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Abstract
Agent-based epidemiological simulators have been proven to be one of the most 
successful tools for the analysis of COVID-19 propagation. The ability of these tools 
to reproduce the behavior and interactions of each single individual leads to accurate 
and detailed results, which can be used to model fine-grained health-related poli-
cies like selective vaccination campaigns or immunity waning. One characteristic of 
these tools is the large amount of input data and computational resources that they 
require. This relies on the development of parallel algorithms and methodologies 
for generating, accessing, and processing large volumes of data from multiple data 
sources. This work presents a parallel workflow for extending the social modeling 
of EpiGraph, an agent-based simulator. We have included two novel parallel social 
generation stages that generate a detailed and realistic social model and one new vis-
ualization stage. This work also presents a description of the algorithms used in each 
stage, different optimization techniques that permit to reduce the application conver-
gence time, and a practical evaluation of large workloads on HPC systems. Results 
show that this contribution can be efficiently executed in parallel architectures and 
the results allow to increase the simulation detail level, representing a significant 
advance in the simulator scenario modeling. As a summary of results, the first con-
tribution of this paper is the development of two models (a spatial and a social one) 
that assign geographical and socioeconomic indicators to each simulated individual 
(i.e., agents), reproducing the real social distribution of the city of Madrid. The sec-
ond contribution presents an improved parallel and distributed algorithm that exe-
cutes the two aforementioned models using different parallelization strategies and 
preserving the load balance.

Keywords  Computational epidemiology · Workflows · Parallel processing · 
Visualization
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1  Introduction

Since the beginning of the COVID-19 pandemic, computational epidemiology 
applications have been proved as efficient support-making tools for the health 
authorities. By means of these tools, it has been possible to anticipate the existing 
conditions of the pandemic (number of active cases, pressure on the health-care 
system and intensive care, number of expected deaths, etc.) as well as to evaluate 
in advance the impact of different health-related policies like vaccination strate-
gies and non-pharmaceutical interventions.

In this context, in the last years, we have witnessed the appearance of many 
different approaches for modeling the COVID-19 propagation. Examples, among 
others, include methods based on differential equations [1], machine learning 
techniques [2], and statistical models [3]. One of the major challenges in the epi-
demiological modeling is to capture all the features related to the propagation in 
order to provide a more accurate prediction or more refined results. Examples 
of these features include breaking down the population by ages or collectives 
(instead of considering a homogeneous population), modeling different COVID-
19 variants, considering different habits (for example, use of face mask) based on 
the individual age and occupation, or defining specific collective-targeted meas-
ures (for example, increasing the social distance for elderly people). Note that this 
increase in the refinement level can be crucial for modeling some scenarios, like 
for instance, simulating vaccination campaigns in which the population subjected 
to be vaccinated is prioritized according to the age, or enforcing the use of face 
mask in certain environments (hospitals, public transports, classrooms, etc.).

The epidemiological simulation based on agents [4, 5] considers the characteristics 
of each population individual, as well as the interactions with other individuals in the 
simulated environment. These models are able to incorporate many details to the simula-
tion (both related to the individuals and the infections agents that are considered) which 
makes them very suitable for performing accurate forecast or modeling disease incidence 
on specific collectives (like elderly people, for instance). The two main drawbacks of 
agent-based simulators are that they are computationally intensive—which can be miti-
gated by means of parallelization employing parallelization techniques—and that they 
require of high-detailed input data. In this work, we present an extension of EpiGraph, a 
parallel agent-based simulator which is used to provide decision-making support to the 
Spanish and European Union Health Authorities [6, 7]. The novel contribution consists 
of a more detailed refined social model that can provide spatial coordinates and spe-
cific social-economic indicators (like educational level, economic incomes and political 
preferences) to each simulated individual. In addition, we introduce several optimization 
techniques oriented to reduce the application numerical convergence time while preserv-
ing the load balance between the processing components. We also provide a novel visu-
alization interface integrated with Google Maps and a scalability analysis study.

These new features are integrated in the framework as the parallel workflow illus-
trated in Fig. 1. Note that this workflow only includes the novel components con-
cerning the work presented in this paper. A more detailed description of the com-
plete EpiGraph framework can be found in [8]. The EpiGraph execution workflow 
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consists of several stages such as spatial generation, social generation, scenario sim-
ulation and data visualization and analysis. The scenario generation is responsible 
for assigning a specific spatial location to each simulated individual. It consists of 
two stages: the coarse-grain generation that is the costliest part of the stage and the 
fine-grained generation. In our experiments, we have used Madrid city as use case. 
Once this stage is completed, the social generation collects specific social indicators 
based on the individual location in order to create a realistic social model. Then, the 
scenario simulation is carried out using EpiGraph, an MPI-based parallel applica-
tion. Finally, the simulation results (number of infections, hospitalizations, etc.) are 
displayed in the visualization stage. We plan to include real-time mobility informa-
tion; thus, the whole workflow will have to be executed for every simulator execu-
tion in order to update the social model to the current social conditions.

The novel contributions of this work are the coarse- and fine-grain spatial genera-
tion algorithms, the social generation, and the visualization stages. The work struc-
ture is the following one: Sections 2.1 and 2.2 introduce the spatial model developed 
in EpiGraph. Section 2.2 provides a description of the social generation stage, and a 
visualization tool is presented in Sect. 2.4. In Sect. 3, we discuss the improvements 
made to the optimization algorithm that assigns spatial coordinates to individuals. 
Then, we show in Sect. 4 the results obtained in this work. Finally, Sects. 6 and 7 
present the related work and main conclusions of this paper, respectively.

2 � EpiGraph workflow

The goal of this work is to improve and refine the social and spatial models in Epi-
Graph. As a starting point, in 2018, the Madrid region conducted a mobility survey 
(Madrid Mobility Survey or MMS from here forward) [9] to study how the popula-
tion aged over three traveled across the territory. This survey was done using two 
gathering methods: CAPI (face-to-face interviews with every family member) and 
CATI (phone interviews with one family member). The sample size was 86,064, 
with 34,652 CAPI and 50,412 CATI. For setting the sample, CAPI method used 
the region census of September 2017, and CATI used a database of phone num-
bers linked with addresses. Among other variables, the questionnaire collects, for 
each interview, information about the transport area (with an approximate size of 5 

Fig. 1   Epidemiological simulation workflow consisting of five phases: coarse- and fine-grain spatial gen-
eration, social generation, scenario simulation and visualization and analysis. The first box on the left 
corresponds to the input data needed in the workflow. Each phase includes the programming language in 
which it is implemented



12411

1 3

Detailed parallel social modeling for the analysis of COVID‑19…

blocks) of departure location and arrival destination of each journey, the reason of 
the journey, and the means of transportation.

Based on this survey, the spatial or mobility model consists of two steps: the 
coarse-grain and the fine-grain refinements. In the coarse-grained refinement, we 
focus on big areas of the city—the 21 districts of the city. We calculate the com-
mutes from and to the districts based on the information of the MMS. This allows 
us to introduce two new variables for each individual: residence district and work 
district. We aim to calibrate these two variables using the MMS as reference, i.e., 
the goal is that the individuals in the simulation produce a transportation pattern 
(journeys from the residence district to the working district and vice versa) as close 
as possible to the one obtained from the MMS. In the fine-grained refinement, we 
distribute the individuals within their related districts.

2.1 � Coarse‑grain spatial generation

In this section, we describe the optimization algorithm that determines the residence 
and work districts for each individual. This algorithm is written in C and parallel-
ized with OpenMP. We first define some of the procedures and variables that will be 
used to describe the algorithms.

One key variable for the optimization algorithm is the transport matrix T. In the con-
sidered scenario, the matrix has dimension 21 × 21 (for the 21 districts in Madrid). We 
define matrix Tr as the matrix extracted from the 2018 MMS. Each entry (i, j) repre-
sents the number of travels between residence district i and work district j. We nor-
malize this matrix to ensure that all the columns add up to 1. Furthermore, we define 
matrix Ts as the matrix obtained at each step of the algorithm by computing the move-
ment from residence and work data for each simulated individual. For this, we count 
each journey from residence district i to work district j and add it to matrix Ts . We later 
normalize the columns in order to provide a straight comparison with matrix Tr.1 The 
main goal of the optimization algorithm is to minimize the cost function depicted in 
Eq. 1, where || ⋅ ||F is the Euclidean norm for matrices (defined as the square root of the 
sum of the absolute squares of its elements). The coarse-grain spatial generation con-
sists of an initialization and an optimization phase.

Initialization phase the first stage of this algorithm is the initialization, in which the 
individuals receive a tentative residence and work district. This stage is executed 
sequentially due to its reduced execution time and can be decomposed into the three 
main steps depicted in Algorithm 1. First, for each individual, we calculate the fam-
ily relationships (lines 1 to 4). Note that each individual can reside alone (no family 
members) or reside together with other family relatives (up to four members).2 In a 
second step, each individual is assigned to a work district (line 5). Finally, each indi-
vidual, and all the family members, are assigned to a residence district (lines 6 to 8).

(1)C(Ts) = ||Ts − Tr||F

1  Note that the simulated population is smaller than the real one considered in the survey.
2  The family member distribution as well as other characteristics of the simulated individuals (like age 
pyramid or occupation) are extracted from EuroStat and other national Statistical databases.
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Algorithm 1   Initialization of residence and work districts vectors

Algorithm 2   Coarse-grain spatial generation algorithm
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For each simulated city, we have a relation sparse matrix M and a work vector w̃ , 
respectively of dimensions n × n and size m, where n > 0 is the population in the 
city considered and m > 0 the number of work groups (in our considered use case 
n = 3, 511, 110 and m = 772, 337 ). Each value mi,j in matrix M determines the type 
of relation (or contact) between individual i and j. Similarly, each scalar w̃k in vec-
tor w̃ indicates the size of work group k. Note that M contains individual contacts 
related to family, work and leisure activities. In this work, we are only considering 
journeys from the residence to the work place. Consequently, we need to extract 
only the family contacts, so when one individual is placed in a certain residence 
district, all the related family members are also placed in the same district. In order 
to track the family connections of each individual, we construct an auxiliary matrix 
F of dimensions n × 5 (5 is the maximum number of family relations per individual 
in the simulations), where vector Fi contains the individuals having a family relation 
with individual i.

In a second step, the work vector w̃ is used to assign a work district randomly to 
each work group. Then, we generate a work district vector w of size n, the popula-
tion. Each scalar wi indicates the working district of individual i. Finally, in the last 
step, we assign to each individual and all his family members a certain residence 
district.

Let us assume we have assigned individual i to work district wi . Let r be the vec-
tor containing the residence districts. The assignation to a residence district is done 
by choosing a random district, but weighting the sample by column Cwi

 of matrix Tr . 
In this way, we assure that the distribution of residence districts is as close as pos-
sible with the one obtained from the MMS. At the end of the initialization stage, two 
vectors of size n are generated: w, which lists the working district for each individual 
and r, which lists the residence district for each individual.

Optimization stage The second stage corresponds to the optimization logic, 
depicted in Algorithm 2 that includes the OpenMP pragmas. The algorithm decom-
poses the existing districts between the running threads using nested parallelism. 
The demographic data (404,173 inhabitants) read from disk was parallelized fol-
lowing a scheme in which each thread access to independent portions of data. It is 
worth mentioning that the I/O represents a small fraction—smaller than 1%—of the 
overall execution time. Let H be the set of city districts that is being modeled (e.g., 
H = [1, 21] for Madrid) and M > 0 the number of threads. Then,

where (Hl)1≤j≤M is a disjoint partition of H. In the first level (outer parallel section, 
lines 5 to 31 in Algorithm 2), each thread l works on its own subset Hl of columns 
of matrix D = Ts − Tr that correspond to different districts on the city. To assure two 
or more threads do not write to the same arrays r and w, copies rl and wl are created 
for each thread. Then, every thread executes the sequential optimization algorithm 
on its sub-matrix Dl = (D)Hl

 and annotates every individual it has optimized (i.e., 

(2)H =

M⨆

l=1

Hl,
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moved from one district to another in order to minimize the cost function depicted 
in Eq. 1).3

The merging section at the end of every outer iteration collects the results of the 
threads involved in the execution (see lines 32 to 36). We introduce a parameter for 
determining the depth of the merging operation. First, we sort the threads accord-
ing to the improvement achieved in the cost dl = ||Tl,s − Tr|| . Second, we select as 
many threads (ranked by smallest cost) as the value of the depth parameter d. Then, 
we commit the changes introduced by individual assignations done by these threads, 
prioritizing the ones with minimum cost. Finally, all threads are updated with the 
same optimized array r before the start of the next iteration. With this procedure, 
only the changes of the best d threads are committed. The next and final stage of the 
iteration is to execute the dynamic balance of the threads (see line 37). We will dis-
cuss further this procedure in Algorithm 4.

Note that the degree of parallelism of the first level is limited by the number 
of matrix columns (21 in our scenario). In the second parallel level—that cor-
responds to the nested parallel section—we parallelize the for loop that iterates 
over the individuals (see line 11 in Algorithm 2). Then, we use private copies of 
residence district vector rl,� for each nested thread � for each thread l. Each nested 
thread iterates over its assigned group of individuals and commits the changes 
in the global data structure at the end of the loop. In line 12, we check if the 
individual resides and works in the local extrema coordinates calculated in line 8 
and check if these extrema are a maximum. In this case, we move the individual 
from its residence district to a new one. In the other case (line 22), when the 
extrema are a minimum and the individual does not reside in the minimum dis-
trict i, we move the individual to the district that produces the minimum value. 
Note that given that the number of individuals is large, it is possible to involve 
many threads in this nested level.

Figure 2a shows an example of the original transport matrix Tr , representing 
the target distribution to be reached. In Fig. 2b, we show Ts , the matrix produced 
in the initialization phase. Finally, Fig.  2c shows the optimized matrix To , pro-
duced by the optimization algorithm. Note that Tr and To are similar, the former is 
obtained from the MMS and the latter from the individual distribution defined in 
the simulator.

As a summary of this algorithm, firstly each thread Ti is assigned to a partition of 
the set of districts (line 5, Algorithm 2). Then, each thread creates nested threads to 
iterate over the individuals (lines 11 to 31). Finally, at the end of every outer itera-
tion, every copy ri is committed with a depth parameter d to generate ropti (lines 32 to 
36). There are three conditions for terminating the optimization process—by exiting 
the outer parallel loop in line 5: 

3  The 21 districts of Madrid are, following the numerical order in the figure: Centro, Arganzuela, Retiro, 
Salamanca, Chamartín, Tetuán, Chamberí, Fuencarral-El Pardo, Moncloa-Aravaca, Latina, Carabanchel, 
Usera, Puente de Vallecas, Moratalaz, Ciudad Lineal, Hortaleza, Villaverde, Villa de Vallecas, Vicálvaro, 
San Blas-Canillejas, Barajas.
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(1)	 The number of successful optimizations (changes applied in residence district 
that reduce the cost) reaches a predefined maximum value of 1000.

(2)	 The number of unsuccessful optimizations since the last successful one reaches 
a predefined maximum value of 1000.

(3)	 The optimization suitability has been evaluated for all individuals in the district.

At the beginning of the execution, there are so many optimization opportunities 
that the most frequent exit condition is the first one. However, as the algorithm pro-
gresses, conditions 2 and 3 become more frequent, as there are less possible optimi-
zations that it is possible to perform. Figure 3 shows a graphical example of the par-
allel algorithm workflow with k = 4 (first level threads), l = 2 (second level threads) 
and d = 2 (depth value of 2). In this example, thread T1 has minimum cost C(Tl,s) 
followed by T4 . Therefore, ropti commits changes made by thread T1 and T4.

To end this subsection, we prove a result of time complexity of Algorithm 2 that 
will be useful in the following pages.

Lemma 1  The time complexity of Algorithm 2 is O(n2).

Proof  First, notice the parallel for loop iterating over the individuals in line 11. 
This section of the algorithm is in O(n) . If we show that the number of iterations N 
depends linearly on the size of the simulation, we will have proved the complexity 
O(n2) , as there are two for loops, one inside (line 11) the other (line 2). However, 
this is also true, because the number N depends on the average cost gain |d − d�| . 
The smaller the gain, the more iterations will be necessary to reach a given threshold 
cost. Finally, the average cost gain depends itself linearly on the size of the problem, 
by definition of the cost function in Eq.(1). 	�  ◻

2.2 � Fine‑grain refinement

The previous stage maps each simulated individual to a certain residence and work 
district. In the fine-grain refinement, we increase the detail level by adding two more 

Fig. 2   Comparison between matrices T
r
 (a), T

s
 (b)—not yet optimized with a cost equal to 0.800—, and 

T
o
 (c)—optimized with a cost equal to 0.201—2 . The color of each coordinate of the matrix represents 

the normalized value of each element of each matrix (number of travels from district i to j, normalized by 
matrix columns)
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variables to each individual: residence address and work address. Each variable cor-
responds to a specific address (street-number) in the city. In this stage, this mapping 
is refined at street-number level using data from the OpenStreetMap project [10]. A 
JSON file containing information on residence buildings such as street, number, zip 
code and coordinates is generated from OpenStreetMap.
Algorithm 3   Fine-grain spatial generation algorithm

Algorithm 3 shows the pseudocode of the fine-grain spatial generation. For each 
individual, the related residence district is obtained (line 2) using the results of the 
previous stage. Then, based on real data of Madrid city [11], we obtain the popu-
lation distribution vector across census sections4 of the considered district. In line 
3, we choose randomly a census section for the individual by weighting the prob-
abilities by this distribution vector. In this way, the probability of mapping one indi-
vidual to a certain census section will depend on the section’s population (i.e., the 
census section weight). As input data source, we use [12], which contains informa-
tion about addresses distributions across census sections. With this information, it is 
possible to choose a random street of the census section (line 4) for performing the 

Fig. 3   Parallel algorithm workflow example. We use k = 4 main threads, each having l = 2 nested 
threads and a depth value of 2 ( d = 2 ). In this example, main threads T

1
 and T

4
 reach to the first and sec-

ond best solutions, respectively

4  Census sections are the lowest level units for the collection of statistical information. In a city, a census 
section has a size of a few housing blocks.
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mapping. Finally, the set of coordinates related to the address calculated before are 
assigned to each individual, using the JSON file generated from OpenStreetMap. 
This algorithm is parallel implemented in Python scripts.

2.3 � Social generation

In this stage, the social model used by EpiGraph is refined using the data from the 
previous spatial generation stage. We carry out a breakdown of socioeconomic vari-
ables by districts for the city of Madrid. Then, using the spatial model to approximate 
the number of residents in each district, we can refine these variables to a fine-grained 
geographical level using demographic and socioeconomic data from official sources.

We first focus on income per capita by district. Open data on this variable is 
available on the webpage of the Madrid city council [13–15]. Comparing these data 
with spatial data generated by the model, we can study correlation between COVID-
19 incidence and income per capita. Other interesting indicators to consider are edu-
cational level and population by nationality.

The data acquired consists of three socioeconomic variables: income per capita (aver-
age income earned per person, year 2018), Gini index (measures the income inequality, 
year 2020) and population density (population per km2 , year 2022), with a spatial resolu-
tion of census section. This stage is done by scripts in R that are responsible for loading 
and parsing the input data and Python that assign the socioeconomic indicators to each 
individual. Section 2.2 introduces the methodology that assigns to each simulated indi-
vidual a residence census section, which is performed according to the individual’s resi-
dence district and the sizes—in terms of population—of the census sections belonging to 
the district. Then, as both the socioeconomic variables and the individuals are classified 
by census section, it is possible to map the indicators to the individuals. All this process 
is embarrassingly parallel (one thread per indicator) and is completed within seconds.

Finally, three different infection risk scale factors of COVID-19 infection are 
assigned to each simulated individual. Each risk is relative to a socioeconomic indi-
cator. These values of risk come from the scientific literature [16–18] and establish 
some degree of correlation between COVID-19 incidence and socioeconomic vari-
ables. Lastly, the global infection risk ri is computed based on the partial risks fol-
lowing the relation ri = ri,1 × ri,2 × ri,3 and is introduced in the simulator EpiGraph.

2.4 � Simulation and visualization

The epidemiological model of EpiGraph has been extended considering the work 
presented in [19]. This work analyzes the relationship between social disparities 
and the COVID-19 propagation in Germany, considering different regional indica-
tors like health, socioeconomic status or age structure of the population. Based on 
this work, the previous social indicators have been used to determine the COVID-19 
infection degree. In this way, instead of considering a homogeneous population, now 
the disease is propagated on a non-homogeneous society, in which the individual 
characteristics are different depending on the area they reside.
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Grafana [20] has been used to interactively visualize the results generated in the 
simulation stage. The visualization stage displays the spatial location of each individ-
ual on a city map using the Google Map API. In this way, it is possible to display, in an 
interactive fashion, the spatial location of each individual and track how the COVID-
19 disease is propagated through the city. Figure 4 shows an example of individual 
location of the city of Madrid using two different scales. We can observe the spatial 
location of the individuals, next to each building entrances. It is important to highlight 
two points. First, the spatial generation only considers residence areas, thus an indi-
vidual will not be mapped into public areas (parks) or commercial buildings (malls, 
businesses centers, etc.). Indeed, the motivation of this choice is to later include socio-
economic variables for each individual. By mapping them to residence addresses, we 
will be able to access to more refined statistical data and assign them to each individ-
ual. Furthermore, this assumption does not hinder the spreading model, as public areas 
and commercial buildings are already implemented in the epidemiological model of 
EpiGraph. Second, the social model considers both the residence and work addresses, 
so the mobility patterns of the simulated individuals match the city’s actual one.

3 � Workflow optimization

This section introduces two methodologies aimed to improve the workflow execu-
tion performance. The first one is a novel technique that increases the coarse-grain 
spatial generation convergence rate while maintaining the load balance among the 
running threads. The second one provides a performance comparison of different 
policies for processing the complete EpiGraph dataset on a parallel architecture.

3.1 � Algorithm convergence acceleration

The coarse-grain spatial generation and the simulation stages are the most time-con-
suming components in the EpiGraph workflow. We have considered three different 
distributions of the districts among the threads, cyclic, block and balanced, as shown 
in Fig. 5 for a set of 16 districts and four main threads. Note that the different size of 
the districts may lead to load unbalance situations for the block and cyclic distribu-
tions. The balanced distribution—Fig. 5c—is similar to the cyclic partitioning, but 
the districts are firstly sorted by population. In this way, we ensure an even distribu-
tion of the districts among the threads according to the number of individuals that 
each thread has assigned. Note that all these distributions (block, cyclic and unbal-
anced) are static, i.e., they are not modified during the algorithm execution.

We have evaluated the code performance for these three distributions using 
Intel® VTuneTM Profiler [21] on the Tirant v3 supercomputer in which each node 
is composed by two sockets of Intel Xeon Sandy Bridge E5-2670 with 8 cores 
each at 2.6GHz, for a total of 16 cores per node and 32 GB of DDR3 main mem-
ory. The performance results show that the block and cyclic distributions (intro-
duced in Sect.  2) exhibit the largest unbalance, which is reduced by means of 
the balanced distribution. However, given this distribution is also static, when 
the coarse-grain spatial generation algorithm progresses, the lack of optimization 
opportunities produces unbalance situations among the main threads.
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To tackle this problem, we have developed a dynamic algorithm that is able to 
increase the workload of the threads with the smallest execution time when a cer-
tain unbalance condition is reached. We first define the threshold r for measuring 
the amount of unbalance between the running threads. We denote tmax the time 
spent by the slower thread and tmin the time spent by the fastest thread during any 
given iteration, the threshold is defined by the ratio r ∶= (tmax − tmin)∕tmax , so that 
0 ≤ r ≤ 1 . Therefore, if r = 0 that means that all threads spent the exact same time 
inside the given iteration. The load balance algorithm, depicted in Algorithm 4, 
collects the thread execution time in every iteration (line 1) and stores the value 
in T (note that the first entry of this vector is T(1)). Then, it calculates the thresh-
old value r using the values of the threads with largest and smallest execution 
times (line 5). If this ratio is greater than some given threshold � ≥ 0 , a certain 
number of districts (given by the swap depth parameter D) is exchanged between 
the threads with the smallest execution times (line 8). Figure 5d shows an exam-
ple of this operation assuming that threads 3 and 4 have the smallest execution 
time. Note that the districts that are swapped are the smallest ones.

Algorithm 4   Dynamic balance algorithm

The results of this optimization are twofold. First, the workload is better balanced 
between the main threads as well as the nested threads. Note that each thread only 

Fig. 4   Central district of Madrid, where each point represents a simulated individual that has been 
assigned its residential address. Map centered at 40◦ 27’ 57.7758" N, 31 41′ 21.3828" W
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performs optimizations (i.e., exchange the individual’s residence location in order to 
minimize the cost function) between the districts that it has assigned. Consequently, 
a district swap between two threads increases the optimization opportunities—and 
consequently the thread execution time—given that there are new exchange combi-
nations available between the districts assigned to the threads. This strategy has an 
interesting side implication: the algorithm convergence time is also reduced, given 
that it can perform a larger number of optimizations. As we show in Sect. 3.2, this 
permits to speedup the algorithm convergence time.

3.2 � Large workflow executions

In this section, we analyze the workflow execution of the preprocessing stages on an 
HPC platform. In total, EpiGraph dataset includes the 642 largest European cities, 
with a total population of 189,433,972 individuals. Note that the spatial generation 
stage works independently for each urban city. Our goal is to estimate the processing 
time of the complete dataset while running the workflow on multiple compute nodes. 
We have developed a simulation framework that receives, as input data, the real pro-
cessing time of three cities with different sizes and the load balance policy that is 
being used. In our experiments we have used the actual processing time for a small 
(128,260 inhabitants), medium (404,173 inhabitants) and large (3,511,110 inhabit-
ants) city. This configuration was evaluated with three distribution schemes: static 
balanced, dynamic balanced and dynamic random. The dynamic random approach 
is similar to the dynamic balanced one, but it swaps the districts between two ran-
domly selected districts (instead of the ones with the smallest execution time).

Fig. 5   Different distribution schemes for a set of 16 districts and four main threads: a static block distri-
bution, b static cyclic distribution, c static balanced, and d dynamic balanced with one district swap
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Given that the algorithm time complexity is O(n2) by Lemma 1, where n is the 
city population, we use a polynomial fitting of degree 2 of the form ax2 + bx + c , 
with a > 0 for interpolating the estimated execution times of the rest of the cities 
in the city’s dataset. Note that we obtain three different polynomials (one for each 
distribution scheme), each one with a correlation coefficient R equal to 1, which 
validates our assumption of algorithm complexity. In this way, it is possible to esti-
mate the execution time of a certain city, knowing its population size and the distri-
bution scheme that is being used. By means of simulation, we have computed the 
required time needed to run all 642 simulations on parallel architecture considering 
a different number of compute nodes and workload distributions. The next section 
describes the results that we have obtained.

4 � Evaluation

In this section, we present a practical evaluation obtained on an Intel Xeon Gold 
6212U processor with 48 cores. We have used the gcc 7.5.0 compiler version in 
a platform with Ubuntu 18.04. All tests were conducted on three different popula-
tion scenario such ass small, medium and large. In the small scenario, we simulate 
128,260 individuals. In the medium one, we simulate 404,173 individuals. Finally, 
in the large scenario, we simulate a population of 3,511,110 individuals. The perfor-
mance evaluation is focused on the coarse-grain spatial generation algorithm that is 
the most time-consuming part of the workflow (besides the simulation stage that is 
not considered in this work). For instance, an execution of the coarse-grain spatial 
generation algorithm lasts thousands of seconds, while the rest of the stages (fine-
grain spatial generation, social generation, and visualization) last a few seconds.

Let us introduce a notation for describing the different parameters used in the 
experiments. Notation k − d − l indicates that the test is done with k main threads, 
with depth parameter d and with l nested threads. (We omit the l if there is no nested 
parallelism.) Given that performance results for cyclic and balanced modes are simi-
lar as we see in Fig. 6, we chose for simplicity the cyclic partitioning in the rest of 
the tests that are presented.

In a second set of experiments, we study which of the partition configurations 
gives better results. We valuate this by measuring the time needed to reach a pre-
defined threshold cost. We evaluate different numbers of nested threads for each 
configuration.

In the next step, we analyze the numerical convergence of different configura-
tions. For this test, we choose to fix each one of the dimensions: k, the number of 
main threads, and l, the number of nested threads. We measure the evolution of the 
cost function C in time. These results were obtained using the medium-sized simu-
lated population (404,173 individuals). Figure 7a evaluates different scenarios, fix-
ing the dimension of nested threads and setting l = 1 . We observe a big improve-
ment in convergence from k = 1 main threads to k = 4 , and between k = 4 and k = 8 . 
However, after increasing the number of main threads greater than 8, we observe 
that the improvement is negligible. Figure 7b ranges the number of nested threads 
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when the number of main threads is fixed ( k = 2 ). We observe that it is possible to 
scale in this dimension, reducing the convergence time when the number of nested 
threads is increased.

Figure 8 evaluates the impact of the depth parameter on execution time. Fixing 
the number of main threads and nested threads, we analyze how the time to reach a 
threshold cost change when modifying the value of parameter d. In this figure, we 
set k = 8 and l = 1 . We set d = 1, 2, 4, 6, 8 . As expected, we observe that the best 
execution times are achieved with maximum depth parameter ( d = k ). Note that 
between d = 1 and d = 8 , there is an improvement factor 6. Even by increasing the 
depth from 1 to 2, we reduce the execution time by half.

Figure 9 shows the time to reach a threshold cost for five different configurations, 
each one chose to utilize all the cores available (48 in total), except 21-21-2 configu-
ration because there cannot be more main threads than the 21 districts.

According to the previous insight, we have set the depth parameter to the max-
imum value because it is the one that achieved the best performance. We have 
grouped the results by size of the scenario. The simulation having the maximum 
number of main threads, i.e., 21-21-2, seem to perform less efficiently than those 
with a balanced number of threads (4-4-12, 8-8-6 and 12-12-4). Furthermore, the 
configuration 2-2-24 seems to provide the best results.

Regarding the improvement of the coarse-grain spatial generation stage intro-
duced in Sect. 3.1, we have compared for the 8 − 8 − 2 configuration three different 
district distributions, namely static balanced, dynamic balanced, and dynamic ran-
dom in which two random threads are chosen for swapping D of their assigned dis-
tricts. This evaluation was carried on Tirant v3 supercomputer, in which each node 
has two Intel Xeon Sandy Bridge E5-2670 processors with 16 cores per node. Fig-
ure  10a to 10c compares these results for three problem sizes. In the experiments, 
we vary the dynamic balanced mode between static balance, dynamic balance, and 
dynamic random. The dynamic balance is the faster one, followed by the dynamic 

Fig. 6   Time to reach threshold cost of t = 0.20 between different configurations of nested threads, for 
k = 4 , d = 4 and k = 8 , d = 8
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random. No balance at all (i.e., static balance) gives the poorer results. Different 
sized simulations, with (a) small 128,260 inhabitants, (b) medium 404,173 inhabit-
ants, and (c) large 3,511,110 inhabitants. In (d), convergence time to threshold cost 
t = 0.20 for the total 642 European cities that are sorted in an ascending, descending 
or random order for a dynamic balanced data distribution.

Note that the dynamic approaches improve the convergence of the algorithm 
(cost vs time) better than the static counterpart. As expected, the dynamic bal-
anced distribution performs better than the random one, especially for small 
problem sizes. The dynamic balanced distribution performs 16.8% more optimi-
zations than the static version and 23.1% more optimizations than the dynamic 
random. Moreover, for the large size problems, the algorithm convergence is 
much better for the dynamic versions.

We have simulated the execution cost of large workflows consisting of 642 
cities on Tirant v3 supercomputer (see Sect. 3.2 for details). Figure 10d shows 
the results considering a dynamic balanced data distribution, different num-
ber of compute nodes and three workflow execution orders such as ascending, 

Fig. 7   Cost evolution in time. In a fixing the number of nested threads to 1, configurations 1-1-1, 4-4-1, 
8-8-1, 16-16-1 and 21-21-1. In b fixing the number of main threads to 2, configurations 2-2-4, 2-28, 2-2-
16 and 2-2-24

Fig. 8   Time to reach threshold 
cost t = 0.25 for different depth 
configurations: 8-1-1, 8-2-1, 
8-4-1, 8-6-1 and 8-8-1
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descending and random, where the cities are sorted in ascending, descending 
and random order, respectively. Note that when this ordering is set, the different 
cities are processed by the available compute nodes following a FIFO scheme.

In Fig. 10d, we observe that the descending order produces the smallest pro-
cessing times, and the differences with the other orders are more important 
when a reduced number of compute nodes is used. The reason is that with the 
descending order, the largest cities are processed first. According to the algo-
rithm time complexity—which is quadratic-related to the population size—
these cities represent the most time-consuming part of the workflow. With the 
descending ordering, the workload can be balanced better using the medium and 
small cities. Furthermore, when the number of nodes increases, each node will 
have assigned fewer cities, and the algorithm convergence time will be limited 
by the time required to compute the largest cities.

5 � Discussion

In this section, we discuss the main results of this paper, including the strengths 
and limitations of the work. Finally, we discuss how to overcome these 
limitations.

The development of a spatial and a social model for EpiGraph represents a 
major improvement in the quality and precision of the epidemiological simula-
tions. A coarse-grained spatial approach (district detail level) using real trans-
portation data (see Sect. 2.1) allows us to construct a more refined model using 
a parallel algorithm that assigns random sampled addresses to a large number 
of agents (see Sect.  2.2). Furthermore, a social model is constructed using the 
geographical information available from the spatial model (see Sect. 2.3), which 
are then represented on a map with spatial visualizations tool, such as Grafana 
(see Sect.  2.4). Second, the refinement of the parallel algorithm is the second 
main contribution of this paper. By studying in detail the base parallel algorithm, 
we are able to develop a more optimized version of the algorithm that reduces 
the execution time of the original proposal, as seen in Sect.  3 and Sect.  4. A 
strength related to this optimization process is the possibility to extend this work 

Fig. 9   Time to reach threshold cost t = 0.25 in configurations 2-2-24, 4-4-12, 8-8-6, 12-12-4 and 21-21-
2. From left to right, with a small 128,260 inhabitants, b medium 404,173 inhabitants, and c large 
3,511,110 inhabitants
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to distributed memory system, as the developed algorithms are well-suited for 
both shared and distributed memory platforms.

Regarding the work limitations, the social model can be further improved by 
combining the information of all the three models (epidemiological, spatial and 
social) considered in the simulation. This will allow to enrich the simulation 
results with cross-model indicators. For instance, having access to epidemiologi-
cal data at district level will allow to determine if local district-level lockdowns 
(like the ones that occur in Spain in 2020) are applied. Using this information, 
it would be possible to refine the social model, given that some of the individu-
als residing in the affected districts will not be allowed to go to work. Another 
limitation is the integration with other data sources more recent than the mobil-
ity survey. One example is to use traffic conditions (measured in real time) for 
modeling the individual mobility. Furthermore, as discussed in Sect. 3.2, large-
scale workflow executions have not yet been evaluated on distributed compute 
nodes. With some minor modifications, the algorithms presented in this paper can 
be adapted to these platforms. Regarding the implementation of EpiGraph, the 
simulator has not been currently integrated with OpenMP. We also think that a 
hybrid parallel model (based on the combination of MPI and OpenMP) would 
increase the simulator performance. Finally, we plan to provide EpiGraph with 
malleable capabilities that permit to dynamically increase or decrease the number 

Fig. 10   Cost evolution in time, with fixed configuration 8-8-2
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of processes according to the computational intensity of the program phase that is 
being executed.

6 � Related work

Agent-based model EpiGraph [22] is a fully distributed simulator for influenza 
and COVID-19 diseases. One of the distinguishing features of EpiGraph is that 
it relies on realistic data for both individuals and their interaction patterns, which 
are extracted by scaling from existing social networks and contact matrices.

This section discusses other works on epidemic models, similar or related 
to EpiGraph. Reiner et  al. [23] use a deterministic SEIR framework to model 
the propagation of the virus and the effect of NPIs (social distancing mandates 
and mask use) until Spring of 2021. Some of their limitations are the absence 
of age structure and the assumption of a well-mixed population. Kerr et al. [24] 
include demographic information about age structure and population size. Differ-
ent from our work, contacts are not based on existing patterns; scalability issues 
are partly sidestepped by dynamic scaling. Vaccines are modeled by adjusting 
individuals’ susceptibility to infection and probability of developing symptoms 
after being infected; both modifications affect the overall probability of progress-
ing to severe disease and death. However, some features we consider in EpiGraph 
(such as vaccine effectiveness across variants) are not currently implemented in 
Covasim. Modeling social mixing is crucial for obtaining realistic simulations. 
Other research [25–27] considers different ways to refine social interactions. In 
EpiGraph, social mixing is modeled using the Facebook and Enron contact net-
works and individual contact matrices.

Bubar et  al. [28] compare five age-stratified prioritization strategies in terms 
of cumulative incidence, mortality, and years of life lost. Some limitations have 
to do with using pre-pandemic contact matrices, not incorporating NPIs, and only 
considering variation in disease severity and risk by age-although contact rates, 
and thus infection potential, vary greatly not only by occupation and age. Results 
show, such as in our work, that people aged 60 years and older should be prior-
itized to minimize deaths. Matrajt et  al. [29] use a mathematical model paired 
with optimization algorithms to determine the optimal use of vaccine for differ-
ent combinations of vaccine effectiveness and number of doses available under a 
wide variety of scenarios; the optimal allocation strategies were computed using 
age as the sole risk factor. This work obtains similar conclusions as our work, 
that is, for low vaccine effectiveness, the best option for reducing deaths is to 
allocate vaccines to older age-groups first.

Models such as SIMID-SCM [30] consider the evolution of the COVID-19 epi-
demic in Belgium with a deterministic age-structured extended compartmental 
model. This model integrates social contact data and is fitted on hospitalizations’ 
data (admission and discharge), on the daily number of COVID-19 deaths (with a 
distinction between general population and nursing home related deaths) and results 
from serological studies, with a sensitivity analysis based on a Bayesian approach.
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Other agent-based model, closer to EpiGraph, such as SwissTPH-OpenCOVID 
[4] is a stochastic, discrete-time, individual-based transmission model of SARS-
CoV-2 infection and COVID-19 disease. The model simulates viral transmission 
between infectious and susceptible individuals that come in contact through an 
age-structured, small-world network.

MOCOS international research group has developed in [5] an agent-based model on 
the basis of a continuous time stochastic micro-simulation. All relevant duration times 
like incubation time, time till hospitalization, and time till testing are sampled from dis-
tributions based on empirical data.

7 � Conclusions

In this work, we present a novel parallel execution workflow for extending the social 
modeling and visualization capabilities of EpiGraph simulator. This includes novel 
spatial generation algorithms that determine the residence and work location of each 
simulated individual with a high-detail level. This information is used by a social gen-
eration stage to assign to each individual different social-economic indicators related to 
the place of residence. These indicators are subsequently used to determine a major or 
minor risk of transmission of the disease. Note that all these algorithms are executed in 
parallel. This work also introduces a visualization stage that permits to display, in an 
interactive way, the location of each individual and graphically evaluate propagation of 
the COVID-19 disease. Several optimization techniques are also presented, that aim to 
reduce the algorithm execution time and to enhance the processing of large workloads 
consisting of hundreds of cities.

This work provides a comprehensive performance analysis of the most time-con-
suming stage of the workflow—the coarse-grain spatial generation—proving that it 
is possible to efficiently execute it in parallel under different configurations. Accord-
ing to the evaluation, a nested parallelism with a balanced distribution of the main 
and nested threads in combination with a maximum depth parameter leads to the best 
performance. In addition, the use of dynamic data redistribution schemes reduce the 
algorithm convergence times and improve the load balance. The results obtained in this 
work are used for improving the workflow execution in production environments.
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