ful tool for building complex parallel social data analysis applications. Through the
porting of ParSoDA in Python, namely ParSoDA-Py, we proved the versatility and
usability of the library, leveraging on COMPSs and Spark to execute applications
on different runtimes for HPC systems using Python. By considering new technical
requirements, ParSoDA-Py represents a complete redesign of the original library,
with extended support to other runtimes, data crawlers, and a vast and robust eco-
system of data processing libraries available in Python. The evaluation of ParSoDA-
Py’s usability and scalability through two real-world data analysis applications has
provided valuable insights. The reduction in code complexity and the significant
improvement in execution time on a private cluster with up to 256 cores empha-
size the effectiveness of ParSoDA-Py in handling large-scale data analysis tasks.
The availability of the ParSoDA-Py as open-source software further contributes to
its accessibility and potential for wider adoption in the research and data mining
communities. Researchers and developers can now leverage ParSoDA-Py’s high-
level programming structure and predefined functions to simplify the development
of parallel data analysis applications. The ParSoDA-Py library is publicly available
at https:// github. com/ SCAla bUnic al/ ParSo DA- Py. In addition, the library also gave
us the opportunity to compare the performance of two HPC runtimes, COMPSs and

Fig. 10 Sentiment analysis application: turnaround time and speed-up on top of COMPSs and Spark

https://github.com/SCAlabUnical/ParSoDA-Py

11759

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

Spark, on the same applications. Experimental results show that COMPSs offers a
more effective runtime support that is up to 20% faster than Spark.

Acknowledgements This work has been partially funded by the European Commission’s Horizon 2020
Framework program and the European High-Performance Computing Joint Undertaking (JU) under
Grant agreement No 955558 and by MCIN/AEI/10.13039/501100011033 and the European Union
NextGenerationEU/PRTR (PCI2021-121957), project eFlows4HPC. It has also been supported by the
Spanish Government (PID2019-107255GB) and by the Departament de Recerca i Universitats de la
Generalitat de Catalunya to the Research Group MPiEDist (2021 SGR 00412) We also acknowledge
financial support from “National Centre for HPC, Big Data and Quantum Computing," CN00000013
- CUP H23C22000360005, and from “FAIR - Future Artificial Intelligence Research" Project - CUP
H23C22000860006.

Funding Open access funding provided by Università della Calabria within the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line
to the material. If material is not included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permis-
sion directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/
licenses/by/4.0/.

References

 1. Talia D, Trunfio P, Marozzo F (2015) Data analysis in the cloud: models. Techniques and Appli-
cations. Elsevier, Amsterdam, The Netherlands

 2. Belcastro L, Marozzo F, Talia D, Trunfio P (2019) Parsoda: high-level parallel programming for
social data mining. Soc Netw Anal Min 9(1):1

 3. Belcastro L, Cantini R, Marozzo F, Orsino A, Talia D, Trunfio P (2022) Programming big data
analysis: principles and solutions. J Big Data 9(4):1

 4. Inoubli W, Aridhi S, Mezni H, Maddouri M, Mephu Nguifo E (2018) An experimental survey on
big data frameworks. Futur Gener Comput Syst 86:546–564

 5. Doulkeridis C, Vlachou A, Pelekis N, Theodoridis Y (2021) A survey on big data processing
frameworks for mobility analytics. SIGMOD Rec 50(2):18–29

 6. Talia D, Trunfio P, Marozzo F, Belcastro L, Cantini R, Orsino A (2024) Programming big data
applications. World Scientific (Europe), Munich, Germany

 7. Amer-Yahia S, Ibrahim N, Kengne CK, Ulliana F, Rousset M-C (2014) Socle: towards a frame-
work for data preparation in social applications. Ingénierie des Systèmes d Inf 19(3):49–72

 8. Cuesta Ã, Barrero DF, R-Doreno MD (2014) A framework for massive twitter data extraction
and analysis. Malay J Comput Sci 27(1):50–67

 9. Hussain A, Vatrapu R, Hardt D, Jaffari ZA (2014) Social data analytics tool: a demonstrative
case study of methodology and software. In: Analyzing Social Media Data and Web Networks,
pp. 99–118. Springer, Amsterdam, The Netherlands

 10. Zhou D, Chen L, He Y (2015) An unsupervised framework of exploring events on twitter: Filter-
ing, extraction and categorization. In: Proceedings of the AAAI Conference on Artificial Intel-
ligence, vol. 29

 11. You L, Motta G, Sacco D, Ma T (2014) Social data analysis framework in cloud and mobility
analyzer for smarter cities. In: Proceedings of 2014 IEEE International Conference on Service
Operations and Logistics, and Informatics, pp. 96–101 . IEEE

 12. Elia D, Palazzo C, Fiore S, D’Anca A, Mariello A, Aloisio G (2023) Pyophidia: a python library
for high performance data analytics at scale. SoftwareX 24:101538

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

11760 L. Belcastro et al.

1 3

 13. Fiore S, Palazzo C, D’Anca A, Foster I, Williams DN, Aloisio G (2013) A big data analytics
framework for scientific data management. In: 2013 IEEE International Conference on Big Data,
pp. 1–8

 14. Aldinucci M, Danelutto M, Kilpatrick P, Torquati M (2017) Fastflow: high-level and efficient
streaming on multicore. Programming multi-core and many-core computing systems, 261–280

 15. Löff J, Hoffmann RB, Pieper R, Griebler D, Fernandes LG (2022) Dsparlib: A c++ template library
for distributed stream parallelism. Int J Parallel Prog 50(5–6):454–485

 16. Rio Astorga D, Dolz MF, Fernández J, García JD (2017) A generic parallel pattern interface for
stream and data processing. Concurr Comput: Pract Exp 29(24):4175

 17. Belcastro L, Marozzo F, Talia D, Trunfio P (2017) A parallel library for social media analytics. In:
The 2017 International Conference on High Performance Computing & Simulation (HPCS 2017),
Genoa, Italy, pp. 683–690 . ISBN 978-1-5386-3250-5

 18. Belcastro L, Marozzo F, Talia D, Trunfio P (2017) Appraising spark on large-scale social media
analysis. In: Euro-Par Workshops. Lecture Notes in Computer Science, pp. 483–495, Santiago de
Compostela, Spain . ISBN: 978-3-319-75178-8

 19. Martin RC (1996) The open-closed principle. More C++ gems 19(96), 9
 20. Tejedor E, Becerra Y, Alomar G, Queralt A, Badia RM, Torres J, Cortes T, Labarta J (2017)

Pycompss: parallel computational workflows in python. IJHPCA 31(1):66–82
 21. Mammadli N, Ejarque Artigas J, Álvarez Cid-Fuentes J, Badia Sala RM (2022) Dds: integrat-

ing data analytics transformations in task-based workflows [version 1; peer review: 1 approved, 2
approved with reservations]. Open Research Europe 2(article 66), 1–16

 22. Belcastro L, Marozzo F, Perrella E (2021) Automatic detection of user trajectories from social
media posts. Expert Syst Appl 186:115733

 23. Li C et al. (2008) Efficiently mining closed subsequences with gap constraints
 24. Chin D, Zappone A, Zhao J (2016) Analyzing twitter sentiment of the 2016 presidential candidates.

Am J Sci Res
 25. Kralj Novak P, Smailović J, Sluban B, Mozetič I (2015) Sentiment of emojis. PLOS ONE

10(12):1–22
 26. Belcastro L, Cantini R, Marozzo F, Talia D, Trunfio P (2020) Learning political polarization on

social media using neural networks. IEEE Access 8(1):47177–47187

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Authors and Affiliations

Loris Belcastro1,3 · Salvatore Giampà3 · Fabrizio Marozzo1,3 · Domenico Talia1,3 ·
Paolo Trunfio1,3 · Rosa M. Badia2 · Jorge Ejarque2 · Nihad Mammadli2

 * Loris Belcastro
 lbelcastro@dimes.unical.it

 Salvatore Giampà
 giampa@dtoklab.com

 Fabrizio Marozzo
 fmarozzo@dimes.unical.it

 Domenico Talia
 talia@dimes.unical.it

 Paolo Trunfio
 trunfio@dimes.unical.it

11761

1 3

Boosting HPC data analysis performance with the ParSoDA‑Py…

 Rosa M. Badia
 rosa.m.badia@bsc.es

 Jorge Ejarque
 jorge.ejarque@bsc.es

 Nihad Mammadli
 nihad.mammadli@bsc.es

1 DIMES, University of Calabria, Rende, Italy
2 Barcelona Supercomputing Center, Barcelona, Spain
3 DtokLab Srl, Rende, Italy

	Boosting HPC data analysis performance with the ParSoDA-Py library
	Abstract
	1 Introduction
	2 Related work
	3 ParSoDA
	4 ParSoDA-Py
	4.1 Design of the architecture
	4.2 Integration with PyCOMPSs
	4.3 Data crawling

	5 Study case applications
	5.1 Sequential pattern mining
	5.2 Sentiment analysis
	5.3 Performance evaluation
	5.3.1 Sequential pattern mining

	5.4 Sentiment analysis

	6 Conclusions
	Acknowledgements
	References

